
ISBN 978-80-261-0812-2, © University of West Bohemia, 2019 

Designing a MSP430 Bootloader 
Septimiu Mischie 

Faculty of Electronics, Telecommunications and 
Information Technologies 

Politehnica University of Timisoara, Romania 
septimiu.mischie@upt.ro 

Robert Pazsitka 
Faculty of Electronics, Telecommunications and 

Information Technologies 
Politehnica University of Timisoara, Romania 

robert.pazsitka@upt.ro
  

Abstract – This paper presents implementation of a 
serial bootloader for a MSP430G2553 microcontroller. 
It is implemented in assembly language and it is written 
in the information area of the microcontroller memory 
by using any usual tool for flashing. Then, the source of 
the application can be developed. The application code 
that is obtained by using the compiler and linker must 
be sent to the microcontroller. For this purpose, a serial 
communication between PC and the UART port of the 
microcontroller via an USB to serial converter is 
implemented. In this case a MATLAB application is run 
on the PC while the bootloader is run on the 
microcontroller. Finally, the bootloader receives and 
writes the application code in the main area of the Flash 
memory. Thus, an efficient method to update the 
application code, having advantages in comparison with 
those in literature is proposed.  

Keywords-microcontroller; bootloader; application; 
serial communication;  flash memory; 

I.  INTRODUCTION  
A bootloader represents a software statement 

which is resident in a part of the flash memory of a 
microcontroller [1], [2].  It writes the application in the 
rest of the flash memory without using any other 
device as a programmer-debugger. The bootloader 
requires a serial communication between a Personal 
Computer (PC) and the microcontroller. Thus, the 
bootloader receives the application code from the PC 
and writes it in the specified memory. It should have a 
low memory size and generally it not be changed. A 
bootloader is used especially in the manufacturing 
phase of electronic device. In this way, the need to use 
a programmer-debugger which is an expensive device 
is eliminated. In the literature there are presented 
bootloaders for different kind of microcontrollers, 
such as PIC [3], AVR [4], ARM [5], Renesas [6],[7] 
and NXP [8]. Texas Instruments MSP bootloaders are 
also presented in [9], [10] and [11]. The approach of 
[10] is implemented for MSP430G2001 device. It used 
software UART of 9600 bps to receive the application 
code. Furthermore, this process is executed in several 
steps in a terminal (HTerm): sending syncro, sending 
the file of application code, computing and sending the 
checksum and receiving the microcontroller answer. 
The bootloader presented in [11] is implemented for 
MSP40G2553 microcontroller but uses two 
development systems, a target and a host among the 
PC. This approach however complicates the use of the 
bootloader.  

In this paper, we implemented a bootloader mainly 
following the idea of [10] with a few improvements. 
Thus, the bootloader is designed for a more advanced 
microcontroller, MSP430G2553. We use hardware 

UART having a faster Baud Rate, 56000 bps, to receive 
the application code. All the steps for sending the code 
from the PC are integrated into a MATLAB 
application and thus the proposed bootloader is very 
easy to use. Furthermore, we propose a more advanced 
application that uses all of the microcontroller’s 
peripherals and has three interrupt sources. The paper 
is organized as follows. The second section describes 
the proposed bootloader. The third section presents 
some details regarding the implementation. The fourth 
section presents the experimental result while the last 
section concludes the paper.    

II. DESCRIPTION OF THE BOOTLOADER 
The paper presents design and implementation of a 

bootloader for a MSP430G2553 microcontroller 
(MCU). There is a single piece of software for MCU 
which is generally called bootloader whose 
architecture is presented in Fig. 1. It has two working 
modes: bootloader mode and application mode.  
Usually, at start up, it enters in application mode, 
because P1.3 pin is on a logic 1. This represents the 
normal mode. The first version of the MCU software 
contains a very simple application. In order to change 
the application with the real one, the bootloader must 
enter in bootloader mode. For this, the MCU is kept in 
reset while the P1.3 pin is set on logical 0. Then, the 
program waits for the application code to be written in 
the Flash. This code will be sent to MCU by the PC 
via a serial interface (UART) so it will be seen later. 
When all the bytes of the application code have been 
written, a Reset is executed, and thus the program 
restarts its execution and enters in application mode. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  The architecture of the MCU software 

Start 

 
P1.3=0? Go to Application 

Enter in
Bootloader 

Write the 
application code in 

Flash 

Reset MCU 

No 

Yes 



 

A. The MemoryMap 
Even if we have a single piece of software for 

MCU, it has two parts. Both of them are implemented 
in assembly language. The first part, which is called 
bootloader code, is written in the information part of 
the microcontroller flash memory, in the range address 
0x1000 to 0x1FFF (Fig. 2). The second part that 
represents the application code is written in the main 
area of the microcontroller flash memory, in the range 
address 0xC000 to 0xFFFD. The last two memory 
locations of Flash, 0xFFFE and 0xFFFF contain the 
RESET vector, 0x1000, that represents the address 
where the bootloader starts. The application code can 
be rewritten as many times as it is needed, and can be 
in either assembly or C language. Thus, regarding Fig. 
1, the Start is always in the information memory. 
Then, depending on the status of P1.3, the execution 
can continue in the information memory or can do a 
branch in the main memory at the address 0xC000, 
where the application code has already been written. 

