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Abstract—Application of data aggregation mechanisms
is supposed to ensure high confidence of measurements
and low energy demands in wireless sensor networks.
Therefore, many modern applications utilize distributed
algorithms for aggregate function estimation in order
to minimize negative factors affecting the operation of
the wireless sensor networks. This paper is concerned
with deterministic linear consensus-based algorithms for
distributed summing or more specifically, a comparative
study of five frequently applied algorithms from this
algorithm category over random graphs and random
geometric graphs. The selected algorithms are examined
using various methodologies and metrics.

Keywords-distributed computing; distributed sum-
ming; wireless sensor networks

I. INTRODUCTION

In many WSN1-based applications (e.g., event de-

tection, target tracking, decision making, etc.), one of

the most fundamental issues is to ensure the sensor

readings with high confidence and low energy require-

ments in spite of imprecision of the sensor nodes [1-

2]. WSNs are formed by spatially distributed sensor

nodes for collecting and processing information about

the observed physical quantity [3]. These sensor nodes

communicate with each other (or with a base station)

via wireless channels in order to make a meaningful

decision about the observed phenomenon [4-5]. The

sensor readings are affected by several factors (e.g.,

strong variations of pressure, various noises, dupli-

cated data, node failures, etc.) worsening QoS2 of

the executed applications [1]. Therefore, many WSN-

based applications are equipped with data aggregation

algorithms for minimizing the impacts of the negative

effects, whereby QoS is enhanced, and the energy

consumption can be optimized [1]. Xiao et al. define

two categories of data aggregation algorithms in [6]. In

the centralized data aggregation schemes, the measured

data is collected and processed by a data fusion center.

These mechanisms often require routing mechanisms at
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1Wireless sensor network
2Quality of Service

each sensor node, which is not an appropriate solution,

especially for mobile or battery constrained networks.

The modern applications are usually equipped with

distributed data aggregation schemes with no central

fusion center and absenting any global information

about the network topology. As shown in the literature

[7-10], consensus-based algorithms for data aggre-

gation (among others deterministic linear consensus-

based distributed summing algorithms (DLCDSAs)

with time-invariant and symmetric weights) find usage

in various WSN-based applications due to their lower

computational, communication, memory, and energy

demands.

In this paper, we analyze five frequently applied

DLCDSAs (namely, the Maximum Degree weights,

the Metropolis-Hastings, the Local Degree weights, the

Best Constant weights, and Optimized Convex weights

algorithms) over 1000 random graphs (RG) formed

by 50 nodes with a varying probability of the edge

formation and 100 random geometric graphs (RGGs)

formed by 200 nodes with either dense or sparse

connectivity. We use two research methodologies and

evaluate the performance of the analyzed DLCDSAs

using the following metrics: the mean square error

over the iterations (MSE(k)) and the convergence rate

expressed as the number of the iterations necessary for

all the sensor nodes to achieve the consensus.

The second section of this paper is focused on

modeling WSNs and chosen DLCDSAs using tools

defined in the graphs theory and the linear algebra. The

third section is concerned with the applied research

methodologies, and the fourth one consists of the

experimentally obtained results and a discussion about

them.

II. THEORETICAL BACKGROUND

A. Model of DLCDSAs and WSNs

We model WSNs as indirect finite graphs G deter-

mined by two sets V and E (G = (V, E)) [11]. The set

V consists of all the vertices in a graph representing the

particular nodes present in the inspected network. Each

vertex is allocated a unique identification number for

easy identification, i.e., V = {v1, v2, .... vn,}, where n is

the order of the inspected graph (i.e., n = |V|). The set
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E contains all the edges in the inspected graph, which

represent the direct connection between two vertices

(labeled as (vi, vj) or alternatively, eij).

