
University of West Bohemia in Pilsen

Faculty of Electrical Engineering

Doctoral thesis

Large-scale Numerical Simulations

of Magneto-Hydrodynamics

Phenomena in Astrophysics

Mgr. Luká² Korous

2018

Abstract

The objective of this Doctoral Thesis was to develop, implement and test new
algorithms for the large-scale solution of nonstationary compressible MHD equations
based on higher-order discontinuous Galerkin (DG) methods. The basis for the new
methods will be the discontinuous Galerkin methods and adaptive mesh re�nement
(AMR) algorithms. The new algorithms will be implemented and tested in the
framework of the open source library deal.II, and they will be applied to selected
existing benchmarks for magnetohydrodynamic phenomena and real problems of
MHD in astrophysics.

Keywords

numerical simulation, �nite element method, MHD equations, adaptivity, discon-
tinuous Galerkin method, astrophysics, solar �ares, AMR, distributed computing

Abstract [CZ]

Zám¥rem této práce je navrhnout, implementovat a otestovat nové algoritmy pro
rozsáhlé simulace nestacionárních jev· spadajících do oblasti stla£itelné magneto-
hydrodynamiky. Vytvo°ený software bude zaloºen na pouºití nespojité Galerki-
novy metody (discontinuous Galerkin, DG) s vy²²ími °ády p°esnosti. Zárove¬ bude
pouºita metoda automatického zjem¬ování výpo£etní triangulace (automatic mesh
re�nement, AMR). Vytvo°ené algoritmy budou testovány ve frameworku deal.II a
budou aplikovány na existující benchmarky pro magnetohydrodynamické jevy a na
skute£né problémy v astrofyzice.

Keywords [CZ]

numerická simulace, metoda kone£ných prvk·, MHD rovnice, adaptivní algoritmy,
nespojitá Galerkinova metoda, astrofyzika, slune£ní erupce, AMR, distribuované
výpo£ty

Acknowledgement

I hereby acknowledge and thank for the lead and support of my supervisor, prof.
Ing. Pavel Karban, Ph.D., as well as my advisor prof. Ing. Ivo Doleºel, CSc. I
would also like to thank Mgr. Miroslav Bárta, Ph.D. from the Department of Solar
Physics of the Astronomical Institute of the Czech Academy of Sciences to give
me valuable insight into the problems of astrophysics, and I also hereby appreciate
the work of the entire deal.II development team for their professional approach to
software development and support.

Statement

I am presenting this doctoral thesis, created during my doctoral studies at the
Faculty of Electrical Engineering of the University of West Bohemia.

I con�rm having prepared this work by my own, and having listed all used sources
of information in the bibliography. All license conditions of all works of software
and other nature were respected.

In Pilsen, September 17, 2018, Luká² Korous

Contents

1 Introduction 1

1.1 Magnetohydrodynamics in Astrophysics 1
1.1.1 Magnetic �ux tube model of plasma 1
1.1.2 Magnetic reconnection and other phenomena 5

1.2 Aim of this work . 6
1.3 State of the art . 7

2 Mathematical model 9

2.1 Derivation of the mathematical model 9
2.1.1 Initial setup . 9
2.1.2 Euler's equations of compressible �ow 10
2.1.3 Maxwell's equations of electromagnetism 10
2.1.4 Derived relations between electromagnetic quantities 11
2.1.5 Simplifying assumptions . 12
2.1.6 Adding the induction equation 13
2.1.7 Conservative form of the MHD equations 13
2.1.8 Solution considerations . 14

2.2 Weak formulation of the problem . 15
2.3 Boundary conditions . 16

2.3.1 Essential (in�ow) boundary conditions 16
2.3.2 Out�ow (do-nothing) boundary conditions 16
2.3.3 Periodic boundary conditions 16

3 Numerical approach 17

3.1 Triangulation . 17
3.1.1 Distributed triangulation . 19

3.2 Discontinuous Galerkin method . 20
3.2.1 Overview of the DG method 20
3.2.2 DG formulation of MHD equations 21
3.2.3 Numerical �ux . 23
3.2.4 Numerical handling of boundary conditions 30

3.3 Divergence-free FE space . 32
3.4 Discretization in time . 34

3.4.1 Discrete problem . 34
3.4.2 Time step length . 35

3.5 Algebraic formulation . 35
3.6 Numerical integration . 37

Contents

3.7 Assembling the algebraic problem . 39
3.8 Slope limiting . 41

3.8.1 Vertex-based limiter . 43
3.9 Time-stepping and linearization . 47

3.9.1 Time-stepping . 47
3.10 Performance considerations . 48

3.10.1 Parallelization . 48
3.10.2 Vectorization . 49
3.10.3 Distribution . 49

4 Adaptive Mesh Re�nement 51

4.1 Overview of the AMR . 51
4.2 Adaptive-mesh re�nement and DG 55

4.2.1 Periodic boundary conditions 57
4.2.2 Relationship with slope limiters 58

4.3 Reference solution approach . 59
4.3.1 Algorithm . 60
4.3.2 Implementation notes . 63

5 Results 64

5.1 Benchmarks . 64
5.1.1 Hardware speci�cation . 64
5.1.2 MHD Blast . 65
5.1.3 Orszag-Tang vortex . 85

5.2 Flux tube eruption model . 90
5.2.1 Problem parameters . 90
5.2.2 Initial condition . 91
5.2.3 Boundary conditions . 92
5.2.4 AMR Results . 92

6 Conclusion, outlook 97

Bibliography 100

Notation

Overview of notation used in the text is given in Table 0.1.

Contents

Symbol Meaning

a a scalar quantity "a"
a a 3-element vector "a"
ai the i-th component of a vector a
A an 8-element vector "A"

ρ Density
π Momentum
µ Permeability
µ0 Permeability of vacuum
t Time variable

x = (x, y, z) Space variable
p Pressure
u Velocity
u Magnitude of velocity, i.e. |u|
B Magnetic �ux density
J Current density
B Magnitude of magnetic �ux density, i.e. |B|
E Electric �eld
e Internal energy density
c Speed of light
g Gravitational acceleration
σ Conductivity, σ = 1

η

η Electrical restisistivity, η = 1
σ

cv Speci�c heat at constant volume
cp Speci�c heat at constant pressure
γ Poisson adiabatic constant
θ Absolute temperature
q Heat �ux
q Electric charge
f Density of force acting on �uid
F L Lorentz force, F L = q (E + u×B)
fL Lorentz force density, fL = ρqE + J ×B
ε Electrical permittivity
ε0 Electrical permittivity of vacuum
ρq Charge density
Uk Kinetic energy
Um Magnetic energy
e Internal energy density
U Total energy, U = Uk + Um + ρe
pT Total pressure

Ũ Hydrodynamic energy, Ũ = U − Um
n Unit outer normal

Table 0.1: Notation

Contents

Here

Um (x, t) =
1

2

3∑
i=1

B2
i (x, t) (0.1)

is the magnetic energy,

Uk (x, t) =
1

2

3∑
i=1

u2
i (x, t) (0.2)

is the kinetic energy, and the relationship between the Total energy U and pressure
p reads

U (x, t) =
p (x, t)

γ − 1
+ Um (x, t) + Uk (x, t) . (0.3)

Moreover, the total pressure pT is de�ned as

pT (x, t) = p (x, t) + Um (x, t) . (0.4)

Note that in the text, subscripts denoting spatial dimension 1, 2, 3, and x, y, z will
be used interchangeably.

1 Introduction

The term magnetohydrodynamics (MHD) covers all physical phenomena that in-
volve both electromagnetic (EM) �eld and a �uid that carries the EM �eld. Such
phenomena are very interesting, yet very complex to study. The behavior of such
a �uid is utilized in some industrial applications - liquid-metal cooling of nuclear
reactors, magnetic �uid in dampers, sensors for precise measuring of angular veloc-
ities, etc. Such phenomena occur in nature as well - the most signi�cant of which
are de�nitely the processes that take place inside and on the surface of stars - which
is the topic of the next section.

1.1 Magnetohydrodynamics in Astrophysics

There are several phenomena in the universe that we can look at as magnetohydro-
dynamic in nature - planets consisting of metals, interplanetary space, but mainly
- stars. If we talk about the nearest star - and the only one we are able to study
well enough - the Sun - these phenomena include those that occur in the Sun's
photosphere (the layer of Sun that is visible): Sun spots, but also phenomena that
occur above the Sun (further from the center of the Sun): in Sun's chromosphere, or
even corona (solar �ares) - even phenomena that originate from the Sun, but then
spread through our solar system - solar winds, space weather. All these phenomena
have a large impact on the lives of all of us. For example solar �ares (that are often
followed by ejection of mass out of the Sun - the so called coronal mass ejections
- CMEs) have impact on the Earth's magnetic �eld which in turn has impact on
the electronic communication down on Earth (because the communication satel-
lites used for transmissions may be damaged by the disturbances in the magnetic
�eld). Also people operating at high altitudes, both in airplanes and manned space
missions are exposed to the energetic particles coming from the Sun (this term is
sometimes called cosmic rays). For all the above reasons, it is of great importance
to understand the phenomena of space weather, and other MHD phenomena that
occur in space.

1.1.1 Magnetic �ux tube model of plasma

We are interested in the process of evolution of the �ux tube eruption. Such an
eruption was captured during observations by Kotr£ et al. (2012), and the captured
image is shown in Figure 1.1 taken from Kotr£ et al. (2012) (Figure 2 in the article).

1

Magnetohydrodynamics in Astrophysics

Figure 1.1: Observation of a limb event. Hα slit-jaw is the middle (b) part, taken
from Kotr£ et al. (2012).

For the modeling purposes, we are interested in the so-called Hα slit-jaw which
is the side-view of the magnetic �ux tube during its evolution.

In order to model this phenomena physically, and geometrically, we utilize the
magnetic �eld model by Titov and Demoulin (Titov and Demoulin (1999)) which
describes a twisted �ux tube as part of a torus with minor radius a (being the
radius of the tube, not shown in Figure 1.2) and major radius R submerged below
the photosphere of the Sun by d < R, oriented as in Figure 1.2 (taken from Titov
and Demoulin (1999)) with total current I.

The magnetic con�guration is kept in a global equilibrium by the action of the
Lorentz force due to the overlying magnetic �eld. The sources of this ambient �eld
are modeled by a sub-photospheric line current I0 and a pair of magnetic charges
+q,−q located at distance L from the center of the torus, all located at the major
axis of the torus.

2

Magnetohydrodynamics in Astrophysics

Figure 1.2: The magnetic �eld under study, taken from Titov and Demoulin (1999).

This geometrical/physical model needs to be properly modeled mathematically
(including proper boundary conditions), then approached numerically, and �nally
computed using software that - in order to achieve reasonable accuracy of the so-
lution - needs to be precisely implemented, must utilize approaches common in the
high performance computing (HPC) �eld, and must be heavily optimized.

In the article Kotr£ et al. (2012) which is a reference paper for this work, the model
was set up according to observations, and numerical approach of Finite Di�erence
Method (FDM) was used. The results obtained there are presented in Figures 1.3
and 1.4, and in order to compare them with Figure 1.1, also in the form in Fig-
ure 1.5 - where the colors are mapped to black and white to be comparable with
the observation.

3

Magnetohydrodynamics in Astrophysics

Figure 1.3: Results from Kotr£ et al. (2012), initial state, density volume and mag-
netic �eld isolines - top & side view.

Figure 1.4: Results from Kotr£ et al. (2012), state at t = 14, density volume and
magnetic �eld isolines - top & side view.

4

Magnetohydrodynamics in Astrophysics

Figure 1.5: Computed approximation of the observed event (Figure 1.1), presented
in Kotr£ et al. (2012).

The aim of this work is to be able to compute results of such problems with much
higher resolution, and more importantly to implement a generic solver which can
handle any similar problem with arbitrary geometric and physical parameters.

1.1.2 Magnetic reconnection and other phenomena

An additional topic, interesting from the astrophysical point of view and related to
magnetohydrodynamics, is the magnetic reconnection.

Magnetic reconnection occurs within electrically charged gases called plasmas.
These charged particles interact strongly with the magnetic �eld, but at the same
time their motions modify the magnetic �eld. Under normal conditions, the mag-
netic �eld lines inside plasmas don't break or merge with other �eld lines. But
sometimes, as �eld lines get close to each other, the entire pattern changes and
everything realign into a new con�guration. The amount of energy released can
be formidable. Magnetic reconnection taps into the stored energy of the magnetic
�eld, converting it into heat and kinetic energy that sends particles streaming out
along the �eld lines. Solar �ares, which are among the phenomena which are the
most important to study, are driven by magnetic reconnection - and thus studying
magnetic reconnection is of great importance.

5

Aim of this work

From the numerical perspective, to investigate such phenomena is to bring the
complexity of multiple scales present in the physical world - magnetic reconnection
occurs at substantially di�erent scales than e.g. the solar �ares. To handle this
numerically with adequate resolution, and reasonable computational costs, the im-
plementation must be able to limit the number of degrees of freedom used for the
discretization to such that yield the largest accuracy increase - namely, in this work,
this is achieved via a state-of-the-art Adaptive Mesh Re�nement approach.

1.2 Aim of this work

Main goal that was set for this work is implementation of a software package, capa-
ble of numerically solving the magnetohydrodynamic equations with the following
attributes:

• The code must implement mathematically correct and clean methods, prefer-
ably with no parameter-dependent algorithms

• The code must allow for a broad spectrum of solution attributes occurring
(shocks, oscillations, high energies, ...)

• The code must be able to capture very �ne details of the solution through
higher resolution, in reasonable computing time

• The code must be able to run a large-scale simulations, for which a single
computer is not su�cient, and utilization of modern distributed computing
approach is a must

• The code must be easy to use for the physicists, must be written using
industry-standard modern object-oriented programming language

In order to achieve this, the work is divided into several logically successive steps.
First, the mathematical model is clearly constructed, and its formulation translated
into a form suitable for the chosen numerical method (the Discontinuous Galerkin
method) of solving a system of PDEs - which was chosen in order to deliver the �rst
and second of the above requirement (handling sharp fronts, discontinuities and the
like with mathematical cleanliness) - is described afterwards.

The Discontinuous Galerkin method (DG) is then described in detail, in the entire
process from the integral equations down to algorithms performing basic operations.
Pitfalls of the numerical solution of the MHD equations (divergence constraint, slope
limiting), and chosen way of solving them is given next, while still keeping the above
requirements in mind.

6

State of the art

Lastly, the biggest challenge is the satisfaction of the requirement of both the
�ne resolution of the solution, and the capability of running large-scale simulations
on modern distributed computing architecture - while still providing all the other
attributes of the implemented code. The approach to this, which involves mainly the
Adaptive Mesh Re�nement technique (AMR) together with Domain Decomposition
technique, is presented after. And �nally the veri�cations, and benchmarks and
actual usage on an astrophysical problem are presented.

1.3 State of the art

Only recently, the scienti�c computation community, due to the advances in com-
puter and supercomputer capabilities, has started with non-trivial numerical simu-
lations of such complex physical phenomena that the MHD model describes. Since
both for industrial applications, and obviously for astrophysical application of the
MHD model, it is quite expensive (or downright impossible) to perform any exper-
iments, the bene�t of being able to simulate the phenomena on a computer is very
large.
There exist several available numerical simulation codes, such as (Stone et al.,
2008a), (Norman et al., 1992), (Kestener et al., 1992), (Skála, J. et al., 2015). These
codes have been successfully applied to a range of problems in astrophysics.
There are many numerical methods implemented in these codes, such as the �nite
di�erence method ((Skála, J. et al., 2015)), �nite volume method ((Kestener et al.,
1992)), and the (continous) �nite element method ((Skala and Barta, 2012)).
There have been some attempts to employ also the discontinuous Galerkin method

((Rossmanith, 2013), (Mocz et al., 2014)), but so far no open-source generic software
employing this method is available. Moreover, as the astrophysical interest lies in
multi-scale problem, a software that can handle such problems would be much
more bene�cial. An approach that can achieve this capability of solving multi-scale
problems is the Adaptive Mesh Re�nement technique (AMR). What we understand
under this term is not only a mesh re�nement that is local (i.e. non-uniform), but
a mesh re�nement that does not originate in the problem description, and neither
is invoked programmatically with user input. The term 'adaptivity' means that
through a prede�ned re�nement indicator, which is a function operating on the set
of elements of the triangulation, elements to be re�ned are chosen automatically.
This re�nement indicator is calculated from the solution, and in e�ect makes the
triangulation 'adapt' to the solution - hence, AMR.
The reason for the development of a new code is two-fold. First, there is a

unique collaboration between the Astronomical Institute of the Czech Academy of
Sciences and the University of West Bohemia, where astrophysicists work together
with electrical engineers (from theoretical and numerical modeling backgrounds),
and the developed code will be usable for both simulating of astrophysical MHD
phenomena, and industrial MHD applications.

