
Analyzing Multi-core Timing Effects on
Control Systems via Co-simulation

Philipp Wagner
Vector Informatik GmbH
Regensburg, Germany

philipp.wagner@vector.com

Thomas Wilhelm
Vector Informatik GmbH
Regensburg, Germany

thomas.wilhelm@vector.com

Andreas Sailer
Vector Informatik GmbH
Regensburg, Germany

andreas.sailer@vector.com

ISBN 978-80-261-0813-9, c© University of West Bohemia, 2019

Abstract—In the automotive industry, the integration
of different functions is a challenging and transdisci-
plinary task. The effects caused by the timing behavior
of discrete controllers on the control plant need to be
understood during development. In this paper we show
how co-simulation of a discrete multi-rate control unit
and the physical plant is used to provide integration
insights early in the development process, i. e. during
design. We highlight effects of the timing behavior of a
single-core controller on a control system from an indus-
trial use case. We discuss multi-core timing phenomena
that further influence the timing behavior, to motivate
the research and the application of co-simulation during
the development of control systems.

Index Terms—co-simulation; multi-core; timing behav-
ior; control systems; cyber-physical systems; automotive

I. INTRODUCTION

Cyber-physical systems (CPS) consist of a contin-

uous plant and discrete, embedded electronic control

unit (ECU). This fact must be respected during the

design of a control system. There are numerous timing

effects of complex embedded software that affect the

performance of control systems. Predicting these ef-

fects is infeasible without supporting tools like timing

simulation. Arguably, the most accurate and reliable

results can be achieved when functional and timing

simulation are coupled (co-simulation). Co-simulation

can be applied in various stages of the automotive

development process, such as design and implemen-

tation phases. Systems are safety-critical and complex,

so timing requirements have to be fulfilled throughout

all development phases.

The following section gives some background on

control software development, followed by an indus-

trial case study in section III. In section IV we present

related work with a trend towards multi-core, for which

specific timing effects are discussed in section V. We

conclude with an outlook.

II. BACKGROUND

Fig. 1 illustrates artifacts in the process of control

software engineering for an automotive ECU as seen

in the industry. Co-simulation is possible on different

This work is part of the EWORAM project with partial funding
from the Bavarian Ministry of Economic Affairs, Regional Devel-
opment and Energy under grant no. IUK499/001.

system

software

vehicle sub-systems

sub-system architecture (e. g. engine 1)

system component architecture (e. g. momentum controller)

mass 2

sub-system

torsion shaft

sub-system

mass 1

sub-system

engine 1

sub-system

engine 2

sub-system

momentum 
controller

speed controllermode 
management

sub-function sub-function sub-function

power 
management

sub-function

controller actorsensor

software design

software architecture

runnable I runnable II runnable n

task I … task II …runnable I runnable IIrunnable n

…

user req. output

Fig. 1. Overview of the automotive control system development
process

levels of granularity. Control system hardware is not

considered here. There are two architectural realms:

The system and software architecture. From a sys-

tem architecture perspective, the vehicle consists of

several sub-systems, like the wheels, drive-train and

the engine. Each of these sub-systems is composed of

specific sub-functions. For each sub-function a compo-

nent architecture is defined. For example a controller

component contains sensors, actors and the controller.

For all components, a software architecture and

design are defined as part of the software realm.

The software architecture contains information about

input and output ports, signals, and control flow that

represent the controllers effect chain. The software

design contains the mapping of atomic runnable en-

tities, which contain the control function code, onto

tasks. On single-core ECUs task scheduling introduces

effects that impact the control system performance,

such as long preemption times due to execution of

higher-priority tasks, leading to dropped task instances

or missed deadlines.

Before developing the software of a new control

system, an requirement-fulfilling controller is chosen,

depending on the physical behavior of the controlled

2-2



system as well its requirements and those of related

sub-systems. Performance characteristics, like the ac-

ceptability of lasting deviations, compensation win-

dows, and plant delays inform the selection process.

The controller’s parameters are calibrated to reach

the required control quality, like high stability. This

leads to implicit timing requirements for the controller

software. Because budgets are limited, simulating the

controller’s functional performance under realistic con-

straints as early as possible, allows one to improve

quality, which is enabled by our co-simulation ap-

proach.

After a controller is selected, the new control system

is decomposed on different levels, as shown in Fig.

1. In that process, all of the steps described above

are performed. Only then the actual functional code

is implemented and the system can be integrated and

tested. Yet, the decisions and trade-offs made dur-

ing decomposition should be evaluated beforehand,

e. g., through simulation. The validation against the

individual requirements of the components, based on

predicted timing behavior, is a way to uncover in-

feasible solutions early in the design process, before

measurements are possible. In the following use case,

we show this for the software architecture and design

of a controller.