DLCDSAs can be in general modeled as the differ-

ence equation defined as follows [12]:

x(k + 1) = W × x(k) (1)

Here, W is the weight matrix determined by used DL-

CDSA. Its elements affect several aspects of distributed

summing such as the convergence rate, the robustness,

the initial configuration, etc. [11]. Furthermore, x(k) is

a column vector variant over the iterations gathering

the inner states of all the sensor nodes at the kth

iteration. Subsequently, each sensor is able to estimate

the sum of all inner states as follows [13]:

xsumi (k) = n.xi(k), ∀vi ∈ V (2)

In DLCDSAs, the inner state at each sensor node

asymptotically converges to the sum calculated from

the initial inner states (i.e., x(k = 0)) of all the sensor

node in an inspected network, which can be expressed

as follows [14]:

lim
k→∞

x(k) = lim
k→∞

Wk × x(0) =
1

n
· 1× 1T × x(0) (3)

Here, 1 is an all-ones column vector, having ”1” in

each position [15]. The existence of this limit is crucial

for the proper functioning of DLCDSAs and is ensured

if these following convergence conditions are met [12]:

1T × W = 1T (4)

W × 1 = 1 (5)

ρ(W − 1

n
· 1 × 1T) < 1 (6)

Here, ρ(·) is the spectral radius of the analyzed ma-

trix/vector defined as follows [16]:

ρ(·) = max
i

{| λi(·) |: i = 1, 2, ...n} (7)

Thus, it represents the largest Laplacian eigenvalue in

the absolute value.

B. Analyzed DLCDSAs

In this section, we introduce examined DLCDSAs

and provide their mathematical definitions. The first

algorithm of our interest is the Maximum Degree

weights algorithm (MD), which is described by the

Perron matrix as follows [11]:

[W]MD
ij =

⎧⎪⎨
⎪⎩

1
Δ , if eij ∈ E

1− di.
1
Δ , if i = j

0, otherwise

(8)

Here, Δ is the maximum degree of the analyzed graph,

and di is the degree of the vertex vi (i.e., the number

of its neighbors) [11].

The next algorithms of our interest are the

Metropolis-Hastings (MH) and the Local Degree (LD)

weights algorithms, characterizable by non-uniform

edge weights. They require only locally obtainable

information for their proper initial configuration and

therefore find wide application in WSNs. Their weight

matrices are defined as follows [11-12]:

[W]MH
ij =

⎧⎪⎨
⎪⎩

1
max{di,dj}+1 , if eij ∈ E
1−∑i �=j [W]MH

ij , if i = j
0, otherwise

(9)

[W]LD
ij =

⎧⎪⎨
⎪⎩

1
max{di,dj} , if eij ∈ E

1−∑i �=j [W]LD
ij , if i = j

0, otherwise

(10)

The Best Constant weights algorithm (BC) is consid-

ered to be the fastest among the algorithms descriable

by the Perron matrix. It requires the exact value of the

second smallest and the largest Laplacian eigenvalues

(λn−1(L) and λ1(L)) for its proper initial configura-

tion. Its weight matrix is defined as follows [12]:

[W]BC
ij =

⎧⎪⎨
⎪⎩

2
λ1(L)+λn−1(L) , if eij ∈ E

1− di.
2

λ1(L)+λn−1(L) , if i = j

0, otherwise

(11)

The last analyzed algorithm is the Optimized Con-

vex weights algorithm (OW), which is designated in

such a way that the fast linear averaging problem3 is

expressed as the spectral radius minimization problem

as:

minimize ρ(W − 1

n
· 1 × 1T)

subject to L ∈ S, 1T × W = 1T,W × 1 = 1
(12)

Here, the parameter S represents the Laplacian matrix

sparsity pattern limits.

III. RESEARCH METHODOLOGY

In this section, we introduce the applied research

methodologies and the used metrics for performance

evaluation in our analysis. Our experiments are exe-

cuted in two types of graphs:

• random graphs [17] - are formed by 50 ver-

tices, and the existence of an edge is determined

by the probability p, which takes these four

values: 3.5%, 5%, 10%, and 15%. The graphs

are invariant over the iterations, and for each

probability p, 1000 unique graphs are generated.

