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Abstract

Diabetes is a widespread disease. Elevated blood glucose levels continuously damage multiple organs in the long-term. In the short-
term, hypo- and hyperglycemic shocks are acute risks. Diabetes patients monitor their glucose level using continuous glucose
monitoring systems. Based on their measured glucose level, the patient take insulin to lower their blood glucose level. With the
advances in mobile computing, an increasing number of diabetes patients engage in self-built systems. They read their glucose
levels from glucose-monitoring systems and calculate their insulin dosage based on the measured levels. The self-built nature of
such a system raises a number of medical and software engineering concerns. Therefore, we propose a software architecture for
the next generation of glucose monitoring. The proposed architecture builds on the principles of the high-level architecture. We
decompose the entire glucose monitoring system to basic elements, which are either real or simulated. This opens the proposed
architecture to software engineering, simulation, and fault-tolerance research. As a proof of concept, we present an illustrative
configuration of the implemented software architecture that predicts future blood glucose levels 15 minutes in advance for type-1
diabetes patients. All relative errors are in the A+B zones of Clarke and Parkes error grids, with almost 95% of errors in the safest
A-zones of both grids.
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1. Introduction.

Diabetes is a heterogeneous group of diseases that share the common phenotype: of elevated blood glucose level
(BG) due to insulin insufficiency. It is-a silent discase. It does not cause pain yntil it'has developed. Type-1 diabetes
(T1D) patient depends on artificial insulin dosing, Gradually, T1D may develop from the other types of diabetes.

In subcutaneous tissue, the presence of glucose triggers a chemical reaction. This reaction creates an eléctric current.
-Continuous glucose monitoring systems (CGMSs) measure this cutrent-and convert it to.a glucose level (IG). Patients
calibrate this.conversion with BG. Patients measure BG sporadically as a result of associated pain-and discomfort: this
is done by drawing a drop of blood from a finger. Nevertheless, the CGMS reports 1G- continuously within a short
period -~ typically five minutes. Then. an insulin pump administers insulin to subcutaneous tissue. which lowers BG.

Having the sporadically measured BG and continuously measured IG; software on the: insulin pump calculates
volume of'the insulin dose. TradIt:onally only large medical companies are capable of developing such a software ~
considering the research, developmett, testing; insurance and other associated costs. On the contrary, thie growing
‘availability and computational power of mobife smartphones has given rise to' do-it-yourself projects. The Nightscout
project is the first one [1, 2]. Originally, it was designed to help: parents:to monitor their children with TiD. The
Nightscout software. is attached to CGMS software to intercept data communicatior, and upload [G-méasureiments to
analternative cloud. From that cloud, parents can downicad the levels and mionitor condition of their children remotely.
“This projéct is an important lesson to medical bodies as patients can change the “rules of ‘the gamie™ with modern
technology.

While the Nightscout project has focused on monitoring, ‘the OpenAPS (open. artificial pancreas) project goes
further. It calculates the votumé of the insulindose. As insulinlowers BG, overdosing is-a risk because the brain cannot
synthetize nor store glucose for more-than a few minutes worth of supply. The brain depends on a continuous supply.
of glucose from the blood [3].

Both projects raise several medical concerns [4]:-outcomes are self-reported; self-built systems may differ and their
‘'users are likely niore engaged in glicose controlling than- average-diabetic patient. In additionto the medical concerns;
we must identify software engineering issues. _

To-the best of our kriowledge, there is no publicly available research on CGMS software architécture. Therefoie,
we. propose a new architecture that builds on the principles of distributed computer siimilation systems such as: the
high-level architecture [5]. We break up the entire chain of glucese devices and the:associated software programs to
‘basic elements, which can be either simulated or real. We do not lose the ori iginal aims of Nightseout and OpenAPS,
while considering energy consumption already at the architectuial level, suppoiting unified and repeatable medical
testing and leaving the project open to software engingering. simulation, and fault tolerance research.

Section 2 of this paper describes the proposed architecture, whlle the fo]]owmg section discusses its
implementation. Fourth section gives an experimental setup of BG predlct;on Fifth section concludes the paper:

2. Architecture

To optimize the delivery of healthcare, the software architecture must be identical for both physical devices and
simalated devices. We need simulation to develop and éevaluate new models-and méthods. in-silico before conducting
clinical trials. In addition, identical architectures provide identical error analysis, which is needed to compare studies
for different authors fairly {6].

