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Abstract

In this paper, we formulate a simple algorithm for an approximate reconstruction of an inexact planar curve
which is assumed to be a perturbation of some unknown planar curve with symmetry. The input curve is
given by a perturbed polynomial. We use a matrix complex representation of algebraic curves for simple
estimation of the potential symmetry. A functionality of the designed reconstruction method is presented
on several examples.
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1. Introduction and motivation

Many problems originated not only in pure or applied mathematics but also in technical and natural
sciences are closely related to investigating classes of equivalent objects and corresponding transformations.
Especially, the Euclidean equivalences (isometries and symmetries) belong among fundamental equivalence
relations which have been thoroughly studied for many years. Being symmetric is a potentially very useful
feature which many real shapes exhibit and symmetries in the natural world have also significantly inspired
people to incorporate symmetry when producing tools, buildings, artwork etc.

The notion of symmetry as invariance under certain geometric transformations is a fundamental concept
introduced to geometry by Felix Klein in his Erlangen Program, see [1]. Klein proposed to characterize
different classes of geometry based on the underlying symmetry groups. This approach to classifying ge-
ometries based on symmetry groups can be transferred also to geometric shapes. Then the goal is to decide
whether two given geometric objects are related by some (projective, affine, similar, or isometric) transfor-
mation and in the affirmative case to detect all such equivalences. These problems are often addressed in
papers coming from applied fields like Computer Aided Geometric Design, Pattern Recognition or Computer
Vision, see [2–4] for the exhaustive list of references. In fields like Patter Recognition or Computer Vision
especially the problem of detecting similarity is essential because objects must be recognized regardless of
their position and scale. In Computer Aided Geometric Design, symmetry is important on its own right,
since it is a distinguished feature of the shape of an object. Nonetheless it is also important in terms of
storing or managing images, because knowing the symmetries of an image allows the machine to reconstruct
the object at a lower computational or memory cost.

This paper is devoted to the symmetries of planar curves. One can find several papers focused on
the detection and computation of symmetries and some equivalences of curves, see e.g. [5–8], or a recent
sequence of papers [2, 3, 9–11]. Lately, the problem of deterministically computing the symmetries of a
given planar algebraic curve, implicitly defined, and the problem of deterministically checking whether or
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Figure 1: A curve with the rotational symmetry with the center at the origin and the angle 2π/5 (blue) and its perturbation
which does not possess any symmetry (red).

not two implicitly given, planar algebraic curves are similar, i.e., equal up to a similarity transformation, was
considered in [4]. A problem of computing projective equivalences of special algebraic varieties, including
projective (and other) equivalences of rational curves was investigated in [12].

As already stated, many real world shapes exhibit a symmetry. However, in most cases this symmetry is
not perfect but only approximate. And this may happen also in situations when some input error (or some
error caused by numerical computations) occurs. For instance, consider a planar algebraic curve C given by
the polynomial

f(x, y) = x10 + 5x8y2 − 5x8 + 10x6y4 − 20x6y2 − 35x6 − 486x5 + 10x4y6 − 30x4y4

− 105x4y2 − 280x4 + 4860x3y2 + 5x2y8 − 20x2y6 − 105x2y4 − 560x2y2

− 2560x2 − 2430xy4 + y10 − 5y8 − 35y6 − 280y4 − 2560y2 − 17232. (1)

This is a curve possessing (among others) the rotational symmetry with the center at the origin and the
rotational angle 2π/5, see Fig. 1 ( left). Now changing only one coefficient of the defining polynomial f(x, y),
e.g. the coefficient of y10 from 1 to 0.7, yields a new curve, see Fig. 1 (right). The new perturbed curve
is not symmetric anymore. This, for instance, causes that all subsequent exact algorithms and techniques
formulated for algebraic curves with symmetries may fail. Thus a natural question reads: How can we find a
planar symmetric curve “close” to C? By “close” one can mean e.g. the minimum distance of the coefficients
of their implicit equations or another suitable criterion.

In this paper we aim at investigating important aspects of geometric modelling stemming from per-
turbations of symmetric algebraic varieties, which is a problem that falls within the scope of approximate
algebraic geometry, see [13]. The problem is still relatively new in geometric modelling and many challenges
are to be solved and answered. We focus on approximate reconstruction of an inexact planar curve which
is assumed to be a perturbation of some unknown planar curve with symmetry of a regular polygon. The
rest of the paper is organized as follows. Section 2 recalls some basic facts concerning algebraic curves and
symmetries. Section 3 is devoted to the matrix complex representation of curves possessing a symmetry.
We discuss how to easily detect such curves. In Section 4, determining suitable characteristics necessary for
the construction of bases of symmetric curves of a given degree and having a symmetry of a regular polygon
with a prescribed center is discussed in more detail. Based on this, we design in Section 5 a simple algorithm
for an approximate reconstruction of an inexact planar curve which is assumed to be a perturbation of some
unknown planar curve with the symmetry of a regular polygon. The method is presented on a number of
examples in Section 6. Finally, we conclude the paper in Section 7.
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2. Preliminaries

In this section we recall some elementary notions and basic properties whose knowledge is further assumed
in the following parts of the paper.

2.1. Complex representation of real algebraic curves

A planar algebraic curve C of degree d is a subset of the Euclidean plane E2
R defined as the zeroset of a

polynomial of degree d

f(x, y) =

d∑
i=0

d−i∑
j=0

ai,jx
iyj . (2)

We will assume that the coefficients ai,j of (2) are real, f is irreducible over C and dimR C = 1. Moreover
we use the matrix representation of polynomials, i.e.,

f(x, y) = (1, x, x2, . . . , xd) Af


1
y
y2

...
yd

 , Af =


a0,0 a0,1 . . . a0,d−1 a0,d
a1,0 a1,1 . . . a1,d−1 0

...
...

