Global Least Squares Solution for LTI
System Response

Gerhard Rath
University of Leoben
Chair of Automation
Leoben, Austria
Email: gerhard.rath@unileoben.ac.at

Abstract—Linear time invariant (LTI) systems are the
most important method to describe dynamic systems
for the purpose of modeling, simulation and design of
controllers. Dynamic systems are a process developing
over time, hence the solution is an initial value problem
(IVP). Solvers for ordinary differential equations (ODE)
are commonly used for evaluation. A new idea is to solve
such systems directly after discretization based on an
least-squares problem with equality constraints (LSE).
The approach is demonstrated on a simple system with
four state variables and a rank-deficient system matrix.
A comparison with standard ODE solution shows the
correctness of the solution, advantages are discussed.

I. INTRODUCTION

Many physical processes may be described with
differential equations. More than one independent vari-
able leads to partial differential equations (PDE) [1].
In many cases assumptions for simplifications can
be made, reducing the equations to one independent
variable and their derivatives, these are ordinary dif-
ferential equations (ODE) [2]. They can be divided
into initial value problems (IVP) and boundary value
problems (BVP).

Dynamic systems are processes developing over
time, usually IVP. Higher order differential equations
are reduced to systems of first order ODE [3]. If the
system is linear and time invariant (LTT), the state space
formulation will be

= Ax + Bu

z (0) = xo M

with A is the dynamic matrix, B is the input coupling
matrix and xg are the initial conditions of the state
vector x. For solving such IVP, several methods have
been developed, e.g. Heun, Runge-Kutta, Dormand-
Prince, or Bogacki-Shampine, which are available in
every software for solving ODEs [4].

An alternative approach to find a global solution
after discretization of a system was used to find a
curve whose differentials are known by inclinometer
measurements [5], [6]. In [7] such method was used
for a process in time, solving the canonical system for
an optimization problem. It had the advantage to solve
the BVP without the need of the matrix exponential,
an operation, which may cause problems [8]. Later it
turned out that the proposed method applied to stiff
systems has the advantage to find a solution, while
classical solvers have problems [9].

Matthew Harker
University of Leoben
Chair of Automation
Leoben, Austria
Email: matthew.harker @unileoben.ac.at

1% order delay ~ Drive X3 X1,X1—X2

u 1
— JWV\F m
s T+l b
77777777
Fig. 1. Positioning system of fourth order

In the actual work the method is applied to find
the response of a continuous-time LTI system in state-
space representation to an arbitrary control input, sub-
ject to given initial conditions.

The approach taken in this paper is to discretize the
LTI system directly over the entire time interval as a
linear system of equations. The initial conditions (or
boundary values as the case may be) take the form
of linear constraints imposed on the solution of the
systems of equations describing the LTI system.

II. EXAMPLE SYSTEM
A. Mechanical System

As a demonstration example for a LTI system the
model of a drive with elastic coupling to a mass is used
(Fig. 1). A mass m with friction b to the environment is
coupled with an elastic element with a spring constant
of ¢ to a drive. The position of the mass is x1, 2
is its speed, x3 is the position of the left spring end,
and x4 is the speed of the drive. The control input u
is speed, and the dynamical behavior of the drive is
modeled with a first-order delay with a time constant
7. This system can be used as a basic model for many
drives transporting a payload. For example, applied
to a hydraulic axis, the first-order part with the time
constant 7 is a good representation for the behavior of
a servo-drive [10].

The system that was used for this work is an elec-
trically driven linear drive in our laboratory. Usually
electronics for servo motors have limited speeds and
accelerations. To overcome this non-linear behavior, a
pre-filter of first order with a proper time constant 7
was used. The load was a ball hanging on a string
with a length of approximately one meter, modeling
a portal crane with a swinging load. Since the mass
is only a scaling factor, m = 1 was assumed. The
spring constant follows from the string length for a

ISBN 978-80-261-0642-5, (©) University of West Bohemia, 2017

linearized pendulum and is ¢ = 13. Friction was
determined experimentally from decreasing amplitude
of oscillations with b = 0.2. The time constant 7 = 1
is a pre-filter applied to the frequency inverter driving
the servo motor.

B. Mathematical Model

The resulting system is of fourth order and can be
modelled with

i
To |
T3 |
. :t4
[0 1 0 0 T 0
c b c
-< —= £ 0 To 0
m m m .
0 0 0 1 o R I
| 0 0 0 —% Ty %
2
The initial conditions
x(0)=[z10 20 w30 Ta0)" 3)

are the initial load position x1¢ , the initial speed x2,
the initial position of the spring x3p, and the initial
drive speed z49. All are assumed to be zero.