The high-level architécture (HLA) is a-well-studied simulation paradigm [3, 7].. HLA simulation is comprised of a
number of fedérates, which communicate using a predefined communication standard. Individual federates
communicate with each other using a pubhslv’subscnbe {send/receive data) communication model. As the
communication. flows ‘through HLA runtime infrastructure, i.¢., an object other than a federate, a federate need not
‘know of other federates; it only needs to know of particular data streams.

The HLA’s complexity is fiot well suited for low power devices, Therefore, we reduced its complexity to a'simplex,
which is fall through architecture that retains the key benefits-of the HLA architecture, As Figure | depicts; the devised
architecture is comprised of a number of filters. A simplex pipe connects.a pair of filters. A pipe exposes the two
functions of send ‘arid: receive, which accépt a single message: format. Its structure as follows:
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st:uct_TDeyice;Event {
Hbevige Event Code event: codegy /_/:L'_nteggrr_ai type {uintd_t! encoding particular event coda

GUIn -device_id; /idavice that produced the event
GUID signal id: f/3ignal that the event is concerned with
double deviee_time; 7/fractional counter of days since January 9, "1900.
int64 ¢ legical time; //Lamport ¢lock gounter
uintéd t segrient id; Ji7id of CEMS profile that the event -is concerned with
unian { /-fs_peci'f:;-c info.rmat_ion dependant on aevent_code

doubls level; {/measured or ctalecuiated levels of glucovss, irsulin, ete.

IModel Farameter Veckor® parameters; //pointér to reference-counted doublef]
wstr_contalner® infermation; /{peointer to reference~counted utf-1i6 string

event cade — advertising of external events.and control codes to-control the devices

logical and device time.~ Lamport and real-time timestamps

device id — device that produced the évent

signal id—1G, BG, calculated BG, predicted BG, insulin, efc.-

level — measured or cafculated level of a.specific substance such as-glicose, insulin, or carbohydrates
parameters — advertising of current parameters of implemented models of glucose dynamics
informiation —auxiliary information that is specific to a particular event code

Figure | depicts a sample simulation scenatio. [tis a sequence of six filters with the following properties::

© To.control the entire filter line, the end user need not be aware of particular filters. Through the .user
interface, the user instructs the progiam to’ inject 4 specific message. into the very first pipe. Then, the
message flows through the entire filter line and the filters react accordingly. For example, the patient can
enter addition. non-calibrating BG to improve the precision of calculated BG.

e Filter #1 receives measured [G and calibration BG from the CGMS. _
From the received 1G and BG, Filter #2 detennines petsonalized parameters for the extended diffusion
model (version 2y [8] of glucose dynamics. In the depicted setup, the NewlUOA method conibined with
the crosswalk metric is used [9]. Alternatively, it would be possible to use meta-di fferential evolution [1 0],
honey bee mating optimization [11]; or another method instéead of the NewUOA. The solving filter
determines the parametets asynchronously to the main flow. Thus, the third and subsequent filters continue
to process the CGMS signal as before, until new parameters are determined. Once the parameters are
genetated, Filter #2 generates a respective message and sends it to- the Filter #3.

Fi_lter__#_r‘.l -Filter-#2 Filter #3- Filter #4 Filter #5 Filter #6
CGMSs Solver _| Caleulation Error . - L o
- Sansor - (Diffus't_o'n VZ) Ll (Diffusi'on_ Uz) L Metrics = Visualization C Log -

T
b

; User-Interface Filters

| NewUOA |} Submodule #1
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Fig. 1. 8 i_mple,_\:._'féti through architeclure
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&  Filter #3 calculates:BG using the diffusion model (version 2). Tt updates its working model parameters on
receiving new ones, typically- determined by the solver filter. In addition. it is possible to store previously
determined parameters and ‘to initialize the calculation filter with:them. Orice loaded from non-volatile
'storage, such paranieters are-injectéd into the first pipe-before all the filters are run. As filters forward
messages, the parameters will pass through the CGMS filter to the solver filter, As NewUOA isa locall y
optimization method, the solver filter can use these parameters to construct an initial solution for
NewUOA. Otherwise, it uses default parameters [10].

o Filters-#4 — #6 are bound to.the user interface to visualize relative errors of the sensor and BG and IG
«calculations accotding to- the current glucose monitoriiig practice (mediumn average.relative error, 95"
percentile of relative error, error grid, daily plot of glucose levels, ambulatory glucose profile,. ete.).
Eventually, Filter #6 records the events to playback the entire simulation. later.

