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Abstract

Convolutional neural networks are applied successfully for image classification and object detection. Recently,

they have been adopted to semantic segmentation tasks and several new network architectures have been proposed.

With respect to automotive applications, the Cityscapes dataset is often used as a benchmark. It is one of the

biggest datasets in this field and consists of a training, a validation, and a test set. While training and validation

allow the optimisation of these nets, the test dataset can be used to evaluate their performance.

Our investigations have shown that while these networks perform well for images of the Cityscapes dataset, their

segmentation quality significantly drops when applied to new data. It seems that they have limited generalisation

abilities. In order to find out whether the image content itself or other image properties cause this effect, we have

carried out systematic investigations with modified Cityscapes data. We have found that camera-dependent image

properties like brightness, contrast, or saturation can significantly influence the segmentation quality. This papers

presents the results of these tests including eight state-of-the-art CNNs. It can be concluded that the out-of-the-box

usage of CNNs in real-world environments is not recommended.
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1 INTRODUCTION

Recent developments of convolutional neural networks

for semantic segmentation led to impressive results on

validation and test datasets. However, the datasets for

this performance measurement and the dataset on which

the training procedure was based share the same im-

age characteristics as, for example, the lighting con-

ditions and the acquisition environment (e.g. camera

type and settings). A very prominent and one of the

largest datasets in the field of semantic segmentation is

the Cityscapes dataset [1]. It shows urban scenes of 50

different cities. Common features between the training,

validation and test datasets have been prevented by hav-

ing no city being doubly represented in one of the sub

datasets. Nevertheless, dependencies still exist between

them due to the standardised capture settings. Images

from real-world scenarios can be much more diverse,

especially when using different cameras or settings, and

state-of-the-art CNNs are expected to cope with these
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image variations. So far it was not known how well

CNNs trained with the Cityscapes dataset perform un-

der various lighting conditions or in rural areas.

Domain adaptation and transfer-learning are well-

known methods to adjust trained models to new

conditions or type of scenes. However, they are typ-

ically not used to increase the generalisation abilities

but to shift the application range. The use of CNNs in

real-world applications such as autonomous driving,

on the other hand, requires them to function optimally

under all kinds of conditions.

In this paper, eight state-of-the-art CNNs are compared

using out-of-the-box models available on the Internet in

order to assess their generalisation abilities. The inves-

tigations have revealed that most of the evaluated nets

do not cope well with images having varying character-

istics which can be caused by different camera systems.

These variations have been simulated by modifying

brightness, saturation, or contrast of the images. In a

second test, images that do not belong to the Cityscapes

dataset have been presented to the CNNs in order to vi-

sually evaluate the resulting segmentation masks.

2 RELATED WORK

The focus on a specified dataset and therefore overfit-

ting and limited generalisation abilities of neural net-
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works are a known issue and have already been covered

in literature.

Adversarial examples are images that can trick a neural

network into a false classification by slightly modify-

ing an otherwise correctly classified image. In [2] these

cases are described, searched and systematically pro-

voked. Wang et al. presents a theoretical analysis of

the functionality of adversarial examples and possible

countermeasures [3].

Even small image transformations like object transla-

tion can drastically influence CNNs for object recogni-

tion [4], which is validated in [5]. Rosenfeld et al. ad-

ditionally showed that the object position in an image

and “object transplanting“ from one image to another

has not only an influence on its own detection rate but

also the detection of other objects in the image.

Global image modifications can also have an effect

on the CNN results. In [6], the robustness of clas-

sifiers against added random and semi-random noise

in the samples has been researched and their impact

on the classification rate has been proven. In addi-

tion, the effects of blur, noise, contrast, JPEG and

JPEG2000 related compression artefacts are evaluated

for image classification tasks for deep neural networks

in [7]. Vasiljevic et al. extend this in [8] by investigating

the impact of blurred images to semantic segmentation

tasks.

Solutions have already been proposed to overcome

these problems. In [9], the robustness of a classification

deep neural networks has been improved by including

distorted copies of the original images in the training

process. They use downsampling, JPEG compression

and random cropping for stability training. Random

cropping is one form of data augmentation that is used

for some CNNs compared in this paper.

