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1. Introduction 

The design of machine parts and machines is associated with the use of appropriate types of 

materials and thus the determination of their physical and mechanical properties. Usually 

these are metallic materials (high-strength steels, pure alloys, etc.), in recent decades also 

other non-traditional materials, such as composites (particle or fiber composites, hybrid 

materials). Each real part is characterized by its geometric shape, which is adapted to the 

functionality of structure and also to operational loading and stresses. Each part is also made 

by a specific technology. This forms its future structural and mechanical properties including 

static, dynamic and fatigue resistance in relation to operational loads. Designers should be 

able to optimize and correctly design the so-called “notch effect” of a part. In this sense, a 

notch means a local stress and strain concentrator. Locations with high local stress 

concentration usually form critical points in mechanical structures where a static failure 

occurs or where a fatigue crack begins to spread. Notches can be categorized from different 

criteria. Let us mention here geometrical, structural or technological notches. The first group 

is unambiguously described by its geometric shape and dimension. Structural notches, such as 

inclusions or inhomogeneity in material, also create local deformation concentrations. Their 

real shape is usually replaced by a simplified geometry. Also, various technological 

treatments of materials can cause a notch effect, for example on the transition of two layers of 

material of different structural and mechanical properties, etc. Here we will focus on 

geometric notches and description of stress in the notch root as well as description of 

prediction methods to evaluate durability of notched parts using nominal stress approach or 

local stress approach by using of calculations with finite element method (FEM). 

2. Stress concentration and the stress gradient effect in the notches  

It is known that the concentration of nominal stress, n , to the local elastic (virtual) stress, 

max , which are at the root of geometrical notches can be described using a stress 

concentration factor (also shape factor) defined as  
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The so-called exposed material volume in which a significant part of the local damage occurs, 

can be described using the relative stress gradient at the notch root, G, where  
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If the stress peaks occur along the entire L region (as, for 

example, in Fig. 1, where L represent the sample thickness), 

the L/G ratio characterized the exposed region. All these 

quantities can be determined in the notch locality from the 

results of the FEM calculations, also during complex loading 

conditions, when the condition of the multicomponent strain 

is usually assessed using equivalent stress values according 

to strength hypotheses, for example, HMH . 

3. The effective notch effect on the fatigue strength 

It is also known that the effect of the stress peaks on the 

notch fatigue strength is not as significant as it would 

correspond to the theoretical stress concentration. 

Experiments define the effective notch effect on the fatigue 

limit by a notch factor,  
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In the past, several relations were proposed for the computational estimation of the notch 

factor, which are reviewed, for example, in Ref. [5]. Let us define the ratio of the shape and 

notch factor by the fatigue ratio, 
f

t

K

K
n  . The methods for expressing the n quantity can be 

split into two major groups, see Table 1.  

Table 1. Fatigue ratios calculated by different methods 
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where bC ,  and C  are the bending 

and tensile fatigue limits, d is the 

diameter of the bending sample 
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The first group is formed by relations that are determined in dependence on the notch root 

radius,  . The second group involves expressions depending on the relative stress gradient, 

G. In Table 1, the values of the n  and Gn  ratio are compared for some most frequently used 

relations. For the FEM applications, the expression by means of the stress gradient, G, turns 

out to be more convenient. For the determination of the local fatigue limit in the notch root, 

FEMC , , (i.e., of the limit values of the elastic stress peaks in the FEM calculations), the 

following relation can be used: 
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where C  is the material fatigue limit during a homogeneous uniaxial tensile stress. 

Analogously to the fK  factor introduced in the region of the unlimited fatigue life, it is 

possible to define the notch factor, 
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fatigue test results. The fatigue ratio is modified by the relation
Nf

t
NG

K

K
n

,

,  . It is then 

possible to obtain the fatigue curve of virtual stress values at the notch root, 
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, which must lie above the smooth sample curve (see Fig. 2). In 

practical calculations, we can also use an opposite procedure. During the damage calculation, 

we use the fatigue curve of a smooth sample and correct the local stress amplitudes by 

calculating the quantity       
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Fig. 2 also shows the main difference between the Nominal Stress Approach (NSA), used by 

analytical fatigue calculations and Local Elastic Stress Approach (LESA), used by FEM 

analysis. While the fatigue curve is corrected in the downward direction in the nominal 

approach with respect to the notches, and the fatigue damage is determined from the nominal 

stress amplitude. The local approach uses the corrected stress peak at the notches and the 

initial fatigue curve of the sample without notches. Let us mention, however, that all the 

effects of the surface quality of the actual machine part should be projected into the curve and, 

as the case may be, its further technological modifications. The magnitude factor is taken into 

account in the above-indicated similarity criterion of the stress gradient effect and exposed 

volume. 

The author of this paper proposed a modification of the Heywood expression (see [3]) for the 

description of the notch effect in the region of the limited life, i.e., for the expression of the 

NfK ,  coefficient, 

 NKK tNf  )1(1, ,                                                          (5) 

in which the dependence on the relative stress gradient, G. It was expressed in the following 

form: 
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Parameters K1 up to K4 were determined to describe best the experimental S-N curves of 

samples with a various shape factor. A bunch of the so-called synthetic fatigue curves can be 

generated for any general stress gradient and shape factor; these curves can represent the 

required areas of the structure in the NSA approach, see Fig. 3. The example of these curves 
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is indicated in Fig. 3 according to the results in Ref. [6]. The set of these equations can also be 

used for correcting the elastic stress peaks according to relation (4) in the LESA approach. 

Fig. 2. Fatigue curves use for NSA and LESA         Fig. 3. Synthetic fatigue curves 
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