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1. Introduction 

Main application field for high-speed gearboxes is the power sector, particularly gas and steam 

turbine drives, turbo compressors and auxiliary starting drives. A present-day requirement for 

such gearboxes is their mechanical efficiency to achieve at least to 99%. This topicality is 

emphasized by the fact that transmitted power reaches to tens of MW. The high efficiency 

mentioned above is achieved by optimizing gear design comprising also the reduction of 

friction loss in bearings. At the same time, low-speed shaft bearings prove the lesser loss than 

the high-speed ones. In this case, therefore, the axial bearing of a pinion shaft is replaced by 

axial rings for transmission of axial forces from the high-speed shaft to a low-speed one. Both 

the gear force and an outside force, e.g. from a turbine or a compressor, are involved. 

Nevertheless, it is necessary to consider friction loss even between axial rings. Actually, in 

addition to rolling, slipping of rings occurs due to the shift of their contact centre out of the 

pitch circles (see Fig. 1). 
 

Nomenclature 
 

𝑢 fluid velocity in the 𝜒 direction 

   𝑣 fluid velocity in the 𝜓 direction 

F the contact axial force of rings  𝑤 fluid velocity in the 𝜉 direction 

h 

ha 

film thickness, h =ha + hb  

distance between a pinion ring point 

and the reference plane 

 η 

μ0 

 

oil dynamic viscosity 

oil kinematic viscosity for 

atmospheric pressure 

hb distance between a wheel ring point and 

the reference plane 
 μ 

α 

oil kinematic viscosity  

parametr in the Barus equation 

p pressure  ρ oil density 

x,y,z coordinates in global coordinate system  π/2 - φ bevel of the pinion ring 

x direction in the plane of shaft axes  π/2 - 𝜙  bevel of the wheel ring 

z the pinion shaft axial direction in global 

coordinate system 
 𝜔 the angular frequency of the pinion 

shaft 

𝜉, 𝜒, 𝜓 the Cartesian coordinates relative to 

the contact reference plane 
 Ω the angular frequency of the wheel 

shaft 

𝜉 direction perpendicular to the contact 

reference plane 
  

Subscripts 

𝜒 direction of the intersection of shaft 

axes with the contact reference plane 
 a 

b 

surface of the pinion 

surface of the wheel 
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It seems, no convincing research paper dealing with behaviour of axial rings has been 

published yet. That is why design offices use the over-simplifying computations of the oil film 

load capacity between the rings. For example, their conicalness and other geometric and 

operational parameters are not included. Similarly, an assessment based on the Hertz dry 

contact theory is acceptable only for the case of gearbox run-up. The insufficient knowledge 

entails a stumbling block in next rings developments and in the increasing of gearbox 

transmitted power keeping high efficiency. 

     

 
Fig. 1. Pinion and the part of wheel with axial rings 

 

In this study, the hydrodynamically lubricated contact between axial rings considering their 

steady state operating mode is studied. Perfect geometry of rings and isothermal oil condition 

are next simplifying assumptions. The assumption that the contact of rings is hydrodynamically 

lubricated is suitable as the ratio between the minimal oil film thickness, hmin, and roughness, 

𝜎, fulfils the precondition ℎmin/𝜎 ≫ 3 (see e.g. [2]) for the operating mode. The general 

Reynolds equation for 2D situation is then convenient to use for the determination of the oil 

pressure field and of the oil flow rate. It is remarked in the third section. Before it, in the second 

section, our focus is payed to the geometry of film thickness, i.e. to the gap between rings. 

Results for an example with a geometry of rings and with an operating mode are presented in 

the fourth section. Important dependence between the nominal film thickness and the value of 

transmitted axial force is brought out here for the considered lubricated contact. An attention is 

also devoted to friction losses.     

2. Clearance between cones 

Fig. 2 shows the overall situation with parameters of axial rings depicted in the plane of both 

parallel shaft axes. The directions 𝜉 and 𝜒 of the global coordinate system considered lie in the 

plane. Further, the reference plane of the lubricated contact of rings, 𝛼, is defined so that it is 

orthogonal to the direction 𝜉 and it touches the pinion cone surface. Points of the reference 

plane, just as perpendicular projections of points of cone surfaces into the plane, are then 

uniquely determined by the coordinates 𝜒 and 𝜓. The clearance h = h(𝜒, 𝜓) is the function of 

these coordinates and is measured in the direction of 𝜉. Isolines of the film thickness h are 

depicted in Fig. 3 for the considered parameters. 

