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Abstract 

This thesis presents a method of data analysis of a multichannel spectroscopic data 

acquisition system for a large segmented detector of reactor antineutrinos. The method is 

described, and two implementations are presented. One for PMT based spectrometer for the 

DANSS detector, built by the Joint Institute for Nuclear Research in Dubna and operating 

underneath nuclear reactor in the Kalinin Nuclear Power plant and second software based for 

the S3 detector, being developed by the Institute of Experimental and Applied Physics of the 

Czech Technical University in Prague. 
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Anotace 

Tato práce prezentuje metodu zpracování dat multikanálového systému pro získávání dat z 

segmentovaného detektoru reaktorových antineutrin. Metoda je popsána a její dvě různé 

implementace. Jedna pro spektrometr založený na fotonásobičích detektoru DANSS, postavený 

Spojeným ústavem jaderných výzkumů v Dubně a běží v jaderné Kalininské elektrárně, a 

druhý, softwarově založený pro detektor S3, který je vyvíjen v Ústavu Technické a 

Experimentální Fyziky ČVUT v Praze. 
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1 Introduction 

Neutrinos are a hot topic of contemporary particle physics and their study is a subject of a 

great interest. Initially, it was assumed that neutrinos are mass-less, however, a discrepancy 

between the theoretically predicted solar neutrino flux with ground measurements (the “Solar 

Neutrino Problem” [1]) led to the discovery that neutrinos do have mass and can oscillate 

between their flavors (electron, tau, muon).  

There are three major sources of neutrinos – sun, particle accelerators and nuclear reactors.  

The high intensity of neutrino flux generated by nuclear reactors provides a good opportunity 

to study the elementary behavior of neutrinos. There are experiments, including the RENO 

(Reactor Experiment for Neutrino Oscillations) [2], which attempt to measure neutrino 

oscillations with detectors spaced hundreds meters from the reactor. But the amplitude of the 

neutrino oscillations is a question. Therefore, it is necessary to place the detector as close to the 

reactor as possible. Unfortunately, existing detectors are mostly based on hydrogen-rich liquids, 

such as kerosene, which pose a flammable hazard, an unacceptable for a reactor building. 

One of the possibilities to avoid the fire hazard and gain access close to the reactor from the 

power plant operators is to use polystyrene scintillating detectors. This has been used by the 

DANSS (Detector of reactor AntiNeutrinos based on Solid Scintillator) detector [3], operated 

by the Joint Institute of Nuclear Research in Dubna and the Institute of Theoretical and 

Experimental Physics in Moscow. This 1m3 detector, made from 2500 scintillating polystyrene 

1×4×100 cm3 bars coextruded with Gadolinium layer has been running for two years in a close 

proximity to the core of the Kalinin NPP. It is mounted in a z-axis moveable platform (8-12m) 

to explore the short-range neutrino oscillations. 

Together with Dzhelepov Laboratory of Nuclear Problems (DLNP) of JINR, the Institute of 

Experimental and Applied Physics of Czech Technical University Prague are currently 

constructing a new anti-neutrino detector –S3 as an evolution of the DANSS design.    

S3 is a smaller detector with a volume of 0.4×0.4×0.4 m3 consisting of 80 scintillating plates 

with improved light yield. At present, there are two detectors prototypes under construction. 

One detector will be placed next to the DANSS experiment in KNPP to provide reference 

information about the nuclear reactor power level. The second is expected to be placed in the 

Temelín NPP. Both nuclear power plants are of the same VVER-1000 technical specification.  
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The DANSS Data acquisition system is based on hardware triggered CAEN charge 

convertors (QDCs) and is controlled by logic implemented in an Field Programmable Gate 

Array. The S3 DAQ is based on self-triggered CAEN multichannel ADC. The data reduction is 

implemented in software on a PC. 

The aim of this thesis is to: 

• prepare and design the detection algorithm of the DANSS detector 

• design and implement the algorithm as a FPGA firmware for DANSS 

• design and implement active cosmic veto FPGA firmware for DANSS 

• design and implement the algorithm for the S3 detector 

The method must detect the inverse beta decay process 𝜐̃ + 𝑝 → 𝑒+ + 𝑛, where antineutrino 

𝜐̃ reacts with a proton p and produces positron 𝑒+ and neutron n. 

This thesis is divided into the introduction, eight chapters and the conclusions. The second 

chapter briefly describes the way neutrinos are detected. Chapters 3 and 4 describe the DANSS 

and S3 experiments.  

The author’s involvement begins with chapter 5, where the DANSS data acquisition system 

is described in detail. Chapter 6 describes the FPGA firmware newly developed for the DANSS 

DAQ. 

Chapter 7 describes the C++ software implementation of an application capable of online 

experiment monitoring, visualization, analysis and the inverse beta decays signature detection.  

Chapters 8 provides results of technical measurements obtained during the commissioning 

of the DANSS detector in the KNPP. 
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2 Detection of neutrinos 

Neutrinos are particles which have very small probability of interaction (cross-section) with 

ordinary matter. Therefore, the detectors have to be either very large (kilometer scale) , as is 

the case for detection of cosmic neutrinos or very close to a source of neutrinos, e.g. a nuclear 

reactor. There are two methods of their detection, using Cherenkov radiation and using inverse 

beta decay detection. 

2.1 History 

A hypothetical particle, electrically neutral and having mass smaller than that of the proton 

was first proposed by Wolfgang Pauli in 1930 [4]. In 1933 Enrico Fermi named it a “neutrino” 

to distinguish it from the newly discovered neutron [5]. 

At first, neutrinos were considered massless. Their first detection was done by F.Reines and 

C.Cowan [6] using nuclear reactor as a strong source of antineutrinos using inverse beta decay. 

They used a liquid scintillator where the electron antineutrino interacts with a proton, emitting 

a positron and a neutron. The positron annihilates creating two 511 kEv gamma photons and 

the neutron is captured by a proton creating a deuteron and emitting gamma rays with energy 

of 2.2 MeV (Figure 2-1). 

 

Figure 2-1 Inverse beta decay in a liquid scintillator 

Several experiments with solar (R. Davis et al [7]), atmospheric, accelerator and reactor 

neutrinos have provided the existence of neutrino oscillations driven by non-zero masses and 

neutrino mixing. Neutrino oscillation is a quantum mechanical phenomenon whereby a neutrino 

created with a specific lepton flavor (electron, muon, tau) can later be measured to have a 

different flavor. The probability of measuring a particular flavor for a neutrino varies between 

32 known states as it propagates through space. The neutrino oscillations were first predicted 

by Bruno Pontecorvo in 1957 [8], [9], [10].  

Since neutrinos are massless in standard model of electroweak interactions, this verification 

of neutrino oscillations (and therefore mass) was first strong evidence for physics beyond the 
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standard model. This convincing evidence for neutrino oscillations has been confirmed by other 

experiments (SNO [11], RENO [2], Daya Bay [12]). Neutrino oscillations experiments are not 

sensitive to the nature of the neutrino mass and give no information on the absolute neutrino 

mass scale [8]. 

Neutrino oscillation is a function of the ratio L/E where L is the distance travelled and E is 

the neutrino energy. To measure neutrino oscillation for different distances from the source is 

an important task. Also, several experiments announced the reactor anomaly [13], which can 

be explained by existence of sterile neutrinos. These questions can be solved by detector of 

neutrinos located as close as possible to the nuclear reactor [5]. 

2.2 Cherenkov detection  

The interaction of a high energy cosmic neutrino in the detector volume produces electrically 

charged particle which travels faster than the local speed of light while emitting Cherenkov 

radiation. The photons are then detected by sensitive light detectors -  photomultipliers. The 

particle track can be then reconstructed from the times of arrival of the Cherenkov photons. 

 

Figure 2-2 Principle of high energy neutrino detection  

Currently, there are several such detectors either operating or being built in the world. 

• Super-Kamiokande – operational, 40 m steel tank with ultrapure water [14] 

• Ice-Cube – operational, South Pole observatory using about cubic kilometer of Arctic 

ice as detector volume [15] 

• Baikal Gigaton Volume Detector – under construction, 1 km3 of clean Russian lake 

Baikal water [16], [17] 

• ANTARES/KM3NeT – operational, 1km3 of Mediterranean sea [18] 
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2.3 Inverse beta decay detection 

The IBD detection method is used mostly in detectors of reactor neutrinos. The antineutrino 

interacts with a proton producing a positron and a neutron. The positron immediately annihilates 

with emission of two gamma rays of 511 keV each. The neutron is thermalized by collisions 

with light nuclei and captured. Neutron capture by Gadolinium emits several gamma rays with 

the total energy of 8 MeV. The IBD method looks for the characteristic signature of annihilation 

and following spatially close gamma rays of the neutron capture.  

Experiments based on IBD include  

• Daya-Bay [12] – Eight 20 ton kerosene based antineutrino detectors in three locations 

within 2 km of six nuclear reactors in Daya Bay, China 

• DANSS [3]– 1 cubic meter polystyrene based detector about 10 m from the nuclear 

reactor in the Kalinin nuclear power plant, Russia. 

3 DANSS Detector 

The detector is constructed from 2500 scintillating strips with dimensions of 4×1×100 cm. 

Each strip is coated by a reflexive layer containing Gadolinium (Figure 3-2) and contains 

wavelength shifting fibers for light collection. 

 

Figure 3-1 DANSS Team members with the detector in the KNPP technical room [3]. 
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Each successive layer of the detector is built perpendicularly to the previous one. Ten parallel 

layers of 5 neighboring strips form one detector section (module - Figure 3-3). The X and Y 

sections are intercrossing so that the positional information of the interaction can be extracted. 

Every detector section is connected to one PMT.  

The light is collected through wavelength shifting fibers by PMT and MPPCs. Each bundle 

of 100 WLS fibers from 50 strips is connected to one PMT. The average yield from single strip 

of is about 35 photoelectrons per 1 MeV [3]. 

 

 
Figure 3-2 Scintillating strip 

 
Figure 3-3 Detector internal layout 

Every PMT is connected to an analog frontend (AFE) containing the high voltage power 

supply, pulse shaper, analog comparator and controlling MCU with a DAC. All AFEs are 

controlled from the acquisition PC via RS-485 bus. The output pulse from the pulse shaper is 

about 100 ns long and is accompanied with above-set-threshold digital pulse. 

The MPPCs are connected to a separate data acquisition system which is not a subject of this 

thesis. 