In a-more advanced scendrio, it is possible to. include a filter that. caleulates the optimal dose of insulin. Then.
another filter could transmit respective commands to a specific insulin pump. With the in-silico trial-scenario, we
would use a filter that reads glucose profile from a database instead of the CGMS filter. Alternatively, vet another
filter could connect to a diabetes patient simulatof.

To achieve a high degree of variability; when configuring the filter-linié, each filter is a standatone module with a
-globally unique id (GUID [12]). The GUID identifies biomedical signals, models, solver sub-modules, and salver
metrics. Combining GUID-based identification with dynamic loading of modules, third-party developers can design
‘and deploy any GUID-identified component without ahy collision with other developers.

“To support model composition, we implement a filter that remaps the signal GUID to another. As the message
flows through the filters, this remapping filter rewrites the signal GUID inthat message. Then, the output of one model
of glucose dynarmics is available as input for another model, which does not need to be aware of the preceding model
due to the refriapping.

Parallelism increases filter tine throughput. by exploiting the hardware concurrency of modern, processors. Each
filter executes in a standalone thread and the filter-connecting pipe acts as a blocking synchronization primitive. ._S:uch
:adesign pattern prevents overgeneration of'messages.so that the system is stable. For the design, we utilized the finding
of*study [13]. This study. concerned.an event-based communication scheme for the parallelization. of glucose level
prediction;

3. Implementation
We targeted four devices:
EMT64: desktop/server processor for funining the simulation.
Independent low-power device with an ARM processor, which acts as‘the. CGMS.

Smartphone that reads. data from the CGMS. device.
Smartwatch that reads data from the smartphone.-

e

3.1. EMT64 Desktop/Server Processor

The desktop/server processor runs the simulation, which benefit from time compression. Typically, it replays a
number6f glucose profiles. With such a proeessor; we perform a statistically significant number of calculations, This
allows us to experiment with new models and-algorithms as:the processor provides enough computationdl power,
Specifically, we used an Intel i7-7700K-based system, ' '
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Fig. 2. Connecting the smartphone with the CGMS and connecting the smartwatch with the smartphone

To visualize glucose calculations, we used the same analytical widgets used by the diabetes.zcu.cz project [14].
The respective website offers online continuous calculation of BG from a CGMS profile. Glucose levels are visualized
and analyzed using graphs, daily plots, Clarke and Parkes’ error grids, ambulatory glucose profile, and the empirical
cumulative distribution function of the relative error of calculated BG.

3.2. Low-power CGMS

The modern CGMSs comply with the IEEE 11073 standard. It is specialized for continuous glucose monitoring
and communicates through the Bluetooth Low Energy standard. Using Texas Instruments CC2650 LaunchPad board
with the TI-RTOS operating system, we implemented a hardware CGMS emulator. It replays previously recorded
glucose profiles, while synchronizing them with a real-time clock.

3.3. Smartphone

The smartphone is the de facto ubiquitous mobile device of today. It connects to other devices using the Bluetooth
standard. Hence, it can connect to a CGMS using the Low Power Bluetooth standard. Processors used in today’s
smartphones are advanced enough to run sophisticated calculations, despite being limited by battery capacity.
Therefore, we targeted a smartphone as the candidate to complement and possibly replace the traditional CGMS
receiver. Specifically, we used the Cortex-A53-based smartphone Motorola Moto G Gen3.
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3.4, Smarniatéh

As illuminating the smartphone’s display may- discharge a considerable amount of energy, we implemented a
glucose monitor dpplication for a smartwatch. Such a watch displays two data sireams, whicli the smartphoné produces.
The simartwatch updates the display on a change of data stream, which occurs every few minutes. Thus; the power
drain is low; SpCCIf cally, we used the Cortex-A7-based smartwatch Motorola Moto360 sport.

Figure 2 depicts the board (which provides hardware emulation of the CGMS), the smartphone application, and the
smartwatch screen. In accordance with the scenario depicted in Figure 1, the smartwatch displays measured 1G and
calculated BG.

