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[ | I. Introduction

NOWLEDGE of an appropriate system state-space model is a

key prerequisite for an optimal design of many signal pro-
cessing algorithms for applications such as global navigation satellite
system (GNSS)-based routing and radar-measurement-based object
tracking. The system state-space model includes the parameterized
deterministic part and the distribution-based stochastic part. Although
the deterministic model often arises from the first principles based on
physical, kinematical, and mathematical laws governing the system
behavior, the description of the stochastic part is often difficult to
physically model and is identified from the measured data.

A tremendous research interest focuses on a design of methods
estimating the properties of the stochastic part of the model, namely,
on the estimation of the covariance matrices (CMs) of the state
and measurement noise appearing in the state-space model [1-3].
A rather limited attention has been devoted to the assessment of
whether the state and measurement noises are Gaussian or not,
although such information is essential for the optimal design of
Kalman filter (KF)-based navigation and tracking algorithms re-
quiring consistent and integrity assured outputs.

In particular, two approaches for simultaneous noise characteristics
estimation and probability density function (PDF) assessment can
be found in the literature. The first approach is based on the estimation
of higher-order moments (HOMs) (e.g., besides the noise CMs,
estimating the noises skewness and kurtosis) and subsequent com-
parison with the expected HOMs computed under the assumption of a
Gaussian distribution' [4]. The second approach estimates the noise
CMs only and then analyses statistical properties of the measurement
prediction error”™ (MPE) to decide about the Gaussianity of the noises.
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YGaussian distribution is fully parametrized by the first two moments; all
higher-order moments can be uniquely computed on the basis of those and can
considered as expected higher-order moments assuming the Gaussian PDF.
By comparison of the expected and estimated (real) higher-order moments, the
Gaussianity of the noises can be assessed.

**MPE can be shown to be a weighted sum of the state and measurement
noise.

Compared with the HOM approach, the MPE approach can provide
the decision about the noises Gaussianity with a required probability of
false alarm (FA). The concept of the MPE approach has been recently
outlined and validated in [5], which resulted in the noise covariance
matrices estimation with gaussianity assessment (NEGA) method.
However, the NEGA method was introduced with a strong focus on the
linear time-varying (LTV) models and one particular Gaussianity
goodness-of-fit test without

1) Consideration of the state noise shaping matrix

2) Discussion and illustration of design parameters selection

3) Design of the NEGA method for the linear time-invariant (LTT)
models allowing efficient implementation

The objective of the paper is to derive the NEGA method for both
LTV and LTI models wirh the state noise shaping matrix. Special
attention is placed on selection of the design parameter, statistical test
for the Gaussianity assessment, and on a computational complexity of
the NEGA method especially for the LTI models. The exemplary
MATLAB implementations of the NEGA method are submitted along
with the paper to facilitate method understanding, implementation, and
application.

The rest of the paper is organized as follows. In Sec. II, the state-
space model is defined, the task of the noise CMs estimation is
introduced, and the goal of the paper is drawn. The NEGA method
is derived and discussed in Secs. III and IV. Numerical evaluation is
provided in Sec. V and concluding remarks are given in Sec. VL

II. System Definition, Problem Formulation,
and Goal of the Paper

Let the state-space model describe an LTV discrete time stochastic
dynamic system with additive noises [6—8]

Xy = Frxp +up + Gwg (1)
T = Hkxk + Vy (2)

where x; € R", u; € R™, and z; € R": represent the immeasurable
state of the system, measurable input, and the known measurement at
time instant k, respectively, with k = 0, 1, ..., 7. The state matrix
F;, € R"™*": the measurement matrix H;, € R"-*"x, and the state
noise shaping matrix G, € R"*"v are known and bounded Vk. The
moments and the PDF of the initial state x,, are not assumed to be
known. The variables w; € R" and v; € R™ are the state and
measurement zero-mean white noises with unknown noise CMs Q €
R™>*™ and R € R"*":, respectively, where n,, < n,. Distribution
type, that is, the form of the PDF p(w,) and p(v;), is unknown as well.
The system state x; is assumed to be observable, Vk.

A. Noise Covariance Matrices Estimation

From the 1970s, an extensive number of the noise CMs estimation
methods have been proposed. The methods, which estimate the
unknown noise CMs @ and R using the available measurements z,
inputs u#;, and the known system matrices F, Gy, and H,, can be
divided into four groups according to their underlying approaches [1,2],
namely, the correlation methods, maximum likelihood methods, co-
variance matching methods, and Bayesian methods. The state-of-the-art
noise CMs estimation methods, surveyed in [2], have been designed for
a wide range of the models (linear/nonlinear, time-invariant/time-
varying), may provide unbiased and consistent estimates, and offer a
tradeoff between estimation accuracy and computational complexity.
Unfortunately, the vast majority of the methods do nor provide any
additional information regarding the PDF of the noises, mainly, whether
the state and measurement noises are Gaussian or not. Without such
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information, however, any optimal and reliable KF-based positioning,
tracking, and navigation algorithms cannot be designed.

B. Goal of the Paper: Derivation of NEGA Method for LTI/LTV
Models

The paper deals with statistical noise CMs estimation and noise
Gaussianity assessment. The goal of the paper is to thoroughly derive
the NEGA method for both LTV and time-invariant models of the
forms (1) and (2) with specification of the rules for design parameter
selection. Particular attention is also devoted to the selection of the
statistical test for the Gaussianity assessment and on a computational
complexity of the NEGA method especially for the LTI models.