The DANSS detector uses the inverse beta decay as its detection principle (Figure 3-4). The 

electron antineutrino coming from the reactor core interacts with a proton inside the scintillator 

and produces positron and a neutron. The positron annihilates and creates a characteristic pair 

of 511 keV gamma rays – “prompt signal”. After 2 to 20 µs the neutron moderates and is 

captured by Gadolinium. The resulting gamma rays have a total energy of 8 MeV and should 

be detected within a sphere of about 20 cm from the original neutrino interaction – “delayed 

signal”. This method of detection was verified by small scale DANSS detector demonstrator 

DANSSino [19].  
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Figure 3-4 Inverse beta decay detection 

Thanks to the segmented nature of the detector and the way the strips are placed, the IBD 

produces a characteristic signature which can be searched for. Therefore, the data acquisition 

system must be able to register a coincidence of two events separated by few microseconds. 

Generally, both prompt and delayed signals can come from the same PMT channel. The DAQ 

must be sufficiently responsive so that the delayed signal does not fall within the dead time.  

Additionally, the DANSS detector is using cosmic muons with vertical tracks for calibration 

purposes and the DAQ must also record them.  

4 S3 detector 

The S3 detector project is a result of cooperation between DLNP JINR and IEAP Prague. Its 

main goal is the improvement of the energy resolution by optimizing the scintillating elements. 

The detector will be placed next to the DANSS detector in the Kalinin NPP and possibly in the 

Temelin NPP in the Czech Republic. The Czech contribution is being funded by a grant of the 

Czech Technological Agency TE 01020445 – CK RANUS.  

 

 

Figure 4-1 S3 scintillating plate with WLS fibers 
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The S3 detector consists of 80 20×40×1 cm plates (Figure 4-1) manufactured by the NUVIA 

Group placed in a X-Y pattern like the DANSS detector. The plates contain 19 grooves for 

WLS fibers collecting light. In contrast with the DANSS strips, the plates are not co-extruded 

with reflective and Gadolinium bearing coating, but manually wrapped in Teflon tape, as the 

co-extrusion process thermally changes the properties of the scintillator. Low density 

polyethylene foils doped with 10%wt Gd2O3, manufactured by the Institute of Macromolecular 

Chemistry (IMC) of Czech Academy of Sciences, are placed between the plates. The light from 

each individual plate is sensed by SiPM and amplified by an analog frontend. 

 

Figure 4-2 S3 detector schematic 

To understand properties of the detector a prototype called S-cubino was constructed (Figure 

4-3). It consists of 18 plates divided into two interleaved groups connected to two Hamamatsu 

R7600U-300 PMTs.  

 

Figure 4-3 S-cubino detector 
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It is shielded by a 10-cm layer of hundred years old lead (for low internal radioactivity) to 

shield from gamma radiation, 8 cm of polyethylene for thermal neutron shielding and 8 cm of 

borated polyethylene for fast neutron shielding. 

 

 

Figure 4-4 Construction of the scubino detector 

Initial measurements with the S-cubino detector were made in the building of the Faculty of 

Mathematics and Physics of the Charles University in Troja in Prague and then the detector was 

moved into the underground shelter Bezovka in Prague.   

The full detector is being constructed as of spring 2018 in the IEAP CTU for testing. All 19 

WLS fibers are connected to one SiPM. 

 

In Russia, the second S3 detector prototype, in parallel development, prototype is being 

constructed. It will also consist of 80 scintillating plates, but will have use traditional PMTs for 

light collection. In addition, the detector will have a “gamma catcher” scintillating plates 

(5x50x100 cm) around the active detector to catch gammas generated inside the detector. As 

with the DANSS detector there will be active veto system to detect the fast neutron background 

events mimicking the IBD signature. Together, the detector will have 80 PMT per-plate 

channels, 16 bigger PMTs connected to the second scintillating side, 8 gamma catcher channels 

and 16 active veto channels totaling 120 channels to be sampled by the data acquisition system. 
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Active VETO

Shielding

Gamma Catcher

S3

 

Figure 4-5 S3 Detector layout, Russian version 

The schematic layout of the S3 detector is shown on Figure 4-5. Figure 4-6 shows the start 

of the prototype construction with one gamma catcher scintillator placed between lead 

shielding. 

 

Figure 4-6 Gamma catcher scintillator 
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5 DANSS spectrometer 

The data acquisition system is installed together with the DANSS detector assembly in a 

technical room underneath the reactor. Since the room is inside controlled-access part of the 

nuclear powerplant, the DAQ is connected via fiber optic ethernet connection to a control room 

(Figure 5-1).  

 
Figure 5-1 Overall system schematics 

The acquisition PC collects data from the measurement electronics and saves them onto a 

disk. Monitoring PC connects to the DAQ via TCP connection for online monitoring of the 

detector by on-duty personnel. There is no outside connection out of the monitoring room, 

therefore acquired data can to be only transferred from the powerplant using an approved (by 

KNPP) USB Flash drive.  

5.1 Signal path 

Every PMT channel has its individual analog front-end electronics which is placed inside 

the detector shielding. A ribbon cable carries configuration RS-485 bus and power for the AFEs. 

The RS-485 is connected via an interface box to the acquisition PC. The AFE provides a 

configurable high voltage source for the photomultiplier and control voltage for above-

threshold digital trigger comparator. Pulse shaper lengthens and amplifies the pulses so they 

can be captured by the electronics. Since the trigger logic has a propagation delay, it is necessary 

to delay the analog signals using a delay line (coax cable with 80 ns tpd).  

 
Figure 5-2 PMT Signal Path 
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5.2 CAEN VME-Based Spectrometer 

Overall schematics of the PMT spectrometer are shown in Figure 5-3. The spectrometer is 

installed in three NIM crates and one VME crate. NIM crate is used for signal fan-out and the 

VME crate for the spectrometer itself. The spectrometer consists of signal acquisition modules 

(QDC, ADC, FPGA), control (FPGA) and conversion (FPGA). The author of this thesis has 

been responsible for the development of the firmware for the FPGA V1495 modules. Hardware 

of the spectrometer is composed of several modules mentioned below. 

50×
PMT

 +
 AFE

Acquisition
Linux PC

Delay
line

NIM Crate

Analog 
Outputs

Logic outputs

VME Crate

4x Prompt V965 QDC

4x Delayed V965 QDC
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R
ES

ET

DATA, IRQ
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Fan Out

13× N454 Digital Fan In/
Fan Out

P
U
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E
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G
A

TE
S

64Ch V1740 ADC

Se
rP

ro
t

Master control V1495

VME Controller V2718

2x NIM/ECL V1495

 
Figure 5-3 Hardware schematics 

 

5.2.1 N625 Quad Linear Analog Fan-In/Fan-Out 

The CAEN N625 has 4 groups of 4 analog summed inputs with 4 analog outputs each. This 

card is used to branch the analog signals from AFEs to Prompt, Delay QDCs and the ADC. For 

50 channels, 13 such cards are required. 

5.2.2 N454 Logic Fan In/Fan Out 

CAEN N454 has 4 groups of NIM logic digital OR-ed inputs with four direct outputs and 

two negated outputs. It is used for as a signal repeater and a fan-out for debug purposes.  

5.2.3 V2718 Controller 

The CAEN V2718 VME Controller serves as a bridge between the VME crate bus and a 

Linux PC with DAQ software. It is connected via a multimode optical fiber link. The VME 

cards are addressable by 32-bit address, where the first 16 bits are set by either by a rotary 

switch (VME64 crates) or slot position (VME64X crates). The VME64 bus has bandwidth of 
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80MB/s. The VME bus supports single read/write, burst 4KB block (BLT) and chained burst 

(CBLT) accesses modes. The chained block access mode uses a multicast target address which 

is set for a group of similar adjacent cards. The CBLT is used for reading data from the V965 

QDCs. The VME Bus has also 8 IRQ lines, the V2718 bridges them to a PC IRQ.  

5.2.4 V965 Charge to Digital Converter (QDC)  

The 16-input charge to digital converter integrates the charge on input channels during active 

level-sensitive GATE signal and converts it using 12 bit ADC and creates an data event 

accessible via the VME bus. Each channel is converted twice, once with gain of 1× and once 

with gain of 8×. The GATE signal must precede the analog input by at least 15 ns [20]. The 

conversion of all channels takes 5.7 µs, with a total dead time of 6.9 µs. 

5.2.5 V1740 ADC Digitizer Card 

CAEN V1740 is a 64-input 12 bit 62.5 MSPS simultaneous analog to digital converter with 

a 2 Vpp input range. It has a 192k samples per channel memory buffer, which can be divided 

into up to 1024 separate events (of 192 samples each). The digitizer can be triggered either 

internally by any channel exceeding a threshold voltage, or externally via an edge-sensitive 

GATE signal. After a trigger, all enabled channels are sampled and stored to event buffer. 

Additional triggers during the acquisition window can be either ignored or cause the acquisition 

to be prolonged (trigger overlapping mode). The digitizer operates without a dead-time. That 

is, another event can be acquired as soon as previous ends without any delay.  

5.2.6 V1495 GPIO FPGA Card 

CAEN V1495 is a VME card with an empty user-programmable Altera Cyclone I EP1C20 

FPGA with 20K Logical Elements and 36 KiB on-chip ram. The card provides two 32 channel 

LVDS/ECL/PECL high-density (3M P50E-068-P1-SR1-TG) inputs, one 32 channel LVDS 

outputs, 2 LEMO NIM/TTL inputs/outputs and one LED. Additionally, three add-on slots are 

available, which can be filled by 32-channel LVDS/ECL/PECL inputs, 32-channel LVDS 

output, 8-channel NIM/TTL LEMO input/output daughter cards. 
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Figure 5-4 Development VME Crate 

 

5.3 Data Acquisition Software 

The spectrometer data are collected, monitored and partially on-line processed by a system 

described in detail in [21]. It is a system running on a Linux PC. An interesting feature of the 

system is that not only the vendor-specific raw data from the VME modules are written to the 

disk, but the system also translates them into a unified data(u-data) format formed by a tuple 

(channel_id; value) hiding the complexity and variability of the specific hardware. It also 

allows on-line calculation of areas (charges) of pulses. That allows creation of data processing 

programs universally usable for differently configured crates. Both raw and u-data are available 

for remote access via TCP/IP and so is program control. Figure 5-5 shows the overall DAQ 

schematics. The measurement-specific acquisition algorithm is described using an XML based 

language containing sections appropriate for different phases of the measurement (crate 

initialization, start, IRQ handling operations, end and data storage). The DAQ also contains an 

Qt/ROOT-based application allowing for on-line status monitoring.  
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Figure 5-5 DAQ System Architecture 

5.4 Data event structure 

Figure 5-6 shows simplified example of inputs together with the output data structure of the 

DAQ event. Each input pulse is identified by its relative timestamp(TS), collected charge from 

both ADC and QDC and a bit mask of associated active shielding veto events. 

 
Figure 5-6 DAQ Crate event structure 
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Figure 5-7 shows the responses of the control FPGA to example trigger inputs. The firmware sends 

enabling GATE signals to appropriate prompt and delayed QDCs, ADCs and the active shielding FPGA 

firmware.  