3. Theory 

Oil is considered as a Newtonian fluid. Its inertial effects can be neglected in our case. With the 

boundary conditions 𝑢a, 𝑣a, 𝑢b, 𝑣b, prescribed on surfaces of rings, the velocity components 

are  

𝑢(𝜉, 𝜒, 𝜓) =
1

2𝜂

∂𝑝

𝜕𝜒
{𝜉2 − 𝜉(ℎb − ℎa) − ℎaℎb} + 𝑢b

𝜉 + ℎa

ℎ
+ 𝑢a

ℎb − 𝜉

ℎ
 , −ℎa ≤ 𝜉 ≤ ℎb , 
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𝑣(𝜉, 𝜒, 𝜓) =
1

2𝜂

∂𝑝

𝜕𝜓
{𝜉2 − 𝜉(ℎb − ℎa) − ℎaℎb} + 𝑣b

𝜉 + ℎa

ℎ
+ 𝑣a

ℎb − 𝜉

ℎ
 , −ℎa ≤ 𝜉 ≤ ℎb , 

 
Fig. 2. The plane of shaft axes with depicted Cartesian coordinate systems and with parameters of axial rings 

 

 
Fig. 3. Film thickness, h, in μm for the nominal thickness 40 μm and parameters d = 125 mm, D = 180 mm, 

C = 450 mm, φ = Ф = 89o 
 

where quantities ℎ, ℎa, ℎb and 𝑝 with the boundary velocities are functions dependent on 

coordinates 𝜒, 𝜓. Integrating the continuity equation over the thickness ℎ  yields, after some 

algebra near to of [1], the general Reynolds equation 
 

𝜕 

𝜕𝜒
 (

𝜌ℎ3

12𝜂
 
𝜕𝑝

𝜕𝜒
) +

𝜕 

𝜕𝜓
 (

𝜌ℎ3

12𝜂
 
𝜕𝑝

𝜕𝜓
) =  

𝜕

𝜕𝜒
(

𝜌ℎ(𝑢a + 𝑢b)

2
) +

𝜕

𝜕𝜓
(

𝜌ℎ(𝑣a + 𝑣b)

2
) + 

+ 𝜌(𝑤a − 𝑤b) + 𝜌𝑢b

𝜕ℎb

𝜕𝜒
− 𝜌𝑢a

𝜕ℎa

𝜕𝜒
+ 𝜌𝑣b

𝜕ℎb

𝜕𝜓
− 𝜌𝑣a

𝜕ℎa

𝜕𝜓
 

for unknown pressure, 𝑝. The viscosity, 𝜂, and the density, 𝜌, change with oil temperature and 

pressure, but, for the sake of brevity, only isothermal situation is considered here. Furthermore,   

the Barus empirical equation ln
𝜇

𝜇0
= 𝛼𝑝 (see [3]) is used to express the dependence of viscosity 

on pressure. Besides, the mathematical model described is necessary to complete by some 

condition for a cavitation region. Here, the simple approach taken by Kapitza that ignores the 

negative pressures, i.e.  𝑝 ≥ 0 , is considered [1].  

4. Results 

Before starting computational simulations, an in-house program based on the theory described 

above was created by the first author.  As an illustrative example, rings with the geometry 

parameters   hmin = 0.04 mm, d = 125 mm, D = 180 mm, C = 450 mm, φ = Ф = 89o (see Fig. 3) 
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are considered below. Their contact is lubricated by oil of ISO VG 46 at temperature 40oC, the 

value α = 0.0215xMPa-1 is given from [3]. Angular frequencies are ω = 10791 rpm, Ω = 1490 

rpm. Fig. 4 shows the oil pressure field calculated under boundary conditions with atmospheric 

pressure. In accordance with the inequality  𝑝 ≥ 0 , the field is zero in the right hand part of 

the contact as opposite points of cone surfaces are receding. The most important result is the 

dependence of the total contact axial force on the minimal thickness, hmin – F, (see Fig. 5). That 

the force increases steeply for hmin below the value 0.05 mm is apparent. It was also worked out 

that friction losses increases simultaneously with the contact force.  

 

 
 

Fig. 4. Oil pressure field, p, in MPa for geometry of rings from Fig. 3, for angular frequencies ω = 10791 rpm, 

Ω = 1490 rpm, and for the mineral oil ISO VG 46 

 

 
 

Fig. 5. Dependence of the contact axial force on the minimal thickness, hmin – F, for the parameters from Fig. 3 

and 4. Solid line: α = 0.0215xMPa-1; dashed line: α = 0 
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