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Abstract: The goal of this paper is to present a concept and implementation of an Environment
Detection System. The system is supposed to collect data from sensors attached to the mobile
robot and then enhance the map of the environment by this information. Moreover, the data
can be processed to get valuable information about the environment or its change. The open-
source implementation of the system is written for Robot Operating System. Thus, the system
can handle data from different sensors using a unified way. It is possible by employing the
messaging mechanism implemented in the Robot Operating System. Another contribution of
this paper are records of our testing runs with a 6WD mobile robot equipped by multiple sensors,
which can be used as a dataset for SLAM and Environment Detection System implementations.
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1. INTRODUCTION

Autonomous mobile robotics is a rapidly growing research
field. The significant part of this field is represented by
solving of localization and mapping problem. Nowadays,
algorithms can create sufficiently accurate maps even in
real-time — i.e. Simultaneous Localization And Mapping
(SLAM) Durrant-Whyte and Bailey (2006). On the other
hand, the map contains only information about the geom-
etry of the environment.

In this paper, we present a concept and the implemen-
tation of the Environment Detection System (EDS). The
system is supposed to collect additional data about the
environment during the movement of the mobile robot.
This additional data can be utilized for multiple tasks in
mobile robotics. Our main goal is to propose a system
which can be used for detection and classification of the
environment properties — e.g. whether the robot is indoor
or outdoor. Knowledge of these properties will be used
in our future work for improving our multi-environment
localization and mapping systems.

A camera usually acquires the additional information.
However, there are more types of relevant data — e.g. tem-
perature, barometric pressure, ultraviolet light, humidity
or ceiling height — that can be observed by the robot.

All data are stored together with a map created by SLAM
software. It means that the individual values are stored on
the positions in the map where the sensors collected them.
It can be used in many situations — e.g. for application
where the robot is looking for local abnormalities in the
environment such as radiation.

The contribution of the paper is the presentation of the
proposed concept and its open-source implementation.

The third contribution is a recorded dataset suitable for
testing environment detection approaches.

The paper is composed as follows. In Section 2, the related
work to this particular paper is introduced. The Section 3
contains information of the proposed concept. In Section 4,
the implementation of the system is briefly described. The
implementation tests are discussed in Section 5. Finally,
the paper is summarized in Section 6.

2. RELATED WORK

The fast-growing research field of localization and mapping
(see Grisetti et al. (2007),Kohlbrecher et al. (2013),Hess
et al. (2016), Cadena et al. (2016)) is focusing on multiple
areas of research which aim to solve different problems.
One of a common task is to create a map of an envi-
ronment, then multiple approaches and problem-solving
techniques can be applied.

One example can be the problem of place categorization
and semantic mapping on a robot without environment-
specific training Stinderhauf et al. (2015).

Next, a robust data association is a core problem of
visual odometry, where image-to-image correspondences
provide constraints for camera pose and map estimation.
The paper Lianos et al. (2018) introduces visual semantic
odometry framework to enable medium-term continuous
tracking.

Semantic segmentation and semantic SLAM is a
very important topic nowadays. It can be used for solving
multiple tasks: the closing-loop semantic segmentation and
monocular depth estimation tasks Zhang et al. (2018),
combining monocular visual Simultaneous Localization
And Mapping (vSLAM) and deep-learning-based semantic
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segmentation Kaneko et al. (2018), generating meaningful
maps for object-oriented semantic mapping Siinderhauf
et al. (2016), and robust visual localization under a wide
range of viewing conditions based on a joint 3D geometric
and semantic understanding of the world Schnberger et al.
(2018).

Semantic Localization is a popular strategy for seman-
tic localization which focus on features found on infor-
mative structures (see Kobyshev et al. (2014), Mousavian
et al. (2015)) and to re-weight or discard ambiguous fea-
tures Knopp et al. (2010). Individual features Kobyshev
et al. (2014) or Bag-of- Words representations Arand-
jelovic and Zisserman (2014), Singh and Koeck (2016) can
be enhanced. An alternative strategy to semantic localiza-
tion is to use high-level features such as lane markings
Schreiber et al. (2013), object detections (see Ardeshir
et al. (2014), Atanasov et al. (2016), Salas-Moreno et al.
(2013), Toft et al. (2017)), discriminative buildings struc-
tures Wolff et al. (2016), or the camera trajectory of a
car Brubaker et al. (2016). These approaches need object
databases or maps containing the same types of objects,
which either requires careful manual annotation Schreiber
et al. (2013) or prescanning of objects Salas-Moreno et al.
(2013). In addition, the feature extraction and matching
process is often a complex and hand-crafted solution tai-
lored to specific objects Ardeshir et al. (2014), Atanasov
et al. (2016).