7

State of the art

Second, the newly developed code is based on locally-adaptive Discontinuous
Galerkin method, which yields several advantages over the existing codes (which
use e.g. �nite di�erence, or �nite volumes methods) developed at institutions of
such high quality as Princeton - (Stone et al., 2008a), (Norman et al., 1992). The
advantages are especially of performance, and automation nature - method of higher
order together with AMR yields results qualitatively and quantitatively comparable
to low order uniform mesh methods, but with computational cost that can easily be
an order of magnitude smaller. Automation is mentioned here related to the AMR,
which, without user interaction, can optimize the computational triangulation for a
particular time instance in the evolution of the modeled phenomena.

Another bene�t (namely over (Norman et al., 1992))of the newly created soft-
ware are the use of modern object-oriented programming techniques and experience
gained on creating �nite element software ((Solin et al., 2014), (Ma et al., 2012),
(Korous and Solin, 2012)). The implementation related to this work is written in
the C++ language, with the use of existing software packages that are proven, and
used by a wide community of researchers all over the world - deal.II ((Bangerth
et al., 2015)), Trilinos (Heroux et al. (2005)), P4EST (Burstedde et al. (2011)),
Intel Parallel Studio (Intel Corporation (2017)), UMFPACK ((Davis, 2006)), Par-
aview(Kitware Inc. (2017)), and others.

The state of the art of numerical simulation of magnetohydrodynamics can be
summarized as a state when the mathematical theory of the equations is quite
solid, but the methods to solve the equations numerically in the most optimal and
fast way are still being improved. The numerical solution is not merely about
theoretical convergence rates and attributes of the particular method, but also the
actual implementation plays an important role - i.e. programming, hardware, and
software, and execution, both before, during, and very importantly after the actual
method invocation (of the so-called postprocessing of results). In all aspects of
implementation, there is space for new approaches, new ideas, new milestones, that
can expand the capabilities of today's numerical solution of magnetohydrodynamics
phenomena.

8

2 Mathematical model

In this chapter, the mathematical model will be derived from basic equations gov-
erning the studied physical phenomena, its weak formulation will be presented, and
the complete mathematical problem which is solved will be described.

2.1 Derivation of the mathematical model

In order to derive the mathematical model, we �rst need to establish the basics
- time-space frame (Section 2.1.1), assumptions (Section 2.1.1), then we will start
with the known Euler equations of compressible �ow (Section 2.1.2, derivation of
which is given e.g. in Korous (2012)), and by adding the Maxwell's equations
(Section 2.1.3), we will derive the mathematical model for Magnetohydrodynamics
in the complexity needed for handling problems presented in the introduction.

2.1.1 Initial setup

We consider a time interval (0, T) and space domain Ωt ⊂ R3 occupied by a �uid
at time t. ByM we denote the space-time domain in consideration:

M = {(x , t) ; x ∈ Ωt, t ∈ (0, T)} . (2.1)

Moreover we assume thatM is an open set.

Assumptions

When dealing with MHD phenomena in plasma, the following rules apply

• We assume that the �uid is inviscid.

• We assume that the �uid is compressible.

• We consider only the so-called perfect gas or ideal gas whose state variables
satisfy the following equation of state

p = Rθρ, (2.2)

where ρ denotes density, θ denotes the absolute temperature, and R is the gas
constant, which is de�ned as

R = cp − cv. (2.3)

9

Derivation of the mathematical model

In the above, cp, cv are speci�c heats at constant pressure, and at constant
volume.

2.1.2 Euler's equations of compressible �ow

This system of equation reads

∂ρ

∂t
+∇ · (π) = 0 (2.4)

∂π

∂t
+∇ · (π ⊗ u) = ρf −∇ p, (2.5)

∂Ũ

∂t
+∇ ·

(
Ũu
)

= ρf · u − ∇ · (pu) +∇ · q, (2.6)

where π is momentum, p pressure, U total energy. Moreover, u denotes velocity, f
density of the force acting on the �uid, and q is the heat �ux. By ⊗, we denote the
tensor product :

a⊗ b =

 a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3

 .

Moreover, the following relations hold:

Ũ = ρe+ Uk, (2.7)

p = (γ − 1)
(
Ũ − Uk

)
, (2.8)

θ =
(
Ũ/ρ− |u|2 /2

)
/cv. (2.9)

This system is simply called the compressible Euler equations for a heat-conductive
perfect gas. The individual equations are called the continuity equation(Equation (2.4)),
the Navier-Stokes equations (Equation (2.5)), and the energy equation (Equation (2.6)).
For the force density f we assume that only the Lorentz force and gravity act

upon the �uid:
f = fL + g.

2.1.3 Maxwell's equations of electromagnetism

In this work, we use Maxwell's equations with the assumption of constant electri-
cal permittivity, and constant permeability. We take the equations describing the

10

Derivation of the mathematical model

electromagnetic �eld in vacuum. This system of equation reads

∇×B = µ0

(
J + ε0

∂E

∂t

)
(2.10)

∇×E = −∂B
∂t

(2.11)

∇ ·E =
ρq
ε0

(2.12)

∇ ·B = 0, (2.13)

where B denotes magnetic �ux density, E denotes electric �eld, J denotes cur-
rent density, ε0 is permittivity of vacuum, and ρq is electric charge density. The
individual equations are known as Faraday's law (Equation (2.11)), Ampere's law
(Equation (2.10)), and Gauss's laws (Equations (2.12) and (2.13)).

2.1.4 Derived relations between electromagnetic quantities

Further relations that are useful when deriving the MHD equations are:

d

dt
Um =

1

µ0
∇ · (B ×E)−E · J , (2.14)

E = −u×B +
η

µ0
J , (2.15)

∂B

∂t
+∇× (B × u) = − 1

µ0
∇× (η∇×B) , (2.16)

where µ0 denotes permeability of vacuum, η is resistivity, and Um is magnetic energy.
The Equation (2.15) is the di�erential form of the Ohm's law, the Equation (2.16)
is the induction equation.
Applying now Section 2.1.2 to Equations (2.5) and (2.6), we obtain:

∂π

∂t
+∇ · (π ⊗ u) = ρqE + J ×B + ρg −∇ p, (2.17)

∂Ũ

∂t
+∇ ·

(
Ũu
)

= ρqE · u+ J ×B · u+ ρg · u − ∇ · (pu) +∇ · q. (2.18)

The adjusted energy equation (Equation (2.18)) does not include the magnetic en-
ergy Um, which we do want to include in the MHD equations. To achieve this,
we employ Equation (2.14) - Equation (2.16) and rearrange. After rearranging we
obtain

∂U

∂t
= −∇ ·

[
π

(
u2

2
+ e

)
+ pu− 1

µ0
B ×E

]
+ ρg · u+∇ · q. (2.19)

11

Derivation of the mathematical model

2.1.5 Simplifying assumptions

In what follows, we will make several simplifying assumptions, according to which
we will get a system of equations that will adequately respect the physical model,
yet will be easier to be solved.

Negligible time derivative of electric �eld

For the time increments that we are concerned with, the time derivative in Equa-
tion (2.10) (the so-calledMaxwell's displacement current) is very small. To estimate
the minimum time increment value τ which would allow us to neglect the derivative,
take the ratio of the two terms on the right hand side of Equation (2.10):

ε0

∂E
∂t

J
≈

ε0E
τ

σE
≈ ε0

στ
≈ 10−11

τ
. (2.20)

This means for time scales much greater than 10−11 seconds, the time derivative of
E can be neglected. As a consequence, Equation (2.10) can be written as:

∇×B = µ0J . (2.21)

Using Equation (2.21), we can write

µ0J ×B = (B · ∇)B −∇B
2

2
= ∇ · (BB)−∇B

2

2
, (2.22)

where the last equality comes from Equation (2.13). And using Equation (2.22) we
can rewrite Equation (2.17) as

∂π

∂t
+∇ · (π ⊗ u) = qE +∇ ·

(
1

µ0
BB − B2

2
I

)
+ ρg −∇ p (2.23)

Negligible electric �eld in the Navier-Stokes equations

The magnitude of electric �eld is smaller than the magnetic �eld by the factor u2

c2
,

so we can neglect the term ρqE on the right-hand-side of Equation (2.23).

Negligible heat �uxes

Since the heat transfer accounts for a negligible contribution to the overall energy
transfer, we neglect the heat �ux terms, i.e. we set q = 0 in the energy Equa-
tion (2.19).

12

Derivation of the mathematical model

2.1.6 Adding the induction equation

The induction Equation (2.16) can be rearranged in the following way:

∂B

∂t
+∇× (B × u) = − 1

µ0
∇× (η∇×B) (2.24)

∂B

∂t
= −∇× (u⊗B −B ⊗ u) +

1

µ0σ

(
∇2B

)
. (2.25)

Now we can form the system of MHD equations:

∂ρ

∂t
= −∇ · (π) , (2.26)

∂π

∂t
= −∇ · (π ⊗ u) +∇ ·

(
1

µ0
BB − B2

2
I

)
+ ρg −∇ p, (2.27)

∂U

∂t
= −∇ ·

[
π

(
u2

2
+ e

)
+ pu− 1

µ0
B ×E

]
+ ρg · u (2.28)

∂B

∂t
= −∇× (u⊗B −B ⊗ u) +

1

µ0σ

(
∇2B

)
. (2.29)

This form suggests that rewriting these equations into a more suitable (for numerical
calculations) conservative form shall be possible.

2.1.7 Conservative form of the MHD equations

A conservative form of a system of equations takes the form of

∂Ψ

∂t
+∇ · F (Ψ) = S, (2.30)

where Ψ is the so-called state vector, Fi, i = 1, 2, 3 are the so-called �uxes, and S
is the so-called source term.

13

Derivation of the mathematical model

Rewriting the system of equations (Equations (2.26) to (2.29)) to the form of
Equation (2.30) is fairly straightforward. We obtain the following:

Ψ =



ρ
π1

π2

π3

U
B1

B2

B3


, (2.31)

Fi =



πi
π1πi
ρ −B1Bi + 1

2δ1i (p+ Um)
π2πi
ρ −B1Bi + 1

2δ2i (p+ Um)
π3πi
ρ −B1Bi + 1

2δ3i (p+ Um)
πi
ρ

(
γ
γ−1p+ Uk

)
+ 2ηεijkJjBk + 2

ρεijk (πkBi − πiBk)Bj
πiB1−π1Bi

ρ + ηε1ijJj
πiB2−π2Bi

ρ + ηε2ijJj
πiB3−π3Bi

ρ + ηε3ijJj


, (2.32)

S =



0
ρg1

ρg2

ρg3

π · g
0
0
0


, (2.33)

where Jj = (∇×B)j , εijk is the Levi-Civita symbol, and δij the Kronecker delta.

2.1.8 Solution considerations

For mathematical clarity, we should state, that the solution to the equations Equa-
tion (2.30) is such a function

Ψ ∈ C1
(

(0, T) ,
[
C1 (Ωt)

]8)
; Ψi ∈ C1

(
(0, T) , C2 (Ωt)

)
, i = 6, 7, 8, (2.34)

for which Equation (2.30) holds for all x ∈ Ωt, t ∈ (0, T). The kind of spaces we
used in the de�nition is called the Bochner spaces.

Because such a requirement on the solution Ψ is rather strong, we shall instead
look for a so-called weak solution, which is speci�ed in the coming sections.

14

Weak formulation of the problem

2.2 Weak formulation of the problem

The DG method is de�ned by �rst considering the weak formulation of the equations
Equation (2.30) obtained by multiplying the equations at every time instance t by a
(vector-valued) test function v ∈Wt, whereWt is a suitable space of (vector-valued)
functions Wt = (W1, ...,W8), integrating over the space domain Ωt, and performing
integration by parts. We start with multiplying Equation (2.30) by a test function:

∂Ψ

∂t
v + (∇ · F (Ψ)) v = Sv, (2.35)

then we integrate over Ωt:∫
Ωt

∂Ψ

∂t
v +

∫
Ωt

(∇ · F (Ψ)) v =

∫
Ωt

Sv, (2.36)

and �nally we integrate by parts:∫
Ωt

∂Ψ

∂t
v −

∫
Ωt

F (Ψ) (∇ · v) +

∫
∂Ωt

(F (Ψ) · n) v =

∫
Ωt

Sv, (2.37)

where the terms F (Ψ) (∇ · v) ; (F (Ψ) · n) v are meant as a component-wise multi-
plication.

Now without going into detail, we can conclude, that a suitable space W would
be

Wt =
[
H1 (Ωt)

]8
, (2.38)

and we shall look for a solution to the Equation (2.37) in the same space Wt at
every time instance t. We shall not relax the requirement for continuity of time-
derivatives we imposed for the hard solution Equation (2.34) for reasons discussed
later, and we arrive at the following Bochner space in which we are looking for a
weak solution of Equation (2.30):

W = C1 ((0, T) ,Wt) . (2.39)

To sum up we can de�ne the weak solution Ψ = Ψ ((t,x)) of MHD equations
Equation (2.30) as

Ψ ((t,x)) ∈W de�ned in Equation (2.39).
Equation (2.37) holds for all t ∈ (0, T), and all v ∈Wt.

Ψ (0,x) = ΠΨ0 (x).

Table 2.1: Notation

In Table 2.1, Π is a projection of the initial condition Ψ0 onto W0.

15

Boundary conditions

2.3 Boundary conditions

For the problem of �nding the solution as described in Table 2.1 to be complete, we
need to specify the proper boundary conditions.

2.3.1 Essential (in�ow) boundary conditions

Since the solution as described in Table 2.1 of the problem speci�ed in Equa-
tion (2.37) is not in�uenced by its values on the boundary Ωt, we are not able to
employ standard essential boundary conditions of the form u (x, y, z) = uD (x, y, z)
with a known uD. If such a condition is required from the physical nature of the
described phenomenon (as often is the case), it is only implied by a correct de�ni-
tion of �uxes at the boundary - as one can see in the last integrand (F (Ψ) · n) v in
Equation (2.37). We shall see how that is numerically handled in later chapters.

2.3.2 Out�ow (do-nothing) boundary conditions

If a particular boundary is only present in the numerical model (representing e.g.
an "outer" boundary that is there to limit the size of the computation to the area
of interest), that is, a free boundary, that is not in any way present as an actual
physical boundary or interface, this is achieved by specifying that values of Ψ do
not change through the boundary in Equation (2.37):

∂Ψ

∂n
= 0. (2.40)

2.3.3 Periodic boundary conditions

Periodic boundary condition is always speci�ed on two parts Γ1,Γ2 of the domain
boundary that share the bijection mapping between points:

[x1, y1, z1]↔ [x2, y2, z2]∀ [x1, y1, z1] ∈ Γ1, ∀ [x2, y2, z2] ∈ Γ2, (2.41)

so that for each pair of related points [x1, y1, z1] ↔ [x2, y2, z2], the values must be
the same:

u ([x1, y1, z1]) = u ([x2, y2, z2])∀ [x1, y1, z1] ∈ Γ1, ∀ [x2, y2, z2] ∈ Γ2 : [x1, y1, z1]↔ [x2, y2, z2] .
(2.42)

16

3 Numerical approach

The weak formulation of the problem we obtained in Table 2.1 still posses a prob-
lematic attribute - the space de�ned in Equation (2.39) is of in�nite dimension, and
therefore we would need to employ analytical methods to �nd the solution Table 2.1
in such a space. The Equation (2.37) is however rather impossible to be solved an-
alytically, and we have to utilize some sort of numerical simulation - which in turn
needs to operate on �nite-dimensional spaces. But we need to make sure that the
simplifying (reducing) assumptions we make on the way to the numerical model are
acceptable so that the numerical solution we obtain converges (as we reduce the
discretization size) to the solution de�ned in Table 2.1.

In this chapter we shall consider that Ωt = Ω ∀t ∈ (0, T), i.e. the computational
domain does not change with respect to time. There are approaches to numerical
simulation of MHD phenomena without this condition in place, which utilize the
exact same general approach described in this work plus they add additional steps
in the algorithm. These are outside of the scope of this work. Also, we always take
Ω ⊂ R3.

3.1 Triangulation

We start with leaving the time-derivative untouched, and focus on the discretization
in space for now - we are performing a space semidiscretization.

