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Abstract— Performance of a detector based on
AlGaAs/InGaAs/GaAs-material system was studied. The
detector was comprised of large serpentine array of
high-electron mobility transistors (HEMTs) connected
in series. The floating drain contact of each transistor
(except the last one) served as a source for the next one.
Detection of terahertz (THz) radiation was based on the
excitation of electron plasma oscillations in the HEMT’s
channel. The peculiarities of THz response of the detector
in question including an enhanced noise-equivalent power
were demonstrated. *
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I. INTRODUCTION

Detection and generation of terahertz (THz) ra-
diation based on excitation of plasma wave oscil-
lations in the two-dimensional electron gas (2DEG)
channel of field-effect transistor (FET)-like structures
were theoretically predicted by M. Dyakonov and
M. Shur [1]. In recent years the achieved responsiv-
ity and noise equivalent power (NEP) of such de-
tectors have approached the values meeting the de-
mands of practical applications [2-7]. Main designs
of plasma wave THz detectors include single transis-
tors with the antenna [3,4,7], single transistors with
grating/interdigitated gate [2,8,9] and several transis-
tors connected by external wires or integrated on a
chip [5,6]. Lateral dimensions of most highly sensitive
detectors are much smaller than the half-wavelength of
THz radiation [5,6] and in an experiment one usually
deals with a single detector surrounded by wiring.
Indeed, the performance of such detectors arranged in
the focal plane array (FPA) as well as the effect of
external wiring are of great interest.

In a regular quasi-optical systems radiation beam
can be focused on a spot with a diameter of half-
wavelength covering several detectors in the FPA.
Therefore, the radiated power will be distributed
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among neighboring detectors so that the power per one
detector in the FPA will be proportional to the ratio
of the detector area to the area of the irradiated spot
which will affect the responsivity as well. We should
also keep in mind the contribution of irradiated wiring
which is different in the case of a single detector and
FPA.

In the study of a FPA with 3 x 5 pixels [7] each
pixel consisted of a transistor with patch antenna and
integrated amplifier and had dimensions 200 x 150
pum?. At room temperature the detectors have demon-
strated following performance: responsivity of about
70 kV/W with 43 dB voltage amplifier at 650 GHz,
NEP =300 pW/v/Hz at 30 kHz. A single detector
with a log-periodic aerial antenna with diameter of
1.5 mm has been investigated in the frequency range
200-600 GHz at liquid helium temperature [10]. This
detector has demonstrated a responsivity of 2.5 kV/W
at excitation frequency of 240 GHz, its calculated
NEP 100 pW/v/Hz at 750 Hz. Other configura-
tions of transistors on a single chip have been also
studied [2,5,6]. However, FPAs or single detectors
with a size corresponding to radiation half-wavelength
were not reported so far although the performance
of detectors in the FPA as well as single detector
of radiation half-wavelength dimensions are of great
interest and worth to be investigated.

In this paper we present experimental results on
THz response of a detector comprising of connected
in series individual transistors which can be treated
as FPA or as a single detector with dimensions of
radiation half-wavelength.

II. DETECTOR FABRICATION

THz detectors with GaAs/InGaAs/AlGaAs het-
erostructures on semi insulating GaAs substrate were
fabricated. At room temperature electron mobility and
concentration in the channel were 5900 cm?/V xs and
3 x 10'2 cm™2, respectively. The cap layer was n-
doped with Si up to 6 x 10'® cm~2. Ohmic contacts



Fig. 1. Photo of the detector obtained with optical microscope.

(source, drain, gate bus) were formed by deposition
of 30/10/40nm AuGe-Ni-Au layers. Gate metalization
(metal-semiconductor contact) was made by 150/500
nm Ti-Au layers. The substrate was thinned to 100 pm.
Photo of the detector and schematics of the detector
structure (top view) are shown in Figs. 1 and 2,
respectively. The metal gate fingers are connected with
gate bus via mesa to eliminate shunting of currents
induced by THz radiation as proposed in [11]. In
addition, the symmetry of the structure of transistors in
each next row is inverted in respect to location of the
metal strips of the gate. This changes the orientation of
source-to-drain direction with respect to the direction
of polarization of incident THz field as well as the
direction of the rectified current. Such configuration
promotes the flow of rectified currents from all rows
of transistors in one direction. The detector has 6
rows with 37 transistors in each. The detection area
is 300 x 200 um?. The width of transistors’ channels
is 25 pm.

The mesa with the FET chain was mounted in the
sample holder allowing to apply dc gate bias to the
common gate pad and dc drain bias between the side
(source and drain) pads of the FET chain. It should
be mentioned that all contacts playing the roles of
sources and drains except the first and the last pads
are floating. Two monochromatic sources of radiation
were used: backward wave oscillator (BWO) and radio-
frequency (RF) generator. BWO was used as a source
of sub-THz radiation in frequency range of 415-720
GHz. Asymmetry in gate location in respect to ohmic
contacts makes it possible to realize photovoltaic de-
tection mode.