III. INDUSTRIAL CASE STUDY

In this section, we present an industrial case study

that illustrates typical effects of timing behavior on

a control system. The study is enabled by the devel-

oped co-simulation engine. It controls and facilitates

communication between the functional simulation in

MATLAB R©Simulink R©1 and the ECU timing simula-

tion in the Vector TA Tool Suite 2. Results from the

latter are used in Simulink R©for discrete control of the

plant. Both models are generated from a common data

source.

A. Use case

In our use case, new anti-jerk functionality is added

to a preexisting engine management system. The en-

gine control unit runs on a multi-core platform and

the existing software is distributed among the cores.

However, the control function of the new anti-jerk

system is designed to only use one core – parallel

execution of its tasks is not required. Yet, the new

controller in principle is subject to multi-core timing

effects caused by the existing software. In the follow-

ing example, we intentionally isolate the controller and

force task preemption at regular intervals via priority

assignments. This approach exemplifies the detrimental

timing effects that appear in both single- and multi-core

scenarios. Later, we show more timing effects specific

to multi-core.

This use case is common in the automotive domain,

in which solutions are developed incrementally and

iteratively, as noted in [1]. Consequently, simulation

1https://www.mathworks.com/products/simulink.html
2https://www.vector.com/us/en-us/products/products-a-

z/software/ta-tool-suite/

models for legacy parts of the system under develop-

ment exist during design and an early validation of

new features through simulation is promising. Based

on the requirements of the new sub-system and the

environment, an engineer determines where the new

control functions are placed. Timing simulation is a

way to support this mapping process.

Valid solutions differ in terms of quality and the

solution space is considerable. Data for a control sys-

tem’s performance is obtained through functional sim-

ulation. However, more accurate results depend on the

timing behavior of the discrete controller. For example,

research [2] shows that latencies in the controller soft-

ware do not necessarily destabilize a control system,

as long as they are constant. In complex embedded

systems, especially on multi-core, such constant delays

cannot be expected. Not activating the control task in

some instances, as in our demonstration, is a drastic,

yet realistic scenario.

B. Demonstration setup

engine 1

mass 1

engine 2

mass 2

torsion shaft

Fig. 2. Schematic of the demonstrator

For the following demonstration of the use case,

the functional and timing models of a system with

two degrees of freedom are used for co-simulation,

shown in Fig. 2. The setup corresponds to the system

architecture level in Fig. 1. Two rotating masses are

attached to one engine each. These are connected by a

torsion shaft, transmitting the torque of the first mass

to the second. The shaft provides inertia to the setup.

The engines control the rotational speed of the two

masses, accelerating or decelerating them. The model

can be used as a proxy for a variety of sub-systems.

In our case it represents an engine-to-wheel-plant: The

first rotating mass embodies the engine that transmits

power to the wheel(s), signified by the second mass,

via the power train (torsion shaft). Friction, slope, and

other factors impacting speed, are provided by engine
2 through deceleration of mass 2. The rotational speed

of the second mass, the speed of the car, is a function

of the power trains characteristics, material properties

and the user input. This input to the controller is

the desired speed of the car, which the mass 2 sub-

system converts to a torque request for the effect

chain. The output (see Fig. 1) is the actuating variable

for engine 1, resulting in torque. With the new anti-

jerk controller, acceleration is supposed to be smooth

and sufficiently quick, without overshooting. The user

shall perceive immediate and consistent feedback. In

Fig. 1, the desired speed (user requirement), resulting

torque (actor output) and effect chain (dashed line) are

depicted on the vehicle level.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

angular velocity reference (1 ms)
angular velocity (10 ms)
angular velocity (50 ms)
Requirement bounds

Fig. 3. Effects of regular task instance drops on control quality as delta of angular velocity

C. Results

The plot in Fig. 3 shows the difference in angular

velocity Δϕ̇ of the two masses for two configurations:

In the first configuration Δϕ̇10 (solid green), the con-

troller has an activation period of 10ms and in the sec-

ond Δϕ̇50 (dotted violet) of 50ms. Jerk, the derivative

of Δϕ̇, is less informative and therefore not shown. To

avoid exceeding the permissible mechanical tension,

it is required that Δϕ̇ shall not exceed 0.6 rad/s
(solid red). For readability, the plot is normalized to

Δϕ̇ideal (dashed black), the results for an uninterrupted

reference task with a period of 1ms and near-optimal

performance, such that f(x) = x − Δϕ̇ideal. This

means that the reference curve is constantly zero. The

constant requirement Δϕ̇ < 0.6 rad/s appears as a

curve, with a value of 0.2 rad/s at t = 0 s, according

to the scaled y-axis. At t = 0 s the user wishes to

accelerate, realized by a torque of 0.05Nm. In both

configurations, every third activation of the controller

task is skipped. In that case, the controller does not

compute an output for engine 1. For example, in the

second configuration at t = 0.1 s no value for the

actuating variable is set for 50ms, resulting in a slower

rotational speed of the first mass compared to the

second. This shall not happen during an acceleration

scenario: The second mass must reach and not exceed

the rotational speed of the first mass (no overshooting).

