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Abstract – We introduce and analyze a set of essentially 
discontinuous functions, based on multiplicative inverse 
of the time, which are usable as chirp signals. An 
advantage of these chirps is that they can be chosen 
from a large class to allow multiple radar operators to 
use each a specific waveform in automotive applications. 
When the new chirps are derived from chaotic signals, 
they are also less predictable for an observer, which is 
an advantage in some radar and sonar applications. 
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I.  INTRODUCTION  
Modern cars have several radar modules, devoted 

to security and driver assistance (Advanced driver-
assistance systems, ADAS). The tasks of these radars 
include collision danger detection and collision 
avoidance, assistance with danger detection in blind 
spots and rear, and assistance in drivers maneuvers 
such as lane change and parking. With the advent of 
autonomous vehicles (AVs), radar object detectors 
tend to clutter the roads. While strong attenuation at 
high frequencies (24, 77, 79,…,125 GHz, see [1], [2] 
for details) reduce the risk of interferences at larger 
distances, still on busy lanes there may be hundreds of 
car radars at interference distances. Narrower 
bandwidths and specific, ‘personalized’ waveforms 
are needed to allow numerous radars interference-
free. Numerous studies have dealt with improving the 
waveform for automotive radars, for example [3], [4], 
[5], [6], [7], [8]. Frequency modulated continuous 
wave (FMCW) or chirp pulse radars may have 
advantages for this type of application. 

The use of chirp signals for improving radar and 
sonar detection with good localization capability is 
well known. However, chirps based a specified, fixed 
modulation function are relatively easily perturbed by 
wide bandwidth noise and jamming. Therefore, 
making the modulation function more adjustable and 
less predictable is of interest in various fields.  

In radar and sonar applications, for obtaining a 
precise localization (high resolution) an ideally 
infinitely-short pulse is needed, which is not 
obtainable because of too large (infinite) instantaneous 
power requirement for long-range detection. To 
alleviate this limit, a chirped pulse is emitted, and the 
receiving device uses a chirp-like spectrum. 

The use of chaotic processes to produce chirps was 
established decades ago. Carroll [9] “used a chaotic 
map whose parameters may be optimized…, producing 
different chaotic signals that … optimized for different 

situations.” Other authors also proposed the use of 
chaotic generators for radar modulators, see [10]. 

We introduce a set of signals that resemble chirp 
signals, but are obtained in a different manner, using 
reciprocal (multiplicative inverse) time; we name these 
signals ‘essential discontinuity-based (pseudo-)chirps’, 
shortly EDB chirps. The discussion is centered mostly 
on chirps because of easy o description, but the same 
principle is directly extended to FMCW radars and 
sonars. The proposed method may also have 
advantages for high resolution and small distances 
radars on AV, where pulses may be as short as 1 ns for 
achieving a location precision of 3 cm in a 20 m range 
(see [11]). 

Section 2 recalls essential discontinuities; Section 
3 shows examples; the final Section is conclusive. 

II. FUNCTIONS WITH ESSENTIAL DISCONTINUITIES 
AND CHIRP GENERATION 

A. Typical chirp impulse and FMCW signals 
Because impulse chirps and FMCW are similar in 
concept, except that FMCW has no break between the 
frequency modulated impulses (FMCW is basically a 
succession of concatenated chirps), we discuss them 
together. The FMCW typical signal, in its basic form, 
is described by (see equ. (1) in [12]),  
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where �  is time, ��  is the bandwidth of the 
modulation, � is the pulse width, ��  is the reference 
frequency, ��  is the reference frequency 
displacement, and ��  is the signal phase. More 
general, the chirp signal has the form 
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where !��� is some strictly monotonic function of �. 
B. Basic concepts of function discontinuity 
We recall a few basic concepts. A real valued 
function �  defined on R is Hölder " -continuous at 
right of some point #�  if there is some constant K 
such that, for any pair #$% #� , #� & #$ & #� , the 
condition '��#$� ( ��#��' & )'#$ ( #�'* . When " �+, Hölder continuity stands for standard continuity. 
Essential discontinuities are defined by exclusion: 
they are discontinuities that are not removable or 
‘jump’ discontinuities. We will call a Hölder essential 
discontinuity one that remains an essential 
discontinuity for whatever value of " & , . 
Subsequently, we consider only essential 



 

discontinuities that are finite, that is, non-asymptotic 
(function not tending to infinity). For details on the 
discontinuity concepts, see [13], [14]. 