An alternative solution to make CNNs robust against

these type of modifications is proposed in [10]. Based

on the image quality, different paths inside of the net-

work are selected to maximize the classification result.

The impact of image modifications on the task of image

classification has already been comprehensively stud-

ied in the present literature. The effects are expected

to carry over to semantic segmentation tasks. This pa-

per examines the influence of image modifications with

real application background (image brightness, con-

trast, and saturation). Additionally, the segmentation

of unknown images is evaluated. This allows a compar-

ison of different network architectures beyond their test

dataset segmentation scores.

3 INVESTIGATIONS

CNNs for image classification and object detection use

a cascade of convolutional layers and downsampling

to compute a vector containing the class scores from

Test-Set. Val.-Set

CNN mIoU [%] mIoU [%] Fig. 1

DeepLabv3+ 82.1 78.7 a)

PSPNet 81.2 77.0 a)

TuSimple-DUC 77.6 83.7 a)

RefineNet 73.6 75.3 b)

LRR 71.9 72.5 a)

ICNet 69.5 67.7 b)

ESPNet 60.3 59.1 a)

ENet 58.3 53.5 a)

Table 1: Ranking of the CNNs based on their offi-

cial Cityscapes test dataset results (Test-Set. mIoU),

the measured results on the validation dataset (Val.-Set.

mIoU) and the categorization of their network architec-

ture

the resulting feature maps via fully connected layers.

Changes to this classic CNN architecture have been

made to cope with the task of image segmentation. The

class scores are computed for each pixel on low resolu-

tion features maps and different upsampling techniques

have been developed to obtain a score map in the orig-

inal image resolution. This is known as an encoder-

decoder network. The basic structure can be seen in

Fig. 1a) with the feature maps being the possible inter-

mediate result after many different modules or layers

(convolution, downsampling or upsampling).

Every network architecture takes a different approach

on this structure with more or less drastic modifications

to the encoder or decoder. A major change is the intro-

duction of additional branches on the encoder site that

process downsampled versions of the original image in

parallel. This is called a multi-path encoder-decoder

structure (Fig. 1b) and is explained in more detail in the

following subsections.

3.1 Selected Convolutional Neural Net-

works

On the Cityscapes website [11] a lot of CNNs are

ranked regarding their segmentation performance on

the test dataset. The Tab. 1 lists some of these net-

work architectures along with their performance ratings

(mean Intersection over Union metric [12], mIoU) for

the Cityscapes test and validation dataset. This selec-

tion is based on code availability and covers a broad

range of segmentation capabilities (highest, middle and

also low mIoU scores) and objectives. DeepLabv3+,

PSPNet, TuSimple-DUC, RefineNet, and LRR focus

on the highest segmentation score possible, while IC-

Net, ESPNet and ENet also have real-time inference

in mind. They all can be categorized as an encoder-

decoder (Fig. 1a) or multi-path encoder-decoder (Fig.

1b) network architecture.
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Figure 1: Basic CNN architecture for semantic segmentation; a) encoder-decoder; b) multi-path encoder-decoder

3.1.1 DeepLabv3+

The Deep Labelling Network (DeepLabv3+) [13] is the

highest ranked network on the test dataset but only the

second best network on the validation dataset of the ex-

amined networks (see Table 1). It is based on Deep-

Labv3 [14] and introduces a modified Xception module

[15] as network backbone. In general, the network ar-

chitecture is based on a complex and powerful encoder

that relies on parallel atrous convolution with different

rates to enlarge the field-of-view (Atrous Spatial Pyra-

mid Pooling). The decoder module handles the upsam-

pling and combines the final encoder output with low-

level features from previous layers with the same spatial

size to recover object segmentation details.

3.1.2 PSPNet

The Pyramid Scene Parsing Network (PSPNet) [16] is

the second highest ranked network on the test dataset

and third highest network on the validation dataset. Its

encoder is ResNet-based [27] while the decoding is per-

formed by a pyramid pooling module. This proposed

module uses parallel pooling and convolution with dif-

ferent sized kernels/filters. This aims at a broader re-

ceptive field by including local and global context in-

formation. The resulting feature maps are then upsam-

pled and concatenated before a final convolutional layer

generates the segmentation-output.