First step in the process of the discretization is to divide the computational do-
main Ω into a �nite number of subsets with properties described below. These
subsets form the set, further denoted by Th, called the triangulation or mesh of
the domain Ω. The index h will be dropped when either h is irrelevant, or when
dealing with mesh re�nement - see Chapter 4, also when needed the domain which
the triangulation approximates will be noted as Th (Ω), or T (Ω).

Please note that the terms triangulation and mesh shall be used in the text inter-
changeably (another synonym is a grid). The parameter h > 0 of the triangulation
usually represents maximum of diameters of all elements K ∈ Th. The elements
K ∈ Th are in the context of the �nite volume method called finite volumes.

17

Triangulation

Properties of Th:

1. Each K ∈ Th is closed and connected with its interior K◦ 6= ∅.

2. Each K ∈ Th has a Lipschitz boundary.

3. ∪K∈ThK = Ω

4. If K1,K2 ∈ Th, K1 6= K2, then K
◦
1 ∩ T ◦2 = ∅.

In our case of the three-dimensional problem, we assume that the domain Ω is
obtained as an approximation of the original computational domain (also denoted
by Ω), and the triangulation is chosen accordingly to the following attributes:

A) Each K ∈ Th is a closed rectangular hexahedron, possibly with curved faces.

B) For K1,K2 ∈ Th, K1 6= K2 we have either K1 ∩ K2 = ∅ or K1,K2 share
one face (if the shared face is a whole common face, we call the triangulation
regular), or K1,K2 share one vertex, or K1,K2 share one face.

C) ∪K∈ThK = Ω.

Furthermore
Th =

{
Ki, i ∈ I

}
, (3.1)

where I ⊂ Z+ = {0, 1, 2, ...} is a suitable index set.
By Γij we denote a common face between two neighboring elements Ki and Kj .
We set

s (i) =
{
j ∈ I;Kj is adjacent to Ki

}
.

The boundary ∂Ω is formed by a �nite number of faces of elements Ki adjecent to
∂Ω. We denote all these boundary faces by Sj , where j ∈ Ib ⊂ Z− = {−1,−2, ...}.
Now we set

γ (i) =
{
j ∈ Ib;Sj is a face of Ki ∈ Th

}
and

Γij = Sj for K
i ∈ Th such that Sj ⊂ ∂Ki, j ∈ Ib.

For Ki not containing any boundary face Sj we set γ (i) = ∅.
Obviously, s (i) ∩ γ (i) = ∅ for all i ∈ I. If we write S (i) = s (i) ∪ γ (i), we have

∂Ki = ∪j∈S(i)Γij , ∂Ki ∩ ∂Ω = ∪j∈γ(i)Γij .

Furthermore we de�ne the set of internal (i.e. not lying on the boundary ∂Ω) faces
as

ΓI = ∪i∈I ∪j /∈γ(i) Γij , (3.2)

and the set of boundary (i.e. lying on the boundary ∂Ω) faces as

ΓB = ∪i∈I ∪j∈γ(i) Γij . (3.3)

18

Triangulation

Note If we were to use not Ω ⊂ R3, but rather Ω ⊂ R4, we may just employ the
following machinery also to the time-derivative - this is not an uncommon approach.
Why the approach described in this work is favored by the author is twofold:

• Data (in a general sense - e.g. algebraic systems, function bases, etc.) are
smaller when using a separate handling for time-derivative

• The dependency on time and space may (and usually does) vary a lot for
physical phenomena - to have a separate approach is therefore bene�cial

3.1.1 Distributed triangulation

The standard approach to handle large problems that are impossible to be calculated
on a single processor in mesh-based numerical simulations (such as Discontinuous
Galerkin method) is to employ a domain decomposition method, where each of
the processors on which the simulation runs holds data about a subset of elements
of the mesh T . Consequently, also the matrix and vector assembly (described in
Algorithm 1), the linear problem solution, slope limiting, and AMR procedures are
performed by all processors using data they have available. The aim here is not to
go into deep technical details of distributing data, etc.

In Figures 3.1 to 3.2, domain Ω = [0, 1]×[0, 1]×[0, 1] was used, it was triangulated
by 10× 10× 10 mesh elements and the domain was distributed among 5 processors
labelled 0..4.

Figure 3.1: Cubical domain Ω with color-coded processor-owned elements.

19

Discontinuous Galerkin method

Figure 3.2: The same domain as in Figure 3.1, with clearer indication of elements
that belong to individual processors (0..4 left to right).

3.2 Discontinuous Galerkin method

For complex problems of compressible �ow, and of course for even more complex
problems of compressible MHD, there has been a number of attempts to use stan-
dard and well known Finite Element Methods that replace the spaces de�ned in
Equation (2.39) with �nite-dimension spaces with bases formed by continuous piece-
wise polynomial functions. These attempts struggled with a common problem of
spurious oscillations appearing in the solution - the origin of which is the lack of
"stabilization", provided by the second-order terms in elliptic equations. Solution
to these problems is the application of stabilization techniques, that usually in-
troduce some sort of arti�cial di�usion (the second-order term), all of which are
non-physical, and generally involve "magical" numbers - constants that are of pure
computational nature (not a part of the physical description) or even worse are
problem-speci�c.

3.2.1 Overview of the DG method

Due to this reason, there was an e�ort to develop methods which would not need
such stabilization techniques, and would still o�er reasonable resolution of shock-
waves, boundary and interior layers, and steep gradients without exhibiting spurious
oscillations in the approximate solutions. The approach taken here is based on the
idea to combine �nite volume and Finite element methods leading to the so-called
discontinuous Galerkin �nite element method (DGFEM, DG). Here we shall derive

20

Discontinuous Galerkin method

and analyze DG for our equations. Let Th be a triangulation of Ω. By H1 (Ω, Th)
we denote the so-called broken Sobolev space:

H1 (Ω, Th) =
{
v ∈ L2 (Ω) ; v|K ∈ H1 (K) ∀K ∈ Th

}
. (3.4)

This space is an approximation of the space de�ned in Equation (2.38), but it
contains functions that are discontinuous on element interfaces Γij between elements
KiandKj .

For u ∈ H1 (Ω, Th) we set

uiK = trace of u|Ki on ∂Ki (3.5)

(i.e. the interior trace of u on ∂Ki). For each face Γij ⊂ ∂K\Γ of Ki, there exists
Kj 6= Ki, Kj ∈ Th, adjacent to Γij from the opposite side than Ki. Then we put

ujK = trace of u|Kj on Γij . (3.6)

In this way we obtain the exterior trace ujK of u on ∂Ki\Γ and de�ne the jump of
u on ∂K\Γ:

[u]Γij = uiK − u
j
K . (3.7)

Approximation of the broken Sobolev space

Let the domain Ω be covered with a mesh Th = {K1, K2, . . . ,KM} where each
element Km carries an arbitrary polynomial degree 1 ≤ pm, ∀m = 1, 2, . . . ,M . The
broken Sobolev space H1 (Ω, Th) will be approximated by a �nite-dimensional space
of piecewise-polynomial functions

Vh = {v ∈ L2(Ω); v|Km ∈ P pm(Km) for all 1 ≤ m ≤M} (3.8)

where P p is de�ned as

P p = span{
∑

0≤i,j,k≤p
i+j+k≤p

αi x
i
1 x

j
2 x

k
3, αi ∈ R}.

3.2.2 DG formulation of MHD equations

Although the resulting system will look very similar to the weak formulation Equa-
tion (2.37), the derivation makes more sense to be done starting with the Equa-
tion (2.30).

As stated in Section 3.1, at this point we will discretize the problem in space,
and leave the time-derivative untouched. The approximate solution will be sought

21

Discontinuous Galerkin method

at each time instant t as an element of the �nite-dimensional space

[Vh]8 , (3.9)

where Vh is de�ned in Equation (3.8). Functions

vh ∈ [Vh]8 ≈
[
H1 (Ω, Th)

]8
, (3.10)

where H1 (Ω, Th) is de�ned in Equation (3.4), are in general discontinuous on inter-
faces Γij . By vh|ij and vh|ji we denote the values of vh on Γij considered from the
interior and the exterior of Ki, respectively. The symbols

〈vh〉ij =
1

2
(vh|ij + vh|ji) , [vh]ij = vh|ij − vh|ji

denote the average and jump of a function vh on Γij . In order to derive the discrete
problem, we multiply Equation (2.30) by a test function vh ∈ [Vh]8 in a component-
wise fashion, integrate over any element Ki ∈ Th, apply Green's theorem and sum
over all i ∈ I, where I is de�ned in Equation (3.1):∫

Ωt

∂Ψh

∂t
vh−

∑
Ki∈Th

∫
Ki

F (Ψh) (∇ · vh)+
∑
Ki∈Th

∑
j∈si

∫
Γij

(F (Ψh) · nij) vh =

∫
Ωt

Svh,

(3.11)
where nij is the unit outer normal to Γij . Now, the term∫

Γij

F (Ψh) · nijvh (3.12)

is problematic, because the value of Ψh on Γij is not unique - we have two values:

• Ψh|ij - which is the value of Ψh on Γij considered from the element Ki,

• Ψh|ji - which is the value of Ψh on Γij considered from the element Kj .

Note: This corresponds to the notation set in Equations (3.5) and (3.6) - if we take
Ki as the element at hand, we have

Ψh|ij = Ψh
+
Ki , Ψh|ji = Ψh

−
Ki

Now, because of this non-uniqueness of the values, we replace the term Equa-
tion (3.12) with the so-called numerical �ux H = H (v,w,n) in the following fash-
ion:

(F (Ψh) · nij) vh ≈ H (Ψh|ij ,Ψh|ji,nij) vh. (3.13)

We impose the following requirements on the numerical �ux:

A) H (v,w,n) is de�ned and continuous on D ×D × S1, where D is the domain
of de�nition of the �ux F and S1 is the unit sphere in R3.

22

Discontinuous Galerkin method

B) H is consistent:

H (v,v,n) = F (v)n, v ∈ D, n ∈ S1. (3.14)

C) H is conservative:

H (v,w,n) = −H (w,v,−n) , v,w ∈ D, n ∈ S1. (3.15)

And using these properties of the numerical �ux, we can rewrite Equation (3.11)
as: ∫

Ωt

∂Ψh

∂t
vh −

∑
Ki∈Th

∫
Ki

F (Ψh) (∇ · vh) (3.16)

+
∑

Γij∈ΓI

∫
Γij

H (Ψh|ij ,Ψh|ji,nij) vh =

∫
Ωt

Svh,

where we used the de�nition of internal edges (Equation (3.2)).

3.2.3 Numerical �ux

Generally, the numerical �ux function can be a non-di�erentiable (or even discontin-
uous) function. That renders it impossible to directly employ Newton's method to
solve the resulting nonlinear problem, and either linearization (e.g. a semi-implicit
scheme - Dolej²í and Feistauer (2015), chapter 5.1) or explicit time discretization
(used in this work) needs to be used.

Another complication arising from evaluation of numerical �uxes on element in-
terfaces exists in distributed solver, where we need to make sure that all processors
have relevant data (e.g. previous solution values) from all cells that neighbor any
cells assembled on the processor at hand. This issue gets worse when local mesh
re�nement (there are more neighbor elements of the current cell across the interface
at hand), as well as if periodic boundary conditions are used (the neighbor graph is
more complex).

Lax-Friedrichs numerical �ux

This is the most straightforward numerical �ux satisfying Equation (3.14), and
Equation (3.15) and is de�ned as follows:

HLF (v,w,n) =
1

2
[F (v) + F (w)]− α

2
(w − v) , (3.17)

where the parameter α is the so-called stabilization parameter, which in order for
the solution to be stable needs to ful�ll α < ∆t

∆x , where ∆t,∆x need to satisfy the
CFL condition Equation (3.42). Now, this numerical �ux is very sensitive to the

23

Discontinuous Galerkin method

choice of α - for larger values, it tends to be very di�usive, but for lower values, it
is unstable and produces oscillations in the vicinity of shocks J. and B. (2002). In
this work it is primarily used for implementation veri�cation purposes, as due to its
simplicity, the risk of errors in its implementation is rather negligible.

Riemann problem for MHD

For the class of numerical �uxes, known as the Godunov type �uxes, the numerical
�ux across the element boundary is constructed as the �ux F of a solution of the
following Riemann problem (Equation (3.18)) at x = 0:

∂U

∂t
+
∂F

∂x
= 0, (3.18)

where

U =



ρ
π1

π2

π3

U
B2

B3


, F =



π1
π2
1
ρ −B

2
1 + 1

2 (p+ Um)
π2π1
ρ −B1B2

π3π1
ρ −B1B3

π1
ρ

(
γ
γ−1p+ Uk

)
+ 2

ρ (πkB1 − π1Bk)B1

π1B2−π2B1
ρ

π1B3−π3B1
ρ


, (3.19)

with two states

UL = (ρL, π1L, π2L, π3L, UL, B2L, B3L) , (3.20)

UR = (ρR, π1R, π2R, π3R, UR, B2R, B3R) , (3.21)

and where due to the divergence free condition ∇·B = 0 of the magnetic �eld), B1

is given as constant.

The Equation (3.18) has seven eigenvalues which correspond to two Alfve'n waves
(λ2,6), two slow magneto-acoustic waves (λ3,5), and two fast magneto-acoustic waves
(λ1,7), and one entropy wave (λ4):

λ1 = ux − cf , (3.22)

λ2 = ux − ca, (3.23)

λ3 = ux − cs, (3.24)

λ4 = ux, (3.25)

λ5 = ux + cs, (3.26)

λ6 = ux + ca, (3.27)

λ7 = ux + cf , (3.28)

24

Discontinuous Galerkin method

where ca =

√
B2

1
rho , cs,f =

{
γp+|B|2∓

√
(γp+|B|2)

1
2−4γpB2

1

2ρ

} 1
2

.

From this, it follows, that there are theoretically as many as 9 states (states be-
tween the characteristics equal to the eigenvalues λ1, ..., λ7 along which the solution
propagates) - see Figure 3.3.

Figure 3.3: Characteristics corresponding to eigenvalues of Equation (3.18).

Unfortunately, for MHD equations, there is no exact solver of the Riemann prob-
lem across the element boundary, and therefore, approximate solvers are used. One
instance of the derived numerical �ux based on the solution at x = 0 of Equa-
tion (3.18) is described in the next section.

HLLD numerical �ux

The abbreviation HLLD stands for Harten-Lax-van Leer (HLL) approximate Rie-
mann solver, and D stands for Discontinuities. It is an extension of HLLC Riemann
solver for the Euler equations (Batten et al. (1997)). It divides the Riemann fan
into 6 states as illustrated in Figure 3.4. This particular numerical �ux has been
introduced in Miyoshi and Kusano (2005) and has been shown to be very suitable
for the studied problems. HLLD is an approximate nonlinear solution of the MHD
Riemann problem, and is algebraically derived in Miyoshi and Kusano (2005) under
the assumptions that the normal velocity and the background potential magnetic
�eld in the Riemann fan are constant. It follows from these assumptions, that 4 in-
termediate states are su�cient to resolve the Riemann problem in adequate manner
(Miyoshi and Kusano (2005)).

Figure 3.4: Six states considered in the de�nition of HLLD �ux.

25

Discontinuous Galerkin method

The HLLD �ux according to its de�nition in Miyoshi and Kusano (2005) de�nes
4 intermediate (starred) states U∗L, U

∗∗
L , U

∗
R, U

∗∗
R and 2 outer states UL, UR corre-

sponding to states of U de�ned in Equation (3.19) for the left (x < 0) and right
(x > 0) parts of the time-space domain illustrated in Figure 3.4. Details of these
states are given in Miyoshi and Kusano (2005). The resulting �uxes are:

FHLLD =



FL if SL > 0,
F ∗L if SL ≤ 0 ≤ S∗L,
F ∗∗L if S∗L ≤ 0 ≤ SM ,
F ∗∗R if SM ≤ 0 ≤ S∗R,
F ∗R if S∗R ≤ 0 ≤ SR,
FR if SR < 0

. (3.29)

These are derived using the assumptions mentioned earlier, that:

u∗L = u∗∗l = u∗∗R = u∗R = SM normal velocity constant over the Riemann fan
(3.30)

p∗TL = p∗∗TL = p∗∗TR = p∗TR = p∗T total pressure constant over the Riemann fan,
(3.31)

where pT is the total pressure as de�ned in Equation (0.4), and

SM
(SR − uR) ρRuR − (SL − uL) ρLuL − pTR + pTL

(SR − uR) ρR − (SL − uL) ρL
, (3.32)

SL = min [λ1 (UL) , λ1 (UR)] , (3.33)

SR = max [λ7 (UL) , λ7 (UR)] , (3.34)

S∗L = SM −
|Bx|√
ρ∗L

= SM −
|Bx|√

ρL
SL−uL
SL−SM

, (3.35)

S∗R = SM +
|Bx|√
ρ∗R

= SM +
|Bx|√

ρR
SR−uR
SR−SM

. (3.36)

Numerical �uxes comparison

For the comparison, a simple version of the benchmark described in Section 5.1.2
was used. In the next �gures, there are snapshots of density solution component at
several time steps for the Lax-Friedrichs �ux for two values of α = 0.5, α = 1.2, and
for the HLLD �ux (the higher the stabilization term α, the more stable the scheme
is). On each of Sections 3.2.3 to 3.2.3, the entire domain is shown on the left, and
a plot over the line y = 0 is on the right.