The NEGA method is derived in the following two sections, where
the noise CMs are estimated (Sec. III) and the noise Gaussianity
assessed (Sec. IV). The paper builds upon the conference paper [5],
where the basic idea and concept of the NEGA method have been
proposed and illustrated. Compared with the conference paper, this
paper substantially extends the NEGA method with:

1) Derivation of the NEGA method for a state-space model with
the state noise shaping matrix in Eqs. (1) and (2)

2) Design of the NEGA method for the LTT models allowing more
accurate and computational efficient implementation

3) Thorough discussion, analysis, and illustration of the NEGA
method performance w.r.t the design parameters

III. Noise CMs Estimation Method

The first part of the NEGA method deals with the noise CMs
estimation. The noise CMs estimation adopts the concept of the
recently introduced correlation method for the noise CMs estimation
[5,9]1, which provides unbiased and consistent estimates for the LTV
models. The method for the noise CMs estimation consists of four
steps; 1) design of a linear measurement predictor, 2) computation of
the MPE, 3) statistical analysis of the MPE, and 4) sample-based
estimate of the MPE CMs and of the noise CMs Q and R. The method
for the LTV models is proposed in Sec. III.A, and then in Sec. II1.B, its
computationally efficient version is developed for the LTI model.

A. Noise CMs Estimation for LTV Models

The method for the noise CMs estimation for the LTV models (1)
and (2) with the noise shaping matrix is derived below.

1. Augmented Measurement Predictor

. . . 5L
The augmented measurement ZE and its prediction Zj can be
expressed as

k=0,1,....t=L+1 (3)

L [, ,T T T
Zi =zt Zhgprals

Zf = OL(F_ (O )/ (ZL_, —TL UL ) + uy_y) + TLUE,
k=1,...,t—L+1 4)

where the notation AT denotes the transpose of the matrix A, and
UL € R and T € RE"XEM are defined as

Uy
Uk
L
Uy = .
| UktL-1
On:szA 011:><n‘ 0n:XllA oll:XﬂA
Hk+1 0/1:><nx 0n:><nx 0n:><nv\.
It = Hi 2 Fiy Hy ., 0,n,  Ouxn,
L2 L3
B Hi o Fiyt Hga Py Hiyp 011:xnx

5
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where 0,,,, denotes a zero matrix of the indicated dimension.
Parameter L is selected such that the observability matrix

Of=[(Hk)T, (Hk+1Fk)T, (Hk+L—1~7'—1€_])T]T€RL":X"" (6)

is of full rank,”" Vk; that is, L>n,, (O )=
(OEDTOE )10 )T € R™¥Ln: s the pseudoinverse of the
matrix Oé—l’ and fﬁll = n{‘i] Fk+M—i = Fk+M—1 . "Fk+1Fk S
RXn

2. Augmented Measurement Prediction Error

The augmented measurement prediction error (AMPE) is
defined as
Zb=7L-Z7F,  k=1,...1-L+1 %)

where the augmented measurement vector can be, w.r.t. models (1)
and (2), written as

ZE = Obx, + TE(UE + WE) + VE ®)

and the augmented measurement vector prediction, w.r.t. Egs. (8),

(4), and (1), reads

Z; = Oplxy—i_y) + OL iy (OF) T (Th_ Wi, + VE) + TLUL
)

where the substitution w; = G,w; € R" was used, and the vectors

and matrices WL € RLw, Wi e R, VEeRM:, and TE e
REXLns are defined by

w
W k Wy Vi
- k+1 Wit Vk+1
L __ L L +
Wy = . . We= . N . R
~ v -
L WitL—1 WitL-1 k-1
0np(nK 0n:><nk o 0np(nK 0n,><nvx
Hk+1 0;1,><n e 0n Xn 0n,><n
XM, XMy XM,
ri=| HioFin H; 0, 0, (10)
L—2 L-3
_Hk+L—1*7:k+l Hk+L—1~7:k+2 o Higpo 0n,><nx
: vl T T V7 —
with Wi_, = [(Gi_ywi—1)', (Grwp)' ... (GrypoWis )] =
L L .
G Wy_, and
Gk—l OnAxnw e OnAxn,‘, OnAxnw
0nv\xn,,, Gk e Onlxnw nyXn,
L _
k=1 —
0n,><n,,, Onaxnw e OnAxnw Gk+L—2

Then, the AMPE [Eq. (7)] can be written in a compact form
Zp = A& =AML E = A8 an
where L™ =L + 1,

F=TWE)T, (VETTT e REOwt) (12)

""The full rank matrix O% always exists as the system state is supposed to be
observable; that is, the state x; is observable from the augmented measurement
vector ZE.
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g — [(W I)T (Vérl)T]T e RL" (ntny) (13)
A, = [Ag{w)? A,((U)] € RLPXLY (ntny) (14)
with
A = A (15)
& =np'g (16)
11, = |: gleil 0L+nA><L+n: :|T (17)
¢ 0L+n:><L+nw IL*'n:

T L L
;1]({",) _ ILnZ [(9 > F ] .
ILnZ [ _Oi Fk—l (O )Trk_l s OLnrxnl ]

o [T O]
ILnZ [ OLFk—l(O 1) OLn xrz]

and the symbol I, denotes the identity matrix of the indicated
dimension.

Note 1: From Eq. (8), an unbiased but not a minimum mean square
error state estimate can be computed [5].

Note 2: The matrix Ay in Eq. (11) is a function of the known model
matrices F, Hy, and Gy, and thus it is known. The AMPE [Eq. (11)]
is a linear function of the state and measurement noises stacked in the
vector §£+ whose statistical properties are sought.