...
ad−1,0 ad−1,1 0 0
ad,0 0 . . . 0 0

 . (3)

Every affine algebraic curve of equation f(x, y) = 0 may be completed into the projective curve of equation
F (X,Y, Z) = 0, where

F (X,Y, Z) = Zdf (X/Z, Y/Z) =

d∑
i=0

d−i∑
j=0

ai,jX
iY jZd−i−j (4)

is the result of the homogenization of f , and X : Y : Z are the homogeneous coordinates in the projective
plane. Let us write c = (ad,0 : ad−1,1 : · · · : a00) and we say that c represents C. The space of all planar

projective curves of degree d can be identified with the projective space PNR , where N =
(
d+2
2

)
− 1.

As we are dealing with rotations of planar curves, complex representation will provide a significant
simplification in the analysis of the centre and the angle, see also [7, 14]. Consider a curve C defined by
polynomial (2). The standard substitution

x =
z + z

2
and y =

z − z
2i

(5)

allows to write f(x, y) as a complex function f(z, z) in the complex variable z in the form

f(z, z) =

d∑
i=0

d−i∑
j=0

bi,jz
izj , (6)

where bi,j = bj,i ∈ C, and bi,i = bi,i ∈ R, cf. [14]. Then the matrix form of f in the complex representation
looks as follows

f(z, z) = (1, z, z2, . . . , zd) Bf


1
z
z2

...
zd

 , Bf =


b0,0 b0,1 . . . b0,d−1 b0,d
b1,0 b1,1 . . . b1,d−1 0

...
...

...
bd−1,0 bd−1,1 0 0
bd,0 0 . . . 0 0

 . (7)
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The coefficients of the Hermitian matrix Bf are given by

bk,` =
1

2k+`

k+∑̀
i=0

i∑
j=0

(
k + `− i
`− j

)(
i

j

)
i2j−i ak+`−i,i, (8)

when we set n! = 0 whenever n < 0, cf. [7].

Let us recall that the complex representation of algebraic curves and its exploitation for pose estimation
was first presented in [15] and then extended in [14]. A later paper [16] presented a partial complex
representation of algebraic curves for gaining some recognition invariants. Finally, the authors of [7] used
the complex representation also for detecting symmetries of algebraic curves. In what follows, we would like
to show that new matrix complex representation (7) brings further advantages and significantly simplifies
the process of determining symmetries.

2.2. Fundamental facts about symmetric algebraic curves in plane

Any isometry φ ∈ Iso2 of E2
R possesses the form x 7→ Mx + h, where M ∈ O(R, 2) and h ∈ R2. For

det(M) = 1, or = −1 we speak about direct, or indirect isometries, respectively.
We write Sym(C) for the group of symmetries of the curve C, i.e.,

Sym(C) := {φ ∈ Iso2; φ(C) = C}. (9)

It is well known that Sym(C) is finite unless C is a union of parallel lines or a union of concentric circles.
Moreover, if Sym(C) is finite then it is isomorphic to a subgroup of the group of symmetries of some regular
m-gon, m ≤ deg(C). In what follows we are interested solely in curves with a finite group of symmetries.
The elements of a finite symmetry group are rotations (all of them with the same center) and reflections
(axes of all of them passing through the same point).

Let us recall the following statement, which can be efficiently used to verify whether φ ∈ Sym(C), see [4]
for more details:

Proposition 2.1. An isometry φ ∈ Sym(C) if and only if f(Mx + h) = λf(x), where λ = 1 or λ = −1.

Then analogously to Sym(C) we can write that φ ∈ Sym(f), as well. When there is no danger of
confusion we will not distinguish between the symmetries of C and f .

The main topic of this paper is an identification of a suitable symmetric curve in the neighborhood
of the given perturbed curve. Once the approximate symmetric curve is known then we can follow any
exact approach for computing symmetries of curves; e.g. a method from [4] which has been formulated
recently. This exact method works with the observation that it is not easy, in general, to find symmetries
φ belonging to Sym(C) directly and one has to apply a suitable alternative approach – for instance to find
some new polynomial h(x, y) such that Sym(h) is finite, easy to determine (i.e., easier then Sym(f)) and
Sym(C) = Sym(f) ⊂ Sym(h). In [4], a successive application of the Laplace operator yielding the sequence

f 7−→ 4f 7−→ 42f 7−→ · · · 7−→ 4`f = h, (10)

and followed by the associated chain of groups of symmetries

Sym(f) ⊂ Sym(4f) ⊂ Sym(42f) ⊂ · · · ⊂ Sym(4`f) = Sym(h), (11)

was efficiently used for finding such a polynomial h. Application of this technique is justified by the fact
that the Laplace operator commutes with isometries, i.e., it holds (4f) ◦ φ = 4(f ◦ φ). The authors show
how to compute the centre and axes of symmetry and for rotational symmetries also the angles from h.

As we will see one of the benefits of the introduced matrix complex representation is that it also enables
to simplify some steps of the exact method, e.g. it yields directly the centre of symmetry and the number
of vertices of the regular polygon with group of symmetries of the considered curve.
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3. Planar algebraic curves with symmetries of a regular polygon

In this section we investigate in detail the matrix complex representation of curves possessing a symmetry
of a regular m-gon.

3.1. Symmetric curves with the center of rotations at the origin

The rotation around the origin and with the angle ϕ is given by

z 7→ eiϕz, z 7→ e−iϕz. (12)

Hence any curve (6) with the symmetry of m-gon has to satisfy the condition, cf. Proposition 2.1

f(z, z) = ±f
(
e2iπ/mz, e−2iπ/mz

)
. (13)

This leads to two families of linear equations

bi,j = ±e2iπ(i−j)/mbi,j , bi,j = ±e−2iπ(i−j)/mbi,j . (14)

The “+” equations imply bi,j = bi,j = 0 for an arbitrary m ∈ N and (i− j) 6= km, k ∈ Z. The “−” equations
possess solution only for an even m and bi,j = bi,j = 0 holds for (i− j) 6= (2k+ 1)m/2. Hence the two bases
of all curves of degree d with the symmetry of m-gon and having the center of symmetry at the origin are{

(zz)
i (
zkm + zkm

)}b d2 c,b d−2i
m c

i=0,k=0
(15)

and {
(zz)

i
(
z

(2k+1)
2 m + z

(2k+1)
2 m

)}b d2 c,b 2d−4i−m
2m c

i=0,k=0
, (16)

where the second one exists only for an even m. In addition, we speak about s+ or s− curves if (13) is
satisfied w.r.t + or −, respectively, i.e., if the curve is generated by (15), or (16).