26

Discontinuous Galerkin method

Figure 3.5: Density at time t = 0.1, Lax-Friedrichs �ux with α = 0.5

Figure 3.6: Density at time t = 0.1, Lax-Friedrichs �ux with α = 1.2

Figure 3.7: Density at time t = 0.1, HLLD �ux

27

Discontinuous Galerkin method

Figure 3.8: Density at time t = 0.2, Lax-Friedrichs �ux with α = 0.5

Figure 3.9: Density at time t = 0.2, Lax-Friedrichs �ux with α = 1.2

Figure 3.10: Density at time t = 0.2, HLLD �ux

28

Discontinuous Galerkin method

Figure 3.11: Density at time t = 0.3, Lax-Friedrichs �ux with α = 0.5

Figure 3.12: Density at time t = 0.3, Lax-Friedrichs �ux with α = 1.2

Figure 3.13: Density at time t = 0.3, HLLD �ux

29

Discontinuous Galerkin method

There are a few observations from all the triplets of Figures:

• The Lax-Friedrichs �ux is very sensitive to the choice of α, for α = 1.2 and
higher, the solution becomes too di�usive,

• The 'ideal' Lax-Friedrichs �ux where α = 0.5 is quantitatively and qualita-
tively very close to the HLLD �ux.

The second observation could lead us to the conclusion that the Lax-Friedrichs �ux,
being simple to implement, is superior to HLLD which is quite complex. Unfor-
tunately, as shown e.g. in J. and B. (2002), the Lax-Friedrichs �ux is not stable
enough to be used for arbitrary problem setup, also when handling solution with
discontinuities, it is very dissipative G. (1997).
Second reason why for practical usage of the developed code, the HLLD �ux is

strongly recommended is, that it is parameter-free, as opposed to Lax-Friedrichs
�ux having the stabilization parameter α which makes it performing di�erently for
di�erent problems, as per the value of α.

3.2.4 Numerical handling of boundary conditions

In what follows, we are interested in using �ux-induced in�ow and out�ow boundary
conditions (see Section Section 2.3). Periodic boundary conditions are considered
to be merely a special case of handling numerical �uxes across internal faces in ΓI
. To account for these boundary conditions, we need to investigate the term∫

Γij

H (Ψh|ij ,Ψh|ji,nij) vh

for Γij ∈ ΓB (see Equation (3.3)). This term is used in Equation (3.16) for faces in
ΓI which are internal and always have 2 values connected to them - Ψh|ij ,Ψh|ji -
which induces the notation. On a boundary face, the corresponding value to Ψh|ij
can be de�ned in the same way as in the case of ΓI , but Ψh|ji needs to be de�ned.

In�ow boundary condition

First, if we want to prescribe an in�ow boundary condition (i.e. we know what
values should the state vector Ψh have on Γij ∈ ΓB), we de�ne

Ψh|ji (3.37)

to be the prescribed value.

Out�ow boundary condition

If we want to model an out�ow boundary condition (i.e. do nothing condition), we
may use the consistency of the numerical �ux H de�ned in Equation (3.14), and

30

Discontinuous Galerkin method

de�ne
Ψh|ji = Ψh|ij , (3.38)

which is a suitable de�nition for the out�ow boundary condition. It is important to
mention, that setting the in�ow boundary condition does not imply that solution
values on this boundary equal to these prescribed value. This follows from the
de�nition of broken Sobolev space (Equation (3.4)). Moreover the values of the
solution on the boundary also depend on the numerical �ux used, as the values on the
boundary are merely one of the input parameters for the �ux (See Equation (3.13)).

Periodic boundary conditions

Periodic boundary conditions come in the form described in Equation (2.42), for
pair of points on the boundary (Equation (2.41)). The point mapping is the main
complication encountered, namely in the distributed computations, and moreover if
AMR is used in distributed computations (see Section 4.2.1). Otherwise, from the
integral evaluation perspective, an face on a periodic boundary is approached in the
very same way as internal faces (we have values from both sides, and we evaluate
the numerical �ux in quadrature points).

DG full problem statement

Now, taking Equation (3.37) and Equation (3.38), we can enhance Equation (3.16)
with an additional term, that will add the boundary conditions into the equation:∑

Γij∈ΓB

∫
Γij

H
(
Ψh|ij ,Ψh|ji,nij

)
vh,

so that the complete semi-discrete problem reads:∫
Ωt

∂Ψh

∂t
vh −

∑
Ki∈Th

∫
Ki

F (Ψh) (∇ · vh) (3.39)

+
∑

Γij∈ΓI

∫
Γij

H (Ψh|ij ,Ψh|ji,nij) vh

+
∑

Γij∈ΓB

∫
Γij

H
(
Ψh|ij ,Ψh|ji,nij

)
vh

=

∫
Ωt

Svh.

Now we can formulate the de�nition of the semi-discrete solution Ψh = Ψh ((t,x))
of MHD equations Equation (2.30) as

A) Ψh ∈ C1
(

(0, T) , [Vh]8
)
,

31

Divergence-free FE space

B) Equation (3.39) holds for all t ∈ (0, T), and all v ∈ [Vh]8,

C) Ψh (0,x) = ΠhΨ
0 (x),

where Πh is a projection of the initial condition Ψ0 onto [Vh]8.

3.3 Divergence-free FE space

The divergence-free constraint of the magnetic �eld, ∇ · B = 0 (Gauss's law) is
not enforced by the solution de�nition in Table 2.1. Therefore, we need to perform
additional work to be sure that we do not have a non-physical solution in the sense
that the constraint is not satis�ed.

There are two often used approaches to handle this problem - the Constraint-
Transport (CT) method, and divergence cleaning. The �rst one is not suitable
for this work, as it constraints the triangulation in such a way, that implementing
Adaptive Mesh Re�nement would be very complicated, if possible at all. The sec-
ond approach, the divergence cleaning methods need additional postprocessing step
which may be omitted for the sake of calculation e�ciency. The approach taken in
this work is to replace the standard FE space Equation (3.9) with basis functions
Equation (3.10) for the magnetic �eld part (B) with a vector-valued (3-dimensional)
space V B

h of functions that have exactly

∇ · vBh = 0, vBh ∈ V B
h , (3.40)

where these functions are as before discontinuous on interfaces Γij . The basis of
space V B

h for piecewise-linear functions can be selected in several ways, in this work,
the following basis was selected:

32

Divergence-free FE space

 Bx (x, y, z)
By (x, y, z)
Bz (x, y, z)

 Visualization

 Bx (x, y, z)
By (x, y, z)
Bz (x, y, z)

 Visualization

 1
0
0

  0
0
y



 0
1
0

  z
0
0



 0
0
1

  0
z
0



 y
0
0

  0
0
x



 0
x
0

  x
−y
0



 x
0
−z



Table 3.1: Divergence-free space basis

33

Discretization in time

In Table 3.1, it is obvious that only one function actually has more nonzero
components.

In what follows, the notation [Vh]8 used before will be used for the space where the
last three components are replaced by V B

h . Note that there are some technicalities
with respect to the usage of V B

h needed to be handled in computation, e.g. in
Equation (3.67), or later in Equations (3.56) and (3.58) that we do not explicitly
attend to.

3.4 Discretization in time

Relations Equation (3.16) represent a system of ordinary di�erential equations which
can be solved by a suitable numerical method. Since we are interested in applying
the Rothe's method (as opposed to the method of lines, which switches the order
of discretization in time and space), we now want to discretize the time derivative.
In order to do so, we consider a partition 0 = t0 < t1 < t2 < ... of the time interval
(0, T) and set τk = tk+1 − tk. We use the notation wk

h for the approximation of
wh (tk).

3.4.1 Discrete problem

Then we apply a time discretization scheme, for example, the simple explicit Euler
method and our fully discrete problem reads: for each k > 0 �nd wk+1

h such that

A) Ψh
k+1 ∈ [Vh]8,

B) For all test functions vh ∈ [Vh]8:∫
Ωt

Ψh
k+1 −Ψh

k

τ
vh −

∑
Ki∈Th

∫
Ki

F
(
Ψk
h

)
(∇ · vh) (3.41)

+
∑

Γij∈ΓI

∫
Γij

H
(
Ψk
h|ij ,Ψk

h|ji,nij
)

vh

+
∑

Γij∈ΓB

∫
Γij

H
(
Ψk
h|ij ,Ψk

h|ji,nij
)

vh

=

∫
Ωt

Svh,

C) Ψh
0 (x) = ΠhΨ

0 (x),

where Πh is a projection of the initial condition Ψ0 onto [Vh]8.

34

Algebraic formulation

3.4.2 Time step length

Time step length is an important attribute of the discretization. If it is too small,
the calculation might be taking too long to �nish, with unnecessary precision with
respect to time. If it is too large, we may end up with unstable calculation and obtain
results with nonphysical oscillations, or without a solution whatsoever. That is why
we need to take extra care to derive the proper value. From the stability perspective,
we have a condition for the upper bound of the time step - this condition is called
the Courant-Friedrichs-Lewy condition Courant et al. (1967). This condition is of
the following form:

τmax = min

{
∆xmin

cmax
,
∆x

2
min

2ηmax

}
, (3.42)

where ∆xmin is the smallest dimension of any element, ηmax highest resistivity in
the domain, and vmax highest velocity in the domain, where the following velocities
are taken into account:

cs =

√
γ (γ − 1)

ρ
(U − ρv2 − UB), (3.43)

ca =

√
B2

ρ
, (3.44)

u, (3.45)

where cs is the speed of sound, ca is the Alfvén speed, and u is the speed of plasma.
We then take

cmax = max {cs, ca, u} .

3.5 Algebraic formulation

Last step in the DG method discretization is to transform the system of equations
Equation (3.41) into a system of linear algebraic equations at every time step tk and
obtain the solution at this time step as the solution of this linear algebraic system.

35

Algebraic formulation

First, we rearrange the system in the following manner:∑
Ki∈Th

∫
Ki

vhΨh
k+1 =

∑
Ki∈Th

∫
Ki

[
Ψh

k + τS + τA
(
Ψk
h

)
(∇ · vh)

]
vh (3.46)

−
∑

Γij∈ΓI

∫
Γij

H
(
Ψk
h|ij ,Ψk

h|ji,nij
)

vh

−
∑

Γij∈ΓB

∫
Γij

H
(
Ψk
h|ij ,Ψk

h|ji,nij
)

vh.

We can see that the left hand side does not depend on the previous solution values,
so there is no need to recalculate the matrix entries in every time step (unless
we employ AMR, in which case the mesh and therefore the set of basis functions
changes). Now

Ψh
k+1 =

l=L∑
l=0

ylvhl, L = dim
(

[Vh]8
)

(3.47)

for some (obviously �nite) basis {vh1, ..., vhL} of [Vh]8. Next, since Ψk
h, τ , S, A

(and the basis) are all known, we can de�ne

alm =
∑
Ki∈Th

∫
Ki

vhlvhm, (3.48)

bl =
∑
Ki∈Th

∫
Ki

[
Ψh

k + τS + τA
(
Ψk
h

)
(∇ · vhl)

]
vhl (3.49)

−
∑

Γij∈ΓI

∫
Γij

H
(
Ψk
h|ij ,Ψk

h|ji,nij
)

vhl

−
∑

Γij∈ΓB

∫
Γij

H
(
Ψk
h|ij ,Ψk

h|ji,nij
)

vhl,

A = {alm}l,m=L
l,m=1 , (3.50)

b = {bl}l=Ll=1 , (3.51)

y = {yl}l=Ll=1 , (3.52)

and rewriting Equation (3.46) using Equation (3.48) - Equation (3.52), we come to
the fully discrete algebraic problem at time instance tk+1:

Ay = b, (3.53)

whose well-posedness, and other attributes that allow for a successful solution of
this system, come from the properties of the DG method. Now if we solve the
system Equation (3.53), and obtain the solution vector y, we are able to reconstruct

36

Numerical integration

the discrete solution Ψh
k+1 ∈ [Vh]8 using the relation Equation (3.47).

In the implementation, we take the elements K ∈ Th, of the triangulation Th to
be hexahedra.

3.6 Numerical integration

Evaluation of the integral values in Equations (3.48) and (3.49) is performed using
the Gaussian numerical quadrature. A quadrature rule approximates the integral
values by replacing the integral as a weighted sum of integrand values at speci�ed
points in the domain of integration. The Gaussian quadrature is constructed so
that the approximation is exact for polynomials of degree 2n - 1 (and less). This
is acceptable, as our space Vh is constructed using polynomials - see section Sec-
tion 3.2.1. We only need to take the value n to be corresponding to the value of
pm for the element Km. The rule for both a 2-dimensional element face Γ, and a
3-dimensional cube K is derived from a one-dimensional approximation (where the
interval [−1, 1] is a convention):∫ 1

−1
f(x) dx =

n∑
i=1

wif(xi),

where the numbers wi > 0 are the quadrature weights, and the points (numbers in
this case) xi are the quadrature points, in the following way:∫

Γ
f (x) dx =

∫ 1

−1

∫ 1

−1
f (x1, x2) dx ≈

n∑
i=1

n∑
j=1

wiwjf (x1i, x2j) ,

∫
K
f (x) dx =

∫ 1

−1

∫ 1

−1

∫ 1

−1
f (x1, x2, x3) dx ≈

n∑
i=1

n∑
j=1

n∑
k=1

wiwjwkf (x1i, x2j , x3k) ,

and transformation to a generic rectangular hexahedron is performed using the
transformation in one dimension:∫ b

a
f(x) dx ≈ b− a

2

∫ 1

−1
f

(
b− a

2
x+

a+ b

2

)
dx.

Applying the Gaussian quadrature rule then results in the following one-dimensional
approximation: ∫ b

a
f(x) dx ≈ b− a

2

n∑
i=1

wif

(
b− a

2
xi +

a+ b

2

)
.

37

Numerical integration

And the transformations in higher dimensions follow naturally. For Γ = [a1, b1] ×
[a2, b2] we have:∫

Γ
f(x) dx ≈ b2 − a2

2

b1 − a1

2

n∑
i=1

n∑
j=1

wiwjf

(
b1 − a1

2
xi +

a1 + b1
2

,
b2 − a2

2
xj +

a2 + b2
2

)
.

Taking now e.g. Equation (3.48), and notation for quadrature points and weights,
we can write (omitting the operand x = (x1, x2, x3)):

alm =
∑
Ki∈Th

∫
Ki

vhlvhm, (3.54)

alm :=
∑
Ki∈Th

∫
Ki

f (vhl,vhm) , (3.55)

alm ≈
∑
Ki∈Th

−→n∑
j=
−→
1

f
(
vhl

(
xij

)
,vhm

(
xij

))
wj , (3.56)

where j is a multi-index used in sum over (volumetric) quadrature points xij ∈ K
i.