 

 

 

 

 

 

 

Figure 2.  The memory map of the MCU software 

B. The hardware  structure 
In order to write the bootloader code and the first 

version of the application code in the flash memory of 
the MCU, the MSP-EXP430G2 development system 
is used. This operation is executed only once. This 
system contains a programmer-debugger that uses 2 
wire Spy-by-wire protocol and also has a 20 pin socket 
where the MCU (target) is introduced. In order to 
(re)write the application code, the MCU must be 
removed from the MSP-EXP430G2 and a serial 
connection to the PC is needed. The USB-TTL 
(UART) converter CH340 is used for this purpose, 
Fig. 3. In this way, a serial (UART) connection 
between the two modules, using the two wires, Tx-Rx 
and Rx-Tx, is established. MCU is also powered by 
USB-TTL converter. Other elements of the hardware 
structure are the reset circuit, including the R and C 
components and two push buttons, S1 that can connect 
the RST pin to GND and S2 that can connect the P1.3 
pin to GND. These two buttons (S1 and S2) are 
needed to force the entrance in bootloader mode as in 
the first part of this section was presented. 

C. The software tools 
In order to create and use the proposed bootloader, 

two software tools are needed: 
1. IAR Embedded Workbench is used on the PC to 

edit, compile and link both the bootloader code and the 
application code. While the bootloader code and the 
first version of the application code are written in the  

 

 

 

 
Figure 3.  The hardware structure 

microcontroller memory by using IAR and the MSP-
EXP430G2, the regular application code is only saved 
in a file on the PC. 

2. The MATLAB environment is used to 
implement the communication between the PC and the 
UART port of the microcontroller. Thus, by using this 
software, the application code is sent from the PC to 
the microcontroller. The bootloader code that is 
resident into information memory receives each byte 
of the application code and writes it in the main area 
of the flash memory. In addition, the checksum is 
computed and sent to the microcontroller. 
Furthermore, some synch characters are exchanged 
between PC and microcontroller using the MATLAB. 

III. DETAILS ABOUT THE IMPLEMENTATION 
The most important part of this paper is the 

bootloader code which runs in the information part of 
the MCU Flash memory. This communicates with the 
PC via the MATLAB that accesses the USB-TTL 
converter as a COMx port. Fig. 4 presents the two 
algorithms that must synchronize with each other.  

Thus, the MCU algorithm in Fig. 4 represents 
actually the content of the “Write the application code 
in Flash” block of the Fig. 1. At the beginning, the 
algorithm waits for the Sync character from the PC. If 
the received character does not have the expected 
value, that is 65, a Reset is generated. Otherwise, the 
main area of Flash is erased by segments of 512 bytes. 
At the end of this operation the RESET vector is 
restored with the address from the beginning of the 
information memory (0x1000), where the bootloader 
code is started.  

After erasing the main area of Flash, the MCU 
sends the byte Ch=110 to the PC to notify it that the 
erasing has been finished. Thus, the PC starts to send 
the application code to the MCU, one byte at a time. 
As a consequence, MCU receives each byte and writes 
it in the Flash memory. In parallel, each of the two 
systems computes its own checksum (a XOR byte by 
byte), denoted by chksum1 and chksum2. Even if the 
size of the application code is less than the capacity of 
the main area of the Flash, the interrupt vectors are 
however located in the range 0xFFDD-0xFFFD. Thus, 
the number of bytes which are sent from the PC to the 
MCU is exactly 16 kB minus 2 bytes. The 2 missing 
bytes thus prevent overwrite of the RESET vector, 
which has already been written at the locations 
0xFFFE and 0xFFFF. After the PC sends the last byte 
of the application code, it sends the final value of 
checksum to the MCU. This, in turn compares the 
received byte with its own checksum. If the two bytes 
are the same, the 249 byte is sent to the PC. Otherwise, 
the 254 byte is sent to the PC. Thus, the PC can know 

PC 
USB-
TTL 

MCU Tx Rx

Rx Tx

Vcc

GND 

MEMORY 

 
0x1000-0x1FFF 
Bootloader code 

 
 
0xC000-0xFFFD 
Application code



 

if the writing process was a success or if it failed and 
displays a message according to this.  