Consequently, the requirement for Δϕ̇ is not fulfilled.

This represents jerking as sudden switches between

relatively strong and no acceleration of the first mass. It

is weaker for the configuration with a period of 10ms.
In this example, undesired effects are caused by

intentionally dropping controller task instances. This is

motivated by simulation results of a complex industry

engine control model. In a realistic setting, this situa-

tion arises regularly or sporadically. With this design,

we model a worst-case scenario that is independent

from the underlying single or multi-core architecture.

Based on these results, several options to avoid the

observed behavior exist. All of them require close

examination of the system, using data provided by co-

simulation. Under the given worst-case assumption, the

required period of the controller task may be more than

10ms, but less than 50ms. Generally, either the timing

behavior should be optimized, e. g., by improving

the mapping of runnables to tasks, or by making the

controller more robust via its parameters – or by both.

Additionally, the initial time budget for the controller

function can be validated. Co-simulation, applied in

any of the relevant departments, facilitates this co-

operative effort.

IV. RELATED WORK

The modelling and simulation of control systems

with real-time controllers is investigated in [3]. The

authors’ tool TrueTime is used to study the effects of

networked embedded systems and software on control

systems. Some early applications, including effects

caused by preemptions in a networked system, are

shown in [4]. Our experiments also feature preemptions

as a means to not activate tasks, which degrades

the performance of the controller. The capabilities of

TrueTime and our timing simulator differ. For example,

to the best of our knowledge, TrueTime currently does

not support multi-core architectures. However, those

are common in automotive and increase the complexity

of timing behavior considerably.
In [5], a practical co-simulation application with

a similar research interest is presented. The authors

examine the effects of timing behavior, especially

that of adaptive variable rate (AVR) tasks, on engine

performance. AVR tasks can miss their deadlines de-

pending on the engines revolutions per minute (rpm)

and their execution time, among other scheduling-

related reasons. They show that missed deadlines

have substantial impact on system performance and

suggest managing runtimes by adapting task com-

plexity to rpm. To achieve this, motor and execu-

tion time data are exchanged between the simulators.

The experiments are based on a co-simulation with

MATLAB R©Simulink R©and TRES [6]. While we also

use Simulink R©for the functional simulation, timing

behavior prediction is done using an existing model-

based solution for multi-core embedded systems. Ac-

cording to the authors, TRES is inspired by TrueTime,

albeit with the capability to simulate multi-core control

units.
The benefits of co-simulation can only be reaped

when properly integrated into standardized processes



that are already in place. In [7] the authors map co-

simulation to steps to some standard process models.

We propose co-simulation steps for a different auto-

motive implementation of the V-model. During three

design phases co-simulation is used as a means to

enable early verification and, consequently, iterations.

A maturity model for simulation models for another

implementation of the V-model is defined in [8]. They

compare this process model to others in the industry,

including Automotive SPICE. An approach for early

verification and validation in that model is presented

in [9]. A similar path is followed in [1], calling the idea

frontloading. Early validation and verification, enabled

e. g. by co-simulation, is an established concept re-

gardless of the underlying process model, yet solutions

are still under development, especially for multi-core

timing behavior.

V. MULTI-CORE

The substantial impact of controller timing behavior

on control system performance and quality are gener-

ally well understood. In the demonstration above, pre-

emptions of the periodic controller task due to priority-

based scheduling lead to execution delays and degrade

the control system performance. Optimal task prioriti-

zation is one of the goals for both single and multi-

core platforms. On multi-core architectures, additional

sources for undue timing behavior exist and timing

analysis is more complex. Due to growing interest in

multi-core controllers for automotive control systems

in research and practice [10], [11], the following design

aspects need to be considered:

• Data exchange between tasks on different cores

• Parallel execution of tasks in the correct order

• Access to shared resources

• Allocation of tasks to cores

In practice, an effect chain of a controller consists of

multiple tasks with data dependencies. When tasks that

share data are allocated to different cores, communica-

tion takes longer compared to single-core ECUs. Co-

simulation supports the evaluation of predefined data

age constraints.