Similarly for the right-hand side (Equation (3.49)):

bl =
∑
Ki∈Th

∫
Ki

[
Ψh

k + τS + τA
(
Ψk
h

)
(∇ · vhl)

]
vhl (3.57)

−
∑

Γij∈ΓI

∫
Γij

H
(
Ψk
h|ij ,Ψk

h|ji,nij
)

vhl

−
∑

Γij∈ΓB

∫
Γij

H
(
Ψk
h|ij ,Ψk

h|ji,nij
)

vhl,

bl :=
∑
Ki∈Th

∫
Ki

g (vhl)−
∑

Γij∈ΓI

∫
Γij

g
′
(vhl)−

∑
Γij∈ΓB

∫
Γij

g
′′

(vhl) (3.58)

bl ≈
∑
Ki∈Th

−→n∑
j=
−→
1

g
(
vhl

(
xij

))
wj (3.59)

−
∑

Γij∈ΓI

−→nf∑
jf=

−→
1

g
′
(

vhl

(
xij
jf

))
wjf

−
∑

Γij∈ΓB

−→nf∑
jf=

−→
1

g
′′
(

vhl

(
xij
jf

))
wjf

,

38

Assembling the algebraic problem

where in addition to j as explained before, jf is a multi-index used sum over face

quadrature points xij
jf

∈ Γij . Based on this, we can de�ne

almij = f
(
vhl

(
xij

)
,vhm

(
xij

))
wj , (3.60)

blij = g
(
vhl

(
xij

))
wj , (3.61)

b
′

lijjf
=


g
′
(

vhl

(
xij
jf

))
wj if Γij ∈ ΓI

g
′′
(

vhl

(
xij
jf

))
wj if Γij ∈ ΓB

. (3.62)

3.7 Assembling the algebraic problem

Now we have a clear expression how to evaluate the integral values Equations (3.48)
and (3.49) using Equations (3.60) to (3.62), but we need to construct the matrix A
(Equation (3.50)), and the right-hand-side vector b (Equation (3.51)) in an e�ective
manner. This is generally achieved through a element-wise assembling of these
structures. Key to this is to create a data structure that identi�es for a particular
element Ki all the test functions vhl that make sense to be evaluated (have non-
empty support) on Ki, i.e. we are looking for the set

vh
(
Ki
)

=
{
vh ∈ Vh : supp (vh) ∩Ki 6= ∅

}
, (3.63)

and do the same for the faces Γi (both boundary, and internal):

vh (Γi) = {vh ∈ Vh : supp (vh) ∩ Γi 6= ∅} . (3.64)

39

Assembling the algebraic problem

Now the assembling procedure looks like this:

Algorithm 1: Assembling of the algebraic problem Equation (3.53)

1 - Loop over elements
foreach Ki ∈ Th do

Data: Quadrature points
{
xi1, ...,x

i
n
}

Data: Jacobian of the mapping JKi mapping the reference element
(unit cube) to the actual element

Data: Quadrature weights {w1, ..., wn}
Loop over quadrature points
foreach j ∈ {1, ...,n} do

Set: (JxW)j = JKi × wj
Loop over test functions
foreach v ∈ vh

(
Ki
)
do

Data: l - index of v in the global system, i.e. row in
Equation (3.50) - Equation (3.52)

Loop over basis functions
foreach u ∈ vh

(
Ki
)
do

Data: m - index of u in the global system, i.e. column in
Equation (3.50)

alm + = (JxW)j almij
bl + = (JxW)j blij

2 - Loop over faces
foreach Γij ∈ Th do

Data: Quadrature points
{
xij1 , ...,x

ij
nf

}
Data: Jacobian of the mapping JKi = JK− mapping the reference face

(unit square) to the actual face, where Ki,Kj are elements
adjacent to Γij if this is an internal face, or Ki = Kj if this is a
boundary face.

Data: Quadrature weights
{
w1, ..., wnf

}
Loop over quadrature points
foreach jf ∈ {1, ...,nf} do

Set: (JxW)jf
= JKi × wjf

Here it does not matter if we choose

JKi or JKj

Loop over test functions
foreach v ∈ vh

(
Ki
)
do

Data: l - index of v in the global system, i.e. row in
Equation (3.50) - Equation (3.52)

bl + = (JxW)jf
b
′

lijjf

An important remark needs to be added here, with respect to the fact, that
we aim for a distributed computation. As stated before, the domain decomposition
approach leads to each of the processors Pi ∈ {P0, ..., PN} of the total number of pro-
cessors employed for the computation owning only a subset of elements {K ∈ T}i.

40

Slope limiting

If the processor Pi did not have any data about other elements, we would not be
able to perform the evaluation involving b

′
de�ned in Equation (3.62), or more pre-

cisely g
′
de�ned in Equation (3.58) as the values Ψk

h|ji for faces Γij of elements from
{K ∈ T}i will not always be there.

To amend this situation, in the distributed triangulation, each processor holds
not only the mesh element data it owns, but also data for mesh elements it needs -
in Discontinuous Galerkin method, for exactly the purposes of internal face integral
evaluation described in the previous paragraph. This data is called ghost elements,
or ghost cells, as these are only copies provided by other processors which own the
particular elements. This is illustrated in Figure 3.14, which is the same case of
distributed triangulation as shown in Figure 3.1.

Figure 3.14: Processor-owned elements (0..4 left to right), with color-coded ghost
elements from other processors.

Note that in the described algorithm, and also with respect to the remarks in the
previous paragraphs, periodic boundary conditions are not speci�cally handled, as
they are only a technically more complex case of internal faces (both from the per-
spective of necessity of utilizing ghost cells, and from the perspective of evaluating
bl in Algorithm 1.

3.8 Slope limiting

It is well known Dolej²í and Feistauer (2015) that the Discontinuous Galerkin
method exhibits nonphysical spurious oscillations in the vicinity of sharp discon-
tinuities. Noteworthy is the fact, that with continuous Finite Element spaces, the
situation is even worse, as the oscillations tend to propagate through the computa-
tional domain. With the DG method, the problem is localized to a single layer of

41

Slope limiting

elements bordering any sharp front. This behavior is not acceptable, and measures
must be taken to eliminate such oscillations - methods aiming at solving this are
usually labeled as �ux limiters, slope limiters, or shock capturing schemes.

These methods can be categorized according to multiple aspects. Out of these,
two are important from the perspective of this work. First categorization is whether
the approach changes the equations by introducing additional term that 'smoothes'
the solution near the sharp front (this may be understood as a form of arti�cial
viscosity / resistivity) - such approach is proposed e.g. in Denner et al. (2017).

In this work, such an approach is not preferred, as we aim at implementing a
generally usable solver, where extensive analysis of the impact of a change in the
governing equations for the particular problem is not possible.

Second categorization worth mentioning is whether the particular approach is
suitable for multi-scale phenomena, where the solution can exhibit large jumps in
all possible con�gurations with respect to the (non-uniformly re�ned) mesh. From a
pragmatic perspective, a rather simple slope and robust limiting technique that does
not change the governing equations is the Barth-Jespersen limiter Barth and Jes-
persen (1989). The Barth-Jespersen limiter considers the piecewise-linear solution
in the form

uh (x) = uc + αe (∇u)c · (x− xc) , 0 ≤ αe ≤ 1, (3.65)

obtained using the linear Taylor basis functions (description of this shapeset is given
in Kuzmin (2010)), where uc is the cell average on the element K, and (∇u)c is the
gradient of the solution on the element K.

The sought parameter αK is the parameter (correction factor) that determines
the maximum admissible slope and is de�ned as:

αK = min
i


min

{
1,

umax
K −uc
ui−uc

}
, if ui − uc > 0,

1, if ui − uc = 0,

min
{

1,
umin
K −uc
ui−uc

}
, if ui − uc < 0,

(3.66)

where ui = uc + (∇u)c · (xi − xc) is the unconstrained solution value at the vertex
xi, and uminK , umaxK are the minimum and maximum cell averages of all elements
sharing a common face with the element K.

However, using this limiting technique, there are two suboptimal behavior features
- the bounds for the limited solution are set on one hand too tight - solution values
from elements meeting at a vertex but having no common face are not taken into
account (they might extend the interval for the admissible correction factor αe, and
on the other hand too loose - solution values on elements that share a common face

42

Slope limiting

may extend the admissible interval for αe based on the value at a vertex that does
not belong to that particular common face.

Both these two problems are solved in the slope limiting technique chosen for this
work

3.8.1 Vertex-based limiter

Introduced by D. Kuzmin in Kuzmin (2010), the Vertex-based limiter aims at being
an improvement over the Barth-Jespersen limiter. It also considers the solution in
the form Equation (3.65), but the de�nition of the correction factor αK di�ers:

αK = min
i


min

{
1,

umax
i −uc
ui−uc

}
, if ui − uc > 0,

1, if ui − uc = 0,

min
{

1,
umin
i −uc
ui−uc

}
, if ui − uc < 0,

(3.67)

where in this case umini , umini are de�ned in such a way that for each of the vertices
they are initialized with a small and a large constant, respectively, and then in the
loop over all elements that contain the i−th vertex, the values are updated as:

umaxi = max {uc, umaxi } , umini = min
{
uc, u

min
i

}
. (3.68)

This slope limiting technique proves to have all the required attributes from the per-
spective of this work. The algorithm implementing this technique looks is presented
in Algorithm 2

43

Slope limiting

Algorithm 2: Limiting the solution using the vertex-based limiter.

Loop over elements
foreach K ∈ Th do

Loop over solution components
foreach k = 1, ..., 8 do

In the rest of the algorithm, u will stand for uk.
Data: Center value of the solution uKc = u

(
xKc
)
at point xKc which

is the center of K
Data: Set of linear basis functions coe�cients obtained as:
Loop over basis functions for the component k
foreach

vk1 := v ∈ {v ∈ vh (K) , component of v = k, v piecewise linear} do
Data: l (v) - index of v in the global system, i.e. row in

Equation (3.50) - Equation (3.52)
Data: ul(v) - solution coe�cient for (v)

Set αK = 1
Loop over vertices
foreach vi, i = 1, ..., 8, vi is a vertex of K do

Data: Vertex value ui = u (vi)

Data: Set of vertex neighbors
{
K
′
}
i
, where vi ∈ K

′
and K

′ 6= K

Loop over elements sharing the vertex vi

foreach K
′ ∈
{
K
′
}
i
do

Data: Center value of the solution uK
′

c = u
(
xK
′

c

)
at point

xK
′

c which is the center of K
′

Calculate umaxi = max
{
ui,max

{
uK
′

c

}}
Calculate umini = min

{
ui,min

{
uK
′

c

}}
Evaluate Equation (3.67), updating αK

Loop over basis functions for the component k
foreach v ∈ vk1 do

ul(v) = αKul(v)

Comparison of limited and unlimited solution

For illustration, the same problem as in Section 3.2.3 is considered, which is suit-
able for illustrating the undershoots and overshoots, as the problem contains a sharp
front where this behavior is clearly visible. In the next Figures, �rst several snap-
shots of an unlimited solution, and then several snapshot of a limited solution are
presented. Note that the unlimited solution can't progress beyond a certain point,
as the undershoots and overshoots get so large that the density values get to be
negative, therefore e.g. calculating its square root needed for the speed of sound
evaluation is impossible. Even before that, we get to non-physical regime, and e.g.

44

Slope limiting

the energy values start growing beyond limit.

45

Slope limiting

Figure 3.15: Unlimited solution - Energy, density, and their values over line y = 0,
snapshots for �rst 4 time steps. The solution cannot progress beyond
the last snapshot, as the oscillations are orders of magnitude larger
than the physical solution

46

Time-stepping and linearization

Figure 3.16: Solution limited with Vertex-based limiter - Energy, density, and their
values over line y = 0, snapshots for t = 0, t = 1.e− 3, t = 2.e− 3, t =
5.e− 3

3.9 Time-stepping and linearization

Since the equations in question are evolution equations (they contain the time
derivative), the time stepping need to be somehow tackled. And since the equa-
tions are nonlinear, to avoid the necessity of using an (iterative) nonlinear solver
for each time step, an explicit time-stepping, leading to a linearization of these
equations is preferred.

3.9.1 Time-stepping

The simple time discretization scheme that we use in Section 3.4.1 allows us to
simply implement the time-stepping in the following fashion:

47

Performance considerations

Algorithm 3: Time-stepping procedure

Set: y0 = (initial solution)
Set: ts = 1 # initial time step
Set: t = 0.00 # initial time
Loop over time steps
for ; t < T ; t = t+ τ, ts = ts+ 1 do

Data: Solution from the previous time step yts−1

1.Call procedure Algorithm 1 to obtain A, b
(
yts−1

)
2.Solve the problem Ayts = b

(
yts−1

)
See note below

3.(If necessary) postprocess yts using Algorithm 2
4.Calculate updated value of τ using Equation (3.42)

Note The step 2 (solving the algebraic problem) is of course a key point in the
overall process. Because of its importance, the aim of this work is not to describe,
or even implement an algebraic solver for this purpose. Many scienti�c teams have
spent many years on publicly available open-source solvers that are usable by the
software we develop for the purpose of solving the MHD phenomena. We use the
existing solvers.

3.10 Performance considerations

Since eventually results are obtained by running a (distributed) program that im-
plements the numerical methods, it is important to focus also on the performance
aspects of the implementation, and not only on the numerical schemes. Plainly put,
even a very e�cient numerical algorithm can run on a computer a very long time,
if not implemented properly.

3.10.1 Parallelization

To be able to perform any large scale calculations, we need to be able to utilize
the performance of hardware at maximum. Being able to use modern, multi-core
computers is an absolute must to achieve good performance, as the execution time
when using parallel execution can decrease by a factor of corresponding to the
number of cores - and modern machines have tens of cores available.
The parallelization is possible at several places in the overall algorithm Algo-

rithm 1. But it makes most sense to parallelize the outer-most loop over elements,
and over faces.

Another point for parallelization is the algebraic solver. As explained in Sec-
tion 3.9.1, we rely on existing software packages for �nding the solution of the
algebraic system Equation (3.53) - all the used solvers support and heavily utilize
parallelization.

48

Performance considerations

3.10.2 Vectorization

Similarly as in section Section 3.10.1, the goal here is to be able to solve the dis-
cretized problem in the most e�cient (fastest) way possible. One of the features
that (modern) hardware o�ers is to employ vectorization instructions - i.e. unary or
binary instructions that operate on N,N > 1 values (in case of unary instructions),
or N,N > 1 pairs of values (in case of binary instructions) at the same time - the
number N depends on the capabilities of the CPU, and on the precision (single or
double). On the hardware that was available to perform calculations for this thesis
(and based on always-used double precision), N = {4, 8}, using such instructions
requires both using them in the code (one has to specify that these instructions
shall be generated explicitly), and having the compiler aware of these, and able to
utilize them in the generated machine code - both compilers used for work on this
thesis (GNU gcc, and Microsoft Visual Studio) support vectorization instructions
(SSE, SSE2, AVX, AVX2).

Vectorization helps heavily with respect to CPU time spent on calculation. In
the algorithm Algorithm 1, vectorized instructions are used in:

• evaluation of the expressions alm+ = JxWj almKj

• evaluation of expressions bl+ = JxWj blKj |face|volumetric

• calculation of JxWj

3.10.3 Distribution

As discussed in Section 3.1.1, the domain decomposition approach is taken to over-
come the physical limitations (CPU physical size, RAM capacity, ...) of a single
machine with shared memory.

This approach has several aspects, that are worth mentioning. The entire process
of discretization of MHD equations (as well as any other system of PDEs) eventually
leads to solving large (sparse) systems of linear equations, and then interpretation
of the solution in terms of a global (de�ned on entire Ω) function - that is a linear
combination of the global basis functions with the solution of the linear problem
being the coe�cients of this linear combination. From this it follows, that distribut-
ing only the triangulation would not by itself lead to radical increase of the size of
problems we can tackle, there are other points where the algorithms employed need
to take distribution of data among processors into account:

A) Distributed matrix and right hand side

• It is necessary for each processor to be able to utilize the memory on
the node it physically belongs to when writing values of calculated in-
tegrals into the algebraic structure (see steps alm + = ..., bl + = ... of
Algorithm 1).

49

Performance considerations

• Distribution of the matrix is actually very important from the mem-
ory capacity perspective. It is typically the largest data structure (to-
gether with preconditioner) used in the entire implementation - regard-
less whether the used method is FEM, DGFEM, or Finite Volumes for
example.

B) Distributed algebraic solver When the algebraic structures (the matrix and the
right hand side) are completed, the sought solution must again be sought in a
distributed manner, otherwise the added cost would be transferring algebraic
data from all processors to a common one, where the solution would be sought.
This is, however, a theoretical possibility, as the data structures used in the
solution of the algebraic problem (decompositions, preconditioners, ...) are
typically too large to be stored on a single processor anyway.

C) Distributed solution

• Although it is quite obvious, it is noteworthy that as the algebraic struc-
tures are distributed, and so is the solution of the algebraic problem, the
actual solution is again, distributed according to the domain decomposi-
tion.

• The distributed solution is the data structure that is most important
from the perspective of the ghost cells - illustrated in Figure 3.14, where
for the distributed discontinuous Galerkin method, we need to be able
to access the distributed solution values from all neighboring elements
when performing numerical integration Equation (3.62).

Message Passing Interface and deal.II

For all distributed computing purposes in this work, deal.II implementation of the
Message Passing Interface (MPI) was used. MPI is a speci�cation for a standard
library for message passing for the purposes of distributed computing, and was orig-
inally introduced in Hariri et al. (1993). The library deal.II (Bangerth et al. (2015))
o�ers wrappers for low-level MPI functions, that are utilizable in the implementa-
tion of the methods of this work.