In the SLAM research field many of approaches exist.
A few of recent approaches can be briefly mentioned:
fusion++: volumetric object-level SLAM McCormac et al.
(2018), CodeSLAM learning a compact - optimisable rep-
resentation for dense visual SLAM Bloesch et al. (2018),
and QuadricSLAM Nicholson et al. (2018).

3. SYSTEM OVERVIEW

The proposed system is composed of three parts. Data
storage module/s, data acquisition module, data process-
ing module. All parts are shown in Fig. 1. The whole
system has inputs from sensors, mapping system and
parameters of the processing module. The output of the
system should be a multilayered map suitable for further
processing and visualization.

3.1 Data Acquisition Module

The module/s is supposed to record data from various
sensors to the EDS. Data acquisition module has three
parts. The first one is communication with an attached
sensor and reading sensor data. The second one is data
preprocessing — when necessary. The last part is commu-
nication with the data storage module.

3.2 Data Storage Module

This module is the core of the EDS system. It stores all
information from the sensors in the multilayered grid map
structure. Therefore, it is necessary to provide a map —
partial or full — of the environment and a current position
of the mobile robot. Data from sensors are then saved to
individual layers. Moreover, the position of the robot is
used to determine the place where the data was recorded.

Sensors SLAM
Robot
position Map
Data acquisition
Y VY

Data storage

EDS

Data process

T

Parameters

Output and
Visualization

Fig. 1. Structure of EDS system concept.
3.3 Data Processing Module

This module is supposed to process data both, directly
from the data acquisition module and the data storage
module. The goal is to process acquired data w.r.t. Sensor
type, properties and physics. Each sensor usually has
different properties — e.g. the range of sensing, inertia or
range of values.

4. IMPLEMENTATION OF THE SYSTEM

The concept of the system is implemented in C++ and
Python. It is developed as an open-source software based
on the Robot Operating System (ROS) Quigley et al.
(2009) and it is available online on GitHub!.

4.1 Robot Operating System

ROS is a framework suitable for developing modular
robotic systems. Systems are usually composed of nodes.
Node is an atomic software part that can run inside the
ROS environment. Multiple nodes communicate trough
ROS message mechanism — shown in Fig. 2. Messages
are published by node into so-called Topic — i.e. named
gateway for the particular message type. Another node can
then receive the message by subscribing the same Topic.
This mechanism also works over the network between
multiple computers. Thus, it is possible to monitor and
control the system using a remote computer.

Another power of the framework is based on the appli-
cations and algorithms that are already implemented. It
comprises drivers for various sensors, visualization tools or
SLAM algorithms.

1 https://github.com/neduchal/env_detection
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Fig. 2. Structure of ROS (Neduchal and Flidr (2016))
4.2 Data Storage Node

This storage module is built on the top of GridMap
library Fankhauser and Hutter (2016). It is an open-source
package for ROS available on GitHub?. Thus, GridMap
package is the core of the module. GridMap itself is a
data structure which added multiple layers on the classic
grid map representation. Each layer has its name. Thus,
it is possible to store additional information in individual
layers.

The overall structure of the node is shown in Fig. 3. It
contains three main inputs, one main output, one optional
input and two optimal outputs. Inputs called map and
pose has to be provided by SLAM and odometry/pose
estimation nodes respectively. Input sensor msg is the
main input from the data acquisition nodes. Sensor mes-
sage consists of two parts — the name of the layer and the
value from the sensor. The value is stored in the position
of the robot in the defined layer. The output of the module
is the GridMap msg — i.e. message of the whole GridMap
structure.

pose

sensor msg GridMap msg
—_—

Data Storage Node

getLayers | getlayer | setLayer

Fig. 3. Data storage node structure.

The data in the node can be affected by the optional inputs
and outputs. By the getLayers service — i.e. function
available between two nodes in ROS — which provides the

2 https://github.com/ANYbotics/grid_map

list of all names of all existing layers can be acquired.
On the other hand, the service getLayer is supposed to
provide data of a particular layer in the GridMap structure
to data processing nodes. Same nodes can return edited
data to the data storage node by the setLayer service.

4.8 Data Acquisition Node

Data acquisition node is supposed to communicate — i.e.
read data and control properties — with sensors and send
data to the data storage node. The structure of the node is
simple. The input of the node is data values from equipped
sensors. The output is the sensor message which goes
directly into the data storage node. Based on the layer
names, it is possible to connect more data acquisition
nodes to a single data storage node. The structure of the
node is shown in Fig. 4.

sensor data sensor msg

Data Acquisition Node

Fig. 4. Data acquisition node structure.

4.4 Data Processing Node

Data processing module reads data from both types of
previous nodes. It can process data based on the task or
the properties of the data. Thus, it can be a complicated
node with multiple inputs and outputs. The fundamental
structure of this type of node — communicating with the
data storage node — is shown in Fig. 5. It is composed
of services which were described in the data storage node
subsection. Of course, inputs and outputs are opposite in
the case of this node. Moreover, multiple data processing
nodes can be used in one system.

getLayers

getLayer setLayer

Data Processing Node

Fig. 5. Data processing node scheme.