Note 3: Whereas the form of the AMPE [Eq. (7)] is suitable for the
prediction error computation on the basis of measured data, the form
(11) is suitable for the following AMPE statistical analysis.

(18)

3. Augmented Measurement Prediction Error Statistical Analysis
Because of the propemes of the state and measurement noises
forming the vector §k , the AMPE Zk [Eq. (11)] is the zero-mean
stochastic process with the covariance matrix (CM)¥ C, € RL":>L":
defined by
C. = EIZL(ZD)) = AEEE EDTIAL = AZAT (19)
The matrix E € R*=*"= with ng = L*(n,, + n,) is composed
from the unknown and sought noise CMs Q and R as

IL+ ® Q 0L+n XL*tn,
w 2
L+ zXL+nw IL+ ® R ( 0)

where the symbol ® represents the Kronecker product [10].
The matrix Cy, [Eq. (19)] can be, w.r.t. the matrix identity ABC =
(C" ® A)B s [10], rewritten into a convenient form

B — EE )] = [

(Co)s = (A ® AYEs (21)

where the notation (A)g stands for the columnwise stdckmg of a
symmetric matrix A € R into a vector (A)g € R™.

It should be highlighted that the CM C is a linear function of the
unknown noise CMs @, R. Then, the CM in the vector form (C;)g
[Eq. (21)] can be written in a compact form as

where A, € R™¥"_ with n, = (Ln,)?,
the known model matrices defined as

is the matrix depending on

#The AMPE is a time-correlated stochastic process. Thus, besides the
covariance matrix, the cross-covariance matrix can be used for noise CMs
estimation as well. Further details on AMPE properties can be found in [9].
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Ay = (A @ A)Y (23)
b, € R™ is the vector of elements of the CM given by
by = (Cps (24)

and @ € R", with ng = [ny,(n,, + 1) + n.(n, + 1)/2], is the vector
of all unknown unigue elements of the noise CMs Q and R defined as
0=[(Qrs)". (Rs)"]" (25)

The notation Arg stands for the columnwise stacking of only the
unique ny(ny + 1)/2 elements of a symmetric matrix A € R"4*"

by elimination of the supradiagonal elements. The matrix ¥ €
R"2%" js a known duplication matrix [5,9] fulfilling the equality

B =V (26)
The AMPE CM Eq. (22) can be summarized for all time instants as
A =0b 27

with A = [AT AT AT AT, (17 b = (b1, 61,61, 07, ]
4.  Sample-Based Estimate of AMPE CM and Noise CMs

The matrix A in Eq. (27) is a function of the known model matrices
F,, Gy, and H; and the known duplication matrix ¥ only. If the
AMPE CM C|, were available Vk [i.e., available b in Eq. (27)], then
the vector of the unknown noise CMs elements 6 could be computed
from Eq. (27) by the least-squares (LS) method. The CM C; is,
however, not available as it depends on the sought noise CMs Q and
R [see the CM description Eq. (21)]. Nevertheless, the CM C, can be
estimated from a sequence of the measured and input data according
to Egs. (4) and (7) and similarly the vector b in Eq. (27).

Assuming available sequence of the measured and input data z;
and uy, Vk, the MPE sequence {Zf}iZh+! = (25,75, ... 75, )]
can be computed according to Eq. (7) and the sample- based estimate
of b in Eq. (22) is given by

by = (Co)s = (Zi(ZD)")s = Zi ® Zf (28)
and the sample-based estimate of b in Eq. (27) is then

b=1[bi.b3.b5.....b_1] (29)

Assuming that A is of full row rank, the optimum (LS) estimate of
the vector of the noise CMs unknown elements is, due to Eq. (27),
given by

0=Ab (30)

Based on the vector @ [Eq. (30)], the noise CMs estimates Q and R
are recovered according to Egs. (26) and (20).

Note 4: The parametric estimate € [Eq. (30)] (i.e., the noise CMs
estimates Q and R) are proven to be unbiased (i.e., E[@] = 0), and

weakly consistent (i.e., 0-0as7— o0). The full proofs can be
found in [9].

Note 5: For alarge set of dataz — oo, the estimated noise CMs are
positive-definite. For finite (and low) z, the estimates may lose the
positive-definiteness. In this case, the estimation procedure should be
repeated with a higher number of data or an LS solution with an
implicit constraint on the noise CMs positive-definiteness should be
used as briefly discussed (e.g., in [11]). As the CMs are symmetric
positive definite, the constraint can be formulated, for example,
by a set of nonlinear inequality relations according to Sylvester’s
criterion. It should be also mentioned that consideration of the
constrained LS method may affect properties of the estimate in terms
of its unbiasedness and consistency.
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B. Noise CMs Estimation for LTI Models

Derivation of the method for the noise CMs estimation for the LTI
model [i.e., models (1) and (2)] with F;, = F,G, = Gand H; = H,
Vk, is, in principle, the same as that for the LTV model, but taking into
account the system time invariability the NEGA method derivation
results in simpler relations allowing computationally efficient noise
CMs estimation.