Next, respecting the condition bij = bji any s+ curve generated by the basis (15) has its equation of the
form

f(z, z) =

b d2 c∑
i=0

b d−2i
2m c∑
k=0

(
(αik + iβik) (zz)

i
zkm + (αik − iβik) (zz)

i
zkm

)
, (17)

i.e.,

f(z, z) =

b d2 c∑
i=0

b d−2i
2m c∑
k=0

[
αik

(
(zz)

i (
zkm + zkm

))
+ iβik

(
(zz)

i (
zkm − zkm

))]
. (18)

And analogously for (16). So in what follows we will work with the bases

B+d,m =
{

(zz)
i (
zkm + zkm

)
, i (zz)

i (
zkm − zkm

)}b d2 c,b d−2i
m c

i=0,k=0
, (19)

and

B−d,m =
{

(zz)
i
(
z

(2k+1)
2 m + z

(2k+1)
2 m

)
, i (zz)

i
(
z

(2kj+1)
2 m − z

(2k+1)
2 m

)}b d2 c,b 2d−4i−m
2m c

i=0,k=0
, (20)

which allows us to consider only real coefficients αik, βik of the linear combination and the condition bij = bji
is then satisfied automatically.

In addition, from the discussion presented above a close relation between the degree of studied symmetric
curves and the characteristics of associated rotational symmetries (of a regular m-gon) immediately follows:

Lemma 3.1. Let C be a planar algebraic curve with the symmetry of a regular m-gon. Then
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(i) for an s+ curve of even degree, m can be arbitrary;

(ii) for an s+ curve of odd degree, m is an odd number;

(iii) for an s− curve of even degree, m is an even number of the form m = 4k, k ∈ {1, 2, . . .};

(iv) for an s− curve of odd degree, m is an even number of the form m = 4k − 2, k ∈ {1, 2, . . .}.

Proof. For the sake of brevity we sketch the proof only for one particular case, e.g. for (ii). Considering the
s+ curves we have the basis elements 1, zm, z2m, z3m, . . . , zz, z1+mz, z1+2mz . . . , z2z2, . . . Particular degrees
of these terms are 0,m, 2m, 3m, . . . , 2,m+ 2, 2m+ 2, . . . , 4, . . .. As the given curve is of odd degree d and a
term of this degree must be among the basis elements, m must be an odd number. We proceed similarly in
other cases. The results of Lemma 3.1 are also summarized in Table 1.

Table 1: Possible types of symmetric curves depending on the degree d and the number m of the vertices of a regular polygon
for n = 1, 2, . . ., and k = 1, . . . , bd/4c.

m = 4k − 2 m = 4k − 1 m = 4k m = 4k + 1

d = 2n s+ s+ s+/s− s+

d = 2n+ 1 s− s+ × s+

Example 3.2. Consider now all rotationally symmetric algebraic curves of degree six having a symmetry
of square. Using the previous results, we know that for d = 6 and m = 4 cases (i) and (iii) may occur and
thus a particular curve can be either of type s+, or s−. So, the bases of all curves of degree 6 having a
symmetry of a regular 4-gon (a square) with the center at the origin have the form

B+6,4 =
{

1, z4 + z4, i
(
z4 − z4

)
, zz, zz

(
z4 + z4

)
, izz

(
z4 − z4

)
, (zz)

2
, (zz)

3
}
, (21)

and

B−6,4 =
{
z2 + z2, i

(
z2 − z2

)
, z6 + z6, i

(
z6 − z6

)
, zz

(
z2 + z2

)
, izz

(
z2 − z2

)
, (zz)

2 (
z2 + z2

)
, i (zz)

2 (
z2 − z2

)}
.

(22)

3.2. Symmetric curves with an arbitrary center of rotations

Consider a linear substitution
z 7→ z + p, z 7→ z + p, p ∈ C. (23)

The coefficients of curve (6) after transformation (23) are

ck,` =

d−k∑
i=0

d−k−`−i∑
j=0

(
k + i

i

)(
`+ j

j

)
pipjbk+i,`+j . (24)

In Fig. 2 the structures of the non-zero elements of the coefficient matrices of polynomials izz
(
z4 − z4

)
and z2z2

(
z2 + z2

)
are shown. The non-zero coefficients bk,` of these polynomials correspond to the orange

cells only, whereas after generic substitution (23) the both blue and orange cells correspond to non-zero
coefficients ck,`, in general.

When p = p1 + p2i and p = p1 − p2i then (23) is equivalent to

x 7→ x+ p1, y 7→ y + p2, (25)
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1 z z2 z3 z4 z5 z6

1

z

z2

z3

z4

z5

z6

1 z z2 z3 z4 z5 z6

1

z

z2

z3

z4

z5

z6

Figure 2: The influence of substitution (23) to the structure of the non-zero elements of the coefficient matrices. Originally,
the only non-zero elements are the orange ones, whereas after a generic linear substitution the blue and also orange elements
may be non-zero.

i.e., to a translation. In addition, applying the mapping x 7→ x − p1, y 7→ y − p2 (i.e., the coefficient
transformation differs from (24) only by multiplication of each element with (−1)i+j) on B±d,m yields the
bases of all algebraic curves of degree d having a symmetry of a regular m-gon with the center p = (p1, p2).
We will denote them by B±d,m(p). On the other hand employing (23) the center p = (p1, p2) is sent to the
origin.

Suppose that f(x, y) defines a curve C possessing a symmetry of a regular m-gon with an arbitrary center.
Then we can immediately compute the center of symmetry.

