
Network Scanning and Mapping for IIoT
Edge Node Device Security

Matthias Niedermaier∗, Florian Fischer∗, Dominik Merli∗ and Georg Sigl†‡
∗Hochschule Augsburg, {firstname.lastname}@hs-augsburg.de
†Fraunhofer AISEC, {firstname.lastname}@aisec.fraunhofer.de

‡TU München, {lastname}@tum.de

Abstract—The amount of connected devices in the
industrial environment is growing continuously, due to
the ongoing demands of new features like predictive
maintenance. New business models require more data,
collected by IIoT edge node sensors based on inexpensive
and low performance Microcontroller Units (MCUs). A
negative side effect of this rise of interconnections is the
increased attack surface, enabled by a larger network
with more network services. Attaching badly documented
and cheap devices to industrial networks often without
permission of the administrator even further increases the
security risk. A decent method to monitor the network
and detect “unwanted” devices is network scanning. Typ-
ically, this scanning procedure is executed by a computer
or server in each sub-network. In this paper, we introduce
network scanning and mapping as a building block to
scan directly from the Industrial Internet of Things (IIoT)
edge node devices. This module scans the network in a
pseudo-random periodic manner to discover devices and
detect changes in the network structure. Furthermore, we
validate our approach in an industrial testbed to show
the feasibility of this approach.

Index Terms—network scanning; iiot; security; edge
device; building block

I. INTRODUCTION

New business models, like predictive maintenance

which takes a proactive approach maintaining machin-

ery and equipment to keep downtime to a minimum, re-

quire more data exchange between production systems

and other devices. Due to this constant digitalization in

industrial plants and in the manufacturing industry, a

higher degree of networking is necessary. Especially

low-cost edge node devices like smart sensors are

getting attached to systems enabling Industrial Inter-

net of Things (IIoT) applications [1]. The increased

interconnections and the amount of devices enlarge

the attack surface, leading to new security challenges

[2]. To reduce this security risk within the indus-

trial control network, a suitable option is network

monitoring. Thereby, a distinction between active and

passive network monitoring is done. Passive network

monitoring is e.g. done by capturing the traffic on a

network switch with a monitoring port, connected to

the sub-network. This variant passively sniffs the traffic

within the network, without additional traffic sent into

the investigated network. The second method is active

scanning, which sending additional packets into the ob-

served network. Furthermore, the scanning procedure

requires “access” to every single sub-network or a scan

node in every separated network. On the one hand, the

implementation is associated with high efforts, which

on the other hand results in high costs.

In this paper, we introduce an active network map-

ping tool, as a building block for embedded low-

cost edge node devices. This security building block

enables probing of devices (hosts) and services in the

network directly from an edge node device, connected

to this network, without the requirement of additional

components. After the edge node is placed into the

network and the system is put into operation for the

first time, the edge node scans the network and learns

the structure of the network architecture. This default

network “fingerprint” is stored locally on the edge and

is compared with further scans. If the network changes

during further scans, this indicates an anomaly, which

will be reported e.g. to the operator.

The contributions of edge node based network map-

ping are:

• Easy integration with current network state recog-

nition of other participants.

• New devices in the network can be found.

• New services with open ports will be detected.

• Hosts and services which change the status are

recognized.

• The information of the network scan is only on

the “intelligent” edge node, so that attackers could

not exploit this feature. Thus, the edge node only

has to trust itself and no third parties.

• The network scan is done in a pseudo random

manner for load balancing and that the attacker

can not retrace and exploit the scan process.

The paper is structured as followed. Section II

explains the methodology of network scanning and

mapping. In Section III the PoC implementation is

introduced. To show the feasibility, in Section IV an

evaluation is done. At the end a conclusion is given in

Section V.

II. NETWORK MAPPING ON EDGE NODES

In a common industrial system at field level, which

is mostly IP-based nowadays, the network structure

rarely or never changes. This means that changes to the

network are either caused by maintenance, malfunc-

tions or an attack. Independent of what caused these

changes in the network environment, the incident must

be detected, because this is a deviation from regular

behavior and e.g. an operator has to decide how to

react.

ISBN 978-80-261-0813-9, © University of West Bohemia, 20192-2



A. Related Work

There are a lot of different active and passive net-

work scanners available on the market and discussed

in research:

One of the best known network scanner is Nmap [3].