1. Augmented Measurement Predictor

Design of the one-step augmented measurement predictor starts
from the definition of the augmented measurement

ZE = Olx, + TE(UE + WE) + VE (31)

which is analogous to Eq. (8) with the exception of the time-invariant
observability matrix OF and matrix I'* defined as

onrxrh 0nz><71l 'On,xn\ On:xnk
H H 0nz><nA On,xnA n Xn,
OL = HF R HF H On:xnv‘ 0n:><nx
HFL—I
| HF'™ HF'S . H 0, |
(32

The one-step augmented measurement prediction is then
Zf = OL(F(OM' (ZE, =TLUE ) 4+ uyy) +TEUE (33)
2. Augmented Measurement Prediction Error and Its Analysis
The AMPE Z% [Eq. (7)] can be, with respect to Egs. (31-33),
written as
Zi = Ag (34)

where A is a known and time-invariant matrix defined as

A=Al 35)

gL+ 0L+ L*tn. ]T
1'[ — n, XL n, 36
|:0L+11:><L+nu, IL*n: ( )
G =1, ®G, A=[A", AV] 37)

T L L
A(w) _ ILHZ [O ’ r ] ‘
ILVlZ [_OLF(OL)TFLw 0Ln,><nl]

[OLn:XnZ ’ ILn:] :|
(38)

ILn g
AW = :
ILn, [_OLF(OL)v 0Ln7><n,]

The AMPE Z~£ |Eq. (34)] is again a zero-mean stochastic process
with the time-invariant CM

C = E[ZL(ZE)T) = ARAT (39)
where E is defined in Eq. (20). Using the Kronecker algebra, the
AMPE CM C [Egq. (39)] can be written as a system of linear equations
with respect to the unique elements of Q and R, gathered in the
vector 6, and the known duplication matrix ¥ as

A0 =D (40)

where A = (A ® A)Wand b = Cy.

ENGINEERING NOTES

3. Sample-Based Estimate of AMPE CM and Noise CMs

Similar to the LTV case, the system of linear Eq. (40) would be
easily solvable if the vector b [and thus the AMPE CM C, Eq. (39)]
were known. The vector is, however, unknown, but it can be

estimated from the available AMPE sequence {Z },T{;LIJrl by a sample
AMPE CM as
R 1 =L+1 R
- T
C=rops7 L @D @n
b=Cy 42)

Then, under the assumption of the full row rank of the matrix A, the
optimum estimate of the vector of the noise CMs unknown elements
is, due to Eq. (40), given by

0=A"b (43)

Note 6: The dimension of the design matrix (i.e., matrix of
regressors) A in Eq. (30) for the LTV models is (z — L + 1)n;, X ng,
whereas the dimension of the design matrix A in Eq. (43) for the LTI
models is n;, X ng only. Thus, the pseudoinverse of the design matrix

is much simpler for the LTI models. The estimate 0 [Eq. (30)]
becomes @ [Eq. (43)] if the LTI model is considered.

C. Design Parameter Selection and Noise CMs Estimability

The NEGA method requires specification of one design parameter,
namely, the parameter L. The parameter determines, in fact, the number
of linear equations used for noise CMs estimation in Egs. (30) and (43).
The minimal choice L ,;,, ensuring full rank observation matrix, results
in the NEGA method with the minimal computational requirements.
If L is selected to be greater than L ;,, then a higher number of linear
equations are used for Q and R estimation, and consequently it results
in higher computational complexity. The higher number of linear
equations may (or may not as they are not optimally weighted [9])
result in higher quality estimates in terms of lower estimate error.
Further discussion and analysis of selection of L can be found in a
section devoted to the numerical illustration.

For the LTV models, if L > L,,;, and the model matrices Fy, G,
and H are sufficiently varying, then the matrix A in Eq. (27) is of full
column rank, and then the NEGA method provides estimates of all
elements of the noise CMs. However, the matrix A rank cannot be
assessed in general just from the properties of the model matrices F,
G, and H, as it is problem specific. Further discussion with
examples is demonstrated in numerical illustrations.

As with correlation methods, the NEGA method for the LTI
models may not generally allow estimation of all elements of the
noise CMs (because of insufficient rank of the design matrix)
independently of selected L. In particular, the complete measurement
noise CMs R can be estimated, but only a subset of the state noise
CMs Q elements can be estimated. The subset is guaranteed to have at
least 1, elements. Thus, it is always possible to estimate all diagonal
elements of Q. Note, however, that with increasing n_, the number of
estimable elements of Q grows as well [1,9,11].

If some elements of the noise CMs Q and R are known, then the
vector 6 [Eq. (25)] can be split into known and unknown parts, @y ,own
and 6, ,0wn» Tespectively, and the unknown part is estimated by the LS
method only. Namely, considering the noise CMs estimation for the LTI
model, the linear Eq. (40) can be written as Ay own@xnownt
Apnknown@unknown = b, which allows estimation of the unknown
noise CMs elements only according t© @uumown = (Aunknown)’ X

(b - Alcnovmoknown) .

IV. Noises Gaussianity Assessment

Having the noise CMs estimates Q and R, it remains to decide
whether both the state and measurement noises w; and v, are
Gaussian or not using a statistical hypothesis testing.
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A direct hypothesis testing of noise Gaussianity would require
availability of the state and measurements noise samples. These are,
however, not available in practical situations. Therefore, an indirect
statistical test of the noise Gaussianity was proposed [5], which tests,
instead of the unavailable noise sequences, the available sequence of
AMPE Z} « defined in Eq. (7). The AMPE ZL isa “welghted” sum of
the state and measurement noises that are stacked in [Eq. (12)],
where the weights are known and given by the matrix .Ak in Eq. (11)
for the LTV model and by the A in Eq. (34) for the LTI model. The
intuition behind the indirect test thus lies in the fact that, if both noises
are Gaussian, then the AMPE is Gaussian as well.