Theorem 3.3. Let bk,` be an element in the matrix Bf such that for i, j ∈ {0, 1, . . .} all bk+i,`+j, except at
least one of bk+1,`, bk,`+1, are zero. Then the center of symmetry is computed as

p =
(`+ 1)bk,`+1bk,` − (k + 1)bk,`bk+1,`

(k + 1)2|bk+1,`|2 − (l + 1)2|bk,`+1|2
. (26)

Proof. To reveal the position of the center of symmetry, we want to find a particular substitution (23)
which yields as many zero elements in the coefficient matrix as possible. It follows from (24) that the above
considered element on the position (k, `) of the coefficient matrix of the translated curve is linear in p and
p, i.e.,

ck,` = bk,` + (k + 1)bk+1,`p+ (`+ 1)bk,`+1p. (27)

Hence solving ck,` = 0 directly yields (26).
In addition, let us note that (26) is defined for (`+ 1)2b2k,`+1 6= (k+ 1)2b2k+1,`. The trivial case when the

equality occurs is for k = `. Then bk,` is real, bk,`+1 = bk+1,` and (26) is not defined since (27) corresponds
to one real equation for two real variables.

From Theorem 3.3 it follows that the description of the structure of the matrix Bf and identification of
some special elements is the key process in investigating symmetric curves and finding the associated regular
m-gon. For this purpose we assign to Bf a non-increasing sequence of integers

Λf = {λ0, . . . , λd}, (28)

where λ` is the position ((k+ 1)-th row) of the first element bk,` (in the (`+ 1)-th column) in the matrix Bf

such that for i, j ∈ {0, 1, . . .} all bk+1+i,`+j = 0. If bk,` = 0 for all k we set λ` = −1, see also Example 3.8
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Figure 3: The structure of the coefficient matrix for s+ curve of degree 12 with 5-gon symmetry (left) and s− curve of degree
12 with 8-gon symmetry (right). The non-zero elements of the symmetric curve with the center at the origin are the orange
ones, whereas the blue and orange cells correspond to non-zero elements of a curve with a generic center of the symmetry.

and Fig. 3 in which the construction of the sequence Λf is presented. In other words, Λf describes a certain
staircase pattern of the coefficient matrix Bf with stairs of a given step size and height, reflecting the type
of the curve.

Theorem 3.4. Sequence (28) of a generic curve of degree d with the symmetry of m-gon has the form{
ri +

⌊
d− i− ri

2

⌋}d
i=0

, (29)

where we take

ri = i+m

⌊
d− 2i

m

⌋
, or ri = i+

m

2
+m

⌊
d− m

2 − 2i

m

⌋
(30)

for s+, or s− curves, respectively. For λi < −1 we set them to λi = −1.

Proof. First, consider s+ curves generated by B+d,m. The basis elements corresponding to the first column
(and row) of a matrix Bf are

{1, zm + zm, . . . , zr0 + zr0}, (31)

where r0 = m bd/mc, cf. (19). Next, there are b(d− r0)/2c columns (and rows) right (bellow) with the same
length as the first one and each such column (and row) longer the first column (and row) by one. Hence we
have

λ0 = r0 +

⌊
d− r0

2

⌋
, r0 = m

⌊
d

m

⌋
. (32)

Now we derive the value for λi, i = 1, . . . , d. Consider the (i+ 1)-th row/column. If we omit the first i rows
and columns we have a curve of degree d− 2i. However, we have to add i to the value of ri to preserve the
true degree of the original element. Hence we obtain ri = i + m b(d− 2i)/mc, cf. (30), left. Furthermore
there are exactly b(d− i− ri)/2c columns (rows) right (bellow) which contribute to the (i + 1)-th column
(row) by one. This yields exactly (29).

The s− curves can be treated analogously. The only difference is that the basis elements of s− curves
are translated by m/2, which affects ri and we obtain (30), right.

Theorem 3.5. The coefficient matrix Bf of a generic curve with m-gon symmetry contains the steps of
length m/2 for even m, and (m− 1)/2 and (m+ 1)/2 for odd m.
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Proof. The curve of degree d with the symmetry of m-gon must contain an element bk,` such that k+ ` = d.
It follows from the properties of Λf that this element contributes to the sequence as λk = `. Based on
the structure of the basis elements, cf. (19) and (20), we can determine which next element bi,j such that
i+ j = d contributes again to Λf . From k + i+ `−m+ i = d we immediately have 2i = m. If this element
exists then it is bk+m/2,`−m/2 for even m, and bk+m,`−m for odd m. However for odd m already after
(m − 1)/2 steps we obtain another element contributing to Λf despite being of degree d − 1, in particular
bk+(m−1)/2,`−(m+1)/2.

Of course, it may happen that the next element bi,j such that i+j = d used in the previous considerations
does not exist. Then we can go back in sequence Λf to the element bk−m/2,`+m/2 for even m and to the
element bk−(m+1)/2,`+(m−1)/2 for odd m.

To sum up, for even m we obtain the length of steps m/2; and for odd m we obtain steps of two lengths
(m− 1)/2 and (m+ 1)/2.

Corollary 3.6. Sequence of integers (28) of a generic curve with the symmetry of m-gon contains a subse-
quence of the form

Λf =

. . . λ,
b︷ ︸︸ ︷

λ− a, . . . , λ− a,
a︷ ︸︸ ︷

λ− a− b, . . . , λ− a− b, . . .

 , (33)

where a+ b = m.

Proof. It follows from Theorem 3.5 that for even m, the three consecutive elements contributing to Λf are
bi,j , bi+m/2,j−m/2, bi+m,j−m (when i + j = d), and for odd m, the three consecutive elements contributing
to Λf are bi,j , bi+(m−1)/2,j−(m+1)/2, bi+m,j−m or bi,j , bi+(m+1)/2,j−(m−1)/2, bi+m,j−m (when i + j = d or
i+ j = d−1). The second indices give the values in the sequence and the difference between the first indices
yields the height of the step, i.e., how many times the value is repeated in the sequence. Hence it easily
follows that a = b = m/2 for even m, and a = (m + 1)/2, b = (m − 1)/2 or a = (m − 1)/2, b = (m + 1)/2
for odd m.