It offers a wide variety of scan options, as well as var-

ious scripts for further analysis. However, this requires

a comparatively high-performance computer compared

to an embedded Microcontroller Unit (MCU) used in

an IIoT edge node. Additionally, this is usually done

by scanning the network from a central point, which

means that either an additional scan node must be

placed in each separate subnet, or only certain subnets

can be scanned.

Wedgbury et al. [4] gave an overview of passive net-

work scanners for Industrial Control Systems (ICSs).

Furthermore, different SCADA network monitoring

tools and scanners are compared by Coffey et al.

[5]. All these specialized ICS scanners also have high

requirements on system performance and produce a

huge amount of data to process.

An Internet-wide search engine (www.censys.io) for

SCADA devices was introduced by Durumeric et al.

[6]. This is also capable of scanning internal networks

with the help of zgrab21. However, this is a full

featured active scanner that does not run on small edge

node devices either.

ModScan, a Modbus/TCP enumeration scanner, was

introduced by Bristow et al. [7]. A specialized vul-

nerability network scanner for Siemens devices was

introduced by Antrobus et al. [8], which is based on a

modified version of PLCScan2. However, these basic

scanners are written in the python scripting language

and are again not suitable for MCUs.

Wang et al. [9] and Radhappa et al. [10] summarized

the current problems and open research questions that

exist in wireless sensor networks. However, intrusion

detection is not handled by them, with regard to port

scanner and network mapping on low performance

edge node devices.

B. Methodology

In this paper, we introduce an edge node based

solution in which every smart sensor scans its own

network environment. Fig. 1 shows an example of

network mapping seen from an edge node device.

In this example network, there are 4 nodes (N1-N4)

and N1 is scanning the network in a pseudo random

periodic manner. The dashed arrows show the first scan

results with 4 devices (N1-N4) found. This first scan

is used as a reference and it must be ensured that

this network is not already contaminated. After this

an additional edge node device gets into the network

(A). Therefore, the second scan (dotted), on one hand

detects the expected devices (N1-N4) and on the other

hand also the new device (A). This could indicate an

intruder or other processes causing a change in the

network, e.g. maintenance work.

1https://github.com/zmap/zgrab2
2https://code.google.com/archive/p/plcscan/

N1

N2

N3

N4

A
First scan

(learn)

Further scan(s)

Fig. 1. View of the network mapping from an IIoT edge node device
of two different scans.

For the network scanning, followed by the mapping,

where the connections of the hosts get analyzed, the

following parameters can be used. These are grouped

into two classes which are introduced in the following

section, the standard port scan methods and additional

options:

• Host alive discovery:With an Internet Control

Message Protocol (ICMP) ping sweep, the active

hosts in the network can be detected.

• SYN/connect scan: Open ports and services are

detected with SYN and connect scanning.

• Optional: The ping timing can be used to de-

tect redirection, e.g. Man in the Middle (MitM)

attacks.

• Optional: On the application level, e.g. Mod-

bus/TCP, a more detailed fingerprint is possible.

Our approach combines the methods presented here

and integrates them as a security building block for

IIoT edge node devices. To the best knowledge of the

authors, no network scanner for low performance MCU

devices is available at present.

One of the biggest advantages of distributed scan is,

that different paths and subnets can be easily scanned.

This is for example the case, if networks are strongly

segmented, that the already existing IIoT edge devices

in this subnets take over the scanning themselves and

no additional scanning hardware is necessary, enabled

by a software update.

C. Host Alive Discovery

The first step that is executed in a network scan is

the detection of whether a device is active or not. This

method is called “host alive discovery” and is done

via a ping sweep on the Internet Protocol (IP) ICMP

level. If this is done in a local network, this results

in an Address Resolution Protocol (ARP) request, and

if the host answers (ARP response), it is up and is

tried to be pinged. If a host does not respond to ICMP

ping messages, that does not necessarily mean that it

is non-existent, it may also be possible that it has just

disabled ICMP echo. In this case it is possible to do a

port scan anyway, which is time consuming.

D. SYN/Connect Scan

Fig. 2 shows the flowchart of SYN and connect
scanning. If the port is closed but the host is up, the

target responds with a RST directly after the SYN



packet. If the host is up, but does not send any packet

at all, then a packet filter is active. After the target

host has answered, a RST packet is send if SYN
scanning is used. In contrast, if a connect scan is

executed the SYN+ACK message from the target host is

acknowledged and it is possible to get the Data/Banner
from the target.

