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The discontinuous Galerkin methods (DGM) are gaining popularity in solving partial differen-
tial equations arising from modeling scientific and engineering problems, see e.g. [1]. Amongst
other, the DGM was successfully applied for the numerical solution of incompressible fluid
flows, i.e., Navier-Stokes equations, see e.g. [2, 3, 5]. This contribution focus on the verifi-
cation of the high order discontinuous Galerkin method implementation for the solution of the
Navier-Stokes equations in two dimensions. The numerical method was implemented within
the Julia programming language.

The fluid flow of an incompressible viscous fluid in the domain Ω is described by the system
of the Navier-Stokes equations (see e.g. [3]), i.e.,

∂u

∂t
+ ∇·(u⊗ u) = −∇p+ ν∇2u, ∇·u = 0, (1)

where u is the fluid velocity vector, p is the pressure divided by the constant fluid density
% and ν is the constant kinematic viscosity of the fluid. The boundary of the computational
domain Ω, see Fig. 1 (left), is divided into three distinct parts, i.e., ∂Ω = ΓI ∪ ΓW ∪ ΓO,
where ΓI and ΓO are inlet, and outlet parts of the computational domain, respectively and ΓW

denotes the impenetrable wall. The system (1) is supplemented by suitable initial conditions
u(x, 0) = u0(x), p(x, 0) = p0(x), and boundary conditions u = uI on ΓI , u = 0 on ΓW and
p = pO on ΓO.

In order to solve the problem (1) the computational domain Ωh(≈ Ω) is discretized using a
triangulation Th , where the higher order isoparametric elements were used on curved boundary,
see e.g. [3]. The numerical solution is represented by piecewise polynomials of degree N ≥ 1
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Fig. 1. (Left) Sketch of the computational domain. (Right) Computational grid consisting of 356 ele-
ments.
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on each triangle k ∈ Th. The time integration is done by splitting scheme with three stages
which takes into account the mixed nature of equations (1), see [3].

The implemented numerical method was tested on the benchmarks of laminar flow around
a cylinder [4], so-called DFG benchmarks. Simulations were done on the very coarse grid
consisting of 356 elements (see Fig. 1 (right)) and the different degrees of polynomials N were
considered. Table 1 shows obtained reference values. One can see that values obtained by DGM
corresponds well for higher orders of polynomials both for Re = 20 (steady) and Re = 100
(periodic) with DFG data. Fig. 2 shows vorticity contours for N = 5 and N = 9. Fig. 3 shows
lift coefficient cl during the computation.

Table 1. Overview of obtained reference values for the cases Re = 20, 100; ∗ values from [4]

Re = 20 Re = 100

N cd cl ∆p max(cd) max(cl) ∆p(t = 8)

1 6.511912 0.816498 0.159512 7.811225 2.939393 0.140196
5 5.579752 0.012096 0.117506 2.958082 0.475532 0.110243
9 5.579598 0.010619 0.117532 2.943942 0.477448 0.111623

∗ 5.579535 0.010619 0.117520 2.943764 0.477488 0.111541

Fig. 2. Contours of vorticity for different N , Re = 100 at 8 s: (top) N = 5, (bottom) N = 9

0 1 2 3 4 5 6 7 8

−0.5

0

0.5 DG-1
DG-5
DG-9

Fig. 3. Lift coefficient cl(t), Re = 100

Conclusions. In this contribution the in-house implementation of the high-order discontinu-
ous Galerkin method is used to compute flow past the cylinder. Obtain results correspond very
well with DFG benchmarks reference values.
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