Remark 3.7. As mentioned above the coefficient matrix Bf of a generic curve contains steps of a certain
size, see Fig. 3. Hence whenever bk,`+1 = 0 (in Theorem 3.3), then center of symmetry (26) becomes

p = − bk,`
(k + 1) bk+1,`

. (34)

Analogously whenever bk+1,` = 0, we arrive at

p = − bk,`

(`+ 1) bk,`+1

= − b`,k
(`+ 1) b`+1,k

. (35)

Example 3.8. Consider the coefficient matrix for s+ curve of degree 12 with 5-gon symmetry, see
Fig. 3 (left). Then sequence (28) looks like

Λ = {11, 11, 8, 8, 6, 6, 6, 3, 3, 1, 1, 1,−1}, (36)

which describes the structure of the matrix Bf (considering the blue and orange rightmost cells in Fig. 3,
left). Furthermore, the steps in the matrix have length/height 3 and 2, which confirms m = 3 + 2 = 5.

4. Determining suitable characteristics of symmetric algebraic curves

The results presented in this section will be exploited in the next section when formulating the algorithm
for computing approximate symmetries of planar algebraic curves with inexact input.

Consider a generic algebraic s+/s− curve of degree d with the symmetry of m-gon and the center at
p. By such a curve we mean again a curve generated as a generic linear combination of B+d,m(p)/B−d,m(p),

9



λi

λi+1

λi+2

i i+ 1 i+ 2

λi

λi+1

i i+ 1

λi λi+1

λi+2

i i+ 1 i+ 2

Figure 4: To obtain the center of the symmetry we have to identify the following sub-structures in the coefficient matrix. The
center is consequently obtained by the computation changing the red element to zero. In all three cases the center can be
obtained from (26). Of course, for the special cases in the middle or in the right one can use (34) or (35), respectively.

where p is a generic point. The goal of this section is to determine the center of symmetry p, the angle
of rotation 2π/m (i.e., the type of an associated regular polygon) and also the type (i.e., s+, or s−) of the
basis of the given curve. For these purposes sequence (28) can be efficiently used.

First, we employ sequence (28) for identifying (k, `) and hence determining the center of symmetry, cf.
Fig. 4 for particular situations mentioned in the following lemma.

Lemma 4.1. Consider the sequence Λ (additionally setting λd+1 = λd+2 = −1) associated to a given
symmetric curve. Then for each i ∈ {0, . . . , d} we proceed as follows:

(i) When λi = λi+1 + 1 > λi+2 + 1 we set

k = λi − 1, ` = i, (37)

and the centre p can be computed using (26).

(ii) When λi > λi+1 + 1 we also set (37) and the centre p can be computed using simplified formula (34).

(iii) When λi = λi+1 > λi+2 we set
k = λi, ` = i, (38)

and the centre p can be computed using simplified formula (35).

Proof. This lemma immediately follows from the construction of (28) and Theorem 3.3.

Remark 4.2. Let us emphasize, that for the sake of Hermite symmetry when (k, `) provides center of
symmetry (26), then exactly the same ratio (26) is given also by (`, k). Hence it is sufficient to find such λi
satisfying λi = λi+1 + 1 > λi+2 + 1 or λi > λi+1 + 1 and set (37), see Fig. 3 (left and middle). Situation in
Fig. 3 (right) corresponds to Fig. 3 (middle) when swapping (k, `) to (`, k). The two cases both satisfy

λi+1 < λi > λi+2 + 1, (39)

which can be used for identifying the positions (k, `) and hence (`, k).

The following lemma shows how to easily recognize a particular m-gon just from the elements of se-
quence (28).

Lemma 4.3. Consider the sequence Λ associated to a generic symmetric curve. Denote by ∆j the differences
between all consecutive non-negative elements. Then it holds

m =
2
∑n−1
j=1 ∆j

n− 1
, (40)

where n is the number of different non-negative elements in Λ.

10



Proof. The coefficient matrix Bf (and thus also the sequence Λ) of a generic curve with m-gon symmetry
contains the steps of length m/2 for even m, and (m − 1)/2 and (m + 1)/2 for odd m, cf. Theorem 3.5.
Hence, by computing the arithmetic mean of the differences between the consecutive non-negative elements
of (28) we obtain m

2 , which concludes the proof.

Finally, suppose we have computed p and m and it remains to determine the type (i.e., s+, or s−) of the
basis of the given curve. As we know from Lemma 3.1, s− curves occur only for even m whereas for odd m
the curves are always of s+ type. Moreover when m = 4k−2, k ∈ {1, 2, . . .}, it follows from Lemma 3.1 that
even/odd d implies s+/s− curves. Hence we have to investigate in more detail only the case when m = 4k.
For this the following lemma significantly helps.

Lemma 4.4. Consider a symmetric curve of degree d with the symmetry of m-gon, where m = 4k, k ∈
{1, . . . , bd/4c}. Then this curve is s+, or s− if

2λ0 − d ≡ 0 (modm), or 2λ0 − d ≡
m

2
(modm), (41)

Proof. The particular expressions can be easily obtained from (29) and (30) for i = 0 when setting m = 4k
and d = 2n.