3.1.3 TuSimple-DUC

The ResNet-DUC-HDC alias TuSimple-DUC [17]

yields the highest segmentation performance on the

Cityscapes validation dataset and third highest segmen-

tation performance on the test dataset. It introduces a

combination of Dense Upsampling Convolution (DUC)

and Hybrid Dilated Convolution (HDC) as an addition

to the ResNet-based architecture. The encoder consists

of the ResNet and HDC layers while the decoding is

performed by the DUC layers.

3.1.4 RefineNet

The Multi-Path Refinement Network (RefineNet) [18]

uses parallel processing of the original and downsam-

pled version of the input image. It is a multi-path

encoder-cecoder network architecture. The RefineNet-

block consists of two ResNet-based Residual Convolu-

tion Unit (RCU) for each input, Multi-resolution Fu-

sion, Chained Residual Pooling and final RCU to com-

pute the output feature map.

3.1.5 LRR

The LRR architecture (Laplacian Pyramid Reconstruc-

tion and Refinement) [19] introduced the two name-

giving techniques. The low-resolution segmentation

map is upsampled and refined with the help of higher-

resolution feature maps in areas with high uncertainty.

3.1.6 ICNet

The Image Cascade Network (ICNet) [20] is a variation

of the PSPNet with focus on real-time inference and is

also a multi-path encoder-decoder network architecture

with three encoder branches. The PSPNet architecture

is only used for a downsampled version of the input

image to save computational time. The resulting small

spatial sized feature map gets upsampled and merged

with feature maps that originated from a higher sam-

pled and later the original sized input image. They both

only have passed through a limited number of convolu-

tional layers. After these two Cascade Feature Fusion

(CFF) modules, only upsampling and a final convolu-

tional layer is applied to get the final segmentation out-

put.

3.1.7 ESPNet

The Efficient Spatial Pyramid of Dilated Convolutions

Network (ESPNet) [21] has introduced an ESP module

replacing the standard convolutional layer. It consists

of a point-wise convolution and a spatial pyramid of

dilated convolutions that result in an computational ef-

ficient and bigger receptive field. The network architec-

ture consists of normal convolutional layers, ESP mod-

ules and deconvolutional layers [22] for upsampling.

3.1.8 ENet

The Efficient Neural Network (ENet) [23] is especially

designed for real-time inference. For this reason, the
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network architecture is very small compared to the

other presented networks by limiting the number of lay-

ers and size of the feature maps. It is based on the Res-

Net architecture.

3.2 Experimental Setup

The generalisation abilities of CNNs can be evaluated

in two ways. Firstly, the images of a known dataset

can be modified and the change in segmentation perfor-

mance is measured. Secondly, the segmentation output

for unknown images can be visually demonstrated and

discussed. The out-of-the-box performance of each net-

work architecture has been tested with the provided and

here named models:

• DeepLabv3+: deeplabv3_cityscapes_train; model-

variant: xception_65;

• TuSimple-DUC: ResNet_DUC_HDC_CityScapes

• RefineNet: refinenet_res101_cityscapes.mat

• LRR: LRR4x-VGG16-CityScapes-coarse-and-fine

• ESPNet: espnet_p_2_q_8.pth

• ENet: cityscapes_weights.caffemodel.

The official implementation of the PSPNet and ICNet

could not be used due to Hard- and Software incom-

patibilities. Instead, the Tensorflow implementations

[24, 25] have been utilized with these models:

• PSPNet: pspnet101-cityscapes

• ICNet: icnet_cityscapes_train_30k.npy.

The Cityscapes test dataset is not public available so

all further tests have to be performed on the validation

dataset. Changing the brightness, contrast and satura-

tion of its images represents realistic scenarios in a real-

world environment.

3.2.1 Brightness

A brightness modification can be described by an offset

b to the R, G and B values of each pixel:

R′ = max(min(R+b,255),0) (1)

G′ = max(min(G+b,255),0) (2)

B′ = max(min(B+b,255),0) (3)

with b ranging between [−50;50] in increments of 10 in

our tests. The Fig. 2 shows the effect of the maximum

brightness changes on a Cityscapes validation dataset

image. The range of b is chosen so that the resulting

images still look realistic and can arise by under- or

overexposing the camera sensor. It is to be expected

that the influence of this modification on the segmenta-

tion results is rather low because the gradients are not

affected. Only pixels that have to be clipped to 0 or 255

change their properties in a non-linear way.