Furthermore, data dependencies in the effect chain

impose an order of execution on the tasks. Conse-

quently, some of them may run in parallel. While

this is efficient, the correct order in which the tasks

are executed must be guaranteed. Otherwise, e. g.

outdated signal values are used for calculating the

control function.

Additionally, access to shared resources, such as

semaphores, memories, and buses can be blocked due

to parallel execution of tasks, adding delays. Not only

the tasks of the controller, but also other functions on

the same ECU use and block these.

The design space for the allocation of tasks to

cores is considerable. Since the design aspects above

are inter-dependent, additional delays are introduced.

Constraints exclude infeasible solutions. Timing and

functional co-simulation enables earlier verification

and data-driven decision making when dealing with

these aspects. One approach to the challenges of multi-

core timing behavior is the logical execution time

(LET) introduced by Henzinger et al. [12]. In terms

of data exchange, it guarantees time determinism at

design time and during execution on the target.

VI. CONCLUSIONS AND OUTLOOK

The use case in this paper showed the effects of

task preemptions on a control system. However, on

multi-core platforms more sources for undesired timing

behavior of the controller software exist. Therefore, the

engineering process for control systems needs to be

supported by co-simulation during design phases.
The timing simulation solution used supports multi-

core and the specific effects introduced above. In the

future, we will work on use cases that involve multi-

core controllers to investigate their specific timing

effects on control systems further. This is a matter

of use case definition and modelling, because our co-

simulation approach and tool chain have the required

capabilities.

REFERENCES

[1] Y. Jordan, D. von Wissel, A. Dolha, and J. Mauss, “Full
virtualization of Renault’s engine management software and
application to system development,” in 9th European Congress
on Embedded Real Time Software and Systems, 2018.

[2] B. Wittenmark, J. Nilsson, and M. Torngren, “Timing problems
in real-time control systems,” in American Control Conference,
vol. 3. IEEE, 1995, pp. 2000–2004.

[3] A. Cervin, D. Henriksson, B. Lincoln, J. Eker, and K. Arzen,
“How does control timing affect performance? analysis and
simulation of timing using Jitterbug and TrueTime,” IEEE
Control Systems Magazine, vol. 23, no. 3, pp. 16–30, 2003.

[4] D. Henriksson, A. Cervin, and K.-E. Årzén, “TrueTime: Sim-
ulation of control loops under shared computer resources,”
in 15th IFAC World Congress. International Federation of
Automatic Control, 2002, pp. 417–422.

[5] P. Pazzaglia, A. Biondi, M. Di Natale, and G. Buttazzo, “A
simulation framework to analyze the scheduling of AVR tasks
with respect to engine performance,” in 7th Int. Workshop on
Analysis Tools and Methodologies for Embedded and Real-time
Systems, 2016.

[6] F. Cremona, M. Morelli, and M. Di Natale, “TRES: A modular
representation of schedulers, tasks, and messages to control
simulations in simulink,” in 30th Annual ACM Symposium on
Applied Computing. ACM, 2015, pp. 1940–1947.

[7] J. Fitzgerald and K. Pierce, “Co-modelling and co-simulation
in embedded systems design,” in Collaborative Design for
Embedded Systems, J. Fitzgerald, P. G. Larsen, and M. Verhoef,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014,
pp. 15–25.

[8] J. Bouquet, S. Faure, F. Fève, M. Foucault, U. Garcia,
F. Guérin, T. Hubert, F. Levy, S. Louvet, P. Munier, P.-
N. Paton, and A. Spiewek, “Model quality objectives for
embedded software development with matlab and simulink,”
in 9th European Congress on Embedded Real Time Software
and Systems, 2018.

[9] J. Holtmann, J. Meyer, and M. Meyer, “A seamless model-
based development process for automotive systems,” in Soft-
ware Engineering 2011–Workshopband. Gesellschaft für
Informatik e.V., 2011, pp. 79–88.

[10] C. Brandberg and M. Di Natale, “A SimEvents model for the
analysis of scheduling and memory access delays in multi-
cores,” in IEEE 13th International Symposium on Industrial
Embedded Systems, 2018, pp. 1–10.

[11] S. Kehr, E. Quiñones, B. Böddeker, and G. Schäfer, “Parallel
execution of AUTOSAR legacy applications on multicore
ECUs with timed implicit communication,” in 52nd Annual
Design Automation Conference. ACM, 2015, pp. 42:1–42:6.

[12] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Giotto:
A Time-Triggered Language for Embedded Programming,” in
Embedded Software, ser. Lecture Notes in Computer Science.
Springer, Oct. 2001, vol. 2211, pp. 166–184.