Example 4.5. Consider a curve C defined by the coefficient matrix

Bf =



790 837− 792i −120− 949i −426− 252i −145 + 75i 30i 2 + i
837 + 792i 802 110− 364i −48− 32i 1 + 2i 0 0

−120 + 949i 110 + 364i 178 12− 24i 0 0 0

−426 + 252i −48 + 32i 12 + 24i 4 0 0 0

−145− 75i 1− 2i 0 0 0 0 0

−30i 0 0 0 0 0 0

2− i 0 0 0 0 0 0


. (42)

Then sequence (28) looks like
{6, 4, 3, 3, 1, 0, 0} , (43)

and we obtain four possible pairs (k, `), i.e.,

(5, 0), (3, 2), (2, 3), (0, 5), (44)

see the boxed elements in (42). Then employing (26) for all these values yields p = −1 + 2i and hence the
center of symmetry is p = (−1, 2). In particular, it suffices to use formula (34) for the values k = 5, ` = 0
and k = 2, ` = 3, which is equivalent to using (35) with k = 0, ` = 5 and k = 3, ` = 2. Moreover from
Lemma 4.3, we have

m =
2(2 + 1 + 2 + 1)

4
= 3, (45)

i.e., C has the rotational symmetry of an equilateral triangle and from Lemma 3.1 it is of s+ type.

Remark 4.6. To conclude this section, let us note that in special (singular) situations, some (generically
non-zero) coefficients in Bf (or even whole rows and columns) may vanish. This can subsequently violate
derived results, stated for generic curves. Such singular situations have to be treated separately.

Anyway, the center of symmetry can always be found by identifying suitable blocks in Bf using Theo-
rem 3.3. Next (in the worst scenario) it is always possible to consider all integers m ∈ {2, . . . , d} (and for
m = 4k also both bases) and set as the result of the algorithm (see the next section) the curve with the
minimal deviation from the input curve.
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5. Computing approximate symmetries of algebraic curves with inexact coefficients

The input to our reconstruction algorithm is a planar algebraic curve C which is a perturbation of some
unknown symmetric planar algebraic curve C0. This perturbed curve is described by a polynomial f(x, y)
of degree d.

Let us emphasize that in most of real situations the original symmetric curve C0 is not known and we
have only its perturbed version. This makes it impossible to measure the exact error of a constructed
approximate symmetric curve C̃ from the original unknown object. Then it is also, for instance, difficult to
state which approximate approach is the best one as in the considered neighbourhood one can find more
potential candidates, some of them possibly closer to the perturbed object than to the original one.

The presented method is composed of three main steps:

(I) We determine a point p̃ (the approximate center) and an integer m (the number of vertices of a regular
polygon) from the known perturbed curve C;

(II) We construct a new curve C̃ having the symmetry of an m-gon with the center at p̃ and being as close
as possible to the given perturbed curve C.

(III) We determine all the symmetries of the computed exact symmetric curve C̃ to obtain the approximate
symmetries of the perturbed curve C (in particular, it is enough to compute only the mirror symmetries
as the rotational symmetries can be determined already from p̃ and m computed before).

5.1. Computing the approximate center of the symmetry

Consider a perturbed curve of degree d given by a polynomial

f(x, y) = f0(x, y) + ε(x, y), (46)

where f0 defines a symmetric curve and ε is a polynomial (perturbation) having all its coefficients in [−ε, ε],
i.e.,

ε(x, y) =

d∑
i=0

d−i∑
j=0

εi,jx
iyj , |εi,j | ≤ ε. (47)

The initial and crucial step of the reconstruction algorithm is to find a suitable approximate center of
symmetry p̃ of the resulting curve C̃. First we construct a coefficient matrix Bf = Bf0 + Bε of f(z, z),
cf. (8). The key part is to identify the structure (zeroes) of the coefficient matrix.

Lemma 5.1. The Taxicab (`1) norms of all elements of Bε are less than or equal to Kd ε, where

Kd =
(2n+ 1)

4n

(
2n

n

)
, n =

⌊
d

2

⌋
. (48)

Proof. From ∥∥∥∑ bi,j

∥∥∥
1

=
∣∣∣Re

(∑
bi,j

)∣∣∣+
∣∣∣Im(∑ bi,j

)∣∣∣ ≤∑ |Re (bi,j)|+
∑
|Im (bi,j) | (49)

it follows ∥∥∥∥∥∥ 1

2k+`

k+∑̀
i=0

i∑
j=0

(
k + `− i
`− j

)(
i

j

)
i2j−i εk+`−i,i

∥∥∥∥∥∥
1

≤ ε

2k+`

k+∑̀
i=0

i∑
j=0

(
k + `− i
`− j

)(
i

j

)
. (50)

First, suppose that ε(x, y) has an even degree d = 2n. Then it is easy to see that the right-hand side of (50)
is maximal for k = ` = n, i.e.,

max
k ∈ {0, . . . , d}

` ∈ {0, . . . , d − k}

 1

2k+`

k+∑̀
i=0

i∑
j=0

(
k + `− i
`− j

)(
i

j

) =
1

22n

2n∑
i=0

i∑
j=0

(
2n− i
n− j

)(
i

j

)
. (51)
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Then employing the well-known formula

q∑
j=0

(
m

j

)(
p−m
q − j

)
=

(
p

q

)
(52)

yields

1

22n

2n∑
i=0

i∑
j=0

(
2n− i
n− j

)(
i

j

)
=

1

4n

2n∑
i=0

(
2n

n

)
=

(2n+ 1)

4n

(
2n

n

)
. (53)

The case for an odd degree d = 2n + 1 can be treated analogously, i.e, the maximal coefficient of the
right-hand side of (50) occurs for k = n and ` = n+ 1 (or vice versa) and we arrive at

1

22n+1

2n+1∑
i=0

i∑
j=0

(
2n+ 1− i
n+ 1− j

)(
i

j

)
=

1

22n+1

2n+1∑
i=0

(
2n+ 1

n+ 1

)
=

(2n+ 2)

22n+2

(
2n+ 1

n+ 1

)
=

(2n+ 1)

4n

(
2n

n

)
(54)

for n = d−1
2 , which concludes the proof.

