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Abstract—The exact information about the network
size is crucial for the proper functioning of many
distributed algorithms. In this paper, we analyze the
average consensus algorithm for a distributed network
size estimation bounded by the stopping criterion pro-
posed for the wireless sensor networks. We analyze its
four initial configurations over random geometric graphs
of different connectivity under various parameters of
the implemented stopping criterion. The performance is
evaluated by the mean square error and the convergence
rate expressed as the iteration number for the consensus.
Finally, the results obtained under various conditions are
compared to find the best performing configuration of
both the average consensus algorithm and the imple-
mented stopping criterion. Also, the results are compared
to the distributed summing functionality.
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I. INTRODUCTION

Data aggregation poses an essential building block

in various architectures (among others WSNs1) and

may play a key role in the proper functioning of

many distributed algorithms (e.g., the dimensioning of

distributed hash table structures, the configuration of

voting algorithms, load-balancing decisions, disk space

estimation in peer-to-peer sharing systems, synchro-

nization in ad-hoc systems, etc.) [1]. Distributed data

aggregation does not present a trivial task, especially

when no global identifiers or centralized algorithms

are used [1]. One of the key demands required by the

most distributed algorithms is to ensure the information

about the network size n at each sensor node before-

hand [2]. Therefore, this has instigated the formation

of various techniques for this purpose (e.g., extrema

propagation, distributed orthogonalization, consensus-

based algorithms, etc.) [2].

As mentioned above, WSNs is a technology where

data aggregation mechanisms are assumed to support

the proper functioning of the executed applications [3].

WSNs, finding the application in various areas such

This work was supported by the VEGA agency under the contract
No. 2/0155/19 and by the Slovak Research and Development Agency
under the contract No. APVV-17-0116.

1Wireless sensor networks

as geographical surveillance, health-care, industrial

monitoring, etc. [4, 5], are formed by geographically

distributed sensor nodes to sense the adjacent envi-

ronment and communicate together in order to make

a meaningful decision about the monitored physical

quantity [6]. As these sensor nodes are affordable

devices, they suffer from insufficient communication,

computation, energy, and memory capabilities [6].

Thus, one of their crucial designs issue is to ensure

effective algorithm operation in short execution time

(achieved by selection of an appropriate algorithm, an

effective setup of the implemented stopping criterion,

etc.) [6].

We focus our attention on the average consensus

algorithm (AC) for a network size estimation, which

finds a wide application in WSNs due to its specific

character (e.g., lower energy, memory, communication

demands, high robustness, easy implementation, etc.)

[7]. We analyze its four initial configurations bounded

by the stopping criterion from [7] proposed for WSNs

over 30 random geometric graphs (RGGs) of either

dense or sparse connectivity. This paper follows on our

research2 focused on the applicability of the mentioned

stopping criterion for distributed summing in WSNs.

We vary the parameters of the implemented stopping

criterion (namely, accuracy and counter threshold)

and evaluate the performance of four selected initial

configurations using two metrics (namely, the mean

square error (MSE) and the convergence rate expressed

as the number of the iterations for the consensus) under

various conditions. Our goal is to find the most suitable

initial configuration of both AC and the implemented

stopping criterion.

The next section is focused on the theoretical

background, i.e, we introduce a model of AC over

WSNs, its definition, the convergence conditions, and

the implemented stopping criterion. In Section III.,

we introduce the used research methodology and the

applied metrics. Section IV. is concerned with the ex-

perimental results from Matlab2016a and comparison

with [8], where AC for distributed summing with the

examined stopping criterion is analyzed (the research

2presented in [8]
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methodology is the same as in this paper, allowing easy

mutual comparison).

II. THEORETICAL BACKGROUND

A. Modeling of AC over WSNs

We consider WSNs to be indirect finite graphs G
determined by the vertex set V and the edge set E
[9]. The set V contains all the graph vertices, which

represent the sensor nodes in WSN. A unique index

is allocated to each vertex (vi, i = 1,2....n) for easy

identification. The parameter n represents the graph

order, i.e, the number of the vertices in a graph. The

set E consists of all the graph edges, indicating the

direct connection between two vertices (referred to as

(vi,vj) or eij).

At the beginning of the algorithm, each sensor node

initiates its inner state with either ”1” or ”0” [2]. Only

one of the sensor nodes takes ”1” - it is so-called the

leader. In our analyses, we appoint the node with the

highest degree3 as the leader. If there are two sensor

nodes with the same degree, the one with a lower

identity number is the leader. The inner states of the

sensor nodes are gathered in a column vector x(k)

variant over the iterations4 and with the size of n. Thus,

the initial states can be defined as follows5:

xi(0) =

{
1, if vi is the leader

0, if vi is not the leader
(1)

In AC, at each iteration, all the sensor nodes update

their inner states as a combination of the current inner

state and the inner states collected from the adjacent

sensor nodes. We assume the Constant weights of this

algorithm, i.e., each edge in a graph is allocated the

same weight equal to the mixing parameter ε. The

described procedure can be modeled as the difference

equation defined as follows [9]:

x(k + 1) = W × x(k) (2)

Here, W is the weight matrix, whose elements affect

AC in several aspects (e.g., the convergence rate, the

robustness, the convergence of the algorithm, etc.) [8].