The indirect test as proposed in [5] is, in principle, a goodness-of-
fit (GoF) test requiring available estimates of the noise CMs. Such a
requirement is, however, an unnecessary limitation for the LTI
models as the use of the noise CMs estimates instead of the true CMs
may deteriorate the test performance. Also, the GoF test does not
necessarily offer the best performance in terms of its statistical power.
Therefore, in the following parts, the GoF test is briefly reviewed and
several alternatives with better properties are introduced. Some of the
introduced tests do not require known estimates Q and R for the LTI
models.

A. Statistical Tests

In the statistical literature, many tests of Gaussianity have been
proposed so far, where the null and alternative hypotheses are
formulated as follows:

1) Hy: The AMPE Z,f [Eq. (7)] comes from a Gaussian
distribution. .

2) H;: The AMPE Z,f [Eq. (7)] does not come from such a
distribution.

The tests are designed to provide a decision whether the null
hypothesis Hy, is accepted at the specified level of significance®®
or rejected. In the following section, several popular tests™ are
reviewed.

1. Chi-Squared Goodness-of-Fit Test

The chi-squared goodness-of-fit test (Chi2GoF) [12] is based
on the definition of a scalar normalized squared AMPE ¢t =
(ZHT(C)'ZE € R, where C; = C, is the AMPE CM defined for
the LTV model in Eq. (19) and C;, = C defined for the LTI model in
Eq. (39). If the state and measurement noises are Gaussian, then the
AMPE Z~£ [Eq. (7)] is Gaussian as well, and the normalized squared
AMPE (£ is a chi-squared distributed variable with Lz, degrees of
freedom (DoF). If either of the state or the measurement noise is non-
Gaussian, then the normalized squared AMPE (% is generally not a
chi-squared distributed variable. Unfortunately, the AMPE CMs C,,
and C are not known (as they depend on the sought noise CMs). The
CMs, however, can be estimated forms (19) and (39), respectively,
using available estimates of the noise CMs Q and R (based on all
data), as €, = A,EAT and € = AZAT for the LTV and LTI model,
|: [-®0 0L+”‘”XL+" :| Then, the

0L+nzxL+nw I+ ® R

resulting computable test statistic is defined as

1>

respectively, where E =

= (ZHT(C)'Zk (44)

where @k = @k or @k = & and the test itself always depends on the
quality of estimated noise CMs Q and R.

$The level of significance is the probability of rejection of the null
hypothesis if it is true. The level may be denoted as the probability of false
alert. Note also that, to be able to specify the probability of missed detection,
it is necessary to particularize the alternative hypothesis H . It means that it is
not enough to say that prediction error does not come from a Gaussian PDF,
but it must be specified from which PDF the prediction error alternatively
comes, which is quite challenging task partially solved in [4].

Most of the considered tests are available in a common statistical software
such as MATLAB or R.
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2. Anderson—Darling Test

The Anderson-Darling (AD) test [13] is able to directly decide
whether the AMPE comes from a normal distribution. The test is
based on the comparison of the empirical (sample-based) cumulative
distribution function with its theoretical counterpart. The test requires
identically distributed samples; that is, all the samples of the AMPE
should follow the same distribution. Therefore, for the LTI models,
the AMPE sequence zk « canbe directly used as a test statistic. The test
statistic is independent of the estimated noise CMs and, thus, not
affected by a possible estimation error. However, for the LTV models,
the AMPE needs to be transformed ™" as

= (S)~'Zk (45)

where § « 1s a square-root factor of @k fulfilling ¢ = S k(§ 7. With
the transformed AMPE, the quality of the noise CMs estimates
directly influences the test statistic and, consequently, the per-
formance of the statistical test, as shown in a section devoted to the
numerical illustrations.

3. Jarque—Bera Test

The Jarque—Bera (JB) test statistic [14] compares the sample-
based skewness and kurtosis with the ones expected for the Gaussian
distribution. The test again requires identically distributed samples of
the AMPE; thus for the LTI models, the AMPE can be directly used,
and for the LTV models, the AMPE has to be stochastically
decoupled.

4.  Shapiro-Wilk Test

The Shapiro—-Wilk (SW) test [14] compares transformed (and
ordered) samples with samples generated from a standard Gaussian
distribution. The test typically requires independent and identically
distributed samples. Thus, the AMPE needs to be stochastically
decoupled for the LTV models.

5. Lilliefors Test

The Lilliefors (LF) test [13] is, in some sense, similar to the AD
test, with only a different criterion for evaluation of the sample-based,
and expected cumulative distribution function is used. The test
requires identically distributed samples; thus, for LTV models the
AMPE has to be decoupled.

Note 7: The AMPE in Egs. (11) and (34) can be interpreted as an
addition of o sums of independent and identically distributed
variables: one sum for the state n01se sequence WE™ | and other for the
measurement noise sequence VA',. Each sum has L* addends.
According to the central limit theorem, each sum will approach a
normal distribution as L™ goes to infinity. In the limit case, the AMPE
would appear to be Gaussian, although the PDFs of the state and
measurement noise p(w;) and p(v,), respectively, are non-Gaussian
(e.g., heavy tailed or skewed), and consequently, the NEGA method
would provide an incorrect assessment. However, in a typical NEGA
method setting the parameter L™ is kept low (see definition of L, ) to
minimize the method’s computational complexity. In this case, non-
Gaussian noises still result in the non-Gaussian AMPE and thus in the
correct functionality of the (non-)Gaussian assessment.