 
Figure 5-7 V1495 Master Control Waveforms 
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6 DANSS Firmware Implementation 

The development of the FPGA firmware for the V1495 cards of the DANSS PMT 

spectrometer has been the responsibility of the author of this thesis.  

The final configuration of the spectrometer requires the V1495 in 4 roles served by different 

firmware variations: 

• master crate measurement control 

• active shielding pattern recorder 

• pattern generator. 

• NIM/LVDS translator 

The master measurement control firmware monitors incoming above-threshold pulses from 

PMT AFEs and if a configured pattern is observed, sends GATE signals to appropriate QDCs, 

ADC and the active shielding pattern recorder. 

 The pattern recorder firmware continuously samples above-threshold pulse outputs of the 

shielding scintillators and stores events inside a circular buffer with their relative timestamps. 

The NIM/LVDS translator is a simple logic level translator. 

Pattern generator firmware generates configurable pulses used for testing of the entire data 

acquisition system. 

However, because the functionality can be useful in other experiments, the firmwares have 

been designed with as much run-time configurability via the VME bus as possible and there is 

no hardcoded configuration.  

6.1 V1495  

The firmware is designed for the user FPGA of the CAEN V1495 card used in the 

spectrometer. V1495 contains a CAEN-programmed system FPGA and an empty 20K LE 

Cyclone I chip.   

The system FPGA interfaces the VME bus, contains 256 32-bit word data readout FIFO and 

can assert configured VME IRQ line and maps VME read/write accesses to a local bus. User 

FPGA is connected to 195 user I/O. Schematic diagram is shown in Figure 6-1. 
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Figure 6-1 V1495 schematic diagram 

6.1.1 V1495 local bus interface 

The signals used between the system and user FPGAs are shown in Table 6-1. The bus 

supports single read, single write and burst (BLock Transfer - BLT) read .The local bus supports 

only 32-bit word VME access mode.  

Signal name Direction Width [bits] Description 

nRESET in 1 System reset 

CLK in 1 40 MHz system clock 

nADS in 1 Start of Address Data Cycle 

nBLAST in 1 Terminate transfer 

WnR in 1 Write or Read 

nREADY out 1 Output data ready or BLT request 

LAD inout 16 Bidirectional data/address bus 

nIRQ out 1 Interrupt request 

Table 6-1 V1495 local bus signals 

Single read and write cycles start with the system FPGA deasserting the nADS signal and 

placing 16-bit address on the bus. In the single read (Figure 6-2) bus cycle the system FPGA 

waits until the nREADY signal is deasserted. In the single write (Figure 6-3) cycle data follows 

the address immediately.  

 

Figure 6-2 Local bus read cycle 

 

Figure 6-3 Local bus write cycle 

The BLT transfer is used to transfer event data from the user FPGA to the system FPGA 

FIFO for data readout. The cycle begins with the user FPGA deasserting the nREADY signal 
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and the system FPGA performing read access to address 0x0000. If the system FIFO becomes 

full, nBLAST is deasserted and the transfer is interrupted.  

 

Figure 6-4 Local bus BLT cycle 

6.2 Firmware framework  

It was impossible to fit all the required roles in one firmware due to the small size and 

performance of the user FPGA. Therefore, a modular approach to development was used. Each 

firmware variant is built from a common code base and contains a shared VME interface part, 

variant-specific part and external signal routing (Figure 6-5). 
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Control registers
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Figure 6-5 Firmware framework structure 

6.2.1 Build process 

The firmwares are generated from single Quartus project using revisions. Each firmware has 

its separate revision. Project source code is stored in a git repository. The build process uses 

external Makefile. 

At the beginning of compilation a pre-flow TCL script generates a VHDL file containing the 

revision name and revision version in the format of YYMMDDcc, where cc is the number of 

git commits made on the build day. These constants can be read from the firmware via the VME 

bus to verify used variant and revision of the source code used. A post-flow script converts the 

firmware bitstream to the required RBF format and renames the output file to reflect the variant 

name and revision. 
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After the compilation finishes, make executes a ModelSim testbench which generates a list 

of all available configuration registers and their default values. The list is then converted to 

XML format used by the DAQ software and VHDL for testbench creation.   

 

6.3 Firmware building blocks 

6.3.1 Configuration and status  

The configuration and status block implements VME-accessible 32-bit registers. Each 

register can be set to either read, write or read/write access. The logic circuit used is shown in 

Figure 6-6. VHDL implementation of procedure is shown in Listing 6-1 and their example use 

in Listing 6-2.  

ADDR 

WRDATA

RDDATA

=

REG

CLK EN

wide OR

0xADDR CLK EN

WREN

RDEN

one register
 

Figure 6-6 Configuration registers schematics 

procedure reg(raddr : unsigned;                 -- register address 
              variable regval : inout unsigned; -- register variable 
              racc : reg_t;                     -- register access (r, w, rw) 
              purpose : purpose_t;              -- documentation: (cfg / stat) 
              pgroup : natural;                 -- documentation: group 
              gtype : gatetype_t;               -- documentation: type of gate 
              name : string;                    -- documentation: name  
              desc : string;                    -- documentation: description 
              values : string                   -- documentation: possible values 

       ) is 
 variable isaddr : std_logic; 
 variable tmp    : std_logic_vector(regval'range); 
begin 
 -- synthesis translate_off 

print_reg(raddr, std_logic_vector(regval), racc, purpose, pgroup, 
                 gtype, name, desc, values, "unsigned", regval'length,   
                "D32"); -- used by ModelSim in the build flow                                               
 -- synthesis translate_on     
 if racc = r or racc = rw then 
  isaddr := '0'; 
  if addr = raddr then 
   isaddr := '1'; 
  end if; 
  tmp := std_logic_vector(regval) and (regval'range => isaddr); 
             -- rd is a process-wide variable 
  rd(regval'range) := rd(regval'range) or tmp;  
 end if; 
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 if racc = w or racc = rw then 
  if addr = raddr and wr_en = '1' then 
   regval := unsigned(wr_data(regval'range)); 
  end if; 
 end if; 
end procedure reg; 

Listing 6-1 VHDL implementation of registers 

 

reg(X"100C", c.fw_ver, r, status, "FW_VER", "Firmware version", "YYMMDDrr"); 
reg(X"101C", c.fw_name, r, status, "FW_NAME", "Firwmware identifier",  
      "ASCII encoded"); 
for i in 0 to 7 loop -- QDC gates 
       addr_base := 16#5000# + i * 16#100#; 
       sub       := c.gate_conf(i); 
       reg(u(addr_base + 16#04#), sub.tmr_wait_gate.duration, w, cfggate, i, 
           core_qdc, "GATE_" & to_string(i) & "_PRE_DURATION", "Pre-gate duration", 
           "Number of 5 ns clock periods"); 

Listing 6-2 Example use of register 

6.3.2 System timestamp 

A 32-bit counter running at the core frequency (200 MHz) is used for timestamp of data 

events. A clock divider (default is 1 μs) and its overflow period can be configured. It is possible 

to reset the system timestamp either using the serial protocol or a dedicated edge-sensitive time 

synchronization input. 

6.3.3 Signal input  

Above-the-threshold signals are synchronized to the 200 MHz core clock domain and 

configurable signal edge is detected. A de-glitch filter is applied to ignore any additional edges 

within configured time.  Output of this block is an edge signal asserted for one core clock cycle. 

6.3.4 Data read-out controller 

Data read-out block controls the measurement. After reset, it is initialized to a standby IDLE 

state. A register write to the ARM register starts the measurement. The read-out controller waits 

until assertion of EVENT_READY signal from the firmware core. Then it requests a BLT 

transfer from the system FPGA and after its completion, an IRQ is asserted. It is possible to 

delay the IRQ request using a settable timer to allow other VME crate modules to finish their 

processing. The readout controller then either waits for another write to the ARM register or re-

arms the system automatically, after a settable timer.  

The size of the event transferred to the system FPGA FIFO is tracked and available for 

reading. If the FIFO is full, automatic rearms are blocked. Reading the FIFO_SIZE register 

resets it. Thus, the read-out cycle from the point of view of the DAQ is as follows: 

1. Write 1 to ARM register 
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2. Wait for IRQ 

3. Read FIFO_SIZE register 

4. Block transfer from the V1495 card 
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Figure 6-7 Data readout schematics 

The relationship of the readout controller to other modules is shown in Figure 6-7.  

 

6.3.5 Serial communication 

The V1495 does not allow the user firmware to request a transfer on the VME bus, therefore 

any communication between two V1495 cards must be performed via the front-panel I/O. A 

simple pulse width modulation is used. The Table 6-2 lists all currently implemented 

commands. 

Command Pulse Length 

[5 ns] 

Accepted length [5 ns] Description 

SAMPLE 2 1 – 3 Detector pulse 

WIN_FAIL 5 4 – 6  Coincidence window unsuccessful 

WIN_OK 8 7 – 9 Coincidence window successful 

ARM 11 10 – 12 Re-ARM 

TIMESYNC 14 13 – 15  System TS overflow 

RESET 23 22 – 24  System reset 

Table 6-2 Serial protocol commands 

6.3.6 Output GATE generation 

6.3.6.1 Single gate  

The single output gate generates a level-active signal of configurable polarity which has a 

programmable pre-gate wait, gate and post-gate duration as shown in Figure 6-8 . The GATE 

signal is routed to the V1495 front-panel I/O and the BUSY signal can be used internally in the 

firmware core.  
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Figure 6-8 Single GATE timing diagram 

6.3.6.2 Dual alternating gate 

The dual alternating gate has two outputs, GATE1 and GATE2. It can operate in two modes, 

latency hiding and always alternating. In the latency hiding mode the GATE2 is used for output 

gates only if the GATE1 output is already busy (Figure 6-9) and not currently generating active 

gate signal.  A configurable timer can lengthen the time the other channel is blocked after the 

end of active gate signal.   

 

Figure 6-9 Alternating gate - Latency hiding mode 

In the always alternating mode (Figure 6-10), additional input DP (Detector Pulse) is used 

to switch between gate outputs.  

 

Figure 6-10 Alternating gate - Always alternating 

The dual gate can be also configured to swap output channels, generate output in both 

channels at once and to stop generating pulses after two triggers (until system RE-ARM).  
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6.3.7 Status gate 

Monitoring of internal status of the firmware is possible using the status gate. It is configured 

using a bitmask register. The output is either selected level-active internal signal or an edge-

sensitive signal lengthened using the single output gate. Table 6-3 lists available output signals. 