3.2.2 Contrast

A contrast modification corresponds to the multiplica-

tion with a factor c:

R′ = max(c ·R,255) (4)

G′ = max(c ·G,255) (5)

B′ = max(c ·B,255) (6)

with c ranging between [0.5;2] in our tests. We choose

the values c ∈ {0.5;0.7;1;1.4;2}. The influence of

the maximum contrast modification can be seen in

Fig. 3. This modification is more drastic compared

to the brightness change because it is affecting the

neighbouring relations between pixels and compresses

or stretches the accompanying histogram.

3.2.3 Saturation

The saturation of an image can easily be modified by

transforming the image from the RGB to the HSV

colour-space first. According to [26], the saturation shsv

is defined by:

shsv =

{

0 if R = G = B

255 · max(R,G,B)−min(R,G,B)
max(R,G,B)

. (7)

Analogous to the brightness, the saturation modifica-

tion can be applied by an offset s:

s′hsv = max(min(shsv + s,255),0) (8)

with s ranging between [−40;40] in increments of 10 in

our tests. Fig. 4 shows the maximum saturation mod-

ification. Due to the transformation, the pixel values

change non-linear and the neighbourhood-relations be-

tween pixel get distorted the most. It is expected that

this modification has the most influence on the segmen-

tation performance.

4 RESULTS AND DISCUSSION

4.1 Modified Cityscapes Validation

Dataset

The graphs in Fig. 5 show the influence of the image

modification on the mIoU score for each CNN applied

to the entire Cityscapes validation dataset.

The images in the Cityscapes dataset are rather dark,

which is indicated by the low mean of the colour chan-

nels for the images of the training dataset (R: 73.19, G:

82.91 B: 72.39). Therefore, the reduction of brightness

can make many objects black. They become indistin-

guishable resulting in a drastic decrease of the segmen-

tation performance of all nets for a negative b in Fig.

5a). Increasing the brightness does not seem to affect

the CNNs output much except for the ICNet.

The influence of the contrast modification in Fig. 5b)

surprisingly has the least affect on the segmentation
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a) b) c)

Figure 2: Brightness modification on a Cityscapes validation image; a) original image; b) b =−50; c) b = 50

a) b) c)

Figure 3: Contrast modification on a Cityscapes validation image; a) original image; b) c = 0.5; c) c = 2

a) b) c)

Figure 4: Saturation modification on a Cityscapes validation image; a) original image; b) s =−40; c) s = 40

performance, although the images in Fig. 3 appear to

be the darkest or brightest of all image modifications in

their extreme points. Only a very big c leads to a sig-

nificant decrease probably due to clipping of the pixel

values to 255.

As expected, the change in saturation has the greatest

impact on the segmentation performance. The curves

in Fig. 5c) drop off rather rapidly with an increasing

|s|. DeepLabv3+ and RefineNet seem to be the least

affected by this modification as the flat curves indicate.

Some curves intersect with others. This indicates that

some network architectures have a lower segmenta-

tion performance on the “default“ images but a higher

robustness against image modification and therefore

less over-fitting. The DeepLabv3+ shows in all three

graphs the best generalisation abilities. It has the sec-

ond highest mIoU score and flatter curves compared to

TuSimple-DUC which it also intersects. Therefore, the

DeepLabv3+ network architecture has the best compro-

mise between mIoU score and generalisation abilities in

this test.

4.2 Unknown Images Dataset

In a real-world application, a CNN is exposed to vari-

ous different scenes. The validation and test datasets are

usually from the same source and feature the same bias

(camera settings, preference by the photographer etc.).