B. Hypotheses Testing for LTV and LTI Models
For the LTV models, all introduced tests are based on the known

noise CMs estimates Q and R. Thus, the quality of the estimates
affects the statistical test performance. For the LTI models, the noise
CMs estimates are not required with the exception of the Chi2GoF
test. As a consequence, the quality of the tests is not affected by the
quality of the estimates. Nevertheless, the tests have different
properties, for example, in terms of their power; that is, they have
different probability of correct rejection of the null hypothesis H and
different sensitivity to the number of available measurements z.

*#%The transformation is known as the stochastic decoupling, where the
transformed variable has covariance matrix equal to the identity matrix.
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Ilustration is given in the section devoted to the numerical
simulations.

Some of the statistical tests or their particular implementations
may require independent samples (such as the SW test). In this case,
the AMPE sequence should be “down-sampled”; that is, every L*
element of the AMPE is selected and used as a test statistic. Then, the
elements of the down-sampled sequence are certainly independent.
The reason can be found in definition of the AMPE and especially in
definition of the extended vector of the noises §k in Egs. (11) and
(34), where the vectors §,{ and §L 1+ do not share any common state
and measurement noise reallzatlon [see definition (12)].

V. Numerical Illustration

The performance of the proposed NEGA method is illustrated
using following four examples:

1) Scalar LTI model illustrating an impact of the user defined
parameter L and performance of the statistical tests.

2) Scalar LTV model for illustration of an impact of the noise CMs
quality on statistical tests performance.

3) Multidimensional LTV model illustrating a relation between
model time-variability and noise CMs estimability.

4) Multidimensional LTI model typically used in target tracking.

In the examples, the performance is assessed over M = 10*
Monte Carlo (MC) simulations using the following criteria:

1) Estimated ~ error  variance  var[Q; ;| = (1/M) Y M_ x

(Q,j - Q(m)) where Q; ; is element of the true CM @ at ith row

and jth column and Q, j its estimate at mth MC simulation

2) Average noise CM estimate E[Q, Ad=a/M)yM Qf';’)

3) Number of MC simulations with rejected null hypothesm H,
over all MC simulations denoted as M go_rejected

The examples and evaluation criteria have been selected to
illustrate all important properties of the NEGA method. However,
even a broad set of simulations cannot cover all situations and setups
appearing in applications. Therefore, the source files for scalar LTI
and LTV models (i.e., first two examples) are provided along with the
paper. The NEGA method was implemented with the stress on the
readability of the code with a marginal focus on the computational
complexity. Nevertheless, the source files may be modified up to
certain level according to the user requirements. A design con-
sideration included using the standard MATLAB functions and
procedures without a need of a specialized toolbox. The source codes
can be downloaded from https://idm.kky.zcu.cz/sw.

A. Scalar LTI Model

In the first example, scalar LTI models (1) and (2) are with
n,=n.=1F,=05,G, =1, H, =2, and u; = 0, Vk. For the
purposes of the simulation, the state noise wy, is assumed to have the
Gaussian PDF with the mean E[w;] = 0 and variance var{w,] =
0 = 1, thatis, p(w;) = N{wy;0, Q}. The measurement noise vy, is
assumed to be zero mean with variance var[v,] = R = 2 with the
PDF defined in the following two scenarios:

a) Gaussian PDF p(v,) = N{v;;0, R}

b) Student’s ¢ PDF'™ p(v) = St{vi;n), where the DoF
n=R2R/R-1)=4

The considered number of measured data per MC simulation is
7 =10%,5x 103, 10*, and 10°. The NEGA method is designed with
the observability matrix length L = 2n, = 2 (i.e., L™ = 3) and with
two levels of significance, @ = 0.01 and @ = 0.002. The results are
given in Tables 1 and 2.

In Table 1, the quality of the noise CMs estimates provided by the
NEGA method is assessed in terms of the average estimate value and
estimate error variance. The results confirm that the NEGA method
provides unbiased and consistent estimates as was theoretically proven
in [9]. It can also be seen that estimate error variance Var[R] is etrongly
affected by the considered distribution of the measurement noise. For

"The Student’s t-distributed noises have recently attracted significant
attention, and a solution to the Bayesian recursive relations for models with
Student’s z-distributed noises was proposed [15].
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Table1 Average noise CMs estimates and estimated 2

error variance for LTI model
po)  E[Q] Va0l E[R] vaiR]
=10 Gaussian  1.0016 0.0153 1.9974 0.1838
Student’s  1.0012 0.0153 2.0009 0.2664
7=5x%x10> Gaussian 1.0007 0.0031 1.9968 0.0368
Student’s 1.0004 0.0030 1.9977 0.0502
=10 Gaussian  1.0002 0.0015 1.9984 0.0179
Student’s 1.0008 0.0015 1.9971 0.0271
=10 Gaussian  1.0000 0.0001 2.0001 0.0018
Student’s 1.0001 0.0002 1.9998 0.0029

the Student’s r—distributed measurement noise, the variance of the
noise variance error is significantly greater. The reason can be found in
the fact that the Student’s ¢ distribution resembles a more heavy-tailed
distribution than the Gaussian distribution.