50

4 Adaptive Mesh Re�nement

As the Adaptive Mesh Re�nement (AMR) is a very important algorithm in the
overall numerical solution, handling the multi-scale aspect of the studied problems,
in this chapter, a description of what needs to be taken care of for the DG method,
in the distributed settings, and what concrete decisions were made during this work,
and justi�cation of these in light of the requirements on the numerical solution.

Note that in what follows, the symbol T or Ti∈{0,1,2,...} shall denote a general
computational mesh and a particular mesh in the series of re�ned meshes respec-
tively. We shall drop the subscript h from Th referring to the dimension (maximum
of diameters of all elements) of the mesh where possible.

4.1 Overview of the AMR

The general schema of any Adaptive Mesh Re�nement algorithm is described in the
algorithm Algorithm 4:

Algorithm 4: Generic AMR algorithm

Data: Mesh T0

Result: A mesh Tn and a solution yn on this mesh satisfying the solution
acceptance criteria

i = 0
while true do

obtain solution yi on Ti
evaluate solution yi acceptance criteria
if solution acceptance criteria satis�ed then

return
else

identify subset T ri of all elements K ∈ Ti to be re�ned, T ri ⊆ Ti
obtain Ti+1 by re�ning (at least) all K ∈ T ri
i = i + 1

In Algorithm 4, solution acceptance criteria is usually either spatial error estimate
threshold, or number of elements, etc. In the same description, the note that there
might be other elementsK /∈ T ri re�ned in order to maintain some desired attributes
of the mesh, such as 1-irregularity (the re�nement level di�erence of two elements
sharing a common face is at most one), smoothness of mesh (there is e.g. no
unre�ned elements for which all, or a majority of neighboring elements would be
re�ned), etc. An example of several steps of the algorithm (where step number

51

Overview of the AMR

corresponds to the variable i in Algorithm 4, is given in Figure 4.1 below on a
sample problem in 2 dimensions.

(a) AMR step 0 - 100 ele-
ments

(b) AMR step 1 - 232 ele-
ments

(c) AMR step 2 - 379 ele-
ments

(d) AMR step 3 - 610 ele-
ments

(e) AMR step 4 - 1016 el-
ements

(f) AMR step 5 - 1364 el-
ements

Figure 4.1: AMR steps

The bene�t of AMR is clear. If we were to discretize the entire domain with
elements small enough to capture the solution with the same quality as in the last
AMR step, we would end up with > 40000 elements, where with AMR, the same is
achieved with < 1400.

Since we are dealing with evolution equations, it is necessary to specify how the
AMR algorithm relates with the non-AMR solution algorithm Algorithm 3. There
are several points we need to take into considerations:

• slope limiting as a postprocessing step after the solution must not be omitted
in case of higher-order (e.g. linear) basis functions

• the solution needs to be transferred to the re�ned mesh in order to be able to
assemble the matrix and the right-hand side on the re�ned mesh in the next
adaptivity iteration

52

Overview of the AMR

• since the solution evolves and the re�nements that contribute to error reduc-
tion at time step n do not contribute to error reduction at time step n + m
(the solution was e.g. oscillating or potentially discontinuous at time step n,
but is smooth at time step n + m), we also want to revert such re�nements
as the simulation time progresses, we call this process coarsening of elements.
For this we shall de�ne a set T ci of all elements to be coarsened.

The algorithm looks like this:

Algorithm 5: AMR for time-discretized problems

Set: y0 = (initial solution)
Set: ts = 1 # initial time step
Set: t = 0.00 # initial time
Loop over time steps
for ; t < T ; t = t+ τ, ts = ts+ 1 do

Data: Solution from the previous time step yts−1 expressed on the mesh
T ts0

i = 0
while true do

call procedure Algorithm 1 to obtain Ai, bi
(
yts−1
i

)
on the mesh T tsi

solve the problem Aiy
ts
i = bi

(
yts−1
i

)
post-process the solution ytsi using Algorithm 2
evaluate solution ytsi acceptance criteria
if solution acceptance criteria satis�ed then

yts = ytsi
break While loop

else

identify subset T ri of all elements K ∈ T tsi to be re�ned, T ri ⊆ T tsi
identify subset T ci of all elements K ∈ T tsi to be coarsened,
T ci ⊆ T tsi
obtain T tsi+1 by re�ning (at least) all K ∈ T ri and coarsening a
subset of T ci
transfer the solution ytsi onto T tsi+1

i = i + 1
calculate updated value of τ using Equation (3.42)

The output of the application of Algorithm 5 is presented in Figure 4.2.

53

Overview of the AMR

Figure 4.2: Solution obtained using AMR in 4 di�erent time steps - ρ distribution
on elements in T (Ω)

The critical points of Algorithm 5 are

• solution acceptance criteria evaluation,

• identi�cation of subset T ri ,

• identi�cation of subset T ci .

For the last two points, we shall consider a function r

r : T tsi → [0,+∞), (4.1)

which shall be called re�nement indicator, and the set T ri = {Kr} shall be then
de�ned as a set of all such elements for which one of these criteria are satis�ed:

r (Kr) > α ·max
{
r (K) | K ∈ T tsi

}
, or (4.2)

r (Kr) > β ·
∑{

r (K) | K ∈ T tsi
}
. (4.3)

54

Adaptive-mesh re�nement and DG

The set T ci = {Kc} shall be de�ned similarly as

r (Kc) < γ ·max
{
r (K) | K ∈ T tsi

}
, or (4.4)

r (Kc) < δ ·
∑{

r (K) | K ∈ T tsi
}
. (4.5)

Note that the parameters 0 < γ ≤ α < 1, 0 < δ ≤ β < 1 are arti�cial, and do
not a�ect the overall solution quality (as the solution acceptance criteria has to be
met independently of choices of their values). Nevertheless, the choices may a�ect
performance - e.g. for a high α, β, many steps are needed in order to satisfy the
solution acceptance criteria, and on the other hand, if values are too low, there is an
unnecessary high number of degrees of freedom that do not contribute substantially
to the reduction of the solution error.

Please also note, that description of edge cases, and limitations are not given here
for brevity. These cases include e.g. what happens if an element is both selected
for coarsening and re�nement, or how we maintain a 'minimal' re�nement level so
that we do not coarsen beyond a rational limit.

4.2 Adaptive-mesh re�nement and DG

With the Discontinuous Galerkin method, using AMR brings additional complex-
ity into the evaluation of face integrals described in Equations (3.58) and (3.62).
To describe the process in detail, de�nition of the numerical �ux Equation (3.13)
needs to be taken into account. What is evaluated during the assembling procedure
Algorithm 1 is the term Equation (3.62). In order to evaluate it, we need to con-

sider values of the solution in quadrature points
{
xij1 , ...,x

ij
nf

}
from both sides of

Γij ∈ ΓI , that is from the two neighboring elements Ki ∈ T,Kj ∈ T . For Γij ∈ ΓB
the situation is obviously simpler as is not discussed further.

What needs to be evaluated is in fact the term

H
(
Ψk
h|ij (x) ,Ψk

h|ji (x) ,nij (x)
)

(4.6)

If the two neighboring elements are of the same size as in Figure 4.3, calculation of
this term from algorithmic perspective is performed as follows:

55

Adaptive-mesh re�nement and DG

Algorithm 6: Assembling of numerical �ux

Data: Ki ∈ Th
Data: Γij ∈ ΓI a face of Ki

Data: Quadrature points
{
xij1 , ...,x

ij
nf

}
1. Triangulation and DOFs handling
Find the neighbor Kj (querying data structures representing the mesh T)
Find the set of degrees of freedom (basis functions) vih = vh

(
Ki
)

Find the set of degrees of freedom (basis functions) vjh = vh
(
Kj
)

Loop over quadrature points
foreach jf ∈ {1, ...,nf} do

2. Previous solution values

Find previous solution value wip

jf

= Ψk
h|ij

(
xjf

)
on Ki

Find previous solution value wjp

jf

= Ψk
h|ij

(
xjf

)
on Ki

Set: njf
= nij

(
xjf

)
3. Numerical �ux evaluation

H
(
Ψk
h|ij (x) ,Ψk

h|ji (x) ,nij (x)
)

= H

(
wip

jf

,wjp

jf

,njf

)
... (Further processing as in Algorithm 1)

Figure 4.3: Neighbor elements Ki,Kj in the mesh (above), transformed in order to
view Γij (below).

56

Adaptive-mesh re�nement and DG

If however, the two neighboring elements are not of the same size, situation gets
more complicated. Note that for this work, the level of uniform re�nement of the
hexahedron Ki must di�er from the level of uniform re�nement of any neighboring
element Kj with which it shares a common face Γij at most by one. This means
that the situation when neighboring elements are not of the same side looks always
as in Figure 4.4, but Ki can be on either side of Γij as indicated in Figure 4.4. Note
that the edge on the whole side of element Ki is not physically stored anymore (at
least not for assembling purposes).

Figure 4.4: Neighbor elements Ki,Kj ,K
′
j , ... in the mesh (above), transformed in

order to view Γij ,Γij′ (below).

4.2.1 Periodic boundary conditions

Handling with periodic boundary conditions with AMR is primarily di�cult because
of implications for mesh partitioning - additional ghost cells need to be added to
cells on boundaries with the periodic condition - in order to perform steps 1 and 2
in Algorithm 6. See Figure 4.5, and compare to Figure 3.14.

The setup here is the same one used in Section 3.1.1, showing ghost elements as
in Figure 3.14, but periodic boundary conditions were added to the left-right and
top-bottom boundary part pairs. And the necessary elements were thusly added
to ghost elements set for each a�ected processor (processor having any elements on
the periodic boundaries).

57

Adaptive-mesh re�nement and DG

Figure 4.5: Processor-owned elements (0..4 left to right), with color-coded ghost
elements from other processors. Ghost cells that have to be present here
are dictated by �uxes - both across internal edges, and across periodic
boundaries.

4.2.2 Relationship with slope limiters

As a key step in the slope limiting algorithm Algorithm 2 is forming the set of all

elements Kv =
{
K
′ ∈ T | v is a vertex of K

}
for a particular vertex v, and as this

step tends to be rather expensive for distributed triangulations (which have di�erent
topology than vertex-based), caching of the already obtained mappings between the
vertex v and the set Kv is employed. Of course with every mesh re�nement, a lot
of these cached values need to be forgotten.

In reality, after each mesh re�nement step, there follows a step of redistributing
the mesh (to have roughly equal number of elements owned by each processors -
that is to avoid bottlenecks where one processors would do a signi�cant portion of
all processing and other processors would idly wait for it to �nish assembling). This
is illustrated in Figures 5.8 to 5.13.

From this it follows, that carefully computing which entries in such a cache must
be forgotten and which not would be very tedious and complex - that is why, for
pragmatic reasons, after each re�nement step, the entire cache is �ushed. But in
order not to su�er from slope limiting being a costly operation, the mesh re�nement
is performed only in every n-th time step. Another reason to do so is that with the
unchanged mesh, the algebraic solver can keep the once computed matrix structures
and data alike, which again saves computational time.

58

Reference solution approach

4.3 Reference solution approach

As the aim of this work is to prepare a universally usable solver for MHD problems,
the re�nement indicator Equation (4.1) must ideally not be dependent on any at-
tributes of the solved problem data (initial condition, boundary conditions, physical
quantities such as γ, etc.). In order to achieve this, the so-calledreference solution
approach is used.

The reference solution approach is not only problem, but also equation (physics)
independent, which is truly invaluable for many types of physical problems, even so
for multi-physics coupled problems, such as MHD.

59

Reference solution approach

4.3.1 Algorithm

Algorithm, given in Line 7 is accompanied by an example in Figures 4.6 to 4.9:

Algorithm 7: Reference solution AMR algorithm

Data: Pair of meshes - �ne mesh T f0 , and coarse mesh T c0 - the �ne mesh
being one layer of re�nement �ner than the coarse one.

Data: Solution acceptance criteria in the form of threshold 0 < α < 1
representing the relative error estimate.

Note: This condition translates to:

∑
Kj∈Tc

i
||yi−yc

i ||L2(Kj)∑
Kj∈Tc

i
||yc

i ||L2(Kj)
< α, where yci is

a projection of yi onto the coarse space.
Result: A �ne mesh T fn and a solution yn on this mesh satisfying the

solution acceptance criteria
Note: In order to be sure that we will converge towards an acceptable

solution, we need to de�ne the re�nement indicator (see
Equation (4.1)) in a way that the elements selected for re�nement
are those that contribute to the relative error (left hand side of the
equation for the acceptance criteria) the most.

This means that the re�nement indicator is de�ned as r (K) =
||yi−yc

i ||L2(K)

||yc
i ||L2(K)

.

i = 0
while true do

obtain solution yi on T
f
i

project yi onto T
c
i , obtaining coarse projection y

c
i

evaluate ||yi − yci ||L2(K), K ∈ T ci
if
∑

Kj∈T c
i
||yi − yci ||L2(Kj) < α satis�ed then

return
else

identify subset T ri of all elements K ∈ T ci to be re�ned, T ri ⊆ T ci in
such a way that for some 0 < α < 1 (see Equation (4.2)) we de�ne
the subset T ri as :

T ri =
{
K ∈ T ci : ||yi − yci ||L2(K) > αmaxK′∈T c

i
||yi − yci ||L2(K′)

}
obtain T ci+1 by re�ning (at least) all K ∈ T ri
obtain T fi+1 by uniformly re�ning T ci+1

i = i + 1

In �gures Figures 4.6 to 4.9, several AMR steps are presented, showing how the
Line 7 works in practice. The results are taken from Solin et al. (2014), and similar
examples can be found in Ma et al. (2012). The error ||yi − yci ||L2(K), K ∈ T ci
is shown in the top-right corner, and the two meshes - T c0 and T fn and - at the bottom
(left and right). The color of mesh elements corresponds to varying polynomial
degree of basis functions on that element.

60

Reference solution approach

Figure 4.6: AMR Step 1, �ne solution (top left), coarse mesh (bottom left), �ne
mesh (bottom right), element-wise error (top right)

Figure 4.7: AMR Step 2, �ne solution (top left), coarse mesh (bottom left), �ne
mesh (bottom right), element-wise error (top right)

61

Reference solution approach

Figure 4.8: AMR Step 3, �ne solution (top left), coarse mesh (bottom left), �ne
mesh (bottom right), element-wise error (top right)

Figure 4.9: AMR Step 4, �ne solution (top left), coarse mesh (bottom left), �ne
mesh (bottom right), element-wise error (top right)

62

Reference solution approach

4.3.2 Implementation notes

Regardless of whether the Reference solution-based AMR, or AMR based on another
solution criteria and re�nement indicator is used, a necessary implementation aspect
is the iterative approach towards obtaining an acceptable solution - this applies both
to Line 7 as well as Algorithm 4 - in both cases these iterations are handled via a
While loop with the variable i.

In order to satisfy the solution acceptance criteria, and possibly some other tech-
nical criteria (minimum and maximum number of degrees of freedom for exam-
ple), care must be taken in the sub-step (again, present in both presented algo-
rithms) of identifying the elements for re�nement (the set T ri). The way this set
is constructed in Equations (4.2) to (4.5) assumes the ability to calculate either
max

{
r (K) | K ∈ T tsi

}
, or

∑{
r (K) | K ∈ T tsi

}
, prior to identifying the set T ri .

This however, in a distributed computation, constitutes a map-reduce problem of
the following nature:

A) On each processor separately, calculate the local contribution

B) On the master processor (rank #0), collect all local contribution

C) On the master processor calculate the result, distribute it to all processors

D) On each processor, use the global result to identify the local contribution to
the set T ri

63

5 Results

In this section, results from the computation using the implemented software are
presented. There are two classical benchmarks for 3-dimensional MHD equations,
namely the MHD Blast Londrillo and Zanna (2000), Balsara and Spicer (1999), and
the Orszag-Tang vortex Orszag and Tang (1979). And then the main section of this
work contains results from the �ux tube eruption model on and above the Sun's
surface.

In most cases, we are interested in the distribution of plasma density ρ and the
magnetic �eld B in the domain Ω.

5.1 Benchmarks

The benchmarks presented in this Section do not have an exact analytical solution,
but the formation of waves and discontinuities is well studied, and benchmarking
is usually performed on the basis of comparing the structure and presence of non-
physical attributes.