In the following, some important things about the 
generation of the bootloader code and the application 
code are presented. It is known that the information 
memory, where the bootloader code is written, 
contains in the last locations some constants, for 
instance to calibrate the MCU internal oscillator. 
These must be hand written before the erasing and 
writing. Furthermore, the SMCLK signal, an output of 
the oscillator, must be calibrated to configure the  

 

 
 
 
 
 
 

 

  

Figure 4.  MCU (left) and PC-MATLAB (right) algorithms 

 UART for a right value of Baud Rate. This part is 
included in the MCU algorithm of Fig.4 after the Start 
bloc but is not presented due to the lack of space. 

As a part of IAR Embedded Workbench, the linker 
is used to create the executable code for the MCU. 
Thus, when the bootloader code and first version of 
the application code are written, both information and 
main parts of Flash are used. Therefore, the default form of 
linker configuration file should be modified as follows: 

All the entries of the Information memory section 
must be removed and the following must be 
introduced instead: 

-P(CODE) BSL=1000-10FD 

On the other hand, the Read-only memory section 
must be unchanged. The next statement specifies 
where the code will be written: 

-P(CODE)CODE = C000-FFFD 

The assembly source of the bootloader must 
contain the following directives: 

RSEG CODE, before the part of the program that 
corresponds to application.  

RSEG BSL, before the part of the program that 
corresponds to bootloader. 

Thus, it follows that the application part, denoted 
by CODE will be written starting with the address 
0xC000, while the part of the program that 
corresponds to bootloader, denoted by BSL, will start 
with the address 0x1000. 

Furthermore, to specify where the program will 
start, the label RESET will be introduced in front of 
the first line of the bootloader program. 

RESET   MOV.B #08, P1REN 

In this way, the address 0x1000 of this instruction, 
will be written to the RESET location in the area of 
the interrupt vectors (0xFFFE and 0xFFFF), see also 
Fig. 2. 

To enable writing in both information and main 
memory, the following options should be checked in 
IAR Embedded workbench (Project/Options 
/Debugger/ FET Debugger/Download): Allow 
erase/write access to locked flash memory and Erase 
main and Information memory. 

Regarding the generation of application code, two 
elements must be presented. First, it is known that this 
code must start at address 0xC000. If it contains 
declarations of some global variables, their values are 
by default written starting with the address 0xC000. 
Then, through the execution of the program they are 
moved to RAM. In order to keep the start of the 
program at 0xC000, the following entry of the Read 
only memory section of the linker configuration file is 
changed 

-Z(CONST)DATA16-C,DATA16-
ID,TLS16_ID, DIFUNCT,CHECKSUM=C800-FFFD 

where the value 0xC800 was introduced instead of 
0xC000. In this way, the global variables are written 
starting with address 0xC800. This value has been 

Start 

Sync= 
65? 

Read Application 
Code from a file 

Erase Segments 

Rewrite RESET 
vector 

Read the current 
byte of the App. 

No 

Yes 

Update chksum1 

Last 
Byte? 

Read the chksum2 

chksum1
=chksum

2? 

Send Sync=65 

Send current byte 
of the Application 

Code 

Update chksum2 

Last 
Byte? 

Send the chksum2

Ch= 249 

Ch= 254 

Read the Byte 

Send Ch=110 

Read the byte 

Wait for Sync  

No 

No 

Yes 

Yes 

No 

Yes 

Write the current 
byte in Flash 

Send Ch 

Byte=249
        ? 

Success 

Error 

Yes 

No 



 

chosen because in our implementation the application 
code does not exceed this range.  Then, once the linker 
configuration file was changed, the following option in 
IAR Embedded Workbench, Project/Options/Linker 
/Output must be checked: Other, Output format: 
msp430-txt. 

Secondly, in order to generate the application code, the 
following steps are executed: 1. Download and Debug. 
2. Select View/Memory and then Flash. 3. Right Click 
and Memory Save, where the ranges of addresses 
should be 0xC000 to 0xFFFF. In this way a file 
containing the application code is generated and can 
be open in MATLAB (see Fig. 4). This code has at the 
end the numbers 0x00 and 0xC0, that by concatenation 
represent the start address of the application. However, 
these numbers are ignored when the application code 
is written in main flash area. 