4.5 Summary

In detail, the EDS ROS package is composed of three
parts. The first one is the core which contains data storage
node. The second one is the message part which contains
definitions of all messages and services used in the system.
The last part is the sensors part, which contains an
example of data acquisition and data processing nodes —
the part used during the testing runs.

5. SYSTEM TESTING

In this section, the results of testing runs of the system are
shown and described. The goal of testing was to verify the
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right functionality of the implementation of the proposed
system concept. For system testing, the following mobile
robot configuration was used.

5.1 Robot Configuration

The robot used for system testing is shown in Fig. 6. It
is a 6WD chassis called Wild Thumper equipped with
onboard computer NVidia Jetson and multiple sensors.
In the testing, the following sensors were used. LiDAR
sensor for SLAM, temperature sensor, ultrasound distance
sensor for measuring of the ceiling height, humidity sensor
and rotary encoders on the middle wheels for odometry
information. The temperature, humidity and distance sen-
sors are controlled using Arduino UNO 3 embedded board.
It is connected to the onboard computer using USB and
communication is held by the ROS message mechanism.
Another embedded board called T-Rex is used for the
control of the robot wheels and for diagnostic proposes.
The robot is based on Ubuntu Linux 16.04 with ROS
Kinetic version.

Fig. 6. Testing robot configuration

5.2 Recorded Dataset

Data was recorded using RosBag package available in
ROS. Recorded rosbag file contains all acquired data
and information about the time of recording. Thus, it
can be rerun with different parameters to test various
data acquisition and data processing nodes. The recorded
dataset contains one short run — the office — and various
long — indoor — runs in our building. The examples of
recorded places are shown in Fig. 7

Data were processed on the computer with different con-
figuration then a robot — Ubuntu 18.04 with ROS Melodic.
The gMapping system held the creation of the map. The
odometry was computed from the raw values acquired by
rotary encoders on the robot wheels. In the next sections,
the results of the system are shown.

5.8 Short Run Results

The EDS system was firstly tested in the short run. The
robot moves from the center of the office to the corridor.
The length of recorded data is 16 seconds and contains
data from all equipped sensors. The results are shown in

Wl

Fig. 7. Recorded part of the building

figures below using a visualization plugin for RVIZ — ROS
visualization software — available in GridMap package.

In Fig. 8, there is a visualization of a temperature sensor
data. It is visible that values of the temperature are
growing — color changes from magenta to green, yellow
and red — during the run. Range of colors is relative —
computed based on the range in the layer data. Thus, the
magenta color values 26.6 and the red value is 26.8 degree

of Celsius.
b L

Fig. 8. Short run temperature example

The second example of the system result during the short
run is shown in Fig. 9. It contains data of ultrasound
distance sensors measuring ceiling height. When the robot
moves through the office, the ceiling height remains almost
identical (235 — 240 cm). Then the robot goes through the
doors to the corridor, and the distance value goes lower to
160 cm for a short time. In the corridor, the distance value
grows up to the new stable value of 220 cm.

5.4 Long Run Results

Similarly, we tested the system in the long run. The robot
goes around the part of the one floor in the building. The
data, in this case, has a duration of 172 seconds and creates
a significantly bigger map than the previous case.

In Fig. 10, there is a visualization of temperature data
during the long run. There is visible one crucial property.
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Fig. 9. Short run ceiling height example

The temperature sensor has a significant delay in the
recorded data. The value of the sensor changed slowly
in contrast to the movement of the robot. Thus, the
same part of the corridor has two different values of the
temperature. On the other hand, it can be determined
where the temperature is higher/lower in the building.

Fig. 10. Long run temperature example

The second example is again ceiling height recording in
Fig. 11. During the long run, the visualization is not as
clear as in the case of the short run. It is caused by using
the cheap and less precise sensor. It sometimes measures
bad value which changes the colour range of the visualized
data. On the other hand, there are still visible places with
doors — Especially the office doors from the short run. They
are at the top part of the map, where the office contour is
visible.

The last example of the system results is shown in Fig. 12.
It contains recorded humidity data during the long run.
The result is slightly similar to the temperature data in
Fig. 10.

6. CONCLUSION

The concept and the open-source implementation of the
environment detection system were presented in this pa-
per. The proposed system can acquire and store sensor
data in the map created by SLAM solving algorithms. In
Section 4, details of the implementation was described.
The implementation was successfully tested and verified
on the recorded dataset.

Fig. 12. Long run humidity example

In future work, we plan to use the system for environment
detection as new information for SLAM algorithms. Thus,
we want to recognize the properties of the environment
and cause a reaction of the mobile robot — i.e. change
of the parameters, behaviour or whole SLAM algorithm.
Moreover, we plan to extend the proposed system by its
visualization for RVIZ software.
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