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Lagrangian tracking of a cavitation bubble
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Cavitation is usually defined as the generation of vapor bubbles in a liquid flow due to a pres-
sure drop under vapor pressure at corresponding liquid temperature [1]. It is a widely studied
phenomenon in fluid mechanics, mainly because when the bubbles are exposed again to high
pressures, condensation occurs and bubbles experience a violent compression, which releases a
large amount of energy. For a very short time period temperature within bubble reaches thou-
sands of Kelvins and dissociation of water molecules results in production of hydroxyl radicals.
The effects of this collapse are well known by engineers, especially those involved with hy-
draulic devices, where a cavitating flow may cause losses in efficiency, high levels of noise
and vibration and severe erosion of internal solid surfaces. However this phenomenon can also
be exploited positively for elimination of pathogenic microorganisms or reduction of danger-
ous chemical residuals contained in water (volatile organic compounds, pharmaceuticals etc.).
To design efficient devices for removal of undesired biological or chemical contamination it
is necessary to understand the process of cavitation bubble collapse in flowing liquid, which
is a combination of advection by the liquid stream and bubble dynamics induced by variable
pressure field.

Dynamics of an isolated cavitation bubble submerged in a steady flow is studied numerically
in present contribution. An Eulerian-Lagrangian approach is considered in which properties of
the fluid are computed first, using a two-phase homogeneous mixture model, by means of a Eu-
lerian method within commercial CFD code, and then the trajectory of the bubble is computed
in a Lagrangian fashion, i.e., the bubble is considered as a small particle moving relative to the
fluid, due to the effect of several forces depending on fluid’s pressure and velocity fields previ-
ously computed. Important ingredient is change of the bubble’s radius imposed by surrounding
pressure field, which is modeled by Rayleigh-Plesset equation. In the end energy released by
the successive collapses of the bubble is evaluated to estimate the energy available for damage
of material surface or rupture of the cell membranes.

Newton’s law of motion can be used to describe bubble’s trajectory

mb
dub

dt
= FD + FL + FP + FA + Fg, (1)

where mB is the mass of the bubble, uB is the absolute velocity of the bubble. The terms on the
R.H.S. represent respectively the drag force, the lift force, the force due to pressure gradient,
added mass force and buoyancy/gravity effects. In addition, bold fonts imply vector quantities.
Obviously the bubble/bubble and bubble/wall interactions are not included. The drag force FD

over a sphere is usually taken as

FD = −1

2
CDπR

2ρl|us|us, (2)
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where R stands for the radius of the bubble, ρf is the surrounding fluid’s density, us is the slip
velocity defined as us = ub − uf , with uf being the absolute velocity of a fluid’s particle
located at bubble’s center, and CD is the drag coefficient, depending mostly on the Reynolds
number of the flow, Re = 2Rρus

µ
. Non-linear relation between drag coefficient CD and Reynolds

number is assumed according to formula proposed by Yang et al. [3].
The force FL accounts for the lift force, a force usually represented by

FL = −CLρlVbus × (∇× ul), (3)

FP is the force due to pressure gradient defined as

FP = Vb∇p, (4)

FA is the so called added mass or virtual mass effect, and represents the additional inertia
added to the system due to the need of accelerating the surrounding fluid in order to occupy
a new position. It is usually implemented as

FA = −CAρl
D

Dt
(Vb(ub − ul))

= −CAρlVb
(
dub

dt
− Dul

Dt

)
− CAρl

dVb
dt

us.
(5)

Finally, Fg represents a combined gravitational and buoyancy force and is therefore imple-
mented as

Fg = (mb − ρlVb)g, (6)

where g is the acceleration due to gravity. Since bubble is changing its diameter along its trajec-
tory, it is clear that the change also has impact on magnitude of the respective forces (especially
drag force, buoyancy force and added mass force). Bubble dynamics of a spherical isolated
cavitation bubble was first described by Lord Rayleigh [2]. More accurate equations, which
are extension of the original formulation appeared later (Rayleigh-Plesset, Gilmore, Herring,
Keller, ...). Due to some stability problems basic formulation by Rayleigh and Plesset [1] is
employed in present contribution

RR̈ +
3

2
Ṙ2 =

pv − p∞
ρ

+
pg0
ρ

(
R0

R

)3k

− 2S

ρR
− 4µ

ρR
Ṙ, (7)

where pv is vapor pressure at liquid’s temperature, p∞ is the pressure in the liquid far from the
bubble, pg0 is the partial pressure of the air inside the bubble at a reference bubble size R0,
k is the polytropic coefficient, S is the surface tension and µ is the viscosity of the liquid. This
equation assumes spherical shape of the bubble, incompressibility of the surrounding fluid and
zero heat and mass transfer between the bubble and the surrounding fluid.

Venturi tube with dimensions according to Fig. 1 was used as an example for the bubble
tracking.

Velocity and pressure fields were computed numerically using ANSYS Fluent 19.1, with
Reynolds-averaged Navier-Stokes (RANS) equations accompanied by realizable k–ε model,
the numerical method is finite volume method (FVM), using segregated approach with SIMPLE
algorithm. The geometry and equations are adopted for axisymmetric assumption. Multiphase
cavitating flow was implemented by homegeneous mixture approach with simplified Rayleigh-
Plesset equation. See distribution of the phases for cavitation number σ = 0.42 in Fig. 2. These
fields were used as an input for MATLAB code and its Adams-Bashforth-Moulton method,
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Fig. 1. Geometric description of the simulated Venturi tube (all dimensions in mm) (left), phase distri-
bution for the Eulerian approach (right)

Fig. 2. Bubble dynamics along its trajectory (left), bubble position and velocity in the y-direction (right)

where the set of equations (1) – (7) was implemented. Results were computed for a range of
different initial bubble radii and trajectory of the bubbles was depicted in Fig. 2.

Energy released by bubble collapse is computed according to [4] as work done by the pres-
sure inside the bubble against the ambient pressure

W =

∫ Rmax

Rmin

4πR2
B(p∞ − pB) dR. (8)

The energy is then determined by subtracting the values for two successive maxima of the radii.
Generally, the energy released during the i-th collapse is given by

Ei = W
∣∣∣
Rmaxi

Rmini

−W
∣∣∣
Rmaxi+1

Rmini+1

. (9)

Accompanied by correlation of material (or cell membrane) damage obtained from experimen-
tal investigations the presented approach can constitute a basis for cavitation erosion model or
cell rupture model.
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