Lemma 5.1 allows us to identify the “almost zero” elements of Bf . Hence we can create a new matrix

B̃f omitting these elements, i.e.,

b̃i,j =

{
bi,j , if ‖bi,j‖1 > Kd ε,

0, otherwise.
(55)

Now, we identify the elements of B̃f which can yield the candidates to the set of potential centers of
symmetry. More precisely we create sequence (28) and detect from it all possible points p̃1, . . . , p̃n. Let us
emphasize, that for the sake of symmetry we have p̃1 = p̃n, p̃2 = p̃n−1, . . .. From all of these candidates,
we choose the one which is with the highest probability closest to the original center of symmetry. Since the
generic perturbation affects the matrix Bf in a way that the error in each coefficient (8) is ε ck,`, where

ck,` =
1

2k+`

∥∥∥∥∥∥
k+∑̀
i=0

i∑
j=0

(
k + `− i
`− j

)(
i

j

)
i2j−i

∥∥∥∥∥∥
1

, (56)

we choose as the approximate center p̃ = p̃i (computed for (k, `)) corresponding to the minimal value of
ck,`.

Example 5.2. Consider a symmetric curve C0 with the center of symmetry at p = (−2, 1) given by

f0(x, y) = 6x6 + 75x5 + 18x4y2 − 66x4y + 444x4 + 114x3y2 − 468x3y + 1482x3

+ 18x2y4 − 12x2y3 + 192x2y2 − 1140x2y + 2764x2 + 87xy4 − 108xy3 + 66xy2

− 1116xy + 2647x+ 6y6 − 42y5 + 228y4 − 372y3 + 172y2 − 446y + 1018. (57)

Next, we create a perturbed curve C, see Fig. 5 (left)

f(x, y) = f0(x, y) + ε(x, y), (58)

where ε(x, y) has all its coefficients in [−ε, ε] and ε = 10−2, e.g.,

ε(x, y) = −0.009x6 + 0.006x5y + 0.009x5 − 0.001x4y2 − 0.009x4y − 0.01x4 − 0.004x3y3

− 0.001x3y2 + 0.004x3y − 0.004x3 + 0.01x2y4 − 0.001x2y3 + 0.002x2y2 + 0.006x2y

+ 0.005x2 − 0.005xy5 + 0.004xy4 − 0.007xy3 − 0.003xy2 − 0.01xy + 0.002x

+ 0.004y6 − 0.001y5 − 0.007y4 − 0.004y3 − 0.002y2 + 0.004y + 0.003. (59)
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pC0

C

p̃C̃

C

Figure 5: Left: A curve from Example 5.2 with the rotational symmetry with the center at the point p and the angle 2π/6

(blue) and its perturbation which does not possess any symmetry (red), right: The projection (symmetric curve) C̃ (green) of
C (red) to the subspace of all curves of degree 6 with the symmetry of 5-gon having the center of the symmetry at p̃.

Setting to zero all the elements of Bf with their absolute value less or equal to Kd ε, where Kd = 36/15,
and computing (28) we arrive at

{5, 3, 3, 3, 0, 0,−1} . (60)

Hence we obtain four possible pairs of (k, `), i.e.,

(0, 4), (2, 3), (3, 2), (4, 0). (61)

The pairs (0, 4) and (4, 0) provide an approximate center of symmetry

p̃1 =

(
−144007679537

72019201310
,

35997179963

36009600655

)
.
= (−1.99957, 0.999655) , (62)

and the pairs (2, 3) and (3, 2) yield

p̃2 =

(
−9764166087

4877430107
,

4874772462

4877430107

)
.
= (−2.00191, 0.999455) . (63)

Since c0,4 = c4,0 = 1/16 < 7/8 = c2,3 = c3,2, cf. (56), we set p̃ = p̃1. This choice is indeed better since
the distances of p̃1 and p̃2 from p are approximately equal to 0.000548597 and 0.00198423, respectively.
Moreover employing Lemma 4.3, we arrive at

m =
2(2 + 3)

2
= 5, (64)

and hence (Lemma 3.1) C it is of s+ type.

5.2. Reconstruction of symmetric curves

The second step of the designed reconstruction algorithm is to find a suitable symmetric curve C̃ suffi-
ciently “close” to the given perturbed curve C when the center p̃ and the number of vertices m of the regular
polygon are prescribed. For this purpose we introduce a metric on the projective space PNR . In particular,
we consider the standard metric originated in the ray model and we will measure the angle between the
lines through the origin which represent the points in the projective space, i.e., we have

δ(x,y) = arccos

(
|x · y|
‖x‖‖y‖

)
, (65)

14



Algorithm 1 Reconstruction of a symmetric curve with inexact coefficients.

Input: A perturbed symmetric curve C given by the real polynomial f(x, y) of degree d and a bound
estimation of the perturbation ε.

1: Compute the coefficients of the matrix Bf , see (8);

2: From Bf construct the matrix B̃f , see (55);
3: Compute sequence (28), find the λi satisfying (39) and compute the corresponding (ki, `i), see (37).

From all (ki, `i), choose the one corresponding to the minimal value of (56);
4: Compute the approximate center of symmetry p̃, cf. (26), and the particular m for the regular m-gon

with the angle of rotation 2π/m, cf. Lemma 4.3;
5: For odd m and for even m = 4k− 2 with even d construct the basis B+d,m, cf. (19), for even m = 4k− 2

with odd d construct the basis B−d,m, cf. (20), and for even m = 4k decide first which basis (either B+d,m,

or B−d,m, see Lemma 4.4) is correct for the particular d and then construct it;

6: Transform B+d,m, resp. B−d,m to its real counterpart and by employing substitution (25) obtain the basis

B+d,m(p), resp. B−d,m(p);

7: Compute projection (67), where S is given by B+d,m(p), resp. B−d,m(p). It yields the vector c̃;
8: Compute the deviation δ between c̃ and c, cf. (65).

Output: A symmetric curve C̃ approximating C with the symmetry of the regular m-gon having the center
of symmetry in p̃ and the deviation δ between C and C̃.

where ‘·’ and ‖ ‖ denote the standard inner product and the standard norm in the corresponding vector
space. The angle δ is real-valued, and runs from 0 to π/2.