A simple example of essentially discontinuous 
signal is -./�+ �0 �. There are numerous sub-classes of 
(finite) essential discontinuities. For example, one can 
make a difference between the following classes that 
are introduced by the study of the sequence or function 
for the inverse of the variable, + #0 . If ��+ #0 �  is a 
harmonic function, then the function ��#�  has a 
“harmonic” essential discontinuity at 0. Similarly, zero 
is a point of "-essential discontinuity at 0 if ��+ #*0 � 
is a harmonic function. When ��+ #0 �  is not a 
harmonic function, one can say that ��#�  has an 
“anharmonic” essential discontinuity at 0. The last 
category includes the cases ��+ #0 � toroidal, chaotic, 
and random.  

The following properties are also useful in 
imagining essential discontinuities usable in chirp 
generation: If ���� is periodical, ��+1�� has no limit at 
0. If f has derivatives up to order n and if �  is 
periodical, all its derivatives are periodical. Therefore, 
if � has derivatives up to order 2 and if � is periodical, 
all the derivatives of ��+1�� tend to , at 0.  

If ���� is periodical, derivable, and has limit 0 at 0, 
then ������+1�� also tends to 0 at 0, but �3�����+1�� 
may have no limit at 0. Moreover, �����4�+ �0 � may 
have no limit at 0. Example: ���� � -./ � , -./ � �-./ $� 5 6 but 78- � � -./ $� 92:� 5 96 (has no limit).  

A function is said oscillatory bounded if (i) it is 
bounded on R and (ii) it has no limit at ,. For an 
oscillatory bounded function, the condition (ii) in the 
definition is equivalent with: (iii) ��+1#� has no limit 
at zero (has an essential discontinuity at # � 6). If � 
has derivatives, all its derivatives are unbounded at 0 
in reciprocal time, +1� . If �  is oscillatory, bounded 
everywhere, and has a derivative of order n, its 
derivative is oscillatory and its derivative with 
reciprocal time + �0  is unbounded at zero.  

If a system is not asymptotically stable at , and is 
bounded everywhere, there is a linear function in one 
or several squared variables of the system such that it 
is oscillatory. The derivatives of that function in 
reciprocal time, when they exist, are unbounded and 
limitless in reciprocal time, at 0. 

C. Essential discontinuity-based chirps 
What we seek is to show that chirp functions, which 
have the general form  

 ���� � �;:�<= > ?� > ;!���@ (3) 

where !��� is a (typically strictly) monotonic function 
in �  and � A ��B > �$% �B > ��� , �� C �$ , have as 
counterpart functions with essential discontinuities at 
the moments �B. In this paper we are concerned with 
chirp-equivalent functions 

 ���� � � � ;:� D= > E�FG<�FG ���@H (4) 

where I.JK5� !��� �6% as well as with functions 

 ���� � � � L M $�FG ���NO  (5) 

The simplest case of chirp based on reciprocal 
time, according to (3), is shown in Fig. 1, along with 
its spectrum. We are not aware of previous proposals 
of chirps based on reciprocal time.  

Notice that the chirp -./�=� > ?��� has a parabolic 
phase function ���� � =� > ?�� , with �  the 
frequency, � � $�� P�P� � $�� Q?�  , ���� � RES 9� >EES� 9��9 , ?4 � $� ? , a parabolic function in � . In 
addition, � � ;�4 > T�3�  is the differential equation 
of the chirp. Instead, -./�+ �0 � has decreasing phase ���� � +1�  and negative instantaneous frequency � � $�� P�P� � ( $��9 , with a phase function ���� �U(� . When using -./ $��G� , with ���� � $��G� , the 

frequency is � � $�� P�P� � $���G���9, ���� � U�.  

 

 
Figure 1.  Signal �V2�QW1�� and spectrum obtained for samples 

from 336 up to 674, padded with 0 from 1 ro 335 and from 674 to 
1024. Series �V2�QW1��, step of incrementing � , �� �2.74E-04, 

starting from �� �5.48E-02 (for sample #336). No window applied. 

