

Západočeská Univerzita v Plzni

Fakulta Elektrotechnická

Katedra Aplikované Elektroniky a Telekomunikací

DOCTORAL THESIS

Antineutrino detector processing system

Candidate: Ing. Jakub Vlášek

Supervisor: Doc. Dr. Ing. Vjačeslav Georgiev

Pilsen, March 2018

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

2

Key words

Inverse beta-decay, DANSS, anti-neutrino, VME, Scintillator, PMT, V1495, S-cube,

coincidence

Abstract

This thesis presents a method of data analysis of a multichannel spectroscopic data

acquisition system for a large segmented detector of reactor antineutrinos. The method is

described, and two implementations are presented. One for PMT based spectrometer for the

DANSS detector, built by the Joint Institute for Nuclear Research in Dubna and operating

underneath nuclear reactor in the Kalinin Nuclear Power plant and second software based for

the S3 detector, being developed by the Institute of Experimental and Applied Physics of the

Czech Technical University in Prague.

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

3

Klíčová slova

Inverzní beta rozpad, DANSS, anti-neutrino, VME, Scintillator, PMT, V1495, S-cube,

koincidence

Anotace

Tato práce prezentuje metodu zpracování dat multikanálového systému pro získávání dat z

segmentovaného detektoru reaktorových antineutrin. Metoda je popsána a její dvě různé

implementace. Jedna pro spektrometr založený na fotonásobičích detektoru DANSS, postavený

Spojeným ústavem jaderných výzkumů v Dubně a běží v jaderné Kalininské elektrárně, a

druhý, softwarově založený pro detektor S3, který je vyvíjen v Ústavu Technické a

Experimentální Fyziky ČVUT v Praze.

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

4

Prohlášení

Předkládám tímto k posouzení a obhajobě disertační práci zpracovanou v rámci

doktorského studia na Katedře aplikované elektroniky a telekomunikací Fakulty

elektrotechnické Západočeské univerzity v Plzni. Prohlašuji, že jsem tuto práci vytvořil

samostatně, s použitím literatury a zdrojů uvedených v seznamu, který je její neoddělitelnou

součástí a za pomoci legálních kopií řádně registrovaného, nebo volně šiřitelného softwarového

vybavení. V práci nejsou uvedeny žádné citlivé, či utajované skutečnosti podléhající

obchodnímu tajemství, nebo vyžadující speciální režim přístupu. Jakékoli využití a uplatnění

uvedených postupů a metod je nicméně možné pouze na základě autorské smlouvy a souhlasu

Fakulty elektrotechnické Západočeské univerzity v Plzni.

V Plzni dne 31.8.2018

Ing. Jakub Vlášek

……………….....

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

5

Acknowledgement

I would like to thank my colleagues who helped during work on my thesis. Especially those

from the Dzhelepov Laboratory of Nuclear Problems of the Joint Institute of Nuclear Research

in Dubna, Russia, the Institute of Experimental and Applied Physics of the Czech Technical

University in Prague and Faculty of Applied Electronics and Telecommunications of the

University of West Bohemia. I would like to thank namely following people namely: Zdenek

Hons, Vjaceslav Georgievich Egorov, Igor Zhitnikov.

I would also like to thank my thesis supervisor Vjačeslav Georgiev and the supervisor-

specialist Ivan Štekl.

This research has been funded by the following grants: Czech Technological Agency TE

01020445, Czech Ministry of Education Youth and Sports INGO II – LG14004, Russian State

Atomic Energy Corporation ROSATOM 16.1006 and European Regional Development Fund

Project No CZ.02.1.01/0.0/0.0/16_019/0000766.