Edge Node
Scanner Target

SYN scan

SYN

SYN+ACK

RST

Edge Node
Scanner Target

Connect scan

SYN

SYN+ACK
ACK

Data/Banner

RST

Fig. 2. Flowchart of a SYN and a connect scan with an open port
on the target.

The advantage of SYN scanning is that the data does

not reach the application level, and therefore, there are

no log entries in the application. However, since this

is not used as preparation of an attack and it is not

the goal to stay under the radar the preferred method

is a connect scan, because more information from

the target host could be collected. In addition, Soulie

[11] recommends to perform connect scans within ICS

networks to reduce influences on the process. This is

the preferred scanning method especially in fragile ICS

networks.

E. Pseudo Random Scanning

On one hand, the selection of the target host to be

scanned must be chosen randomly, as an attacker might

otherwise hide himself. And on the other hand, if more

scanners are in the network, to not flood one target.

Furthermore, the start time of the scan is randomly

chosen between one and five minutes after the edge

node is switched on. This delay after the start-up

is necessary that other devices have finished booting

and if there are multiple scanners in a network the

network load will be further distributed. For attackers

the pseudo random scanning on distributed edge nodes

makes it difficult to guess scan pattern.

F. Intrusion Detection Handling

If a new device is detected in the network, a known

device is no longer reachable, or ports/services have

changed, this should be regarded as an incident. In this

case, the edge node could go into a safe state or report

the incident to a centralized logger. This depends on

the respective field of application. The advantage here

is that the direct processing on the edge node allows

a fast and independent reaction, since there are no

dependencies and long run-times, e.g. through network

communication to a central server.

III. POC IMPLEMENTATION

To prove that the approach is feasible on an embed-

ded MCU, it was implemented for the usage in a test

environment.

A. Hardware

On the hardware side, the edge node Proof of

Concept (PoC) consists of a MCU from the ARM®

Cortex®-M7 series (STM32F767), with a custom PCB

for IO operations. Tab. I lists the features of the

development board with the MCU. The ARM®Cortex®-

M7 MCUs are the high performance series of the

energy-efficient Cortex®-M product range.

TABLE I
SPECIFICATION OF THE USED EDGE NODE HARDWARE FOR THE

POC IMPLEMENTATION.

Hardware IIoT Edge Node
Board design STMicroelectronics
MCU STM32F767ZIT6
Core ARM® Cortex®-M7
Clock up to 216 MHz
RAM 512kB
Flash 2MB

Fig. 3 shows the STM development board with our

custom Printed Circuit Board (PCB). On the right side,

the development board has a RJ-45 Ethernet connector

to connect the IIoT edge device to the network. The

development board provides an Arduino™ Uno V3

connector, where additional shields can be mounted.

This is used for our custom PCB, enabling the usage

with different MCU prototyping boards. The custom

PCB provides input and output capabilities and an

I2C display connector to show current scan informa-

tion. Additionally, Light-Emitting Diodes (LEDs) are

mounted to indicate suspicious behavior. This can be

used as in a data center, where servers which require

maintenance flash an LED. This allows a quick finding

when many devices are installed in a plant.

Display Ethernet

Inputs
Outputs

NUCLEO-F767ZI Development Board
LEDs

Fig. 3. Hardware platform of each IIoT edge node device based on
a STMicroelectronics development board with a custom PCB.

The current scan progress and intrusion message can

be displayed on the display of the edge node device

itself. Fig. 4 shows the 1.3 inch OLED display with a

SH1106 Inter-Integrated Circuit (I2C) driver.



Fig. 4. Scan progress and results on the edge node display.

B. Software

The software on the MCU uses FreeRTOS3 with

the LwIP4 stack. The edge node device provides a

Modbus/TCP slave, to control the input/outputs (IOs)

and a web server to provide current information.

The scan process is shown in Fig. 5. The first scan

of the network is regarded as a secure state and will be

used as a reference for later scans. After this, the scans

are executed periodically and the results are compared

with the results of the initial scan, which is treated

as a trusted dataset. In case any mismatch is detected

during the following scans, the intrusion handling is

initiated.

Execute
first scan

(reference)
start

Execute
current scan

Compare
first with
current
results

Handle
intrusion

unchanged

changed

Fig. 5. High level view of the scan process. After the first/trusted
scan a continuous monitoring is running.

The scan module is designed as a task in FreeRTOS

and could be used as a building block in other devices

as well.