Type Value Description 

edge 0x1 Any detector pulse 

0x2 Recorded detector pulse 

0x4 Successful coincidence window 

0x8 Unsuccessful coincidence window 

0x10 System RE-ARM 

0x20 External time synchronization 

0x40 System timestamp overflow 

level 0x100 System measuring (i.e., not dead-time) 

level 0x200 System is in the RUN state 

level 0x400 IRQ signal is asserted 

level 0x800 Measurement window open 

level 0x1000 Waiting for DAQ (active between IRQ assertion and ARM reception) 

Table 6-3 Status signals 

6.4 Firmware cores 

6.4.1 Coincidence core 

The coincidence core implements the temporal coincidence of spatial coincidences of 64 

input channels operating at 200 MHz (5 ns sampling time). Whenever an edge is sensed at the 

input, a small (~100 ns) detector pulse coincidence window opens and captures trigger pattern 

occurring in the detector. Its purpose is to capture a single physical interaction in the detector 

which was due to the varying propagation delays in the detector and analog electronics chain 

captured at different clock edges. The DP opens a main coincidence window (~ 100 μs). If the 

coincidence conditions are met, an event is generated. The event contains a coarse system 

timestamp and a list of detector pulses with their channel patterns and fine timestamp relative 

to the main coincidence window start. Schematics of the module are shown in Figure 6-11. 
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Figure 6-11 Coincidence master schematics 

6.4.1.1 Coincidence core modules 

The DP spatial coincidence module opens a coincidence window whenever any edge 

detector asserts a single clock pulse. For the duration of the window, the 64-bit input vector 

pattern is logically summed. The module also counts the number of ones in the vector. After 

the window closes, the module asserts the DET_PULSE signal to the main coincidence module 

together with its 64-bit pattern and multiplicity (i.e. the number of ones in the vector). A dead-

time after the window end can be set to disable inputs for configured time.  

The main coincidence module operates in two different modes – fixed and dynamic 

window. In fixed window mode, the coincidence window always lasts the configure time and 

at the end the window is considered as successful if the number of pulses is either within 

configured range (minimum and maximum) or a multiplicity of any pulse is higher than 

configured. In the dynamic mode, the window ends as soon as the minimal number of pulses or 

multiplicity is recorded. Each pulse pattern and its relative timestamp is stored in the Event 

RAM. A counter keeps track of the total number of detector pulses observed between two 

successful coincidence windows. This allows the DAQ to calculate the ratio between recorded 

pulses and total pulses of the detector (i.e. the detection efficiency). 
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Figure 6-12 Coincidence master measurement state machine 

The measurement is controlled by a state machine (Figure 6-12). The measure state waits 

until the main coincidence window finishes. Successful window results in the shared data 

readout module notification. A configuration option is present to generate IRQ even in case of 

coincidence window failure (used when there is a need to programmatically clear some other 

block in the VME crate). In the userwait state the machine waits for the DAQ to send the ARM 

command. The gatewait state waits until all output gates are completed. In the cleanup state all 

gates are reset and the state machine transitions back to measure state after 2 clock periods. 

6.4.1.2  Coincidence core outputs 

The coincidence core can be generated with two kinds of output gates –  eight 8:1 single 

gates  or four 16:1 dual alternating gates.  For the 8:1 single gates, inputs 0 to 7 are mapped to 

first output channel, 8 to 15 to second and so on. Similarly, channels 0 to 15 are mapped to the 

first output dual alternating gate. If the always alternating mode is enabled, like in the DANSS 

spectrometer, the 4 output gates act effectively as one dual output alternating gate.  

The core contains one single gate triggered by coincidence window success, one for 

coincidence window failure and 8 independent configurable status gate outputs. 

If enabled, the core is generated with the serial protocol master for control of slave modules 

(the active shielding pattern recorder). 

6.4.1.3 Coincidence core event format 

The format of the event (Table 6-4) produced by the core is designed to be similar to other 

CAEN VME modules to simplify event decoding by the DAQ and users. GEO is an identifier 
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of the card location inside the VME crate and must be configured by the user. CRATE denotes 

the number of VME crate in the measurement system and is also configured by the user. 

N_DETECTOR_PULSES is the number of detector pulses detected by the system starting at 

the end of the previous event. The coarse event timestamp is typically configured to 1 μs period 

and the HIT_TIME period is always 5 ns, with the first hit having a time of zero. 

 
Header  

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

GEO[4..0] 0 1 0 CRATE[7..0] DATA_SIZE 

Data size is the length of the event without header and footer.  
Coarse Event TS  

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

GEO[4..0] 0 0 0 0x02 TS_LOW 

GEO[4..0] 0 0 0 0x03 TS_HIGH 

 
Detector pulses since last IRQ 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

GEO[4..0] 0 0 0 0x04 N_DETECTOR_IMPULSES 

Reset after the end of a successful coincidence window.  
 
Event data x N 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

GEO[4..0] 0 0 0 0x01 HIT_TIME 

PATTERN 31 – 0 

PATTERN 63 – 32 

Repeated as many times as required. 
 

Footer 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

GEO[4..0] 1 0 0 EVENT_CNT[23..0] 
 

Table 6-4 Coincidence master event bit structure 
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6.4.2 Pattern recorder core 

Pulse pattern recorder core is designed to record events around given point of time, such is 

the case when registering events from active veto detectors. It samples inputs using 5 ns clock 

and continuously records Detector Pulses into a circular buffer. Pulses which are over 

configured numerical limit or are too old are removed. After an external trigger signal is 

received an event is generated.   
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Figure 6-13 Pattern recorder core schematics 

 

 

Figure 6-14 Pattern recorder event example 
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6.4.2.1 Pattern recorder core event format 

 

 
Header  

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

GEO[4..0] 0 1 0 CRATE[7..0] DATA_SIZE 

Data size is the length of the event without header and footer.  
Coarse Event TS  

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

GEO[4..0] 0 0 0 0x02 TS_LOW 

GEO[4..0] 0 0 0 0x03 TS_HIGH 

 
Detector pulses since last IRQ 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

GEO[4..0] 0 0 0 0x04 N_DETECTOR_IMPULSES 

Reset after the end of a successful coincidence window.  
 
Event data x N 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

GEO[4..0] 0 0 0 0x01 HIT_TIME 

PATTERN 31 – 0 

PATTERN 63 – 32 

Repeated as many times as required. 
 

Footer 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

GEO[4..0] 1 0 0 EVENT_CNT[23..0] 
 

 

Table 6-5 Coincidence master event bit structure 

6.5 Gate generator core 

It is useful to be able to generate artificial pulses of given structure for DAQ testing purposes. 

The gate generator outputs groups of pulses in a repeated window. After specified number of 

cycles, an IRQ can be generated. Each channel produces one pulse of specified duration relative 

to the start of the window in 5 ns steps. After each cycle, this offset can be either incremented 

or decremented and such adjustment be kept for given number of cycles. The gate generator 

core is useful for hardware in the loop testing of systems, including testing of various race 

conditions. 
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6.6 Firmware resource usage 

Table 6-7 shows the Cyclone I FPGA resource usage for different variants of the firmware. 

Firmware ID Description 

QDCM Coincidence firmware 

MPPC Pattern recorder 

GGEN Pattern generator 

NECL NIM->ECL translator 

ECLN ECL->NIM translator 

Table 6-6 Firmware ID codes 

 

Firmware ID Logical element usage Memory usage [bits] 

QDCM 7524 28 672 

MPPC 7692 98 304 

GGEN 17833 8192 

NECL 168 0 

ECLN 170 0 

Table 6-7 Firmware resource usage 
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7 S3 software coincidence analyzer 

The spectrometer for the S3 detector is based on the CAEN 64 channel 12-bit 62.5 MSPS 

V1740 VME Digitizer (Described in 5.2.5). The V1740 is configured in a self-triggering mode 

where rising edge on any input triggers simultaneous sampling of all enabled channels. The 

data is stored in an internal event buffers, IRQ is generated and read out by a PC running the 

NWVME DAQ software by Zdenek Hons [21]. Captured events are stored on the hard drive 

together with a system UNIX timestamp.  

As part of this thesis, the SwCoinc application for data analysis was created by the author of 

this thesis. Its design requirements were: 

• implement the inverse beta decay search algorithm 

• Ability to process offline and online data from the DAQ and oscilloscopes 

• online data reduction (coincidence, filtering) 

• online data visualization 

• ROOT file data output 

The software framework has been written in C++  and uses the CERN ROOT framework for 

data visualization.  

The description of the final inverse beta decay search algorithm implementation can be seen 

on Figure 7-1. The blue rectangles represent processes and green data. At the start of the 

processing is the raw ADC data file and at the end is a data structure containing coincidences 

of a group of pulses with likely IBD candidate detector events. 

Parse ADC data Extract pulses
Find pulses within 

100 ns window

Find coincidences 
within 60 μs 

window

Detect IBD 
signature

ADC Event ADC Event Coinc Event Coinc Event

ptr n×ptrn×ptr
 

Figure 7-1 SwCoinc data flow 
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7.1 SwCoinc software description 

7.1.1 Data input 

The SwCoinc framework reads VME crate events created by the Hons DAQ and LeCroy 

oscilloscope TRC wave traces and supports offline and online processing. 

 In the offline mode, a directory or a file is specified as an argument on the command line 

and the application recursively scans the directories for registered file extensions and ZIP 

archives containing them. One archive or one directory is defined as a single data acquisition 

(run). The files are sorted using a regular expression according to their extensions – the VME 

files have format DDMMYY:HHMMSS-n_0.vme_r, where n is the file sequence number, and 

the LeCroy TRC files Cx_y.TRC, where x is the oscilloscope input channel with y-th 

acquisition. Separate sets are created for each input channel.  

In the online mode, only VME DAQ is supported and the application takes the path to the 

VME DAQ binary as an argument and monitors the /proc file system using the Linux inotify 

facility to detect whether it is running. If found, the /proc/pid/fd directory is scanned for the 

location of its log file. The VME log file is parsed to detect the state of the DAQ and possible 

file names of an active run. 

The input data files are parsed into the Event class structure. Each Event contains aligned 

ADC samples from all active input channels and the timestamp. When segmented oscilloscope 

files are read, first Event contains first acquisition from all input channel files. 

7.1.2 Data analysis 

Events are processed through Analyzer, a vector of Filters. The framework contains two 

analyzers – ADCPrinter and SCube. ADCPrinter outputs every a trace of ADC Events to a 

separate PNG file. The SCube analyzer implements the spatial and temporal coincidences to 

detect reactor antineutrinos. 

7.1.3 Data visualization 

The coincidence software contains graphing classes based on ROOT’s TH1 and TGraph. 

The visualization classes automatically create histograms for individual channels with correct 

names and axes and graphs of tracked variables depending on time (such as system load, pulses 

per second). After data processing is done, all graphs and histograms are saved as PNG files to 

output directory and as well as a ROOT data file. 
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Online monitoring uses the embedded HTTP ROOT server, which allows online access to 

open ROOT files via the JSROOT interface (Figure 7-2). 

 

Figure 7-2 JSROOT web interface 

7.1.4 Command and control 

The JSROOT interface allows starting and stopping of  NWVME. The SwCoinc connects to 

the control interface of the DAQ and issues the start/stop command. 