This bias is also learned by the CNNs and prevents them

from having good generalisation capabilities. To test

this further, a visual segmentation evaluation has been

performed with unknown images from a completely

different source. Fig. 6 to Fig. 9 (each a)) show four

example images with similar content to the Cityscapes

images and exclusively known objects/classes. They

only tend to be a bit brighter and originate from a differ-

ent camera. Even without having ground truth data for

these images available, the segmentation outputs pro-

duced by the nets in b) - i) show remarkable differ-

ences that allow a subjective comparison. The relation

between the colours and the classes of the Cityscapes

dataset can be seen in Fig. 10. The conclusion from the

previous section is confirmed with DeepLabv3+ pro-

ducing the best looking segmentation output and show-

ing the best generalisation performance. The segmen-

tation is almost perfect with only the semantic mean-

ing being wrong in some cases. The biggest problem

seems to be the semantic segmentation of the grassland

where the border is inexact and the classes “vegeta-

tion“, “terrain“ and “sidewalk“ are assigned in an in-

consistent way. The second best network architecture

in this test appears to be the RefineNet, whose segmen-

tation has the same but more obvious problems. The

others CNNs often drastically fail to segment the ob-

jects correctly and make fundamental errors regarding

the classification. The class “building“ stands out by

being assigned incorrectly to different areas in the im-

ages.

ESPNet and ENet have the biggest problems with the

images. The segmentation of objects is mostly wrong

and often the segments are classified into the wrong

class. Especially Fig. 7 is negatively noticeable here.

4.3 Comparison of Results Between Both

Datasets

In our tests, DeepLabv3+, first place on the test dataset

but only second place on the validation dataset, seems

to be the least influenced by the image modifications

and showed the best segmentation output for the four

unknown images.
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Figure 5: Influence on the mIoU score a) brightness; b) contrast; c) saturation

a) b) c)

d) e) f)

g) h) i)

Figure 6: Segmentation-output; a) original image; b) ENet; c) ICNet; d) PSPNet; e) RefineNet; f) ESPNet; g)

LRR; h) DeepLabv3+; i) TuSimple-DUC

The investigated shifts of brightness, saturation, and

contrast are realistic modifications that can occur under

various practical conditions, and convolutional neural

networks should be able to cope with them.

The surveyed CNNs use a variety of different prepro-

cessing steps but there does not seem to be a correlation

between them and the results in this paper. ICNet, PSP-

Net, TuSimple-DUC and LRR subtract a fixed value

for each colour channel to distribute the pixel values

around zero, while ESPNet normalizes the input image

with the Cityscapes dataset mean and its standard devi-

ation. DeepLabv3+ also normalizes the pixel values x

to [−1;1] by x′ = (2/255) · x− 1.0. The other network

architectures (ENet and RefineNet) do not use any im-

age preprocessing steps. The DeepLabv3+ and Refine-

Net showed the best generalisation abilities in both tests

despite their fundamentally different network architec-

tures and preprocessing methods. The reasons for the

divers robustness against varying image characteristics

could not be clarified with our experimental set-up yet.
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a) b) c)

d) e) f)

g) h) i)

Figure 7: Segmentation-output; a) original image; b) ENet; c) ICNet; d) PSPNet; e) RefineNet; f) ESPNet; g)

LRR; h) DeepLabv3+; i) TuSimple-DUC

a) b) c)

d) e) f)

g) h) i)

Figure 8: Segmentation-output; a) original image; b) ENet; c) ICNet; d) PSPNet; e) RefineNet; f) ESPNet; g)

LRR; h) DeepLabv3+; i) TuSimple-DUC

a) b) c)

d) e) f)

g) h) i)

Figure 9: Segmentation-output; a) original image; b) ENet; c) ICNet; d) PSPNet; e) RefineNet; f) ESPNet; g)

LRR; h) DeepLabv3+; i) TuSimple-DUC
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Figure 10: Colourmap of the Cityscapes classes

5 CONCLUSIONS

Our investigations show that (i) modern CNNs are sen-

sitive to simple image modifications in the validation

dataset and that (ii) a high segmentation score on the

validation or test dataset is not necessarily an indicator

for a good generalisation capability of network archi-

tectures. We assume that the compared neural networks

did not primarily learn the structural properties of ob-

jects in the scene, but some colour properties which co-

incide with objects. Consequently, segmentation scores

on validation and test data are not sufficient as a bench-

mark test. To select a powerful network architecture,

also the generalisation capability in a real-world appli-

cation need to be considered.

To support reproducible research, all scripts, CNN

models and images are provided in [29].
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