Fig. 6 shows the current debug output of a scanning

edge node device. On the lower left side, the data of the

trusted scan can be seen, which serves as a reference

data-set. On the lower right side, the output of the

current scan progress is illustrated. The IP with the

alive status is printed and also the open Transmisson

Control Protocoll (TCP) ports.

This representation is not for productive usage, be-

cause attackers could use this information for aimed

attacks. Preferably, only the intrusion message with

the changes is sent cryptographically protected to a

centralized logger or only allows authenticated user

access. However, this set-up depends heavily on the

integration of the scanners, e.g. if there are local

operators with access to Human Machine Interfaces

(HMIs) or a centralized control, who can react to the

incident.

3https://www.freertos.org/
4https://savannah.nongnu.org/projects/lwip/

First Scan
IP: 192.168.001.010 up
Ports: 22 

IP: 192.168.001.040 up
Ports: 22 

IP: 192.168.001.050 up
Ports: 22 502 

IP: 192.168.001.101 up
Ports: 80 502 

STM32F767 Sensor Scan Server
Called URL: / HTTP/1
Build: Jan 29 2019 14:45:38
Device ID: 0000000002
Uptime MS: 0014599648 ms
Free heap: 0000066536 bytes
Own IP: 192.168.001.102 
Intrusion: 0000000000 
Scanning: 192.168.001.074 
Scanning: 00000 
Scan Round: 1 

Refresh � Soft Reset � Set Intrusion � Reset Intrusion

Current Scan
IP: 192.168.001.010 up
Ports: 22 

IP: 192.168.001.040 up
Ports: 22 

IP: 192.168.001.050 up
Ports: 22 502 

Fig. 6. Webpage running on the edge node, displaying the current
scan status and debug output.

IV. EVALUATION

To show the feasibility of our approach an evalu-

ation is done. This is divided into four parts. First,

the feasibility in our open-source industrial testbed is

measured, then the network performance is evaluated,

after this the MCU requirements are measured, and at

the end the attack detection is evaluated.

A. Industrial Testbed

The PoC implementation is evaluated in our open

source industrial testbed (Fig. 7). There, the introduced

network scanner is running on each IIoT edge node,

which are all accessed and controlled by an OpenPLC

[12] instance over Modbus/TCP running on a Rasp-

berry Pi. Eight edge nodes are each connected to one

sensor and one edge node is connected to a motor

rotating a disc. Furthermore, there is a HMI displaying

the current state of all edge node devices.

Edge

node

scanners

Raspberry

Pis

HMI

Physical

process

NW switch

Server/Logger

Fig. 7. Pictures of the open source ICS testbed, which is controlling
a physical process over Modbus/TCP.

B. Network Performance Measurement

Fig. 8 shows the number of packets per second

during scanning of one edge node in the open-source

testbed. As shown in [13], high scan rates can affect the

control behavior of Programmable Logic Controllers

(PLCs). Therefore, the amount of packets must be

low, depending on the components in the network.



0 500 1000 1500 2000 2500

Time in s

0.1

1.0

10.0
N
u
m
b
er

of
p
ac
ke
ts

p
er

se
co
n
d

ARP

TCP

ICMP

Fig. 8. Plot over time, with packets per second of an edge node scanning the network. ARP and ICMP ping requests are used to check if
the hosts are up. TCP connect scans are done if the host is up.

As an example, the parameter in our testbed is set to

100ms delay between pings, which affects the number

of packets per second of ARP and ICMP packets.

This wait time between packets is set to a high value,

because ARP requests are broadcast to the complete

broadcast domain and, as a result of this, it affects all

devices within this subnet. Further, the delay between

each single port scan is also set to 100ms to reduce

the network load. Both delays can be changed easily to

fulfill the custom requirements of a certain industrial

network.
At the begin, the scan is delayed for a random

time of some seconds, that, after a power up, not all

edge nodes start scanning the same IP at a time (see

Section II-E). After this, ARP requests for each IP

address are sent out, resulting in a maximum of 4

packets/s. If an ARP response is received, an ICMP

ping is executed (max 4 packets/s). This means that

the host is reachable and the first 1024 TCP ports

are scanned, which is done with a maximum of about

25 packets per second. This depends on the state of

the port, e.g. if it is open or closed. In comparison,

the standard Modbus/TCP traffic in our testbed is

about 400 packets per second between each node and

the PLC. To distribute the load, if more nodes are

scanning, the host selection is pseudo randomized (see

Section II-E).
An overview of packet sizes is given in Tab. II. For

example, 25 SYN packets/s with a size of 60 bytes

each generate a throughput of 1500 bytes/s (12 kbits/s).