7.2 Analyzer software architecture 

SwCoinc program structure is shown on Figure 7-3.  Different colors represent separate 

processing threads which communicate through asynchronous message queues. 
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Figure 7-3 SwCoinc architecture 
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7.3 Analyzer software class overview  

This chapter describes the most important C++ classes in the SwCoinc system. 

7.3.1 Config 

A global singleton class accessible via the GLOBALS macro holding configuration of the 

SwCoinc system. The configuration can be set via command line arguments and an XML 

configuration file.  

7.3.2 Log 

Uses the boost::log classes to allow logging of system events to console, a file or JSROOT 

console. There are six logging levels supported by – fatal, error, warning, info, debug and trace 

and each output channel can be set to a different severity level. 

7.3.3 RootServer 

Starts and stops the ROOT HTTP server. To allow interaction between the JSROOT 

interface and SwCoinc, it was necessary to use the ROOT’s embedded LLVM compiler. A C++ 

statement with a functional pointer to required SwCoinc function is compiled using the LLVM 

compiler which can then called by the JSROOT. 

char buf[256]; 
sprintf(buf, "typedef void (*fptr)(); fptr setExitFlag = (fptr) %pLL;", &setExitFlag); 
gROOT->ProcessLine(buf); 
 
m_serv->RegisterCommand("/ExitRoot", "setExitFlag();", "rootsys/icons/ed_delete.png"); 

Listing 7-1 Connecting ROOT to SwCoinc 

7.3.4 IThread 

Derivable interface class implementing C++11 std::thread. Each thread executes lambda 

expressions from a message FIFO in an event loop. The messages are used for inter-thread 

communication. It also provides the Sync method thread synchronization based on the 

std::future and std::promise. Listing 7-3 shows part of the implementation detail and Listing 

7-3 exemplifies how the message passing is used within the SwCoinc application. 

typedef std::function<void()> Operation; 
class IThread { 

… 
MessageQueue<Operation> m_msgQueue; 
… 

} 
bool IThread::Sync() { 
 std::promise<bool> res; 
 auto msg = [&]() 
 { 
  res.set_value(true); 
 }; 
 m_msgQueue.Write(msg); 
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 return res.get_future().get(); 
} 
void IThread::m_Run() { 
 m_ThreadStart(); 
 while (!m_ThreadDone) { 
  Operation op; 
  if (m_msgQueue.TimeOutRead(op)) { 
   op(); // Execute message 
  } 
 } 
} 

Listing 7-2 Partial IThread implementation 

class DSScheduler : public IThread {…} 
void DSScheduler::ScheduleTask(RunTask task) { 
 auto msg = [this, task = std::move(task) ]() mutable 
 { 
  task.runreader->Execute(task.run, m_DataSink);  
 }; 
 m_msgQueue.Write(std::move(msg)); 
} 

Listing 7-3 Asynchronous message passing use example 

7.3.5 DataStore 

This class keeps track of all data sources and Run instances. It is executed in a separate 

thread. Spawns the Discoverer and Scheduler threads. Routes messages between the data source 

discovery thread and scheduling threads. 

7.3.6 Scheduler 

The scheduler sequentially executes available Runs by creating an instance of a RunReader. 

For each run a new thread is created. In the future, it should be possible to extend the scheduler 

to be able to run multiple tasks concurrently. However, at this time ROOT is not completely 

thread-safe and causes issues whenever one ROOT file is accessed by multiple threads.  

7.3.7 Event 

The Event class contains measurement data which is processed through the system. The 

parsers transform raw source data into an instance of this class. Listing 6-1 shows the 

declaration of this class.  

class Event 
{ 
public: 
 enum class EventTypes 
 {   
  VME_DATA, TRC_DATA, ADC_DATA, ENERGY_DATA, COINCIDENCE_DATA 
 }; 
 
 Run *run; 
 EventTypes Type; 
 Time EventTime = Time::Zero(); 
 Time LastTime1 = Time::Zero(); 
 Time LastTime2 = Time::Zero(); 
 uint64_t EventTimestamp; // TS in nanoseconds 
 uint64_t EventN = 0; // Event ID 
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 bool hasADC = false; 
 bool hasPulse = false; 
 bool hasCoincidence = false; 
 bool hasVMECrate = false; 
 int CoincidenceOrder = 0; // depth of coincidences 
 int MergedEvents = 0; // number of overlapped ADC trigger windows merged 
 int MergeDelta = 0; // time delta of overlapped triggers 
 int CrateEventPos = 0; // position of event inside the crate event 
 PulseEventData Pulse; // Energy, from Pulse Extractor 
 VMECrateData VME; // TS of start and stop of IRQ handler 
 std::map<int, EventChannelData> ChannelData; // ADC data 
 std::vector<std::shared_ptr<Event>> CoincidenceData; // events in coinc 
  
 int PeakPulseAmplitude(); 
 bool hasCoincidenceChannels(const std::vector<int>& channels); 
 bool CoincidenceChannelsEqualTo(const std::vector<int>& channels); 
 bool hasCoincidenceMap(const std::vector<std::vector<int>>& map); 
}; 

Listing 7-4 The Event class 

 

7.3.7.1 VMECrateData 

Instance of this class is created for each VME crate event and contains Unix timestamps of 

the beginning and the end of a single VME IRQ handling.  

7.3.7.2 ADCEventData 

Contains V1740 event data, both raw ADC samples, calculated sample voltages, trigger 

threshold, trigger polarity and the sampling period. 

7.3.7.3 PulseEventData 

The PulseExtractor filter creates a new Event with PulseEventData filled. Such Event keeps 

pointer to the original ADC Event. 

7.3.7.4 CoincidenceData 

Event output by the Coincidence filter contains a vector of all Events which are in a defined 

coincidence window. The CoincidenceOrder member variable holds the level of nesting  

7.3.8 DataSource 

Interface base class for classes which originate Events. Implements overridable virtual 

methods listed in Table 6-1. Any class which instantiates a DataSource should call the SetSink() 

method to set the sink of the source. 

Method Time of call by implementing method 

DataStart At the start of data processing 

RunStart At the start of a single run processing 
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SendEvent When an Event to be send is generated 

RunEnd At the end of a single run processing 

DataEnd At the end of data processing 

Table 7-1 DataSource interface method 

7.3.9 DataSink 

Interface base class for classes which process Events. Methods are listed in Table 7-2. The 

update method is called to re-generate online monitoring graphs every one real time second. 

Method Time of call by a DataSource 

DataStart At the start of data processing 

RunStart At the start of a single run processing 

ProcessEvent When an Event to be send to be processed 

RunEnd At the end of a single run processing 

DataEnd At the end of data processing 

Update Periodically, should run time intensive calculations 

Table 7-2 DataSink interface method 

7.3.10 Filter and LambdaFilter 

The Filter class is a base for classes which act both as a sink and a source. Inheriti from both 

DataSource and DataSink. The LambdaFilter is a filter which takes a C++ lambda as a 

parameter to be applied on each Event. 

7.3.11 PulseExtractor 

Pulse extractor is a Filter which scans the ADC data and searches for spectroscopic pulses, 

rejects pileups, calculates their energy in nVs and produces an Event for each individual pulse. 

First, a moving average of the samples is calculated until the delta between the sample and the 

average is higher than configured threshold. The energy is then calculated as a sum of samples 

with baseline subtracted.  Figure 7-4 shows an example extracted pulse in red as drawn by the 

PrintADCPulses function. The temporal order of events is preserved by first sorting the events 

by their timestamps before sending them down the processing chain.  
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Figure 7-4 Example extracted pulse (ADC value vs sample) 

7.3.12 Coincidence 

This filter finds events which are in a coincidence. New events are added to a FIFO of 

configured duration. Before expiring old events from the FIFO, the number of events is checked 

and if higher than specified threshold is reached a new coincidence Event is generated. Such 

event contains pointers to the individual events. It is possible to perform coincidence of any 

type of event, enabling multi-level coincidences as required by the anti-neutrino detector. 

7.3.13 DataParser and DataParserFactory 

Root class for data parsers. Child classes are instantiated using the ParserFactory interface. 

Each parser type uses the ParserInfo (Listing 7-5) structure to register (Listing 7-6) with the 

factory. The Discovery classes then use this data to search for files. Two types of parsers are 

supported – STREAM_BASED and FILE_BASED, which differ in behavior during data 

parsing. 

struct ParserInfo 
{ 
 DataParser::DataParserType Type;  // STREAM or FILE 
 std::string ID;    // used for command arguments 
 std::string Name;    // Human readable name 
 bool supportsZip;    // If .zip files supported 
 std::string FileRegex;   // Matches file extension 
 std::string ConfigRegex;  // Matches file extension 
 std::string ChannelRegex;  // SubMatches channel ID (if any) 
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 std::string FileNumberRegex;  // SubMatches file number (if any) 
 int AdcMin; 
 int AdcMax; 
}; 

Listing 7-5 ParserInfo structure 

// In VMERawDataParser.cpp 
struct ParserInfo VMERawDataParser::m_ParserInfo 
{ 
 DataParserType::STREAM_BASED, 
  "VME_R",   // ID 
  "VME Hons Raw",  // Human Readable name 
  false,    // zip supported 
  ".*\\.VME_R",   // Matches file extension 
  ".*\\.XML",   // Matches configuration file 
  "",    // SubMatches channel ID 
  ".*-(\\d+)_\\d+\\.VME_R", // SubMatches file number, 
  0,    // adcmin 
  4096    // adcmax 
}; 
bool VMERawDataParser::isRegistered = 
DataParserFactory::inst().RegisterParserType<VMERawDataParser>( 
VMERawDataParser::m_ParserInfo); 

Listing 7-6 Parser registration 

The stream parse function expects to be called each time with a new buffer of data and keeps 

internal state. File based (TRC) parsers are called once with a buffer containing entire source 

data. Such is the case for TRC files decompressed from a ZIP file to in-memory buffer.  

7.3.13.1 HonsVMEXMLParser 

Uses the boost::property_tree classes to read the XML configuration file of NWVME. Looks 

for the base VME address of the V1740 and its registers settings.  Extracts enabled input ADC 

channels, their offsets, sampling window length and trigger polarity. 

7.3.13.2  TrcDataParser and Trc 

The Trc class parses data created by LeCroy WaveRunner oscilloscope wave capture and 

supports both single shot and segmented files. The TrcDataParser encapsulates traces in an 

Event class.  As each TRC file contains samples from one channel a multi channel measurement 

requires multiple instances of the classes. 

7.3.13.3 VMERawDataParser 

Parses the stream data generated by the NWVME. The state-machine parser of the data file 

has following states which transition based on the parsed 32-bit data word. 

