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1. Introduction 

Tensegrities are stable structures consisting of discontinuous compressive members and 

continuous tensile members. In engineering applications compressive members are often rods 

that do not touch each other, while tensile members are often pretensioned cables. The word 

tensegrity comes from conjugation of words tension and integrity [4]. Active tensegrities are 

gaining popularity in applications regarding mobile robots and deployable structures (Fig. 1). 

Our goal is to explore possibilities of active tensegrity application in robotic manipulators. 
 

 
 

Fig. 1. (Left) mobile tensegrity robot “Super Ball Bot”, (right) deployable antenna using tensegrity structure 

2. Dynamic model of planar tensegrity 

Dynamic model is derived using Lagrange Equations of Second Kind with following 

assumptions. Individual rods are considered as perfectly rigid bodies, friction in joints is 

ignored, mass of cables is ignored, and cables are modelled as parallel combination of tension 

spring and linear viscous damper. However dynamic model alone does not provide stability of 

tensegrity. 

3. Form-finding optimization 

Form-finding is a process of searching for such pretension in cables that stabilizes the 

tensegrity structure. Static form-finding method, called Force Density Method, is used to 

stabilize the dynamic model. Advantage of this method is that only topology describing the 

connection of cables and rods needs to be known. Force density method analyses so called 

Stress Matrix which describes force densities between individual nodes of a tensegrity [1]. 

Genetic algorithm is used to solve the form-finding problem as presented in [2]. This 
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approach also allows to use the symmetric nature of tensegrity structures to reduce the 

number of optimization parameters significantly.  

 
Fig. 2. (Left) initial state of 15 DOF tensegrity and its equilibrium state. (Right) plot showing the evolution of 

individual coordinates of the dynamic model from the initial state to the equilibrium state 

4. Motion control 

Motion control of stable planar tensegrity is achieved by varying free lengths of pretensioned 

cables. For this purpose, Computed Torque Control method is applied to the dynamic model 

of planar tensegrity with 15 DOF (Fig. 2). Since this method involves solving inverse 

dynamics problem and it is assumed that each of total 22 cables are active, an undetermined 

system of equations needs to be solved. This allows to optimize the result in such way that all 

cables are pretensioned and no force exceeds specified limit given by the cable properties. 

5. Eigenmotion 

To plan the motion of the 15 DOF tensegrity a concept called Eigenmotion is used. 

Characteristic of Eigenmotion is that total mechanical energy is constant during motion [3]. 

This concept allows to control the motion of the tensegrity so that control inputs only 

compensate the energy dissipation in the system. Furthermore, Eigenmotion of tensegrity can 

be varied by adjusting mass of individual rods or stiffness of cables to match the Eigenmotion 

with desired motion. Adjusting of these parameters is solved as an optimization problem. This 

optimization is solved in a model without energy dissipation. Applying optimization results to 

a model with active control and energy dissipation leads to an energy efficient control. 
 

 

 

Fig. 3. Desired positions of rod 6 at time t = 0 s, t = 0.4 s, and t = 0.8 s for Eigenmotion optimization 
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Fig. 4. (Left) comparison of total mechanical energy between trajectory generated with quintic polynomials 

(red) and trajectory obtained from Eigenmotion optimization (blue). (Right) comparison between total 

mechanical energy of passive tensegrity in a model without dissipation (blue) and total mechanical energy of 

controlled tensegrity in a model with dissipation (red) 

6. Conclusion 

To explore the possibilities of use of active tensegrities in robotic manipulators a dynamic 

model of planar tensegrity was derived. This model was then stabilized using genetic 

algorithm to solve the form-finding problem. Computed torque control was then applied to the 

model to control motion of tensegrity. Lastly, Eigenmotion concept was applied to control the 

tensegrity in energy efficient manner. 
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