• random geometric graphs [17] - are formed by

200 vertices. We generate two sets of these graphs

- densely and sparsely connected and show their

representatives in Fig. 1. The graphs are invariant

over the iterations again, and each set consists of

100 unique graphs.

Furthermore, we assume that each sensor node is al-

located a random scalar value of the standard Gaussian

distribution representing local measurement and deter-

mining the initial state of the corresponding sensor

node (the inner states are independent and identically

distributed), i.e.:

xi(0) ∼ N(0, 1), for ∀vi ∈ V (13)

In this paper, we carry out these two scenarios:

3originally, it was demostrated on distributed averaging



Fig. 1. Representatives of densely (figured left) and sparsely (figure right) connected random geometric graphs

• the execution of selected DLCDSAs is not
bounded - we choose seven iterations4 at which

the algorithms are analyzed - MSE averaged over

all 1000 RGs5/100 RGGs6 at these iterations

• the execution of selected DLCDSAs is bounded
by a stopping criterion - the algorithm execution

is bounded by the stopping criterion defined as

follows [11]:

| max{x(k)} −min{x(k)} |< P (14)

Here, P determines the precision of the final

estimates, however, higher precision results in a

lower convergence rate. In our experiments, we

set this value to 0.0001 in each experiment. In

this scenario, we analyze the convergence rate

expressed as the number of the iterations for the

consensus - the number of the iterations averaged

over all 1000 RGs5 /100 RGGs6 are shown.

Thus, we test the chosen algorithms in 1000 unique

random graphs for each p (i.e., in 4000 random

graphs in overall), 100 unique densely, and 100 unique

sparsely connected random geometric graphs. There-

fore, each analyzed algorithm is tested in 4200 graphs

in overall.

As mentioned above, we use two metrics (namely,

MSE over the iterations and the convergence rate

expressed as the number of the iterations for the

consensus) to evaluate the performance of analyzed

DLCDSAs. MSE is a reasonable metric used in various

areas and is defined as follows [18]:

MSE(k) =
1

n
·

n∑
i=1

(
xi(k)− 1T × x(0)

n

)2

(15)

The other used metric for performance evaluation

is the convergence rate expressed as the number of

the iterations for the consensus. The algorithms are

considered to be completed at the first iteration when

the condition from (14) is met.

425th, 50th, 100th, 150th, 200th, 250th iteration are chosen
5for each p separately
6for each connectivity separately

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In the first experiment, we analyze selected DLCD-

SAs over RG formed by 50 vertices when the edge

formation p takes these four values: 3.5%, 5%, 10%,

and 15% (a higher probability of the edge formation p
ensures higher connectivity of the generated graphs).

From the results shown in Fig. 2, where MSE over the

iterations is analyzed (we show the average over all

1000 graphs for each p), we can see that for p = 3.5%

and at the 25th iteration (i.e., an early phase of the

algorithms), the best performance is achieved by LD,

the second one by MH, the third one by BC, the fourth

one by MD, and OW achieves the worst performance.

At the 50th iteration, OW (the fourth-best performing)

outperforms MD (the worst algorithm in this phase).

LD achieves lowest MSE at this iteration, MH is the

second-best performing again, and BC achieves third

lowest MSE. At the 100th iteration, OW outperforms

also MH and BC and so is the second-best performing

at this iteration - MD is the worst one, BC the second-

worst, MH the third worst, and LD achieves the highest

performance again. At the 150th iteration, BC slightly

outperforms MH (the second-worst) and is thus the

third worst. The order of the other algorithms is the

same as at the previous analyzed iteration. At the

200th and the 250th iteration, OW takes smallest MSE

among the examined algorithm and is thus the best

performing in these phases. MD achieves the worst

performance, MH the second-worst, BC the third one,

and LD the fourth one. Over RGs with p = 5% at

the 25th and the 50th iteration, the best performance is

achieved by LD, the second one by OW, the third one

by MH, the fourth one by BC, and highest MSE is

taken by MD. At the 100th iteration, OW outperforms

LD and is, therefore, the best performing (LD is the

second one) - the order of the other algorithms is

the same as at the previous analyzed iteration. At

the 150th iteration, BC outperforms MH (the fourth-

best performing) and is thus the third-best performing.