We name chaotic essential discontinuity at #� any 
essential discontinuity of a function L continuous on a 
left-closed interval (or right-closed) and is produced 
by a chaotic process ���� as L�#� � ��+ �0 �.  

III. CHAOTIC SIGNALS WITH DISCONTINUITIES 

A. Introductory issues 
Let #�2� be a chaotic signal, e.g., produced by one 

of Sprott’s circuits [15], or circuits as in [16], [17-18], 
or a logistic series etc. Define X�Y� � 

� Z #�2�99999999999999999999999999999�:[9 $\ � 2 A ]D# M^$\_ > +N ( # M^$\_NH � MY ( ^$\_N 9�:[9 ^$\_ ` ] (6) 

Then, there is no I.J\5� X�Y� . Also, there is no I.J\5�L<X�Y�@, where L is some function, e.g., sin().   

B. Examples 
Recall that the logistic map is #a�$ � =#a �<+ ( #a @ ; also chaotic is  #a�$ � =#ab � <+ ( #ab@ , c A d and suitable =. Fig. 2 shows a chirp based on 

the logistic map in reciprocal time. Figs. 3 and 4 show 
chirps based on the logistic map and functions of the 
reciprocal time, based on (5). Fig. 5 provides another 
example together with the spectrum of the chirp. 
Notice that the graphs are drawn using linear 
interpolation between the generated points; therefore, 
the signal equation should be written for all intervals 
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e $a�$ % $af  as #��� � #�2 > +� > g�a�Gg�a�$�hijh9k9hi M� ( $a�$N . 

To derive the Fourier spectrum, the sampling of the 
above should be done with a maximal sampling period 
of �lRmbn o + ]�] ( +�0 , where ]  is the maximal 
value of the index in the series p#aqar�%s%t. 

  
Figure 2.  Generating an essentially discontinuous chaotic chirp 

signal with the logistic map, with a toroidal regime. 

 
Figure 3.  Pseudo chirp obtained using the logistic map as a 

fucntion of 1-log(1/t). 

 
Figure 4.  Pseudo chirp obtained using the logistic process as a 

fucntion of 1-log(1/u�). 

 

  
Figure 5.  Logistic chirp in reciprocal time and spectrum 

(spectrum truncated at amplitude 40 for better perceptibility.) Cases 
of periods of 512 and 1024 samples, chirp of 128 samples. 

Notes: The use of reciprocal time requires 
supplementary technical means to implement the 
operation. One way is to record in a LIFO memory the 
samples generated by a chaotic system and then 
produce them as radar signal at the corresponding 
reciprocal time moments. If the reciprocal time is 
between e $�h % $�vf%  $�v C $�h , then the smallest time 
interval between samples is �t ( �tG$ � w� . The 
value of w�  is the sampling period for the original 
signal. The reciprocal time values are then + �tGB0 �+ ��t > xw��0 . 

C. Further theoretical issues 
The class of functions that can be used to produce 

EDB chirps is very large (infinite). The next properties 
help detailing this statement. In general, when #��� is 
bounded but has no limit at infinity, #�+ �*0 �, " C + 
has an essentially discontinuity at (no limit at) zero. In 
addition, if ya��� is a polynomial and #z  are its real 
roots, #�+ ya����0  is essentially discontinuous at #z.  

Property. There is an injective mapping from the 
set of trajectories starting from different initial values 
of a chaotic time series and the set of sequences with 
essentially no limit. Also, there is an injective mapping 
from the set of trajectories starting from different 
initial values of chaotic functions with specified initial 
condition ��� A �+%,�% #��  and the set of functions 
with essential discontinuity (essentially no limit) at 0.  

By fixing arbitrarily the initial condition, one 
obtains the following property:  

Property. There is an injective mapping from the 
set of chaotic functions �{ �V|	 5 }a  with specified 
initial condition ��� A �+%,�% #��  and the set of 
functions with essential discontinuity (essentially no 
limit) at 0. Thus, the study of chaotic time series could 
be brought to the study of a subset of bounded 
sequences #$1a with no limit for +12 5 6 (trivial).  