• IDLE – after program startup 

• RUN – RUN_HEADER detected, present at the beginning of the first file 

• CRATE – CRATE_HEADER, denotes start of a crate event - generated whenever 

the VME crate asserts an IRQ 
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• TIME1 – Unix timestamp of the IRQ wake-up time 

• TIME2 – Unix TS after VME crate handling is done 

• V1740 – A V1740 event detected in the data 

The V1740 supports overlapped trigger mode operation where instead of ignoring triggers 

occurring during active sampling window it extends the sampling window. It is possible to 

detect this only by checking the next V1740 event whether it has correct a timestamp occurring 

at the end of the previous window and may be shorter than the configured window size. 

Therefore, the VMERawDataParser has to store every event in a queue and send the Event only 

for analysis only if the following one is unrelated.  

The V1740 event parser decodes the bit packed 12-bit ADC data and converts to the Event 

class and its state-machine is based on the word position of the V1740 event.  

7.3.14 Discovery 

Root class for source data gathering. Child classes detailed below can be instantiated via the 

DiscoveryFactory class.  One virtual method is exposed - ScanURI(std::string uri), where 

URI is the target of the data source scanning process. 

7.3.14.1 FileDiscovery 

Implements the ScanURI method for file system directories or files. Directories are scanned 

recursively for data and configuration files registered by the data parsers and sorted using 

boost::regexp. For each data type in a directory or an archive one instance of the Run class is 

created and added to the DataStore instance. 

7.3.14.2 NWVMELogDiscovery 

Implements online monitoring of the Hons VME DAQ process log file. When started, with 

the DAQ copies the configuration file to an output directory, creates a log file. For each Run, a 

new timestamped data directory is created. The NWVMELogDiscovery class detects the path 

of the logfile, parses configuration file location and data files. 

The class creates a new thread and scans the /proc filesystem every second for a process with 

matching the executable path specified as SwCoinc command line argument. If found, the 

processes’ open file descriptor list is scanned for the DAQ log file.    

A inotify watch for closing and write access is created for the log file. The file is read in a 

loop  and the state of the DAQ is detected as follows: 
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• STARTUP – the DAQ is started 

• READY -   VME crate is configured and the DAQ ready for measurement 

• RUNNING – current measurement is running, look for data files 

• QUIT – VME DAQ terminated 

If the DAQ is in the RUNNING state when the end of the file is reached, a new instance of 

the Run class is created and added to the DataStore. Any new DAQ data files are then added.  

7.3.15 Run class 

The Run class encapsulates information of a single measurement. Contains list of data 

sources and associated configuration. It is able to provide certain data about the measurement, 

if provided by the data source type, such as length of the measurement, time of first and last 

events and number of events. 

7.3.16 RunReader 

A RunReader class instance describes a task. Takes a set of input data, creates instances of 

parsers, opens the files, reads the data and calls the parsing functions. There is a hierarchy of 

classes derived from the RunReader, each providing a different way of reading input data. 

7.3.16.1 FileStreamRunReader 

Simple file based reader for stream based data, such as offline VME, which iterates through 

the list of all files and reads the data block by block. 

7.3.16.2 InotifyFileStreamRunReader 

Derived from FileStreamRunReader. Used for online NWVME processing. The DAQ 

continuously adds new VME events into the output file. Therefore, whenever this RunReader 

encounters an end of file it waits until a new data is appended, the file is closed by the DAQ, 

new data file is detected or the acquisition stops. It uses the Linux inotify_watch() to detect file 

changes. 

7.3.16.3 MultiFileRunReader 

Used for reading oscilloscope files. Reads contents of entire input file into memory and calls 

the parser function and does so for all channel files of a single acquisition. From each input 

channel it reads exactly one event to align the events.  
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7.3.16.4  ZipMultiFileRunReader 

Derived from MultiFileRunReader, but with the ability to decompress files from ZIP 

archives using the libzip library. Ability to read ZIP files is useful for handling tens thousands 

of files if a single file per trace mode of the oscilloscope is used.  

7.3.16.5 NetStreamRunReader 

Reads stream data from a network TCP socket.  

7.3.17 VBase 

Visualisation base class which holds the TCanvas ROOT object. The Export method causes 

the canvas to be saved as a PNG file to the output directory. Overloaded virtual getters 

isPNGLoggable, isPNGLoggable2D, isPNGLoggable2DZ control whether the graphs are 

additionally saved with (Y, YZ, XYZ) axes set to logarithmic scale. The Update method re-

draws the TCanvas if the isDirty member variable is set. 

7.3.18 VGraph, VGraphErrors 

Holds a TGraph object and the Export function writes the graph to the output ROOT file. 

VGraphErrors holds a TGraphErrors object for plotting with error bars. 

7.3.19 VH1D, VH2D 

Its constructor creates the TH1D or TH2D in specified folder of the output ROOT file. Sets 

histogram title and axes labels. Provide CloneTagScale method for creating a scaled copy of 

the histogram and is used for generating normalized graphs during image generation at the end 

of Run processing. The Fill method adds a new value to the histogram. 

7.3.20 VTimeGraph 

A TGraph encapsulation for plotting of time series data with automatic data reduction. Its 

constructor has time start, time span, time step arguments and data reduction option. 

Possible data reduction and visualization options are specified as a bit mas of the GraphOpts 

enum class as specified in Table 7-3. 

Option Description 

None Plot last value during each time span 

SUM Plot a sum of values during each time span. 

AVG Plot an average of values during each time span. 

MAX Plot the maximum of values during each time span. 
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MIN Plot the minimum of values during each time span. 

SHOW_MINMAX Show average and draw minimum and maximum as error bars. 

ROLLING Used for “show last 3 hours” graph. Points older than span are deleted. 

RATE Number of calls to Fill() during each span is added to the graph. 

Table 7-3 VTimeGraph options 

7.3.21 TimeSeriesHistoGraph 

A visualization class which combines the VH1D and VTimeGraph. The Fill member method 

takes a time point and value arguments. It can automatically generate multiple time-dependent 

histograms and time series plots. For example, when plotting the count rate of a spectroscopic 

channel, it can generate a histogram for every hour, day and week in a separate VH1D objects 

and plot a graph of the rate vs time. Each created object is saved as a separate PNG file during 

export and as a separate object in the output ROOT file.    

7.3.22 MultiVH2D 

A template class for creating std::map of VH2D objects. The type of the index is specified 

as a template parameter. It creates a new VH2D object upon call to Fill() with a new index. The 

root file path, name of the new instance are formatted using boost::str and boost::format to 

replace placeholder tokens in path, name and title constructor with an index converted to string. 

 Listing 6-1 shows an example instantiation of the MultiVH2D object with an int type index. 

The %1% token in the fields is replaced with the channel number. 

// in DataSink::RunStart 
m_VH2D2.emplace("PulseAmplitudeVsEnergy", 
 std::make_unique<MultiVH2D<int>>(run,  
  "/Pulse/CH%1%",     // ROOT file folder path 
  "PulseAmplitudeVsEnergy_CH%1%",   // Graph Name 
  "Pulse Amplitude vs Energy- CH%1%",  // Graph Title 
  "ADC", "Energy [nVs]",    // Axes labels 
  0, 4096, 4096,     // X axis minimum, maximum, number of bins  
  0, EMAX, 100     // Y axis minimum, maximum, number of bins 
)); 
 
// in DataSink::ProcessEvent 
m_VH2D2["PulseAmplitudeVsEnergy"]->Fill(ev->Pulse.Channel, ev->Pulse.PeakAmplitude, 
ev->Pulse.Energy); 
 

Listing 7-7 Example of MultiVH2D instantiation 

7.3.23 MultiTimeSeriesHistoGraph 

A template class for creating std::map of TimeSeriesHistoGraph objects used the same way 

as MultiVH2D class. Listing 7-8, taken from the scube analyzer, shows an example of an 
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instance of this class used to generate separate spectra for each pulse of each 100 ns spatial 

coincidence of each 60 us temporal coincidence. 

// in DataSink::RunStart 
 
m_TSG3.emplace("60us_DANSS_Energy",    
 std::make_unique<MultiTimeSeriesHistoGraph<std::tuple<int,int>>>(run,  
  "/Neutrino/P%1%/CH%2%",   // ROOT file folder path, 

     // %1% and %2% are taken from std::tuple values 
  "60us_N_Energy_P%1%CH%2%",  // Graph Name 
  "60 us coincidence Pulse energy - P%1% CH%2%", // Title: Pulse idx.1 Channel idx.2 
  "Energy [nVs]",    // X axis label 
  0, EMAX, 4096,   // X axis min, max and number of bins 
  defTSGopts,    // Generating options 
  defVGopts             // TimeSeriesGraph options and  
)); 
 
// in DataSink::ProcessEvent 
for (auto const &ced : ev->CoincidenceData) 
 for (auto const &e : ced->CoincidenceData) 
 { 
   m_TSG3["60us_DANSS_Energy"]->Fill( 

std::make_tuple(pulse, e->Pulse.Channel),  // index, pulse is n-th pulse in the     
       // coincidence window 

ced->EventTime, 
e->Pulse.Energy 

   ); 
   pulse++; 
} 

 Listing 7-8 MultiTimeSeriesHistoGraph Example 

7.3.24 Analyzer and AnalyzerFactory 

The Analyzer base class is a DataSink which is named and registered with the 

AnalyzerFactory. The user can specify which analyzer is used for data analysis either on 

command line or in the configuration file. SwCoinc contains two analyzers: adcprint and 

scube_vme.  

7.3.25 ADCPrinter 

 ADCPrinter class provides a simple analyzer which outputs each ADC Event as a PNG 

image and Text file output. The code for the analyzer is shown in Listing 7-9 and Listing 7-10. 

#pragma once 
#include <memory> 
#include "Event.hpp" 
#include "DataSink/DataSink.hpp" 
 
class ADCPrinter : public DataSink 
{ 
public: 
 ADCPrinter(std::string name) : DataSink(name) {} 
 virtual void ProcessEvent(const std::shared_ptr<Event>& ev); 
}; 

Listing 7-9 ADCPrinter.hpp 

#include "Utility/PrintADCEvent.hpp" 
#include "Analyzer2/AnalyzerFactory.hpp" 
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#include "ADCPrinter.hpp" 
static struct AnalyzerInfo AnalyzerInfo_ADCPrint 
{ 
 "adcprint", // Name used as a command line parameter 
 "Exports ADC Events as graphs", // Description 
 []() { return std::make_shared<ADCPrinter>("adcprinter"); } // Factory allocator 
}; 
static bool isRegistered[[gnu::unused]] = 
AnalyzerFactory::inst().Register(&AnalyzerInfo_ADCPrint); 
 
void ADCPrinter::ProcessEvent(const std::shared_ptr<Event>& ev) 
{ 
 if (!ev->hasADC) 
  return; 
 PrintADCEvent("ADC", ev); // Output Event as PNG 
 ExportADCEvent("ADC", ev); // Output Event as TXT 
} 

Listing 7-10 ADCPrinter.cpp 

7.3.26 Scube VME Analyzer (scube_vme) 

Implements the Inverse-Beta Decay coincidence search method. Pulses extracted from the 

raw ADC data are checked for the Detector Pulses using a 100-nanosecond coincidence filter. 