The (standard) inner product enables us to work with orthogonal vectors and orthogonal subspaces. Then
an orthogonal projection is a projection for which the range and the null space are orthogonal subspaces.
This approach induces a projection in the corresponding projective space. Moreover, it holds

Lemma 5.3. Let H be a subspace of PNR . Consider a point c ∈ PNR and denote by c⊥ the orthogonal
projection of c to H. Then for all d ∈ H it holds δ(c,d) ≥ δ(c, c⊥) and the equality occurs iff d = c⊥.

Proof. Consider the vector space RN+1 inducing the projective space PNR and its subspace S ⊂ RN+1

inducing H ⊂ PNR . Let 〈c〉 be the direction given by a representative of the point c. The angle between the
direction 〈c〉 and the subspace S is defined as the angle between c and its orthogonal projection c⊥ onto S,
and it is a minimum of the angles between 〈c〉 and any direction given by vectors from S.

Furthermore, let S be the matrix whose rows are the basis vectors of the subspace S then the orthogonal
projection onto the subspace S is given by the matrix

T = S>
(
SS>

)−1
S. (66)

So, we construct the space S of all curves given by the basis B+d,m(p̃), resp. B−d,m(p̃). For the purpose of

further calculations, i.e., for projections, we transform B±d,m(p̃) into their real equivalents – if there is no

danger of confusion we preserve their notation B±d,m(p̃). Using (66) we compute the orthogonal projection

of the point c representing the (perturbed) curve C in PNR to the considered space. We obtain

c̃ = cT (67)

which represents the sought approximate symmetric curve C̃. Finally, using (65), we measure the distance
between c and c̃. The whole process of the reconstruction of a symmetric curve with inexact coefficients is
summarized in Algorithm 1.
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Figure 6: Some algebraic curves (red) obtained by perturbing symmetric curves for various degrees and rotations, and the
corresponding approximate symmetric curves (green) computed by the presented reconstruction algorithm.

Example 5.4. We continue with Example 5.2. Thus the input is the curve given by (58) and with the
computed approximate center of symmetry (62). And we are looking for a curve of s+ type with the
symmetry of a regular 5-gon. So we construct the basis

B+6,5 =
{

1, z5 + z5, i
(
z5 − z5

)
, zz, (zz)

2
, (zz)

3
}
. (68)

We translate B+6,5 to p̃ and compute projection (67), see Fig. 5 (right). Using (65), the distance between

c and c̃, i.e., between C and C̃, is approximately equal to 0.00399705 < ε. Finally, applying any standard
method formulated for exact symmetric curves (see e.g. [4]) we arrive at exact symmetries of C̃ which are
the approximate symmetries of the perturbed curve C. Thus we can obtain not only the expected rotational
symmetries with the center p̃ and the angles 2π`

5 , ` = 1, . . . , 4, but also all 5 mirror symmetries.

6. Computed examples and tests

In this section we present several examples and results obtained by applying the steps of the designed
reconstruction algorithm, see Algorithm 1.

Example 6.1. We show our approach on several particular situations. More precisely, we employ bases (19)
and (20) to create symmetric algebraic curves with randomly given centers and coefficients in the interval
[−1, 1]. The curves in Fig. 6 were generated from B−5,2, B+5,3, B+5,4, B+8,6, B+10,7 and B−9,8, respectively. Then

we perturb the coefficients of the defining polynomials of these curves by ε = 10−2.
These perturbed non-symmetric curves then serve as the input to our method, see the red curves in

Fig. 6. Employing the approach described in Section 5.1 we find the approximate centers of the symmetries
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Table 2: The mean values of distances of the original and approximate center of symmetry and the mean values of the angles
between the original, perturbed and reconstructed curves for randomly given inputs.

ε ‖p− p̃‖ δ(c0, c) δ(c0, c̃) δ(c, c̃)
10−1 1.011× 10−2 4.904× 10−1 4.977× 10−1 7.967× 10−1

10−2 9.165× 10−4 7.527× 10−2 6.158× 10−2 7.062× 10−2

10−3 6.932× 10−5 3.023× 10−3 4.205× 10−3 3.57× 10−3

10−4 5.703× 10−6 6.514× 10−4 6.512× 10−4 7.266× 10−4

10−5 3.896× 10−7 1.886× 10−5 2.708× 10−5 2.196× 10−5

10−6 5.774× 10−8 6.45× 10−6 6.709× 10−6 8.743× 10−6

10−7 8.033× 10−9 4.122× 10−7 1.023× 10−6 1.175× 10−6

10−8 3.599× 10−9 5.123× 10−7 4.122× 10−7 5.83× 10−7

and particular m-gons. Next using the projection described in Section 5.2 we arrive at the symmetric curves
which are “close” to the inputs, see the green curves in Fig. 6.

Example 6.2. Analogously as in Example 6.1, we create randomly a symmetric curve C0 with the center
of the symmetry p and perturb it to obtain a non-symmetric curve C. Then we compute the approximate
center of symmetry p̃ and the projected (reconstructed) symmetric curve C̃.

We are interested in the distance ‖p− p̃‖ and deviations (65) between all pairs of the curves C0, C and C̃.
In Table 2 the means of these distances for 1000 different input curves for individual values of ε are listed.

7. Conclusion

In this paper, we designed a simple algorithm for an approximate reconstruction of an inexact planar curve
which is assumed to be a perturbation of some unknown planar curve with symmetries of a regular polygon.
As the input perturbed curve is non-symmetric, it does not possess a centre of symmetry. Nonetheless, the
original curve was by assumption symmetric. So the initial step of the reconstruction algorithm is to find a
suitable approximate centre of symmetry and a particular regular m-gon to whose the group of symmetries
of the curve is isomorphic. In this part we use a new matrix complex representation of algebraic curves
for simple estimation of the potential symmetry. Next, it was shown how to choose a suitable symmetric
curve sufficiently “close” to the given perturbed curve from the subspace of all algebraic curves with the
prescribed centre of symmetry and with the given associated m-gon. Finally, by computing the symmetries
of the reconstructed exact symmetric curve one can obtain the approximate symmetries of the perturbed
curve.
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