The RF generator has been set at a single fre-
quency 143 GHz with power in the maximum of
50 mW. The output power was calibrated by the
Deuterated Triglycine Sulphate (DTGS) pyroelectric
detector, which is an authorized tool supplied with
the BOMEM DAS.36 FTIR spectrometer. Terahertz
radiation was mechanically chopped at a frequency
400 Hz and directed to the sample through an oversized
hollow circular copper waveguide. Tapered end of the
waveguide had an output aperture of 6 mm in diameter
which fully covered the FETs array. Power attenuation
in the oversized circular copper waveguide measured
by the DTGS pyroelectric detector was about 10 dB
in the frequency range of interest. The output aperture

i
i
- Nl‘lllh

Fig. 2. Schematics of the detector structure (top view). Dimensions
are in pm.

00z

of this waveguide was placed just above the sample
so that the incident THz power was distributed fairly
homogeneous over the sample area. By estimate, the
power of THz radiation incident on the sample area of
200 x 300 um? was about 210 nW for BWO and 11
uW for RF generator. The electric field of the incident
THz wave was polarized across the FET-gate fingers.
The source pad was grounded and the gate voltage
was applied between the gate and source pads. The
THz photovoltage U,;, was measured at the drain pad.
The photovoltage signal measurements were performed
by standard lock-in technique. Static current-voltage
characteristics of the FET array is shown in Fig. 3.
The channel depletion threshold voltage was about
U =13 V.

ITI. OBTAINED RESULTS AND DISCUSSION

Measurement of electromotive force (EMF) by
BWO was carried out at liquid helium temperature for
normally incident radiation with frequency f ~ 0.6
THz (wavelength A = 500 pum). Experimentally mea-
sured EMF is shown in Fig. 4. The maximum EMF is
about 300 ¢V at Uy, =~ 1.15 V. The shape of this curve
is typical for nonresonant THz response. As long as the
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Fig. 3.

Current-voltage characteristics of detector at 4.2 K.
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Fig. 4.
THz.

Experimentally measured EMF at a frequency f =~ 0.6

detector has asymmetrical structure the response can be
measured without a biased current. The responsivity
can be calculated as R.; = EMF/P, where P is
power of radiation incident on the sample surface.
Estimated maximum responsivity is about R., ~ 1.4
kV/W. Another important characteristics is signal-to-
noise ratio. NEP of the detector was evaluated using
the following formula:

NEP = 4 /@’
RES

where kp is the Boltzmanns constant, Rgp is the
source-drain resistance. The dependence of NEP versus
Uys is shown in Fig. 5.

The minimum of the NEP is about 1 pW/v/Hz at
Uys = 1.1 V. The obtained results are quite similar
to those presented in [10] which gives a ground to
consider both types of detectors pretty close to each
other. However, the proposed detector with serpentine
array of FETs may have some advantages in terms
of the NEP and responsivity. It is worth to mention
the quadratic dependence of the latter on frequency in
the THz range [12]. It should be emphasized also that
two order increase in the responsivity of the detector
presented in [10] was achieved by attachment of the
focusing lens [4]. The resistance of the channel has a
value 10° Ohm at the voltage 1.1 V. Therefore there
is a mismatch of the impedance of free space and the
receiver that reduces the responsivity.

To evaluate the change of the response with the
temperature we used more powerful source of radi-
ation described in Section II. Experimental results are
presented in Fig. 6.
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Fig. 5. NEP of the detector versus Ugs.

Fig. 6. EMF of the detector versus Uygs at different temperatures
(4.2 and 300 K). Curve at room temperature is multiplied by 500.

Due to different temperature ranges used in measure-
ments there is data shortage for full scale comparison
of the responses of the detector under investigation
and those ones from Refs. [4,10]. However, it has
been demonstrated that at 40 GHz response of the
detector with lateral dimensions several times smaller
than radiation half-wavelength has dropped more than
three orders in magnitude with the temperature [13].
Thus, the detectors with a size close to radiation
half-wavelength can exhibit stable characteristics in a
broader temperature range.

IV. CONCLUSIONS

In conclusion, we fabricated a single-chip detector
comprising of a large number of transistors connected
in series, dimensions of the detector are close to
half-wavelength of THz radiation to be detected. The
obtained voltage responsivity is above 1.4 kV/W in the
unbiased mode of the detector operation, the NEP of
the detector is 1072 W/v/Hz at 0.6 THz and 4.2 K.
The proposed design is not optimal due to mismatch of
the impedances of free space and the detector. It should
be improved and the current design has a plenty of
resources for that. Optimization of the detector with
proposed configuration opens up new opportunities
for further development of THz detectors for different
applications.
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