ITI. DIRECT GLOBAL SOLUTION APPROACH
A. Discretization
The system equation (1) rewritten is
&(t) = Ax(t) + Bu(t). 4)
Transposing it to
' =2"AT +«"BT (5)
makes it more convenient for discretization. This set of

equations can be evaluated at each discrete time step,
to obtain,

7(0) = 2"(0)AT + u"(0)BT
iT(tl) = CBT(tl)AT + uT(tl)BT

&' (tp) =x"(t;)AT +u"(t;)B". (6)

This set of equations, however, can be stacked
together to define the matrix equation [11],

X=XA"+UB". (7

Now all discrete time values of the state variables are
concentrated in

21 (0) 22 (0) zp (0)
Tq tl To tl Tp tl
x| it f) L®
L 1 () s (ty) 2, (1) l
and all input values are in
[w1 (0) w2 (0) uq (0)]
go|) |
| u (tp) w2 (ty) ug (ty)

The number of state variables is represented by p, the
number of inputs is ¢, and n is the number of samples
in time from O to ty.

With an appropriate numerical approximation to a

differentiating matrix [5], [6], (7) can be written as,
DX =XA"+UB", (10)

where the matrix D is effectively applied to each
column of X. Vectorizing this matrix equation [12],
i.e., stacking the columns of the equation into a vector
leads to

vec(DX) = vec(X AT + UB"). (11)
After introducing the Kronecker product follows
(I, ® D)vec(X) =

(A®I,)vec(X)+ (B ® I,)vec(U) (12)
and further

(I, ® D) — (A® I,,)] vec(X) = (B ® I,,) vec(U).

13)
With the abbreviations
b=(B®I,) (14)
and
A =I,®2D)—(Ax1I,) (15)
Equation (13) becomes
Ajvec(X) =bvec(U) (16)
or finally
Ajvec(X)—bvec(U) = 0. (17)

B. Initial Conditions

Equation (17) will be solved as a least squares
(LS) problem, but before this, the initial conditions
(3) are to be processed. They can be formulated as
a constraint leading to a least squares problem with
equality constraints (LSE). In the formulation

C"vec(X) =d, (18)

vec(X) is the vector with the discrete time instances
of all state variables. The matrix C" has p rows repre-
senting the initial condition for each state variable, in
our example there are four. Each row contains a one in
a proper column to express the condition. The column
vector d contains the values for the initial conditions.

C. Solution
Now the LSE problem to be solved is

| A1 vee(X) — bvec(U)|2 =min (19)
subject to the constraints
C"vec(X) =d. (20)

A possible solution according to [12] requires the
QR decomposition of the matrix C' and its partitioning
o]

C=QR=[Q Q]{O @n

3.5

= N
3 N o
T T T

Position [m], Speed [m/s]

T

05 T

0 0.5 1 1.5 2 25 3 3.5 4
Time [s]

Fig. 2. Step response obtained with proposed method

Now the desired state variables over time can be found
as

vec(X) = Mbvec(U) + (I — MA,) QR 'd (22)

with the abbreviation
~ -\t
M=0Q (AlQ) :
It is remarkable, that the right side of (22) is split
into two terms, one describing the influence of the
inputs (with vec(U)), the other the effect of the initial
conditions (with d). This means, for a given system,
the response to a changed input or different initial

conditions can be evaluated simply with one matrix
multiplication.

(23)

IV. RESULTS

For verification, step responses are calculated from
the system represented by (2) and compared. As a
reference, the exact solution for the actual system was
calculated. It was found using the transfer function

z1 (s) _ 1
u(s) s(stT+1) (22 +s2+1)

for the system (2). This is possible, if all initial condi-
tions d are zero. With the input step u (s) = %, making
a partial fraction expansion and inverse Laplace trans-
form, the exact analytical solution x; (¢) can be found.

With the proposed global LS solution the step re-
sponse was calculated using (22) and (23). Of course
this method is not restricted to step response, any
arbitrary input w and initial conditions d are possible
instead. The differentiating matrix D in (10) was
built with Legendre polynomials of seventh order [5].
If the time span of 4s is devided into n = 100
samples for discretization, the system matrix A; in
(19) has np = 400 rows and columns. The result of
the computation is shown in Fig. 2.

For comparison, the same system was tested with
Matlab®, creating a LTI object to represent the system
(2). The code snippet for creating the system’s state
space representation and calculating the step response
is:

G (s) =

(24)

35
3l
@ ost
E
el
8
2 2r
%)
E
S5k
c
ke
®
€ 1r
05
o L L L L L L
0 05 1 15 2 25 3 35 4
Time [s]
Fig. 3. Step response obtained with Matlab®
5 10 -8 a) Global least squares solution
0
5 L L L L L L L
0 0.5 1 15 2 25 3 35 4
%10 15 b) Step of continuous time function
4 T T T T T T
ok
0
2
0 0.5 1 15 2 25 3 35 4
c) Discrete system, Tustin's approximation
0.01 T T T T T T T
0
0.01
0.02 L L L L L L L
0 0.5 1 15 2 25 3 35 4
d) Discrete system, zero-order hold
0.02 T T T T T
0
-0.02
0.04 L L L L L L L
0 05 1 15 3 35 4

2
Time [s]

Fig. 4. Errors in step response for state variable x1

sys = ss(A,B,eye(4),0);
[x1, t] = step(sys, 4);
As to be seen in Fig. 3, it obviously yields the same
result.