As mentioned earlier, we analyze the Constant weights,

whose weight matrix can be defined as follows [8]:

[W]CW
ij =

⎧⎪⎨
⎪⎩

ε, if eij ∈ E
1− di.ε, if i = j

0, otherwise

(3)

Here, di represents the degree of the corresponding

sensor node vi. The inner states of all the sensor

nodes are iteratively exchanged between each two

adjacent sensor nodes and asymptotically converge to

the arithmetic mean calculated from all the inner states,

i.e., to 1
n , which can be expressed as follows [10]:

lim
k→∞

x(k) = lim
k→∞

Wk × x(0) =
1

n
· 1× 1T × x(0) (4)

3i.e., the sensor node with the most neighbors
4k is the label of an iteration
5we assume that x(k = 0) poses the initial inner states

Here, 1 is an all-ones vector of a column shape [8].

Then, each sensor node is able to estimate the network

size at each iteration as follows [2]:

xNS
i (k) =

1

xi(k)
, ∀vi ∈ V (5)

The existence of the limit is necessary for AC to work

correctly [10]. It is ensured when these three conditions

hold [10]:

1T ×W = 1T,W× 1 = 1, ρ(W− 1

n
· 1× 1T) < 1 (6)

Here, ρ(·) is the spectral radius of the analyzed matrix.

B. Implemented Stopping Criterion

As mentioned earlier, we assume that the execution

of AC is bounded by the stopping criterion from [7].

This stopping criterion is determined by two pre-set

constants, namely, accuracy and counter threshold,

which are the same for each sensor node. Furthermore,

each sensor node has its own independent counter,

a variable initiated with ”0” at the beginning of the

algorithm. The implemented stopping criterion is fully-

distributed, thereby finding application in WSNs. It

works in such a way that each sensor node verifies

whether its two subsequent inner states are smaller

than pre-set accuracy, and the inner state of the cor-

responding sensor node is not equal to ”0”6. If so, it

increments counter by ”1”, otherwise, sets its value

to ”0” regardless of its current value. When counter
reaches the value equal to counter threshold at a sensor

node, this sensor node considers the algorithm to be

locally completed and participates in AC no longer - it

does not communicate with the other adjacent sensor

nodes, and its inner state is updated no more.

III. RESEARCH METHODOLOGY

In this section, we introduce the used research

methodology and the metrics for performance evalu-

ation.

As mentioned above, we focus our attention on

the Constant weights of AC, which is characterized

by uniform edge weights. As discussed above, the

existence of the limit provided in (4) is crucial for

the proper functioning of AC. Thus, in this paper, we

select four following values of the mixing parameters

ε, ensuring the convergence of the algorithm in all our

examined graphs [9]:

• ε = 0.25 . 1/Δ (referred to as ε = 0.25)

• ε = 0,50 . 1/Δ (referred to as ε = 0.50)

• ε = 0.75 . 1/Δ (referred to as ε = 0.75)

• ε = 1/Δ (referred to as ε = 1)

Here, Δ is the degree of the best-connected sensor

node, i.e., the maximum degree of the graph.

Furthermore, we analyze AC over RGGs of either

dense or sparse connectivity. We generate 30 densely

connected unique graphs and 30 sparsely connected

unique graph, both formed by 200 nodes.

6the second condition is added compared to distributed averaging
and summing - it increases the precision of the final estimates



Fig. 1. MSE in decibels averaged over 30 densely connected RGGs

As mentioned above, we assume that each sensor

node initiates its inner state with either ”1” (the leader)

or ”0”. We appoint the best-connected sensor node as

the leader.

As mentioned earlier, we assume that AC is bounded

by the stopping criterion from [7], determined by

two pre-set constants. In our analyses, they take these

values:

• accuracy = 10-1, 10-4, 10-6, 10-8, 10-10, 10-12

• counter threshold = 3-100 with the step size

= 1

We use two metrics for performance evaluation,

namely, the mean square error over the iterations

(MSE(k)) and the convergence rate expressed as the

number of the iterations for the consensus achievement.

MSE is a frequently applied metric for performance

evaluation in a wide spectrum of the scientific disci-

plines and is defined as follows [8]:

MSE =
1

n
·

n∑
i=1

(
xi(klast)− 1T × x(0)

n

)2

(7)

Here, klast is the label of the iteration when the last

sensor node completes the algorithm. In the experi-

mental section, we separately analyze MSE averaged

over 30 densely connected and 30 sparsely connected

RGGs.

The other applied metric is the convergence rate

expressed as the number of the iterations. A higher

number of the iterations indicates a lower convergence

rate. Again, the convergence rate averaged over 30

densely connected and 30 sparsely connected RGGs

is separately analyzed.