In Table 2, the observed number of MC simulations, where the
null hypothesis H, was rejected, is summarized for all five con-
sidered statistical tests. For normally distributed measurement noise,
M po—rejecied theor MC  simulations with rejected null hypothesis
(caused by the defined probability of FA a) should theoretically be
observed, where

MHO—rejected.theor =MXxa (46)

For the Student’s r—distributed measurement noise, it would be
ideal to observe M in MC simulations with rejected null hypothesis.
The results show that for the Gaussian scenario all the tests reject the
null hypothesis with the expected rate; that is, the number of rejected
null hypothesis M po_rejecicd 18 Close to the theoretical one [Eq. (46)]
and almost independent on the number of data z. The Student’s ¢
scenario illustrates the power of the test, that is, the situation where
the null hypothesis is correctly rejected. It can be seen that the
particular tests have different power and also the power strongly
depends on the number of measured data = (with increasing number
of data, the statistical power increases as well [12]). However, the
tests do not significantly depend on the selected a. From all the
considered tests, it seems that the JB and SW tests are the most
suitable ones to be used within the NEGA method as they
demonstrate the highest power of the test (rejected null hypothesis
in Student’s ¢ scenario) independently of the length 7 of the
measurement sequence.

The last experlment within this example assesses the noise
variances estimates in terms of the error variances Var[Q] var[R] w.r.t.
the choice of the design parameter L in scenario “a.”” As mentioned in
Sec. V.B. the parameter needs to be selected as L 2 n, +1=2.The
greater the value of L is selected, the higher the number of linear
equations used for Q and R estimation in Eq. (43), and thus better
estimates can be obtained (as the set of linear equations in Eq. (43) is
not optimally weighted, the variance of the estimates need not
necessarily decrease with the increasing number of equations [9]).
This is illustrated in Fig. 1, where estimates variances var[Q] and
Var[R] are plotted against the parameter L. The plot indicates that the
best performance w.r.t. minimal estimate variance can be reached for
L = 3. Nevertheless, it must be pointed out that such a conclusion is
valid for the considered setup only; for different models a different L
may be optimal. Specification of the optimal number of equations in a
correlation method is further discussed in [9].

B. Scalar LTV Model

In the second example, a scalar LTV model [Eqs. (1) and (2)]
is considered, where F; = 0.5+ 04sin(2zk/7), H, =2+
sin(10zk/7), G, = l,andu;, = 0, Vk. The state and measurement
noises are defined analogously to the LTI model defined in the
previous section.

The simulation was performed for the number of dataz = 2 x 10
for both PDFs of the measurement noise in the MC simulations with
L =2anda=0.01.
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Table2 Observed number of MC with rejected null hypothesis for LTT model

a=0.01 a = 0.002
p(vy) Chi2GoF  AD JB SW LE  Chi2GoF AD JB SW LF
=103 Gaussian 102 82 73 101 104 21 16 23 32 14
Student’s 554 1310 5401 4978 515 191 674 4261 3871 177
7=5%x10" Gaussian 92 94 91 106 81 21 21 18 24 15
Student’s 5453 6604 9844 9790 2743 3823 4892 9744 9630 1198
=10 Gaussian 113 94 79 92 98 27 24 17 20 16
Student’s 9161 9592 10 9998 6263 8389 8994 9998 9996 3911
T=10° Gaussian 92 94 77 101 108 25 19 19 24 20
Student’s 9163 10* 10* 10* 10* 9088 10* 10* 10* 10*

0.22

0.016}
5 &= 0.2
= 0.015 .
3 3
= 0.18
0.014}
: : : 0.16 . . . -
2 3 4 5 6 2 3 4 5 6 7
L L

Fig. 1 Noise CMs estimate variance as a function of a design parameter.

In the previous LTI example, the AMPE was directly used as a
test statistic (except the Chi2GoF test); thus, the tests were not
influenced by the noise variances estimates quality. If an LTV
model is considered, then the AMPE has to be stochastically
decoupled according to Eq. (45) to ensure that the test statistic &%
is identically distributed. Therefore, the test statistic & depends
on the quality of the noise CMs estimates through the matrix S,
in Eq. (45). The goal of the example is to illustrate the impact of
the noise variances estimates Q and R on the performance of the
JB and SW statistical tests, which exhibited the best performance
in the previous example.

In each MC simulation, a sequence of measured data z;,k =
0,1, ...,7 = 2000, is generated. Clearly, however, it is not possible
to use all data for Q and R estimation and the same data for test
statistic computation to prevent multiple uses of the same data.
Therefore, it is necessary to split each MC data set into two parts:

1) Data for noise variances estimation

2) Data for Gaussianity assessment

In this section four different splitting ratios are considered,
namely:

r1 Data {z:}1{%, for noise variances estimation and remaining data
{24139, for test statistic computation and Gaumamty assessment

12. Data {z; }3%, for estimation and data {z,}2°%,, for assessment

13. Data {z; } )2 for estimation and data {z;}22%,,, for assessment

r4. Data {z; } )59 for estimation and data {z;}2°%, for assessment

It means that the least precise and the most precise estimates of the
noise variances Q and R can be expected for ratios r1 and r4,
respectively. The question is how the variances estimate accuracy
affects the performance and power of the statistical tests. The results
are summarized in Table 3.

Table 3 confirms that, with the increasing number of
measurements, the NEGA method provides estimates Q and R
with a decreasing error variance. Such behavior is according to the
theoretical expectations. However, more important are the observed
simulations with rejected null hypothesis M po_rjecrea- It can be seen
that for correct assessment of the noises” Gaussianity it is better to
have rather a longer data set with possibly less accurate estimates Q
and R. Following the observations, if a limited set of data is available,
then it is better to use smaller portion of the data for the noise CMs
estimation and the remaining larger portion of data for the
Gaussianity assessment. Note also that the same conclusions can be
drawn if the later data are used for the estimation and earlier for the
assessment.