IV. IMPLEMENTATION AND EXPERIMENTAL 
RESULTS 

A bootloader according to those in previous 
sections was implemented. First, the MCU software 
having the structure of Fig. 1 (bootloader code and a 
simple application code) was written in the flash using 
IAR Embedded Workbench and the MSP-EXP430G2. 
The Baud Rate of the UART communication was set 
to 56000. We implemented then a more advanced 
application that uses the most important peripherals of 
MSP430G2553 microcontroller. This application 
mainly does the following: executes periodic 
measurements of either the voltage applied to pin P1.4 
or the temperature corresponding to the internal sensor 
of ADC; a LED connected to pin P1.0 is configured to 
blink at each measurement (i); sends the measurement 
result to the PC by USB to TTL converter of Fig.3 (ii); 
the user can cyclically change the period of 
measurement between 3 values by typing the + key of 
the PC keyboard; in addition, the switching between 
voltage and temperature measurement can be made by 
typing the keys V and T, respectively (iii); the periodic 
measurement can be stopped or restarted by successive 
pressing of S2 pushbutton connected to P1.3(iv). 

Figure 5.  A screenshot from MATLAB 

After generating the application code using the 
IAR Embedded Workbench, the MCU software is 
forced to enter in bootloader mode and the MATLAB 
application is started. A screenshot of the MATLAB 
command window is presented in Fig. 5 to show the 
progress of the writing process, according to the 
algorithm of Fig. 4. The time of 2.92 sec. represents 
the time required for sending the 16382 bytes of the 
application code to MCU, and as a consequence the 
time for it to be written. After displaying the message 
Successful!, the LED of the pin P1.0 starts to blink to 
notify us that the application code was written and 
started.  

To conduct a further validation of the writing in 
Flash, another tool can be used: Flasher [12]. It can be 

invoked by command prompt and can read the content 
of the Flash (main or info) and saves it in a file.  
However, the programmer debugger of MSP-
EXP430G2 is needed to use Flasher. We compared the 
content of the file read by Flasher with the file 
generated by IAR Embedded Workbench (application 
code) and they are the same. 

V. CONCLUSIONS 
The paper presented the design and 

implementation of a bootloader for a MSP430G2553 
microcontroller. The method is easy to use. After the 
bootloader code is written in the information part of 
the microcontroller Flash memory it requires only two 
steps: generating the application code and using the 
PC MATLAB application to send the code to the 
MCU that is in bootloader mode. In can easily be 
changed to be used for other microcontrollers. 

In terms of future work, we want to replace the 
MATLAB application to one implemented in a free 
environment such as SciLab or Octave. In addition, we 
could connect a Bluetooth adapter to the 
microcontroller to allow an over the air update of the 
application code.  

REFERENCES 
[1] Y. Kang, J.Chen and B. Li, Generic Bootloader Architecture 

Based on Automatic Update Mechanism, 2018 IEEE 3rd 
International Conference on Signal and Image Processing, 
pp.586-590. 

[2] I. Pratt and S. Zhong, Bootloader design considerations for 
resource-constrained microcontrollers in RFID reader 
designs, 2014 IEEE RFID Technology and Applications 
Conference,  pp. 50-55. 

[3] S. Nuratch, “A Serial Bootloader with IDE Extension Tools 
Design and Implemntation Technique based on Rapid 
Embedded Firmware Development for Developers,” 2017 
12th IEEE Conference on Industrial Electronics and 
Applications (ICIEA), pp. 1865–1869. 

[4] M.Lewandowski, T. Orczyk and P. Porwik, “Dedicated AVR 
Bootloader for Performance Improvement of Prototyping 
Process,” 2017 MIXDES – 24th Int. Conference “Mixed 
Design of Integrated Circuits and Systems”, pp.553–557. 

[5] C. Sha and Z. Ying Lin, “Design Optimization and 
Implementation of Bootloaders in Embedded System 
Development,”, 2015 International Conference on Computer 
Science and Applications, pp. 151–156. 

[6] D. Bogdan, R. Bogdan and M. Popa, “Design and 
Implementation of a Bootloader in the Context of Intelligent 
Vehicle Systems,”2017 IEEE Conference on Technologies for 
Sustainability, pp 1-5. 

[7] D. Bogdan, R. Bogdan and M. Popa, “Delta Flahing of an 
ECU in the Automotive Industry,” 11th IEEE Int. Symposyum 
on Applied Computational Intelligence and Informatics, May 
12-14 2016, Timisoara, Romania, pp. 503-508. 

[8] P. Lajsner, P. Krenek, P. Gargulak, Developer’ Serial 
Bootloader, Freescale Semiconductor Application Note, 
AN2295, 2013. 

[9] www.ti.com, SLAU319X, MSP430 Flash Devices Bootloader 
(BSL), July 2010, revised April 2019. 

[10] www.ti.com, SLAA 450f, Creating a Custom Flash-Based 
Bootloader (BSL), april 2010, revised July 2018. 

[11] www.ti.com, SLAA 650d, MSPBoot-Main Memory 
Bootloader for MSP430 Flash Microcontroller, June 2013, 
revised February 2018. 

[12] www.ti.com, SLAU 654D, MSP Flasher, November 2015, 
revised November 2017. 

 