Fig. 4a displays the deviation from the exact so-
lution, while 4b shows the result for Matlab’s step
function.

The next experiments are to create discrete transfer
functions with

Method Elapsed time
Global LS solution 70 ms
Step function, continuous 3ms
Discrete (Tustin) 2 ms
Discrete (ZOH) 2 ms
ODE solution (ode45) 4 ms

TABLE I: Computing time

sys2 = method) ;

x1 = step(sys,

cz2d(sys, T,
4);

where 7' is the sampling time. Fig. 4c shows the result
for the discrete transfer function with method = "tustin’,
and Fig. 4d for method = ’zoh’ (zero-order hold).
Transfer functions created with Matlab’s c2d function
are accepting streaming input data, the other methods
operate on block data. Finally, in Fig. 4e the solution
of (2) with the ode45 function is given. It returns for
this case 81 values with variable time steps, instead of
100 equidistant values like the other examples.

Computing times are given in Tab. I. They were
measured on a PC with an i3 processor running
Windows 7®. Due to the different procedures, the
times cannot be compared directly, but it is obvious,
that the proposed method is a serious candidate for
implementation even on embedded systems.

Once the system is given, the response to a differ-
ent input can be evaluated equivalent to convolution,
but with only one additional matrix multiplication in
(22). This would reduce the elapsed computing time
essentially. The same is valid for changing the initial
conditions.

V. CONCLUSION

This paper presented a direct matrix-based solution
to the solution of an LTI system. The method was
shown to be in very close agreement with the stan-
dard convolution-based solution. It was shown that
the solution to the system of differential equations
can be written as an explicit function of the control
functions and the initial conditions. One advantage of
the new method is that the order of approximation of
the derivatives can be increased without altering the
algorithm in any way. Similarly, alternative interpo-
lation functions, such as trigonometric or exponential
functions can be used. It is also a trivial matter to
extend the proposed algorithm to time-varying systems,
e.g., where the matrix A = A(¢) and/or B = B(t)
are time-dependent. Furthermore, it is straightforward
to solve a system with intermediate value conditions
in addition to initial and final values. Potential future
work is to solve the matrix equation describing the
system directly, which would further accelerate the
computation, and provide an efficient means of treating
systems with a large number of states and controls.

ACKNOWLEDGMENT

The authors would like to thank Prof. Paul O’Leary,
the head of our institution, for initiating, enabling and

inspiring this work.

[1]

[6]

[7]

[8]

[9]

(10]

[11]

[12]

REFERENCES

L. Evans, Partial Differential Equations, vol. 19 of Graduate
studies in mathematics. American Mathematical Society, 2 ed.,
2010.

R. Burden and J. Faires, Numerical Analysis.
Cengage Learning, 9 ed., 2011.

G. Franklin, J. Powell, and M. Workman, Digital Control of
Dynamic Systems. Menlo Park, CA, USA: Addison-Wesley
Longman, Inc., third ed., 1997.

L. Shampine and M. Reichelt, “The matlab ode suite,” SIAM
Journal on Scientific Computing, vol. 18, pp. 1-22, 1997.

P. O’Leary, C. Gugg, M. Harker, and G. Rath, Mathematical
Model and Software Architecture for the Solution of Inverse
Problems Involving Sensor Arrays, pp. 586-589. Inst. of
Electrical and Electronics Engineers, 2014.

P. O’Leary and M. Harker, “A framework for the evaluation
of inclinometer data in the measurement of structures,” Instru-
mentation and Measurement, IEEE Transactions on, vol. 61,
pp. 1237-1251, May 2012.

G. Rath and M. Harker, “Direct numerical solution of optimal
control problems,” in 2016 5th Mediterranean Conference on
Embedded Computing (MECO), pp. 304-308, June 2016.

C. Moler and C. V. Loan, “Nineteen dubious ways to compute
the exponential of a matrix, twenty-five years later,” SIAM
Review, vol. 45, no. 1, pp. 349, 2003.

G. Rath, M. Harker, and E. Zaev, “Direct numerical solution
of stiff ode systems in optimal control.” submitted to MECO,
2017.

L. Larsson, “Modelling of the swash plate control actuator in
an axial piston pump for a hardware-in- the-loop simulation
test rig,” in Proceedings of the 9th FPNI Ph.D. Symposium on
Fluid Power, 2016.

M. Harker, Differential Equations, Inverse Problems, and Frac-
tional Calculus in Mechatronics. Habilitation thesis, Monta-
nuniversitidt Leoben, 2015.

G. Golub and C. Van Loan, Matrix Computations. Baltimore:
The Johns Hopkins University Press, 41 ed., 2014.

Brooks/Cole,