OW achieves the highest performance again, LD is the

second one, and MD takes highest MSE. This order

is preserved also at the 200th and the 250th iteration.

For p = 10%, the best performance is achieved by



Fig. 2. MSE of MD, MH, LD, BC, and OW in decibels over iterations for edge formation p = 3.5%, 5%, 10%, and 15% over random
graphs (RGs) formed by 50 vertices (n = 50)

Fig. 3. Convergence rate (expressed as number of iterations for consensus) of MD, MH, LD, BC, and OW for edge formation p = 3.5%,
5%, 10%, and 15% over random graphs (RGs) formed by 50 vertices (n = 50) - the algorithms are bounded by the stopping criterion
provided in (14)

OW over the whole examined iteration interval, the

second-best performing is LD, the third one is MH in

earlier phases (i.e., at the 25th, 50th, 100th - here, BC

is the fourth-best performing) and, BC in later phases

(i.e., at the 150th, the 200th, the 250th iteration - here,

MH is the fourth-best performing). MD takes highest

MSE at each examined iteration. For p = 15% and

at each examined iteration, OW achieves the highest

performance, LD the second highest one, BC the third

one, MH the fourth one, and MD is the worst again.

In this paragraph, we compare the selected algo-

rithms over RGs in terms of the impact of the graph

connectivity on MSE [dB] (see Fig. 3). In order to

ensure easy readability of the text, we focus only on

the 250th iteration, and the difference between p =

3.5% and p = 15%. Here, we can see that OW is the

most significantly affected by the graph topology as

the difference in its MSE is equal to approx. 278 dB.

Then, LD is the second most affected (approx. 128 dB),

BC the third one (approx. 117 dB), MH the fourth one

(approx. 113 dB), and MD is the least affected among

the examined algorithms (approx. 76 dB).

In Fig. 3, we show the results when DLCDSAs

are bounded by the stopping criterion from (14). We

can see that the highest average convergence rate is

achieved by OW for each p, LD is the second fastest,

BC is the third one, MH is the fourth one, and the

worst performance is observable for MD. Furthermore,

we analyze the maximum and the minimum from the

convergence rates for each examined algorithm and

for each p (i.e., we show the convergence rate in the

graph where an algorithm is the slowest/the fastest).

When the minimum is analyzed for each p, the order

of the algorithm is the same as when the average is

examined. However, when the maximum is analyzed,

BC is outperformed by MH for each p.



Fig. 4. MSE of MD, MH, LD, BC, and OW in decibels over iterations over random geometric graphs (RGGs) of dense and sparse
connectivity formed by 200 vertices (n = 200)

Fig. 5. Convergence rate (expressed as number of iterations for consensus) of MD, MH, LD, BC, and OW over random geometric graphs
(RGGs) of dense and sparse connectivity formed by 200 vertices (n = 200) - the algorithms are bounded by the stopping criterion provided
in (14)

In the next analysis, we examine MSE over the

iterations of selected DLCDSAs over 100 RGGs of

either dense or sparse connectivity. In densely con-

nected RGGs (Fig. 4), we can see that OW outperform

the concurrent algorithms over the whole examined

interval. The second most precise is LD, MH is the

third one, BC is the fourth one, and MD achieves

the worst performance at each iteration. In sparsely

connected RGGs (the algorithms are analyzed up to

the 800th iteration compared to the previous analyses

- it is because the algorithms achieve low precision

even at the 250th iteration), we can see that OW is the

worst performing in an earlier phase (i.e., at the 25th

and the 100th iteration), the second-worst performing

at the 200th iteration, and from the 400th iteration, it

outperforms all the concurrent algorithms and so is the

best performing at these iterations. The order of the

other algorithms is as follows: the worst performance

is achieved by MD (except on the 25th and the 100th

iteration - when it is the second-worst), the second-

worst by BC (except on the 25th, the 100th, and the

200th iteration - when it is the third worst), the third

worst one by MH (except on the 25th, the 100th, and the

200th iteration - when it is the fourth-worst), and the

fourth-worst one by LD (except on the 25th, the 100th,

and the 200th iteration - when it is the best performing).