All targeted devices share a'common source code base, written in modern C++17. We chose C++ to minimize
memory requirements, maximize computational performance, and reduce energy: drain to target low power devices
[15], Nevertheless, ‘we tecognize users’ preferences to motivate them to use the: software. Therefore, although the
smartphorie application shares the C++ code base, it implements the user-interface of the Xamarintechnology to retain
the platform’s lock and feel,

4. Experimental Setup

To demonstrate the capabilities of the proposed. software architecture, we- combined two models of glucose
dynamics to predict BG. BG prediction is difficult due to the number of required input: signals {continuous BG and
IG). Therefore; we calculate the required continuous BG-signal with a filter that we connect befére the prediction filter
to Supply all required signals.

Figure 3 depicts respective filter configuration. Filter #1 replays a glucose profile-recorded from an-adult T1D
patient. Filter #2 calculates continuous BG signal using the Steil-Rébrin model with a sensorerror model [16]. Then,

‘the Filtéer #3 remaps the measured BG as a virtual signal so that Filter #4 can remap the Steil-Rebrin caleulated BG as
‘the measured BG signal, Therefore, Filter #5 has continuous 1G and BG signals on ifs input. As:a result, it predicts
future 1G. Finally, Filters #6 ancl #? calculate error metrics and visualize the results, respectively. To interpolate
glucose levels, we used the Akima spline.

For the sake of brevity of this example, we omitted solvers in this particular experimental setup. We pre-calculated
the Steil-Rebrin parameters and shifted the calculated BG 15 minutes. into. the. future. We used the diffusion model
(version 2) to realize the time shift along a simple linear regression to reduce the prediction error. Tables 1.and 2 give
the parameters. While the proposed architecture supports determining the parameters on-the-fly, as depicted in Figure
1, dn adaptive. multi-model prediction scheme wolld becorie too complex and fall out of scopé of this paper.
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Fig. 4. Measured and calculated signals

Figure 4 depicts the measured and calculated signals. Table 3 gives an overview of the prediction error using both
absolute and relative error. Relative error is the absolute difference between measured and calculated glucose level,
divided by the measured level. It is the standard error measure used in diabetes treatment [S].

Table 1. The diffusion model (version 2) parameters

Parameter p cg ¢ At k h
[unit] (unitless)  [L/mmol] [mmol/1] |min:sec] [s*<L/mmol] [min:sec]
Value 0.964 0.000 -0.001 15:00 0.000 00:.00

Table 2. The Steil-Rebrin model parameters with sensor error model parameters

Parameter T g u B ¥
[unit] [s*mmol/L]  (unitless)  (unitless) [mmol/1] [mmol/(L~5)]
Value -619.308 1.000 1.307 -3.376 0.000

Table 3. IG signal prediction absolute and relative errors

Average  Std. Dev. Minimum 1# Quartile  Median 3™ Quartile ~ 95% Quantile ~ 99% Quantile Maximum

Absoluts 57 0.538 <0.001 0.269 0.551 0.886 1.649 2.770 3258

[mmol/]

ﬁ“f']a““'e 7.669 6.500 0.005 2924 6.285 10.290 21.200 31.080 38310
S0

In clinical practice, Clarke and Parkes error grids are the gold standard for evaluating the precision of glucometers.
These error grids define zones A-E, which present increased risk to patient with respect to measurement errors. With
the achieved maximum relative error, almost 95% of errors fall into the safest zone (A) of each grid. The remainder
of the errors fall into the B zones of both grids. Zones A and B are both safe zones, which do not lead to inappropriate
treatment. Zone B contains greater relative errors than zone A.
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5. Conclusion

Using the proposed software architecture, we-have demonstrated an intriguing prediction capability. 1t predicted
BG 15 minutes ahead of time with small etror and no need for-additional information such as carbohydrate counting
or insulin dosage. The ‘proposed . architecture allowed us to build increasingly advanced filter configurations and
develop néw filters to prolong the prediction window. We intend to release the software at diabetes.zcu.cz [14].

Given the architectural flexibility, it is also possible to connect an implementation of the proposed architecture with
diabetic-patient simulators such as DMMS.R {17], Univeisity of Cambridge T1D Simulator [18]. and Physiomodel
[19]. Such a conriection will require-custom terminal filters to réceive patient simulator data-and send the calculated
output back to the patient simulator:
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