These coincidence events are run through another 60 microsecond coincidence window. The 

scube_vme analyzer allocator function is shown in Listing 7-11. 

static std::shared_ptr<DataSink> scube_vme() 
{ 
  DataSink *v = new DataSinkVector( 
  {  
    new VMESystemGraphs("VMEGraphs"), 
    new ADCEventGraphs("ADCEvents"), 
    new PulseExtractor(new DataSinkVector( { 
      new PulseGraphs("PulseGraphs"), 
      new Coincidence(Duration::OneNanoSecond() * 100, 1, 0, new DataSinkVector({ 
  new SubCoincidenceGraphs("SubCoincidence"), 
  new Coincidence(Duration::OneMicroSecond() * 60, 2, 0, new DataSinkVector({ 
    new CoincidenceGraphs("Coincidence") 
  })) 
      })) 
    })), 
  }); 
  std::shared_ptr<DataSink> sv(v); 
  return sv; 
} 

Listing 7-11 scube_vme allocator function 
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8 DANSS Firmware Results 

The measurement is done in coincidence mode controlled by the V1495. Events from active 

shielding are collected by second V1495 controlled via serial protocol. Due to parasitic pulses 

which sometimes occur approximately 500 ns after a pulse, the controlling V1495 is set to 

ignore any pulse closer than 2 µs. The main coincidence window lasts up to 80 µs. Statistical 

data from a single run is shown in Table 8-1.  

Run length 88 020 s  

Block length 60 s 

Crate events 18 398 866 

Average time between IRQs 4.8 ms 

Average IRQ handling duration 112 us 

Total handling time 2068 s 

Total handling time [%] 2.4% 

Table 8-1 DAQ Statistics for one run with QDC only 

Figure 8-1 shows the distribution of number of events per second, the discrete nature of the 

graph is due to the way this statistics is collected by the DAQ system. The number of events 

per second shows that the peak count rate has been about 550 events per second. 

 

Figure 8-1 Average number of events per second in one run (Counts vs Counts per second) 
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Time required for crate readout is shown in Figure 8-2. The average time to service an IRQ 

is 115 µs. First, the source of the interrupt is checked and appropriate VME board status 

registers are read. Depending on the source, either data are read from QDCs using CBLT and 

the control V1495, or from active shielding V1495. Because the QDC event does not contain a 

timestamp, the acquisition process is blocked during the readout process to assure that only 

related data are put into the crate event. Despite that, it can be seen that the system has been 

blocked only for 2.4% of the run duration. 

 
Figure 8-2 IRQ handling time with QDCs only (Counts vs time in us) 

 

Figure 8-3 and Figure 8-4 show typical spectra of randomly selected PMT prompt and 

delayed channels during the 24-hour run. Both spectra show the cosmic muon peak and have a 

range of about 56 MeV. The sharp peak at the beginning is the result of all detector channels 

being converted when any channel triggers the DAQ and is therefore a peak of a zero charge.  
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Figure 8-3 Prompt PMT Channel spectrum 

 

 
Figure 8-4 Delayed PMT Channel spectrum 

 

Distribution of multiplicities of section pulses in prompt and delayed DANSS pulses and 

their correlation are shown in Figure 8-5. Both axes contain the number of active detector 

sections (50 strips connected to 1 PMT) in the DANSS pulses. 

 

Figure 8-5 Number of active PMT channels in prompt vs delayed DANSS pulses 

The spatial correlation of prompt DP and delayed DP are shown in Figure 8-6. X and Y axes 

contain the PMT channel number. These data are collected from hardware triggers by the 

V1495 which allows up to 64 logical inputs and only 50 PMTs are connected, explaining the 

gaps in the data. The figure also shows a hardware problem which was detected in channel 34 

analog frontend causing ringing and higher-than-normal coincidence rate. Generally, the 

dispersion of the parameters is caused by non-uniformity of the shielding (mechanical, position 

on the lifting mechanism), dispersion of strip parameters, trigger threshold levels and 

differences in noise levels [3]. 
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Figure 8-6 Active PMT channels in prompt vs delayed pulses 

 

8.1 Digitizer performance results 

Another spectrometer based on the V1740 digitizer is connected to the detector in parallel. 

Many tests were performed on a small part of the detector in the laboratory. The digitizer 

capture length is set to 288 ns, or 18 samples. Figure 8-7 and Figure 8-8 show results of pulse 

digitization capturing interaction of a testing scintillator connected to a DANSS AFE with 

cosmic muons in laboratory setting. 

 
Figure 8-7 Sum of all digitized waveforms 
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Figure 8-8 Digitizer samples of natural background 

Figure 8-9 show spectrum of natural background in the laboratory which was obtained by 

online charge integration of the digitized window. 

 
Figure 8-9 Laboratory background spectrum (Counts vs ADC value) 

The digitizer is configured with all of its 64 input channels enabled. In this case 64 * 18 

samples have to be read during each IRQ. The average readout time is about 120 µs (Figure 

8-10), thanks to the digitizer’s compact event structure and support for VME block read (BLT). 

Like in the QDC spectrometer case it is calculated as a difference between Linux system 

timestamp just after the acquisition process is woken up by IRQ and a call to wait for further 
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interrupts. The peak around 20 µs is caused when V1740 asserts its interrupt line but the queried 

status register reports no available event prepared to be read out.  

 
Figure 8-10 Digitizer DAQ readout time (Counts vs time in us) 

 

To ensure practically zero dead time the V1740 is configured to work with 8 FIFO buffers 

for each channel. When the digitizer internally triggers and captures samples, it generates an 

interrupt and immediately is ready to capture next event. Given the average count rate of 

DANSS detector and its active shielding is about 2500 pulses per second and the average time 

it takes to read one event is about 120 µs, it is clear that it is indeed possible to capture all events 

in the “event by event” mode. 

The V1740 is configured to not allow interleaving triggers. That means, that as soon as any 

channel triggers internal acquisition, other triggers are ignored and samples from all channels 

are recorded relative to start of the acquisition window. Pulses which arrive later can be sampled 

incompletely, however the 288 ns long sampling window and associated 50 ns DANSS window 

provides for correct sampling of all PMT pulses forming the DANSS Pulse and compatibility 

of charge integration. 

 

8.2 Combined spectrometer results 

The configuration of the DANSS DAQ operating as of fall 2016 contains both the QDC and 

Digitizer spectrometers operating together in a single crate. Both the QDC and Digitizer are 

controlled by one V1495  
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Figure 8-11 and Figure 8-12 show comparisons of a DANSS channel spectra obtained by 

QDC (black) and the Digitizer (red and green). The FADC energy is calculated as a sum of all 

samples within the window scaled by a constant. 

 
Figure 8-11 Prompt QDC and FADC 

spectra (Counts vs xDC value) 

 
Figure 8-12 Delayed QDC and FADC 

spectra (Counts vs xDC value) 

Figure 8-13 shows the total required interrupt handling time to read data from all 8 QDC, 

one V1740 digitizer, controlling V1495 and active shielding V1495. The required time varies 

with event complexity.  

 
Figure 8-13 IRQ handling time QDC+FADC+Activeshielding (Counts vs time in us) 

Table 8-2 shows the statistics of a 28 hour run. 

Run time 102 780s 

Average IRQ per second 86.70 

Average IRQ handling duration 494 us 
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Total handling time 4398 s 

Total handling time [%] 4.28% 

Detector DANSS Pulses 101 544 038 

Detector DANSS Pulses per second 988 

Total active Shielding DANSS Pulses 238 883 876 

IRQs  8 911 093 

IRQs with one pulse events (≥8 active 

PMTs) 

2 277 876 

Table 8-2 DAQ Statistics for one run with QDC, Digitizer and active shielding 
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9 New data acquisition system proposal – Я3DAQ 

During the design and development of the S3 detector a need for a new DAQ arose. Based 

on experience with the existing NWVME, the main requirements for the new system are easier 

configuration, quality of data logging and the capability of on-line reduction of data. 

The NWVME XML configuration file is generic and consists of a sequence of raw VME 

register access commands. This has advantages and disadvantages. The advantage is that it can 

be used with any card and implement any read-out algorithm without changing the program 

sources. However, it is rather difficult for ordinary users to change specific configuration detail, 

such as enabling or disabling specific channel or trigger thresholds. In the DANSS experiment 

experience, members of the team rotate in the detector control room in the nuclear powerplant. 

This room has no internet access and therefore configuration cannot be done remotely by an 

experienced user.  

The quality of data logging is important for measuring how well the data acquisition system 

performs. Information about hardware serial numbers, operating temperature should be logged 

at the system start and performance metrics, such as number of events per second, should be 

logged during the measurement. Both histograms and time evolution of the values should be 

stored. Histograms show the ranges of measured values and time evolution graphs allow the 

operators to notice abnormal behavior and possibly correlate them with external events (such 

as hardware failure, time of day, people in the room, etc.). The quality of data logging is also 

essential for estimation of measurement dead-time.  

The third requirement – on-line reduction of data comes from the fact that the DANSS 

experience has shown the need to collect full spectroscopic spectra from all channels to 

characterize the detector and hardware triggering (as described previously) removed that 

possibility. The new S3 DAQ is based on Flash ADC converters with QDC firmware which 

allows collection of all pulses without any dead-time. However, to reduce the number of 

recorded events, on-line processing and filtering is needed. Detector events can be separated 

into three categories – events which are known to be interesting (such as calibration muons and 

events with IBD-like signature), events which are known to be not interesting (such as random 

single events) and can be discarded and events whose category is not known and demand further 

analysis. For discarded events a summary spectroscopic spectrum is generated.  
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9.1 Overall architecture 

The DAQ should be divided into three conceptual parts – DAQ, the BOX and The View. 

This reduces the number of possible bugs, similar to the UNIX philosophy – set of small utilities 

doing one task. The DAQ can be thought as an evolution of the NWVME, the BOX as an 

evolution of the software processing system described previously in section chapter 7. 

 

Figure 9-1 DAQ Architecture 

The DAQ application is responsible for hardware configuration, operation and data readout. 

It is instrumented for data quality measurement – such as events per second, buffer occupancy 

and latency measurement. Data can be stored to disk or made available for network TCP clients. 

For remote clients a control socket, measurement configuration is also available. During 

hardware initialization the DAQ needs to test communication with the hardware, verify that the 

configured card type matches with the actual card and record card information – hardware and 

firmware revision. 