Now, like in RGs, we compare the analyzed algo-

rithms over RGGs in terms of the impact of the graph

connectivity on MSE [dB] (see Fig. 5). Again, we deal

only with MSE at the 250th iteration. Here, we can see

that OW is the most significantly affected by the graph

topology again, and the difference in its MSE is equal

to approx. 185 dB. The second most affected algorithm

is LD (approx. 67 dB), MH is the third one (approx.

63 dB), BC is the fourth one (approx. 44 dB), and the

difference of MD takes only approx. 22 dB.

In the scenario when the algorithms are bounded by

(14) over RGGs (see Fig. 5), we can see that in the

densely connected graphs, OW has the highest average

convergence rate among the examined DLCDSAs, BC

is the second fastest, LD is the third one, MH the

fourth one, and MD achieves the slowest convergence

rate. In the sparsely connected graphs, OW has the

fastest average convergence again, however, BC is

outperformed by LD (the second fastest) and MH (the

third fastest) and is, therefore, the fourth fastest. The

slowest algorithm is MD again just like in the densely

connected RGGs. Afterward, we show the maximum

and the minimum for each algorithm in both densely

and sparsely RGGs (i.e., we show the convergence

rate in the graph where an algorithm is the slowest/the

fastest). In the densely connected graphs, it can be seen

that the order of the convergence rates corresponds

to the order when the average over all 100 graphs

is shown except on the maximum of BC - BC is

outperformed by MH and LD even though it is better in

terms of the average and the minimum. In the sparsely

connected graphs, the order of the examined algorithms

is the same when the average, the minimum, and the

maximum are analyzed.

V. CONCLUSION

In this paper, we analyze five frequently applied

deterministic linear consensus-based algorithms for

distributed summing (namely, MD, MH, LD, BC, and

OW) over random graphs with a varying edge forma-

tion and random geometric graphs of dense or sparse

connectivity. From the experimentally obtained results,

we can see that OW achieves lowest MSE over the

iterations over all RGs except on in earlier phases over



graphs with lower connectivity (i.e., p = 3.5% and 5%).

An increase in connectivity (ensured by increasing p)

causes that OW outperforms the concurrent algorithms

earlier. BC is also more performing in later phases. In

earlier phases over the graphs with lower connectivity

(i.e. p = 3.5% and 5%), LD achieves the highest perfor-

mance, and this algorithm is very precise also in other

graphs and phases. The worst performance is achieved

by MD at almost every iteration and in each set of

the graphs. Only except for the 25th iteration in the

graphs with p = 3.5%, this algorithm outperforms OW,

significantly best performing algorithm in general. In

the random geometric graphs, OW is the best perform-

ing over the whole examined interval in the densely

connected graphs. In the sparsely connected ones, this

algorithm achieves lowest MSE at later iterations (from

the 400th iteration), however, in earlier phases (i.e.,

the 25th, the 100th iteration), it is outperformed even

by MD, which achieves the worst performance again.

In the other analyses, we compare selected DLCDSAs

when the algorithm execution is bounded. From the

results, we can see that OW outperforms the concurrent

algorithms in all RGs and RGGs (this algorithm is

also the most affected by the graph connectivities). The

worst performance is achieved by MD in all RGs and

RGGs (this algorithm is the least affected by the graph

connectivities).
So, the final conclusion is that OW achieves the

highest performance, and MD the lowest performance

in both scenarios, i.e., the algorithms are/are not

bounded by the implemented stopping criterion.
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