Remark. Any bounded continuous function ���� 
with no asymptotic limit at infinity (divergence at 
infinity) has the property that it is divergent at zero for 
reversed time, ��+ �0 � (essential discontinuity at zero).  

All harmonic functions L A ~  and thus all finite 
order trigonometric polynomials with at least one non-
null coefficient) are oscillating at infinity and therefore 
have no limit at zero in reciprocal time; similarly for 
all chaotic functions. Notice that the density of points ��+ �0 � � 6  in the vicinity of zero, defined as ��� a���%����������� 9��.  

If �  is periodical with period � , then there are ^$� M$� ( $����N_ � ^$� � ����������_  such points in ��% � >
���. For �� � �, one obtains ^$� � $��_, which tends to 
infinity for � 5 6 , with the density ���� �9a���%������� � $� � ^$� � $��_  tending quadratically in $�  to 
infinity. So, any process for which there is no constant 
value A such that ���� � ��� is not periodical; it may 
be slower than periodical when the time is stretched, 
like for -./�=� > ?��� , or it can be faster than 
periodical when time is compressed, such as for -./�u�� or for -./�I/����.  

Assume that ���� A �(+%+� . The constant �  that 
minimizes for a chaotic process ���� the expression 

 � � ���J./� � �+ ( ��7-./<��� �0 �@�T��G�  (7) 

if the integral and the minimum exist is named the 
pseudo-period of the chaotic process. The waveform 
used in the chirp according to the method described in 
this article should include more than a single pseudo-
period, for reasons of robustness of the detection.  
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Let X � -./ M$�N . Then, X4 � ( $�� 78- M$�N , X44 �$�� -./ M$�N > ��� 78- M$�N , or X44 � $�� 9X ( �� 9X4 . Similar 
equations can be found that are satisfied by X �78-�+ �0 � and other functions.  

Consider L�#�  of bounded variation for �+%,� , 
with no zero (fixed point) and satisfying I.J�5�9L�#� �; . Let �  be of unbounded variation on any interval �=%,�. Then, L<��+ #0 �@ has unbounded variation at 
0. 

In principle, chaotic chirps have a spectrum 
unpredictable by observers (anti-active jamming of 
the radars). In this case, the radar knows what the 
correct chirp spectrum is and thus the correct chirp-
decoding filters to use in the next chirp bursts, while 
the attacker does not. The next chirp may be 
generated by the same chaotic process or by one with 
modified parameters. 

IV. DISCUSSION AND CONCLUSIONS 
The typical chirp signals in the literature are 

continuous on R, with no limit at infinity. We 
proposed the use of chirps that (i) have essential 
discontinuities at the specified time moments p�BqBr$s� ; (ii) where �B  are generated pseudo-
randomly or chaotically, and (iii) the signals generated 
at each time moment are functions with essential 
discontinuities, moreover (iv) the functions are 
produced as solutions (realizations) of chaotic 
processes with specified initial conditions. In specific 
applications, (i)) can be replaced by uniformly 
distributed time moments. 

The wide spectrum of these essential discontinuity-
based pseudo-chirps may help improving the detection 
of multiple targets (resolution) and may be more 
resistant to jamming.  

Carroll [9] suggests that “chaos-based signals may 
have advantage in the detection of complex targets”. 
The same author “found that one can optimize a 
chaos-based signal …thus allowing the identification 
of a complex target.” We believe that the same 
advantage may occur for the proposed signals, with 
the extra advantage of better optimization capabilities. 

It is unclear for now what benefits can be obtained 
using EDB chirps under interferences [19] and under 
clutter conditions as in [20], but following [9] we 
believe that benefits are achievable with EDB chirps. 

Finally, the use of these shorter chirps may help 
reduce the radiation dose (Specific absorption rate, 
SAR) for pedestrians exposed to automotive radars. 
While radars operate in the range 20 GHz-85 GHz, 
they produce non-ionizing radiation and their heating 
effect is limited by standards such as ICNIRP. At the 
levels for automotive radars, radars are not dangerous, 
but their field adds up to other radiation sources. 

Note. This study was not commissioned or supported by the 
institutions to which I am affiliated. It has no relation to my work at 
those institutions and was fully financially supported by the author. 
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