The 25 packets/s is a mixed calculation for open and

closed ports, since, for example, with closed ports, only

one ACK+RST returns from the target. In contrast to

that, an open port results in a three-way handshake as

illustrated in Fig. 2.

C. MCU Requirements
Tab. III shows the build output of the different

sections in bytes. The FreeRTOS task uses a maximum

of 2048 words and can run with a low priority. Addi-

tionally, the time between packets can be set to a high

value, which results in a sleep (blocked state) of the

scan task, whereby other operations can be performed.
Most of the MCUs enabling networking should have

enough performance to handle the additional scan

TABLE II
DATA SIZE OF DIFFERENT PACKETS FROM OUR SCANNER OR AS A

RESPONSE TO IT.

Packet Bytes
ARP request 60
ARP reply 60
ICMP ping request 74
ICMP ping reply 74
TCP SYN 60
TCP SYN/RST 60
TCP SYN/ACK 60
TCP FIN 60
Example SSH banner 95

TABLE III
BINARY COMPARISON OF EXAMPLE APPLICATION WITH AND

WITHOUT SCANNER.

Information text data bss dec hex
With scanner 140040 12588 293704 446332 6cf7c
Without scanner 129368 12588 293552 435508 6a534
Difference 10672 0 152 10824 2a48

task, because of the relatively low RAM and ROM

requirements. Nevertheless, by optimizing the code, the

requirements of the scan building block can be further

reduced.

D. Attacker and Detection Consideration

The detection in the testbed depends on the sce-

nario and the configuration of the attacker device.

Furthermore, a trusted scan with a clean network at

the beginning must be ensured. For this reason, five

possible attack scenarios are modeled:

1 One edge node is removed from the network. This

can happen, e.g., when an attacker removes the

device or by a malfunction. The type of attack

requires little knowledge of the specific target.

Therefore, the attacker is considered weak.

2 Services offered in the network have disappeared

or new services have been added. This can happen

when an adversary attacks services which crash

or introduces back-doors that open new ports.

This type of attack requires a moderate attacker

knowledge, because changes to the network are

made.

3 An attacker attaches a standard configured com-

puter to the network. There is no special config-

uration made by the attacker to be undetectable.



Adding a computer to perform e.g. a port scan

requires little knowledge, which can be done by

a weak attacker.

4 A MitM attack is executed. In this case, the

attacker has complete control over the traffic

between two or more network participants. This

enables viewing and manipulating the data. For

this scenario, the attacker model is medium, be-

cause of the necessary high privileges.

5 An attacker is performing a “stealth” attack [14].

For example, the attacker is passively listening

to the network traffic and makes a “stealth” port

scan. This passive attack is a special attack on a

network, where a system is secretly monitored and

scanned e.g. for open ports and vulnerabilities.

The purpose is solely to collect information about

the network and hosts. No data is being injected

into the destination network by the attacker. This

scenarios requires a strong attacker model, be-

cause of the necessary knowledge.

For scenario 1 , our network scanner detects the

changes, because the host is not reachable by pings

anymore and can handle the intrusion. If services with

open ports change (scenario 2 ), they are detected

by the port scan. A standard configured computer

(scenario 3 ) even without open ports can be found by

ICMP pings. If a MitM attack (scenario 4 ) is executed,

in some cases the latency of pings is getting higher.

In this case, the MitM attack could be detected by

analyzing the ping timing, otherwise it is not possible

with this approach. Stealth attacks or passive listening

(scenario 5 ) cannot be detected by active scanning

methods, like the here presented edge node scanner.

Tab. IV summarizes the detection of the different

scenarios.

TABLE IV
SUMMARY OF THE EVALUATED ATTACK SCENARIOS AND

DETECTION CAPABILITIES.

Model Short description Attacker Detection Mechanism
1 Node removed weak � ICMP ping
2 Service changed medium � SYN scan
3 Standard attack weak � ICMP ping
4 MitM attack medium � timing
5 Stealth attack strong � –

�detected �dependent �not detected

E. “Stealth” Attacker Configuration

Case 5 is possible, if the attacker suppresses any

network interaction from outside, has no open ports,

and disables ICMP echo (Listing 1).