The BOX is responsible for data reduction. Data can come either from a directory structure 

or network TCP connection. Incoming events from multiple sources (channels, crates, slow-

control) is chronologically ordered and passed through user configured set of filters. The filters 

can be based on temporal or spatial coincidences, energies or channel sources (such as detector, 

veto, slow control). Processed output is stored in the same format as the source data allowing 

recursive operation – ie, basic on-line filtering done immediately without writing full measured 

data to storage and more intensive off-line processing later. 

Figure 9-2 shows the block diagram of the proposed BOX – The Soft QDC part is used when 

reading events generated by the Waveform recording firmware. The input of the Time Ordering 

Queue is an n-tuple [TimeStamp, Channel, Energy]. Each channel can have a defined class – 

DAQ BOX

HDD

TCP

HDD

TCP

The View

Common library
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in case of S3 detector it is detector, gamma catcher and the active veto allowing software trigger 

definition.  

Event 
Read

Event 
parse

Soft QDC Time 
Ordering 
Queue

FILTER
Event 
Write

Statistics – Spectra, Time deltas, Time dependency

 

Figure 9-2 The BOX block diagram 

Each logical block of the BOX generates its own quality of data statistics and 

instrumentation. Histograms of time delta between adjacent event are used to spot non-random 

events and the time dependency graphs are generated in per-hour, per-day and weekly. 

The View is designed as a frontend for the user to view the data. Most likely it will be built 

using Python programming language. Allows the user to view graphs, spectra and do analysis. 

Networked operation allows using less powerful (i.e. less generated heat) computer in the 

airconditioned detector room and have the filtering computer in the control room. 

9.2 Types of supported VME Cards 

Traditionally, the DLNP JINR has used spectrometers based on CAMAC standard and 

CAEN QDC converters. It has been decided that new spectrometers, not only for the S3 

detectors will be based on digitizers exclusively as they allow measurement with zero dead 

time. They are offered with two major kinds of firmware – waveform recording and charge to 

digital (QDC). It has been measured that a VME Crate with MBLT readout (50MB/s) and one 

V1725 digitizer (16 channels, 250MSPS, DPP-PSD firmware) allows up to 4 million pulses to 

be read out every second.  

9.2.1 V1495 with custom firmware 

The DAQ supports the Gate Generator as described in sectio 6.5 of this thesis. 

9.2.2 CAEN Digitizer with ADC waveform recording firmware 

These digitizers use analog to digital converters to continuously sample all input channels 

and store samples in a circular buffer. Whenever a trigger occurs, configured pre and post 

samples (acquisition window) from all enabled input channels are stored in an event buffer. The 

internal memory can be divided to store multiple events allowing acquisition without dead-time 
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as long as the memory is not full. Depending on the model, the number of samples stored ranges 

from 192k to 1.5M samples per channel. 

Trigger can be sourced either from external connection (LVDS/LEMO), generated internally 

by absolute under/above threshold value of any channel or forced by a register write. It is 

possible to require minimum number of simultaneously triggering channels (coincidence 

window). Triggers occurring during active acquisition window can be either ignored or cause 

lengthening of the window, which is then divided into separate events with length up to the 

configured window length. 

 

Figure 9-3 ADC Waveform recording firmware modes [22] 

9.2.3 CAEN Digitizer with QDC firmware 

Digitizers with the Digital Pulse Processing (DPP) firmwares continuously sample each 

input channel and calculate channel baseline (zero voltage). Whenever a relative threshold is 

crossed the charge is integrated (sum of relative values). Each channel triggers independently 

and data from non-triggering channels are not stored. Therefore, this firmware reduces the 

amount of data recorded and is much better suited for multichannel detectors with relatively 

sparse events - where only one or few channels out of all have interesting data. The format of 

the event is configurable and the pulse samples can be also recorded.  

The Caen VME V1740D supports the basic DPP-QDC firmware where only one gate is 

present. Newer Digitizers (V1725, V1730, V1751) support the DPP-PSD firmware where for 

each pulse two sums are calculated – peak and peak with tail allowing pulse shape 

discrimination between neutrons and gammas by ratio of the short and long gate charges.  
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One disadvantage of this firmware is that the resulting VME events (called aggregates by 

CAEN) are not chronologically ordered and have to be sorted during processing. 

 

Figure 9-4 DPP-PSD Gates [23] 

The DAQ has been tested with following CAEN VME Cards 

• V1730 – 16 channel, 500MSPS, 14 bit, Waveform FW 

• V1725 – 16 channel, 250MSPS, 14 bit, DPP-PSD FW 

• V1740 – 64 channel, 62.5MSPS, 12 bit, Waveform FW 

• V1740D – 64 channel, 62.5MSPS, 12 bit, DPP-QDC FW 

• V1495 – FPGA card with the author’s Gate Generator FW 

 

Figure 9-5 Test VME Crate with digitizers 
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9.3 Configuration 

As opposed to the NWVME the new DAQ shall have knowledge about the features of 

specific hardware and express it in the configuration file in a human readable format. An 

example of setting channel input ranges and channel thresholds in NWVME is given in Listing 

9-1.  

<!-- Input range --> 
<command name="CAENVME_WriteCycle" offset_32_address="0x1028" address_modifier="0x09" 
data_width="32" input_value="0x0000" repeat="1"/> 
<command name="DELAY" input_value="1000"/>                                    
<command name="CAENVME_WriteCycle" offset_32_address="0x1128" address_modifier="0x09" 
data_width="32" input_value="0x0000" repeat="1"/> 
 
<!-- Trigger threshold --> 
<command name="CAENVME_WriteCycle" offset_32_address="0x1080" address_modifier="0x09" 
data_width="32" input_value="15700" repeat="1"/> 
<command name="DELAY" input_value="1000"/>                                   <!-- 1ms v 
[us] vydrz --> 
<command name="CAENVME_WriteCycle" offset_32_address="0x1180" address_modifier="0x09" 
data_width="32" input_value="15700" repeat="1"/> 
<command name="DELAY" input_value="1000"/>                                   <!-- 1ms v 
[us] vydrz --> 
<command name="CAENVME_WriteCycle" offset_32_address="0x1280" address_modifier="0x09" 
data_width="32" input_value="15700" repeat="1"/> 

Listing 9-1 NWVME configuration file example 

An example of configuration file of the new DAQ is given in Listing 9-2. The XML 

configuration file is designed as self-documenting. An example configuration file of all 

supported hardware is generated by the DAQ command and can be then used as a template by 

the user. Any user should be able to find and modify important values easily, for example if 

given an instruction over a phone. The configuration file should also keep the principle of 

defining any important values once to prevent errors. That is very important for the DPP 

firmwares, where every channel has many configuration parameters and any change needs to 

be applied for all channels introducing a space for mistake. The format therefore supports the 

#CLONE XML parameter which copies all unset options from other configuration node of the 

same level or below (i.e. channel from channel, channel group from channel group, card from 

card, VME crate from VME crate)  

<!-- FrontPanelTrigger: Couple can trigger FP-TRGOUT --> 
<!-- FrontPanelTrigger:         Boolean - 0 1 --> 
<!-- PulseType: Trigger Pulse Generation --> 
<!-- PulseType:         Enumerated: Programmable(0) Threshold(1)  --> 
<!-- Trigger: Couple can trigger --> 
<!-- Trigger:   Boolean - 0 1 --> 
<!-- TriggerLogic: Couple Trigger Logic --> 
<!-- TriggerLogic:      Enumerated: AND(0) FIRST(1) OR(3) SECOND(2)  --> 
<couple id="0" #CLONE="" FrontPanelTrigger="0" PulseType="Programmable" Trigger="1" 
TriggerLogic="OR"> 
        <!-- Name: Channel name --> 
        <!-- Enabled: Channel enabled --> 
        <!-- Enabled:   Boolean - 0 1 --> 
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        <!-- Offset: DAC offset --> 
        <!-- Offset:    Unsigned integer range: 0 - 65535 --> 
        <!-- PulseWidth: Trigger Coincidence Pulse Width, 16 ns step --> 
        <!-- PulseWidth:        Unsigned integer range: 0 - 255 --> 
        <!-- DynamicRange: Input dynamic range --> 
        <!-- DynamicRange:      Enumerated: 0V5(1) 2V(0)  --> 
        <!-- Threshold: Trigger threshold --> 
        <!-- Threshold:         Unsigned integer range: 0 - 16383 --> 
        <channel id="0" #CLONE="" Name="CH1" Enabled="1" Offset="4096" PulseWidth="2" 
DynamicRange="0V5" Threshold="15000"/> 
        <channel id="1" #CLONE="0" Name="CH2" Enabled="1"  Threshold="15000"/> 
</couple> 
<couple id="1" #CLONE="0" Trigger="1" TriggerLogic="OR"> 
        <channel id="2" Name="VETOUP"  Enabled="1" Threshold="15000"/> 
        <channel id="3" Name="VETOBOT" Enabled="0" Threshold="14434"/> 
</couple> 

Listing 9-2 Я3DAQ configuration file example 

The DAQ component then translates this hardware specific configuration file into 

configuration file for the BOX – where only important information for every channel is kept – 

sampling rate, dynamic ranges and threshold values. 
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10 Conclusions 

This thesis deals with detection of the inverse beta decay in nuclear reactor antineutrino 

detectors. The author has been involved in two such experiments – DANSS and S3. The DANSS 

experiment was developed by the Dzhelepov Laboratory of Nuclear Problems of the Joint 

Institute of Nuclear Research in Russia. The S3 experiment is being developed as a collaboration 

of the Institute of Experimental and Applied Physics of the Czech Technical University in 

Prague and the DLNP JINR.  

The DANSS experiment has been in operational phase since summer 2016 and is still 

collecting data in the technical room 10 meters underneath the reactor core of Kalinin Nuclear 

Power Plant in Russia. The S3experiment is, as of August 2018, still being designed and 

constructed. 

The goals of the thesis were to devise and implement the method of detection inverse beta 

decay and implement them for the two experiments. 

For the DANSS experiment a method of a coincidence of a group of pulses (spatial and 

temporal coincidence) was devised and implemented as an FPGA firmware for the main control 

card of the data acquisition system. The DANSS spectrometer uses the charge to digital 

converters for particle energy extraction and an FPGA based control card for trigger control. A 

variant of the firmware was designed by the author for the active veto system of the detector 

which records any events occurring around the time of the trigger. The author also participated 

during the commissioning phase of the DAQ in the Kalinin NPP in technical data analysis.  

For the S3 experiment the same coincidence method was implemented in a C++ application. 

It can be used for both online and offline processing from trace recording oscilloscopes and 

CAEN ADC digitizers. The resulting application allows data analysis, visualization, online 

monitoring and data reduction down to a manageable level. The resulting DAQ has been tested 

on the S-Cubino prototype. 

Further, based on the experience obtained during the work on the thesis a new complete data 

acquisition system has been proposed and its development has started and will be used for the 

complete S3 detector both in Czech republic and Russia.  
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