5.1.1 Hardware speci�cation

For all following benchmarks, the setup described below was used. The computa-
tional mesh Th was formed in all cases by rectangular hexahedra. The value of the
time step τ used was set according to the CFL condition (Section 3.4.2). The Taylor
basis functions (see Kuzmin (2010)) and Divergence-free basis functions (Table 3.1)
of order 0 (piecewise constant functions) and 1 (piecewise linear functions) were
used. Where appropriate (for piecewise linear basis functions), the slope limiting
technique from Section 3.8.1 was used. Illustration of the obtained results follows
below - these results were obtained using one node of the department's computa-
tional cluster with these parameters:

• CPU: Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz,

• # of Cores: 48 per node (nodes 1, 2), 16 per node (nodes 3, 4),

• RAM: 512 GB,

• C/C++ Compiler: GNU gcc 5.4.0,

• Vectorization support: AVX2,

64

Benchmarks

• Parallelization implemented: Intel TBB,

• Distributed calculation implemented: OpenMPI.

5.1.2 MHD Blast

MHD Blast - original version

This benchmark has been used for decades - Zachary et al. (1994), Londrillo and
Zanna (2000), Balsara and Spicer (1999) - in a variety of con�gurations and as a
benchmark in software - e.g. (Stone et al., 2008a). The setup as described in Zachary
et al. (1994), Londrillo and Zanna (2000) is de�ned (although in Londrillo and Zanna
(2000) with interchanged x− and y− coordinates) by the initial conditions:

γ = 5/3 (5.1)

p0 (x, t) = 100 for |x| < 0.1

p0 (x, t) = 1 for |x| ≥ 0.1

ρ (x, t = 0) = 1,

p (x, t = 0) = p0 (x, t) ,

u1 (x, t = 0) = 0,

u2 (x, t = 0) = 0,

u3 (x, t = 0) = 0,

B1 (x, t = 0) = 0,

B2 (x, t = 0) = 100,

B3 (x, t = 0) = 0.

Total energy is calculated using Equations (0.1) to (0.3). The domain Ω is a square,
with scaling quite arbitrarily used in the papers. In the case of Londrillo and Zanna
(2000), Ω = [0, 1]× [0, 1], in this work it is Ω = [−0.5, 0.5]× [−0.5, 0.5].
It is obvious from the initial setup, that the example is true to its name, and

it is in fact a blast of the over-pressured area |x| < 0.1, where pressure p is 100×
larger than elsewhere in the domain. This setup is completed with simple out�ow
boundary condition Equation (2.40). In the next �gures, the solution as presented in
Londrillo and Zanna (2000) is compared to the solution obtained with the approach
described in this work. Note that the solution from Londrillo and Zanna (2000)
needed to have the axes transformed (x
 y) with respect to the original paper.
The Figure 5.1 is taken from the article Londrillo and Zanna (2000) from the page
33. Unfortunately the paper does not specify the precise time at which the snapshots
are taken.

65

Benchmarks

Figure 5.1: Results from Londrillo and Zanna (2000), density(left), magnetic en-
ergy(right)

Figure 5.2: Obtained results, t = 10−3, density(left), magnetic energy(right)

66

Benchmarks

Figure 5.3: Obtained results, t = 6 · 10−3, density(left), magnetic energy(right)

Figure 5.4: Obtained results, t = 11 · 10−3, density(left), magnetic energy(right)

67

Benchmarks

Figure 5.5: Obtained results, t = 16 · 10−3, density(left), magnetic energy(right)

Figure 5.6: Obtained results, t = 23 · 10−3, density(left), magnetic energy(right)

The solution in Figures 5.5 and 5.6 is apparently almost identical to that in
Figure 5.1. To demonstrate the distributed nature of the computation, in Figure 5.7,
color-mapping of elements K ∈ T to processors owning the particular element is
presented (see Section 3.1.1 for details). Note that there were 48 processors used
for the computation.

68

Benchmarks

Figure 5.7: Color-mapping of elements to processors for the computation of Fig-
ures 5.2 to 5.6

This however, was a static calculation with 200 mesh elements in the x− and
y− dimensions. In order to see how the AMR (see Chapter 4) performs, the same
computation was performed in adaptive setup. Starting from a very coarse mesh of
10 elements in both dimensions, the evolving mesh and its distribution to processors
are shown in Figures 5.8 to 5.13 - the distribution to processors on the left, the mesh
elements on the right.

69

Benchmarks

Figure 5.8: Obtained results, initial state, distribution of ρ on elements in T (Ω)
(right) and distribution of these elements to processors (left)

Figure 5.9: Obtained results, t = 5 · 10−3, distribution of ρ on elements in T (Ω)
(right) and distribution of these elements to processors (left)

70

Benchmarks

Figure 5.10: Obtained results, t = 1 · 10−2, distribution of ρ on elements in T (Ω)
(right) and distribution of these elements to processors (left)

Figure 5.11: Obtained results, t = 15 · 10−3, distribution of ρ on elements in T (Ω)
(right) and distribution of these elements to processors (left)

71

Benchmarks

Figure 5.12: Obtained results, t = 2 · 10−2, distribution of ρ on elements in T (Ω)
(right) and distribution of these elements to processors (left)

Figure 5.13: Obtained results, t = 25 · 10−3, distribution of ρ on elements in T (Ω)
(right) and distribution of these elements to processors (left)

MHD Blast - extended version

An extended version of the benchmark has been used in Gaburov and Nitadori
(2011), Stone et al. (2008b), and a similar problem was used also in Xisto et al.
(2014) - the description of the benchmark is also available at:http://www.astro.
princeton.edu/~jstone/Athena/tests/blast/blast.html. In this version, the
domain dimensions are set as a rectangle: Ω = [−0.5, 0.5] × [−0.75, 0.75]. The

72

Benchmarks

initial conditions are a little di�erent than in the case of Equation (5.1), and read:

γ = 5/3 (5.2)

p0 (x, t) = 10 for |x| < 0.1

p0 (x, t) = 0.1 for |x| ≥ 0.1

ρ (x, t = 0) = 1,

p (x, t = 0) = p0 (x, t) ,

u1 (x, t = 0) = 0,

u2 (x, t = 0) = 0,

u3 (x, t = 0) = 0,

B1 (x, t = 0) =
1√
2
,

B2 (x, t = 0) =
1√
2
,

B3 (x, t = 0) = 0,

with periodic boundary conditions on the top-bottom, and left-right parts of the
boundary. That is, with respect to Equation (2.41), the two pairs Γ1,Γ2,Γ

′
1,Γ

′
2 are

speci�ed as follows:

Γ1 = {−0.5} × [−0.75, 0.75], (5.3)

Γ2 = {0.5} × [−0.75, 0.75], (5.4)

and

Γ
′
1 = [−0.5, 0.5]× {−0.75} , (5.5)

Γ
′
2 = [−0.5, 0.5]× {0.75} . (5.6)

The solution image taken from Gaburov and Nitadori (2011) is for comparison in
Figure 5.26.

Results

The �rst set of results are from calculations using piecewise-constant elements, on
three successively uniformly re�ned meshes. The meshes used for computations
Figures 5.14 to 5.19 contained:

• 100× 150 elements (left)

• 200× 300 elements (middle)

• 400× 600 elements (right)

73

Benchmarks

Figure 5.14: Obtained results, t ≈ 0.1, distribution of ρ (top), with line distribution
along bottom-left → top-right diagonal (bottom)

Figure 5.15: Obtained results, t =≈ 0.2, distribution of ρ (top), with line distribu-
tion along bottom-left → top-right diagonal (bottom)

74

Benchmarks

Figure 5.16: Obtained results, t ≈ 0.3, distribution of ρ (top), with line distribution
along bottom-left → top-right diagonal (bottom)

Figure 5.17: Obtained results, t ≈ 0.45, distribution of ρ (top), with line distribution
along bottom-left → top-right diagonal (bottom)

75

Benchmarks

Figure 5.18: Obtained results, t =≈ 0.75, distribution of ρ (top), with line distribu-
tion along bottom-left → top-right diagonal (bottom)

Figure 5.19: Obtained results, t ≈ 0.95, distribution of ρ (top), with line distribution
along bottom-left → top-right diagonal (bottom)

76

Benchmarks

It is clearly visible, that the solution is somehow smeared, and the uniform mesh
re�nements improve the situation, but not greatly, and for a large cost of storage
size for storing much more mesh elements.

In order to amend the situation, and be able to obtain a higher-quality solution
with a reasonable number of mesh elements, piecewise-linear basis functions need
to be used. Results with piecewise-linear basis functions, on three successively
uniformly re�ned meshes are given in Figures 5.20 to 5.25. The meshes for these
computations contained:

• 50× 75 elements (left)

• 100× 150 elements (middle)

• 200× 300 elements (right)

Figure 5.20: Obtained results, t ≈ 0.1, distribution of ρ (top), with line distribution
along bottom-left → top-right diagonal (bottom)

77

Benchmarks

Figure 5.21: Obtained results, t =≈ 0.2, distribution of ρ (top), with line distribu-
tion along bottom-left → top-right diagonal (bottom)

Figure 5.22: Obtained results, t ≈ 0.3, distribution of ρ (top), with line distribution
along bottom-left → top-right diagonal (bottom)

78

Benchmarks

Figure 5.23: Obtained results, t ≈ 0.45, distribution of ρ (top), with line distribution
along bottom-left → top-right diagonal (bottom)

Figure 5.24: Obtained results, t =≈ 0.75, distribution of ρ (top), with line distribu-
tion along bottom-left → top-right diagonal (bottom)

79

Benchmarks

Figure 5.25: Obtained results, t ≈ 0.95, distribution of ρ (top), with line distribution
along bottom-left → top-right diagonal (bottom)

Now, the solution with piecewise-linear functions is of much higher quality and
the solution snapshots displayed in Figure 5.27 are practically identical (and even
more detailed) as the solution from Gaburov and Nitadori (2011) in Figure 5.26.
Of course, this comes at a price of increased number of degrees of freedom, and
associated increase in the storage size requirements, as well as the computation
time, with respect to the solution with piecewise-constant basis functions.

80

Benchmarks

Figure 5.26: Reference solution, ρ distribution, t ≈ 0.2 (left), t ≈ 1.0 (right), from
Gaburov and Nitadori (2011)

Figure 5.27: Obtained ρ distribution, t ≈ 0.2 (left), t ≈ 1.0 (right)

81

Benchmarks

AMR for MHD Blast - extended version

One can see, that for the �nest mesh of 200 × 300 elements, the solution obtained
shows very detailed features, and is arguably of even higher quality than the refer-
ence one from Gaburov and Nitadori (2011). However, the calculation needs

200× 300 = 60000 elements, (5.7)

where each element contains 4 basis functions for each of ρ, p, π1, π2, π3, and 11 basis
functions forB, that is 31 basis functions per element, in total 60000×31 = 1860000
degrees of freedom (DOFs). This number can be decreased, while keeping the same
(or even higher) solution quality, with AMR - as illustrated in Figures 5.28 to 5.35
below. On each of Figures 5.28 to 5.35, the solution is displayed on the left, the
adapted mesh in the middle, and the owning processor of a chunk of elements on
the right. Note that there were 96 processors used for the computation.

Figure 5.28: Obtained ρ distribution, mesh elements, and their owning processor.
Time t ≈ 0.05.

82

Benchmarks

Figure 5.29: Obtained ρ distribution, mesh elements, and their owning processor.
Time t ≈ 0.1.

Figure 5.30: Obtained ρ distribution, mesh elements, and their owning processor.
Time t ≈ 0.15.

Figure 5.31: Obtained ρ distribution, mesh elements, and their owning processor.
Time t ≈ 0.2.

83

Benchmarks

Figure 5.32: Obtained ρ distribution, mesh elements, and their owning processor.
Time t ≈ 0.35.

Figure 5.33: Obtained ρ distribution, mesh elements, and their owning processor.
Time t ≈ 0.55.

Figure 5.34: Obtained ρ distribution, mesh elements, and their owning processor.
Time t ≈ 0.7.

84

Benchmarks

Figure 5.35: Obtained ρ distribution, mesh elements, and their owning processor.
Time t ≈ 0.85.

In the Table 5.1, mesh elements counts for all the displayed snapshots are given.
Note that, as described in Algorithm 5, the number of elements constantly evolves.

Time step Number of mesh elements Number of DOFs

t ≈ 0.05 5880 182280

t ≈ 0.1 7332 227292

t ≈ 0.15 8649 268119

t ≈ 0.2 10044 311364

t ≈ 0.35 14013 434403

t ≈ 0.55 16578 513918

t ≈ 0.7 17192 532952

t ≈ 0.85 18708 579948

Table 5.1: Mesh elements and DOFs counts for snapshots displayed in Figures 5.28
to 5.35

From Table 5.1, it is cleary visible, that even for such a complex, and seemingly
chaotic example, the AMR approach can cut down the number of mesh elements /
DOFs radically, by 70-90 %, while achieving comparable results.

5.1.3 Orszag-Tang vortex

This problem was �rst described in Orszag and Tang (1979) and has been extensively
used as a benchmark for 2- and 3- dimensional MHD code (Zachary et al. (1994),
Londrillo and Zanna (2000), Skala and Barta (2012), Derigs et al. (2017), and
many others). It is a simple model of the evolution of MHD turbulence including
interactions between the several shock waves that appear. The Orszag-Tang system

85

Benchmarks

is de�ned by the initial conditions:

ρ0 =
25

36π
(5.8)

p0 =
5

12π

B0 =

√
1

4π

γ = 5/3

ρ (x, t = 0) = ρ0,

p (x, t = 0) = p0,

u1 (x, t = 0) = − sin(2πy),

u2 (x, t = 0) = sin(2πx),

u3 (x, t = 0) = 0,

B1 (x, t = 0) = −B0 sin(2πy),

B2 (x, t = 0) = B0 sin(4πx),

B3 (x, t = 0) = 0,

U (x, t = 0) =
p0

γ − 1
+ Um (x, t) + Uk (x, t) ,

where the last term is an application of Equations (0.1) to (0.3). The domain Ω
is set as Ω = [0, 1] × [0, 1] and the problem is equipped with periodic boundary
conditions on the top-bottom, and left-right parts of the boundary, similarly as in
Section 5.1.2. This con�guration is strongly unstable, leading to a wide spectrum
of propagating MHD modes and shock waves.

As before, in order to compare with reference papers, �gures are presented from
these papers - see Figure 5.36. The images are taken from pages 30 (Londrillo and
Zanna (2000)), and 20/282 (Zachary et al. (1994)) respectively. All are taken at
t = 0.5.

86

Benchmarks

Figure 5.36: p isolines from Londrillo and Zanna (2000) (top left), p isolines from
Zachary et al. (1994) (top right), p along y = 0.3125 from Zachary
et al. (1994) (bottom).

Results obtained in the implemented software are presented in Figures 5.37 to 5.43.
The result on Figure 5.43 is obviously in almost exact accordance with Figure 5.36.
Also, similar number of elements was used - 200 in the computation in the imple-
mented software, and 192 in the reference computation.

87

Benchmarks

Figure 5.37: p distribution in Ω and p along y = 0.3125, t = 0.03

Figure 5.38: p distribution in Ω and p along y = 0.3125, t = 0.18

Figure 5.39: p distribution in Ω and p along y = 0.3125, t = 0.28

88

Benchmarks

Figure 5.40: p distribution in Ω and p along y = 0.3125, t = 0.38

Figure 5.41: p distribution in Ω and p along y = 0.3125, t = 0.46

Figure 5.42: p distribution in Ω and p along y = 0.3125, t = 0.48

89

Flux tube eruption model

Figure 5.43: p distribution in Ω and p along y = 0.3125, t = 0.5

As noted above these �gures, the resolution of all present shocks and disconti-
nuities is very high, and is accordance with the reference results (Figure 5.36) in
Londrillo and Zanna (2000), and Zachary et al. (1994).

5.2 Flux tube eruption model

This model is based on the original Titov-Demoulin model from Titov and De-
moulin (1999), as used in Kotr£ et al. (2012), where the geometrical proportions,
and equilibrium conditions are taken from Titov and Demoulin (1999).

5.2.1 Problem parameters

The model parameters are as follows. Note that kB is the Boltzmann constant
kB = 1.38064852×10−23 J

K , mp is the plasma mass, and g gravitational acceleration.
Parameter values read

90

Flux tube eruption model

β 0.05 Plasma beta

LG 2 kB
Text

(mpg)
= 1.2× 108 [m] = 20 Coronal height scale in dimension-

less units
Nt 5 Torus winding number
R 3 Torus major radius
L 1.5 Magnetic charge separation distance
d 1.5 Geometrical factor

q
ln(8e−5/4R)

4 Nt

(
L
R

)2 [
1 +

(
R
L

)2]3/2
Normalised magnetic charge corre-
sponding to global equilibrium

H 2
N2

t
R2 "Helicity" factor inside tho loop

Text
Tin

10 Coronal/prominence temperature
ratio

The domain Ω is taken as [−2.5, 2.5]× [−5, 5]× [0, 5].