Listing 1. Command to disable ARP and ICMP echo in Linux

1 echo "1" > /proc/sys/net/ipv4/icmp_echo_ignore_all
2 ip link set dev enp0s31f6 arp off

In this case, it is not possible for the network scanner

to detect the device. Though, the attacker must know,

if there is a continuous network scanning to get not

detected. Additionally, knowledge is required how the

network is configured and in local networks is not

allowed to response to ARP requests.

However, the evaluation in our testbed has shown

the feasibility of our approach with a minimum of

additional network load. Furthermore, it is possible

to link this security building block with other, e.g. in

combination with intrusion detection systems.

V. CONCLUSION

In this paper, we introduced a network scanning and

mapping building block for embedded low-cost IIoT

edge node devices. We showed the feasibility of our

approach in our open-source industrial testbed. Our ac-

tive scanner network mapping approach is lightweight

and the results are clear and detailed in contrast to most

passive network monitoring approaches.

The amount of additional traffic in the network with

our sample configuration with a mean of 4 packets/s

and peeks up to 25 packets/s from a single edge node

is low and could be adjusted if necessary. Furthermore,

the integration of our FreeRTOS scanning task and the

configuration for the network can easily be done in

other projects. With our building block the security

level of low-cost edge node devices, e.g. for securing

the IIoT, can be increased.

REFERENCES

[1] A. Sajid, H. Abbas, and K. Saleem, “Cloud-Assisted IoT-Based
SCADA Systems Security: A Review of the State of the Art
and Future Challenges,” IEEE Access, vol. 4, pp. 1375–1384,
2016.

[2] A. Sadeghi, C. Wachsmann, and M. Waidner, “Security and
Privacy Challenges in Industrial Internet of Things,” in 2015
52nd ACM/EDAC/IEEE Design Automation Conference (DAC),
pp. 1–6, June 2015.

[3] G. Lyon, “Nmap–Free Security Scanner for Network Explo-
ration & Security Audits,” 2009.

[4] A. Wedgbury and K. Jones, “Automated Asset Discovery
in Industrial Control Systems: Exploring the Problem,” in
Proceedings of the 3rd International Symposium for ICS &
SCADA Cyber Security Research, pp. 73–83, BCS Learning &
Development Ltd., 2015.

[5] K. Coffey, R. Smith, L. Maglaras, and H. Janicke, “Vulner-
ability Analysis of Network Scanning on SCADA Systems,”
Security and Communication Networks, vol. 2018, 2018.

[6] Z. Durumeric, D. Adrian, A. Mirian, M. Bailey, and J. A.
Halderman, “A Search Engine Backed by Internet-wide Scan-
ning,” in Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pp. 542–553, ACM,
2015.

[7] M. Bristow, “ModScan: A SCADA Modbus Network Scanner,”
in DefCon-16 Conf., Las Vegas, NV, 2008.

[8] R. Antrobus, S. Frey, B. Green, and A. Rashid, “Simaticscan:
Towards a Specialised Vulnerability Scanner for Industrial
Control Systems,” BCS, 2016.

[9] Y. Wang, G. Attebury, and B. Ramamurthy, “A Survey of
Security Issues in Wireless Sensor Networks,” 2006.

[10] H. Radhappa, L. Pan, J. Xi Zheng, and S. Wen, “Practical
Overview of Security Issues in Wireless Sensor Network Appli-
cations,” International journal of computers and applications,
vol. 40, no. 4, pp. 202–213, 2018.

[11] A. Soulli, “Industrial Control Systems: Pentesting PLCs 101,”
2014. Blackhat Europe.

[12] T. R. Alves, M. Buratto, F. M. de Souza, and T. V. Rodrigues,
“Openplc: An Open Source Alternative to Automation,” in
IEEE Global Humanitarian Technology Conference (GHTC
2014), pp. 585–589, IEEE, 2014.

[13] M. Niedermaier, J.-O. Malchow, F. Fischer, D. Marzin,
D. Merli, V. Roth, and A. von Bodisco, “You Snooze, You
Lose: Measuring PLC Cycle Times under Attacks,” in 12th
USENIX Workshop on Offensive Technologies (WOOT 18).

[14] R. R. Singh and D. S. Tomar, “Network Forensics: Detection
and Analysis of Stealth Port scanning Attack,” scanning, vol. 4,
p. 8, 2015.