IV. EXPERIMENTAL SECTION

In the first experiment, we analyze MSE over the

iterations in densely connected RGGs (see Fig. 1).

From the results, it can be seen that an increase in

the mixing parameter ε results in lower MSE, and so

the precision of the final estimates7 is higher. Thus,

AC with the highest analyzed mixing parameter (i.e.,

ε = 1) achieves the highest performance for each

accuracy and counter threshold. Moreover, it is seen

that an increase in counter threshold ensures a decrease

in MSE for each accuracy and ε. However, we can

see that the precision is very low for accuracy =

10−1 and accuracy = 10−4 for each analyzed counter
threshold. It is because the leader completes AC so

soon that the information about its inner state is not

sufficiently diffused over the graphs. For accuracy =

10−6, 10−8, and 10−10, we can see that there is the

value of counter threshold for which a rapid increase

7the estimates after AC is completed at each sensor node



Fig. 2. MSE in decibels averaged over 30 sparsely connected RGGs

in the precision is visible. A higher value of ε and a

lower value of accuracy cause that this rapid precision

increase occurs for lower counter threshold. This rapid

precision increase takes values between approx. 37

dB - 204 dB. This phenomenon is not observed in

[8], where the distributed summing with the stopping

criterion is analyzed. However, for accuracy = 10−10,

ε = 0.5, 0.75, and 1, high precision is seen for each

counter threshold. For accuracy = 10−12, high preci-

sion is achieved by each configuration for each counter
threshold. Furthermore, we can see that the value of

accuracy has only a marginal impact on MSE when

the precision of the final estimates is small. For those

values of counter threshold when MSE achieves low

values, a decrease in accuracy ensures a decrease in

MSE.

In the sparsely connected graphs (Fig. 2), the impact

of a decrease in accuracy and an increase in counter
threshold and the mixing parameter ε have the same

character as in the previous analysis. Compared to

the results from the dense graphs, the rapid precision

increase has the same character, however, it is visible

for higher values of counter threshold and lower values

of accuracy (for ε = 1, it is observed the first time for

counter threshold = 82, accuracy = 10−8 and for ε =

0.25, it is even seen the first time for counter threshold

= 99, accuracy = 10−12). It takes significantly higher

values than in the dense graphs, and these values are

between approx. 92 dB - 286 dB.

The next analysis is concerned with the convergence

rate in dense and sparse RGGs. From Fig. 3 and Fig.

4, we can see that an increase in counter threshold
and a decrease in accuracy result in an increase in

the iteration number necessary for the consensus and

so decelerate the algorithm regardless of the value

of the mixing parameter ε (the difference between

various ε is negligible for accuracy = 10−1). Moreover,

an increase in ε ensures a higher convergence rate

for each counter threshold and accuracy. In general,

the precision and the convergence rate are higher in

the densely connected graphs than in the sparsely

connected ones.

Compared to AC for distributed summing with the

same stopping criterion [7], AC for a network size

estimation is less precise, and similar precision can

be reached in a significantly higher number of the

iterations. AC for a distributed network size estimation

requires almost twice more iterations in the dense

graphs and two and a half times more iterations in the

sparse graphs to achieve MSE around zero decibels

than AC for distributed summing [8].



Fig. 3. Convergence rate expressed as number of iterations for consensus averaged over 30 densely connected RGGs

V. CONCLUSION

We analyze AC with four initial configurations

bounded by a stopping criterion with varied parame-

ters proposed for WSNs over RGGs of either dense

or sparse connectivity. We show that a decrease in

accuracy and an increase in counter threshold ensure

lower MSE (i.e., higher precision of the final estimates)

but decelerate the algorithm for each mixing parameter

ε. However, we can see the interesting phenomenon

- for higher accuracy and lower values of counter
threshold, the precision of the algorithm is very low

- even making the algorithm unusable. Then, a rapid

precision increase dependent on accuracy, counter
threshold, ε, and connectivity is observed. For lower

accuracy, higher ε, and connectivity, this increase is

visible for lower counter threshold. Furthermore, an

increase in the mixing parameter ε ensures both higher

precision and a higher convergence rate. Compared

to AC for distributed summing stopped by the same

implemented stopping criterion, AC for a network size

estimation (the stopping criterion is slightly edited)

achieves a significantly lower performance and requires

more iterations to achieve similar precision than AC

for distributed summing. In general, the precision and

the convergence rate are higher in densely connected

RGGs than in the sparsely connected ones.

Thus, the final conclusion is that the mixing param-

eter ε taking 1/Δ achieves the highest performance

in terms of both the precision of the final estimates

and the convergence rate. Moreover, the setting of

the stopping criterion parameters depends on whether

higher precision or a faster execution of the algorithm

is required - this depends on a particular application.

Furthermore, higher values of accuracy and lower

values of counter threshold may lead to unusable

precision of the final estimates.
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