5.2.2 Initial condition

The model is equipped with an initial condition:

ρ (x, t0) = exp

(
−z

Text
Tin

LG

)
, x inside the torus (5.9)

ρ (x, t0) =
Tin
Text

exp

(
−z
LG

)
, x outside the torus (5.10)

p (x, t0) = β everywhere (5.11)

v (x, t0) = 0 everywhere (5.12)

B (x, t0) = Bin (x, t0) +Bext (x, t0) , (5.13)

where t0 = 0, and the equations for the magnetic �eld of the �ux rope Bin (x, t0),
magnetic �eld created by the (arti�cial) magnetic charges Bext (x, t0) are the same
as in equations (3) and (4) in Kotr£ et al. (2012).

91

Flux tube eruption model

5.2.3 Boundary conditions

The model of equilibrium is equipped with these boundary conditions for density ρ,
pressure p, and velocity v:

∂ρ

∂n
= 0 everywhere, (5.14)

∂p

∂n
= 0 everywhere, (5.15)

∂v

∂n
= 0 on the left, right, front, back, and top boundary, z > 0, (5.16)

v = 0 on the bottom boundary, z = 0, (5.17)

(5.18)

where the last equations represents the �xed ends of the �ux rope on Sun's surface.
The conditions for the magnetic �eld are more di�cult to set, as we need to make
sure that ∇ ·B = 0 also for the magnetic �eld across the boundary. One way to
achieve this is to set:

∂Bt1,2
∂n

= 0, (5.19)

∂Bn
∂n

= −
∑
i=1,2

∂Bti
∂ti

, (5.20)

where n is the normal direction, ti, i = 1, 2 are the two tangential directions, and
Bn, and Bt1,2 stands for the normal, and two tangential components of the magnetic
�eld B. Also, U is calculated from the above so that the relation Equation (0.3)
holds.

5.2.4 AMR Results

This case is very sensitive to the correct representation of the rotation of the mag-
netic �eld (∇ ×B). It is therefore very important to capture the areas in Ω with
rapid changes in this quantity with su�cient detail. In order to do that, one must
start already with capturing details of the initial condition. In Figures 5.44 to 5.49,
several AMR steps are shown, capturing the initial condition (Equation (5.9)). In
each of the images, ∇×B distribution in Ω is shown in the following manner:

• yz-plane at y = 0 (top left),

• xz-plane at y = 0 (top right),

• xy-plane at z = 0 (bottom right),

• part of Ω with ∇ × B > η for some small η representing a negligible value
(bottom left).

92

Flux tube eruption model

Figure 5.44: AMR step 3, 2840 cells

Figure 5.45: AMR step 5, 5801 cells

93

Flux tube eruption model

Figure 5.46: AMR step 7, 14691 cells

Figure 5.47: AMR step 9, 50090 cells

94

Flux tube eruption model

Figure 5.48: AMR step 11, 119257 cells

Figure 5.49: AMR step 15, 142147 cells

95

Flux tube eruption model

From Figures 5.44 to 5.49, it is quite clear, that the AMR approach very well
resolves the distribution of the magnetic �eld rotation. It is also very clear, that
for a full 3-dimensional real world cases, the number of elements needed in the
triangulation T will get much higher than in the case of 2-dimensional benchmarks.
Without the use of AMR, this number would be unbearable. It would be unbearable
as well, should distributed computing through MPI were not employed.

The actual evolution simulation of the twist in the magnetic �ux rope is still a
work in progress. The equilibrium conditions from Titov and Demoulin (1999) are
di�cult to satisfy, and some tuning of conditions presented in Kotr£ et al. (2012) is
ongoing. The work on this is collaborative, with the Astronomical Institute of the
Czech Academy of Sciences.

96

6 Conclusion, outlook

As for the mathematical, numerical, and technical (software) parts for such tool to
be delivered, all problems that were to be solved, such as

• Shock-capturing for high-order DG scheme to prevent non-physical oscillations
(through Vertex-based limiter, see Algorithm 2),

• Adaptive algorithm for the discretization of the space derivatives (through
AMR, entire Chapter 4),

• A speci�c shapeset of basis and test functions based on Taylor expansions
(through Section 3.3),

• Adaptive algorithm for the discretization of the time derivative (through CFL
condition, see Equation (3.42)),

have been solved, and moreover performance level meets the needs of the use cases.
All this has been shown on benchmark problems (see Section 5.1), as well as real-
world Titov-Demoulin-based simulation. Of course, much can be improved upon,
for example:

• Second-order scheme for the discretization of the time derivative,

• Adaptive algorithm for the discretization of the time derivative,

• Caching of values that are necessary in multiple spaces of the algorithm (uti-
lizing the RAM),

• Further use of vectorization for evaluation of integral quantities,

but the original goal of preparing an easy-to-use, easy-to-extend, and well pro-
grammed, and tested software package, has been achieved:

• The code is able to utilize large-scale clusters through implementation being
based on Message Passing Interface (MPI),

• The code is publicly available, and well documented - by following the schemat-
ics of the used numerical methods, as well as using clear naming conventions
in the object model of the program,

• The code is quite ready for addition of new tests, new benchmarks, new ex-
amples, as well as easy parametrization of the existing ones.

97

6 Conclusion, outlook

Outloook

Further work will focus on real-world astrophysical problems, where the Titov-
Demoulin-based simulations, although all mathematical and numerical apparatus
is in place, still need work to satisfy the goal of being reliable and all-purpose tool
for astrophysicists. Further work will focus on incorporating additional relevant
physical phenomena - mainly study of the magnetic �eld reconnection - (Bárta
et al., 2011), and other phenomena occurring both in solar physics and in industrial
applications of plasma �ow.
To sum up next steps with the already �nished toolset, these are the logical next

steps:

• Replicate fully the results of Kotr£ et al. (2012), including all parameters, and
boundary condition speci�cs,

• Run much more detailed simulation over a larger domain for a longer time, to
be able to inspect the destructive behavior of the astrophysical event on small
scales,

• Continuously improve the performance of the code, �x issues as they are
discovered, and extend the implemented set of numerical schemes,

• Add additional relevant physics phenomena - resistivity, magnetic �eld recon-
nection, possibly relativistic e�ects,

• Get in touch with other possible users of the implemented software to enrich
the set of possible use cases.

98

6 Conclusion, outlook

Own publications

This Section lists all publications of the author.

Journals with Impact Factor

[1] Vadym Aizinger, Dmitri Kuzmin, Lukas Korous, Scale separation in fast hier-
archical solvers for discontinuous Galerkin methods, September 2015, Applied
Mathematics and Computation 266:838-849, DOI: 10.1016/j.amc.2015.05.047

[2] Lukas Korous, Pavel Solin, An adaptive hp-DG method with dynamically-
changing meshes for non-stationary compressible Euler equations, May 2012,
COMPUTING, 95,1,425-444, DOI: 10.1007/s00607-012-0257-1

[3] Pavel Solin, Lukas Korous, Pavel Kus, Hermes2D, a C++ library for rapid de-
velopment of adaptive hp-FEM and hp-DG solvers, November 2014, Journal of
Computational and Applied Mathematics 270:152-165, DOI: 10.1016/j.cam.2014.02.007

[4] Pavel Solin, Ondrej Certik, Lukas Korous, Three anisotropic benchmark prob-
lems for adaptive �nite element methods, March 2013, Applied Mathematics
and Computation 219(13), DOI: 10.1016/j.amc.2010.12.080

[5] Zhonghua Ma, Lukas Korous, Erick Santiago, Solving a suite of NIST bench-
mark problems for adaptive FEM with the Hermes library, December 2012,
Journal of Computational and Applied Mathematics 236(18):4846-4861, DOI:
10.1016/j.cam.2012.02.004

[6] Pavel Solin, Lukas Korous, Space-time adaptive hp-FEM for problems with
traveling sharp fronts, May 2012, Computing 95(1), DOI: 10.1007/s00607-
012-0243-7

[7] Pavel Solin, Lukas Korous, Adaptive higher-order �nite element methods for
transient PDE problems based on embedded higher-order implicit Runge-
Kutta methods, February 2012, Journal of Computational Physics 231(4):1635-
1649, DOI: 10.1016/j.jcp.2011.10.023

Conference papers

[1] Lukas Korous, Pavel Karban, Distributed Implicit Discontinuous Galerkin
MHD Solver, COMPUMAG 2017, Daejeon, Korea

[2] Ivo Dolezel, Lukas Korous, Pavel Karban, Frantisek Mach, Higher-Order Eggshell
Method for Computation of Forces Acting on Ferromagnetic Bodies, January
2014, Conference: 9th IET International Conference on Computation in Elec-
tromagnetics (CEM 2014), DOI: 10.1049/cp.2014.0188

[3] Korous Lukas, Adaptive hp-DG Method for Nonstationary Compressible Euler
Equations, Elektrotechnika a informatika 2012. Part 1., Elektrotechnika,53-56

99

6 Conclusion, outlook

Software

[1] Lukas Korous, Pavel Solin, Milan Hanus, Jakub Cerveny, The library for phys-
ical �elds modelling using hp-adaptive �nite element method Hermes2D

[2] Lukas Korous, Pavel Solin, Pavel Kus, David Andr, Library for physical �elds
modelling in three dimensional space using hp-adaptive FEM Hermes3D

100

Bibliography

Balsara, D. S. and Spicer, D. S. (1999). A Staggered Mesh Algorithm Using High
Order Godunov Fluxes to Ensure Solenoidal Magnetic Fields in Magnetohydro-
dynamic Simulations. Journal of Computational Physics, 149:270�292.

Bangerth, W., Davydov, D., Heister, T., Heltai, L., Kanschat, G., Kronbichler, M.,
Maier, M., Turcksin, B., and Wells, D. (2015). The deal.II library, version 8.4.
preprint.

Barth, T. and Jespersen, D. (1989). The design and application of upwind schemes
on unstructured meshes. In 27th Aerospace Sciences Meeting, number AIAA-89-
0366. American Institute of Aeronautics and Astronautics.

Batten, P., Clarke, N., Lambert, C., and Causon, D. (1997). On the choice of
wavespeeds for the hllc riemann solver. SIAM Journal on Scienti�c Computing,
18(6):1553�1570.

Bárta, M., Büchner, J., Karlický, M., and Skála, J. (2011). Spontaneous current-
layer fragmentation and cascading reconnection in solar �ares. i. model and anal-
ysis. The Astrophysical Journal, 737(1):24.

Burstedde, C., Wilcox, L. C., and Ghattas, O. (2011). p4est: Scalable algorithms
for parallel adaptive mesh re�nement on forests of octrees. SIAM Journal on
Scienti�c Computing, 33(3):1103�1133.

Courant, R., Friedrichs, K., and Lewy, H. (1967). On the partial di�erence equations
of mathematical physics. IBM J. Res. Dev., 11(2):215�234.

Davis, T. (2006). Direct Methods for Sparse Linear Systems. Society for Industrial
and Applied Mathematics.

Denner, F., Evrard, F., Serfaty, R., and van Wachem, B. G. (2017). Arti�cial
viscosity model to mitigate numerical artefacts at �uid interfaces with surface
tension. Computers & Fluids, 143:59 � 72.

Derigs, D., Winters, A., Gassner, G., Walch, S., and Bohm, M. (2017). Ideal
glm-mhd: About the entropy consistent nine-wave magnetic �eld divergence di-
minishing ideal magnetohydrodynamics equations. 364.

Dolej²í, V. and Feistauer, M. (2015). Discontinuous Galerkin Method: Analysis and
Applications to Compressible Flow. Springer Series in Computational Mathemat-
ics. Springer International Publishing.

101

Bibliography

G., R. H. (1997). Thomas, j. w.: Numerical partial di�erential equations. �nite
di�erence methods. ZAMM - Journal of Applied Mathematics and Mechanics /
Zeitschrift für Angewandte Mathematik und Mechanik, 77(5):386�386.

Gaburov, E. and Nitadori, K. (2011). Astrophysical weighted particle magnetohy-
drodynamics. Monthly Notices of the Royal Astronomical Society, 414(1):129�154.

Hariri, S., Park, J. B., Yu, F. K., Parashar, M., and Fox, G. C. (1993). A message
passing interface for parallel and distributed computing. In [1993] Proceedings
The 2nd International Symposium on High Performance Distributed Computing,
pages 84�91.

Heroux, M. A., Bartlett, R. A., Howle, V. E., Hoekstra, R. J., Hu, J. J., Kolda,
T. G., Lehoucq, R. B., Long, K. R., Pawlowski, R. P., Phipps, E. T., Salinger,
A. G., Thornquist, H. K., Tuminaro, R. S., Willenbring, J. M., Williams, A., and
Stanley, K. S. (2005). An overview of the trilinos project. ACM Trans. Math.
Softw., 31(3):397�423.

Intel Corporation (2017). Intel parallel studio.

J., R. W. and B., L. R. (2002). The use of classical lax�friedrichs riemann solvers
with discontinuous galerkin methods. International Journal for Numerical Meth-
ods in Fluids, 40(334):479�486.

Kestener, P. et al. (1992). Ramses-gpu.

Kitware Inc. (2017). Paraview 5.5.

Korous, L. (2012). Adaptive hp discontinuous galerkin method for nonstationary
compressible euler equations.

Korous, L. and Solin, P. (2012). An adaptive meshes for non-stationary compressible
euler equations. Computing, 95(1):425�444.

Kotr£, P., Bárta, M., Schwartz, P., Kupryakov, Y., Kashapova, L., and Karlický,
M. (2012). Modeling of ha eruptive events observed at the solar limb. 284.

Kuzmin, D. (2010). A vertex-based hierarchical slope limiter for p-adaptive dis-
continuous galerkin methods. Journal of Computational and Applied Mathemat-
ics, 233(12):3077 � 3085. Finite Element Methods in Engineering and Science
(FEMTEC 2009).

Londrillo, P. and Zanna, L. D. (2000). High-order upwind schemes for multidimen-
sional magnetohydrodynamics. The Astrophysical Journal, 530(1):508.

Ma, Z., Korous, L., and Santiago, E. (2012). Solving a suite of {NIST} benchmark
problems for adaptive {FEM} with the hermes library. Journal of Computational

102

Bibliography

and Applied Mathematics, 236(18):4846 � 4861. {FEMTEC} 2011: 3rd Interna-
tional Conference on Computational Methods in Engineering and Science, May
9�13, 2011.

Miyoshi, T. and Kusano, K. (2005). A multi-state HLL approximate Riemann solver
for ideal magnetohydrodynamics. Journal of Computational Physics, 208:315�
344.

Mocz, P., Vogelsberger, M., Sijacki, D., Pakmor, R., and Hernquist, L. (2014). A
discontinuous Galerkin method for solving the �uid and magnetohydrodynamic
equations in astrophysical simulations. mnras, 437:397�414.

Norman, M., Wilson, J., et al. (1992). Zeus.

Orszag, S. A. and Tang, C.-M. (1979). Small-scale structure of two-dimensional
magnetohydrodynamic turbulence. Journal of Fluid Mechanics, 90:129�143.

Rossmanith, J. A. (2013). High-Order Discontinuous Galerkin Finite Element Meth-
ods with Globally Divergence-Free Constrained Transport for Ideal MHD. ArXiv
e-prints.

Skala, J. and Barta, M. (2012). LSFEM implementation of MHD numerical solver.
ArXiv e-prints.

Skála, J., Baru�a, F., Büchner, J., and Rampp, M. (2015). The 3d mhd code
goemhd3 for astrophysical plasmas with large reynolds numbers. A&A, 580:A48.

Solin, P., Korous, L., and Kus, P. (2014). Hermes2d, a c++ library for rapid
development of adaptive -fem and -dg solvers. Journal of Computational and
Applied Mathematics, 270:152 � 165. Fourth International Conference on Finite
Element Methods in Engineering and Sciences (FEMTEC 2013).

Stone, J., Gardiner, T., Teuben, P., et al. (2008a). Athena.

Stone, J., Gardiner, T., Teuben, P., et al. (2008b). Athena.

Titov, V. and Demoulin, P. (1999). Basic topology of twisted magnetic con�gura-
tions in solar �ares. 351:707�720.

Xisto, C. M., Páscoa, J. C., and Oliveira, P. J. (2014). A pressure-based high
resolution numerical method for resistive mhd. Journal of Computational Physics,
275:323 � 345.

Zachary, A., Malagoli, A., and Colella, P. (1994). A higher-order godunov method
for multidimensional ideal magnetohydrodynamics. SIAM Journal on Scienti�c
Computing, 15(2):263�284.

103