C. Multidimensional LTV Model

The third example aims to illustrate the influence of model
variability on the estimability of the noise CMs. Let two two-
dimensional LTV models, (1) and (2), be considered with the
following matrices:

0
M1. F, = [’;k 0.8], G.=1. H =[0 h]

08 0

M2.Fk=[l fk

:|~Gk=12’ Hk=[0 hk]

where n, =2, n. =1, f; =05+ 04sin(2zk/7), hy =2+
sin(10zk/7), and u; = 0,4, Vk. Two models, thus, differ only in
the diagonal values of the dynamic matrix F;. Note also that the
coefficients f; and h, are strictly positive Vk.

The state noise CM Q is a2 X 2 matrix with three unknown unique
elements. The measurement noise variance R is an unknown scalar.
Therefore, in total, the state and measurement noise CMs contain four
unknowns, which are gathered in the vector @ [Eq. (25)]. Noise CMs
estimation for models (1) and (2) is based on a solution to the system
of linear Eq. (30), in particular on the assumption of full column rank
of the matrix A. The matrix A is a known*** matrix computed from the
model matrices Fy and H, Yk. The rank of the A computed for both
models and several choices of the design parameter L is summarized
in Table 4.

From Table 4 it can be seen that, although both models are similarly
time varying, all elements of the noise CMs can be estimated only for
model M 1. For model M2, only three elements of the noise CMs can be
found at best (out of which R is estimated and two elements of Q). Note
that, as the matrix A is known, determination of its rank (and thus of the
number of estimable elements of Q and R) does not impose any
limitation on the proposed NEGA method.

D. Multidimensional LTT Model: Target Tracking

The last example illustrates performance of the NEGA method
using the nearly constant velocity model with position measurements
[6,7] with n, = 4, n,, = 2, n, = 2, and the following matrices

#iThe particular values of the noise CMs are not important for this
example; thus, they are not defined.



8 J. GUIDANCE, VOL. , NO. :

Table 3 Average noise CMs estimates, estimated error
variance, and observed number of MC with rejected null
hypothesis for LTV model

pv)  E[Q] vaQ] ER] vafR] JB _SW
rl  Gaussian 0.9991 0.0355 2.0069 0.3025 115 123
Student’s 0.9983 0.0402 1.9936 0.4911 8613 8293
r2  Gaussian 1.0009 0.0194 1.9998 0.1553 71 94
Student’s 1.0001 0.0247 1.9986 0.3007 7593 7184
r3  Gaussian 1.0005 0.0131 1.9989 0.1097 60 78
Student’s  0.9998 0.0159 1.9968 0.2054 5984 5561
r4 Gaussian 0.9989 0.0096 2.0013 0.0873 63 89
Student’s 1.0006 0.0120 1.9888 0.1602 3585 3330

Table 4 Observability
of noise CMs elements for multidimensional LTV model

M1 M2
L=n,=2 4 2
L=3L=4 4 3

Table 5 Average noise CMs estimates, estimated error variance,
and observed number of MC with rejected null hypothesis
for multidimensional LTI model

plv)  E[g] valg) E[] valf] JB SW
=10} Gaussian 0.1005 0.0043 1.0003 0.0038 96 98
Gaussian ~ 0.1007 0.0043 1.0001 0.0050 6842 6352
mixture
= 10* Gaussian 0.0996 0.0004 1.0002 0.0004 92 96
Gaussian ~ 0.1003  0.0004 0.9997 0.005 10* 104
mixture
1 At 0 O (A1)?/2 0
0O 1 0 O At 0
F k= s Gk = ) s
0 0 1 Ar 0 (An2)2
(0 0 0 1 0 At
g _[1 000 "
“lo o 1 0

where the sampling period is A¢ = 1. The state noise is assumed to be
Gaussian p(w;) = N{wy; 05, ql,} with ¢=0.1 and the
measurement noise to be either

a) Gaussian PDF p(v;) = N{vy; 04y, rl,} with r = 1 or

b) Gaussian sum PDF p(v;) = 0.1N {v;;[1,1]7,2 x I,} +
0.9N {v;;[-0.11,-0.11],0.76 X I,,}.

Note that both measurement noise PDFs have the same first two
moments, that is, with E[v;] = 0,y and cov[v,] = rI,. The NEGA
method is designed with the observability matrix length L = 2 and
with the level of significance @ = 0.01. The results are given in
Table 5 and confirm high-quality estimates of the noise variances g
and r. Also, the number of the observed simulations with rejected null
hypothesis corresponds with M yo_eiccted.theor [EQ- (46)] for the
Gaussian measurement noise. On the other hand, for the Gaussian
mixture measurement noise, the number of the observed simulations
with rejected null hypothesis is significantly higher and converge to
M with the increasing number of data .

VI. Conclusions

The paper presents a complete analytical derivation of the NEGA
method designed for estimation of the noise CMs and noises
Gaussianity assessment for LTI and LTV models with the state noise
shaping matrix. The method provides unbiased and consistent
estimates of the noise CMs and a hypothesis testing based decision on
whether the noises are Gaussian or not. Combination of these
properties is unique in the state-of-the-art noise CMs estimation

ENGINEERING NOTES

methods and is important for design of many optimal navigation and
tracking algorithms requiring outputs with ensured integrity. The
performance of the NEGA method has been illustrated in an
extensive simulation study using four examples. The simulations
confirmed all the theoretically derived properties of the method. The
paper is accompanied with the exemplary MATLAB implementa-
tions of the method for the both LTI and LTV models.
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