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

6

Contents
List of abbreviations ... 10

1 Introduction .. 11

2 Detection of neutrinos .. 13

2.1 History .. 13

2.2 Cherenkov detection ... 14

2.3 Inverse beta decay detection ... 15

3 DANSS Detector .. 15

4 S3 detector .. 17

5 DANSS spectrometer ... 21

5.1 Signal path .. 21

5.2 CAEN VME-Based Spectrometer .. 22

5.2.1 N625 Quad Linear Analog Fan-In/Fan-Out .. 22

5.2.2 N454 Logic Fan In/Fan Out .. 22

5.2.3 V2718 Controller .. 22

5.2.4 V965 Charge to Digital Converter (QDC) .. 23

5.2.5 V1740 ADC Digitizer Card .. 23

5.2.6 V1495 GPIO FPGA Card.. 23

5.3 Data Acquisition Software ... 24

5.4 Data event structure .. 25

6 DANSS Firmware Implementation ... 27

6.1 V1495 ... 27

6.1.1 V1495 local bus interface .. 28

6.2 Firmware framework .. 29

6.2.1 Build process ... 29

6.3 Firmware building blocks ... 30

6.3.1 Configuration and status ... 30

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

7

6.3.2 System timestamp ... 31

6.3.3 Signal input ... 31

6.3.4 Data read-out controller .. 31

6.3.5 Serial communication .. 32

6.3.6 Output GATE generation .. 32

6.3.7 Status gate ... 34

6.4 Firmware cores ... 34

6.4.1 Coincidence core ... 34

6.4.2 Pattern recorder core ... 38

6.5 Gate generator core ... 39

6.6 Firmware resource usage .. 40

7 S3 software coincidence analyzer ... 41

7.1 SwCoinc software description .. 42

7.1.1 Data input .. 42

7.1.2 Data analysis ... 42

7.1.3 Data visualization .. 42

7.1.4 Command and control ... 43

7.2 Analyzer software architecture ... 43

7.3 Analyzer software class overview .. 44

7.3.1 Config .. 44

7.3.2 Log .. 44

7.3.3 RootServer... 44

7.3.4 IThread .. 44

7.3.5 DataStore ... 45

7.3.6 Scheduler ... 45

7.3.7 Event ... 45

7.3.8 DataSource .. 46

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

8

7.3.9 DataSink .. 47

7.3.10 Filter and LambdaFilter ... 47

7.3.11 PulseExtractor .. 47

7.3.12 Coincidence ... 48

7.3.13 DataParser and DataParserFactory .. 48

7.3.14 Discovery ... 50

7.3.15 Run class .. 51

7.3.16 RunReader ... 51

7.3.17 VBase .. 52

7.3.18 VGraph, VGraphErrors ... 52

7.3.19 VH1D, VH2D .. 52

7.3.20 VTimeGraph .. 52

7.3.21 TimeSeriesHistoGraph .. 53

7.3.22 MultiVH2D .. 53

7.3.23 MultiTimeSeriesHistoGraph ... 53

7.3.24 Analyzer and AnalyzerFactory .. 54

7.3.25 ADCPrinter .. 54

7.3.26 Scube VME Analyzer (scube_vme) .. 55

8 DANSS Firmware Results ... 56

8.1 Digitizer performance results ... 59

8.2 Combined spectrometer results .. 61

9 New data acquisition system proposal – Я3DAQ .. 64

9.1 Overall architecture .. 65

9.2 Types of supported VME Cards ... 66

9.2.1 V1495 with custom firmware .. 66

9.2.2 CAEN Digitizer with ADC waveform recording firmware 66

9.2.3 CAEN Digitizer with QDC firmware ... 67

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

9

9.3 Configuration .. 69

10 Conclusions .. 71

11 List of relevant publications ... 72

11.1 Impacted publications ... 72

11.2 Proceedings papers ... 72

12 Other results ... 72

12.1 Other impacted publications ... 72

12.2 Other conferences ... 72

13 Prototypes and software ... 73

14 List of figures ... 74

15 List of Listings ... 75

16 List of Tables .. 76

17 References .. 77

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

10

List of abbreviations

FPGA Field Programmable Gate Array

MSPS Mega Samples Per Second

JINR Joint Institute of Nuclear Research (Dubna, Russia)

NPP Nuclear Power Plant

KNPP Kalinin Nuclear Power Plant

ADC Analog to Digital Converter

PMT Photomultiplier Tube

SiMP Silicon Photomultiplier

AFE Analog FrontEnd

DAQ Data Acquisition System

DANSS Detector of reactor AntiNeutrinos based on Solid Scintillator

VME Versa Module Europa bus

QDC charge(Q) to Digital Convertor

IBD Inverse Beta Decay

WLS Wavelength shifting

DPP Digital Pulse Processing

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

11

1 Introduction

Neutrinos are a hot topic of contemporary particle physics and their study is a subject of a

great interest. Initially, it was assumed that neutrinos are mass-less, however, a discrepancy

between the theoretically predicted solar neutrino flux with ground measurements (the “Solar

Neutrino Problem” [1]) led to the discovery that neutrinos do have mass and can oscillate

between their flavors (electron, tau, muon).

There are three major sources of neutrinos – sun, particle accelerators and nuclear reactors.

The high intensity of neutrino flux generated by nuclear reactors provides a good opportunity

to study the elementary behavior of neutrinos. There are experiments, including the RENO

(Reactor Experiment for Neutrino Oscillations) [2], which attempt to measure neutrino

oscillations with detectors spaced hundreds meters from the reactor. But the amplitude of the

neutrino oscillations is a question. Therefore, it is necessary to place the detector as close to the

reactor as possible. Unfortunately, existing detectors are mostly based on hydrogen-rich liquids,

such as kerosene, which pose a flammable hazard, an unacceptable for a reactor building.

One of the possibilities to avoid the fire hazard and gain access close to the reactor from the

power plant operators is to use polystyrene scintillating detectors. This has been used by the

DANSS (Detector of reactor AntiNeutrinos based on Solid Scintillator) detector [3], operated

by the Joint Institute of Nuclear Research in Dubna and the Institute of Theoretical and

Experimental Physics in Moscow. This 1m3 detector, made from 2500 scintillating polystyrene

1×4×100 cm3 bars coextruded with Gadolinium layer has been running for two years in a close

proximity to the core of the Kalinin NPP. It is mounted in a z-axis moveable platform (8-12m)

to explore the short-range neutrino oscillations.

Together with Dzhelepov Laboratory of Nuclear Problems (DLNP) of JINR, the Institute of

Experimental and Applied Physics of Czech Technical University Prague are currently

constructing a new anti-neutrino detector –S3 as an evolution of the DANSS design.

S3 is a smaller detector with a volume of 0.4×0.4×0.4 m3 consisting of 80 scintillating plates

with improved light yield. At present, there are two detectors prototypes under construction.

One detector will be placed next to the DANSS experiment in KNPP to provide reference

information about the nuclear reactor power level. The second is expected to be placed in the

Temelín NPP. Both nuclear power plants are of the same VVER-1000 technical specification.

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

12

The DANSS Data acquisition system is based on hardware triggered CAEN charge

convertors (QDCs) and is controlled by logic implemented in an Field Programmable Gate

Array. The S3 DAQ is based on self-triggered CAEN multichannel ADC. The data reduction is

implemented in software on a PC.

The aim of this thesis is to:

• prepare and design the detection algorithm of the DANSS detector

• design and implement the algorithm as a FPGA firmware for DANSS

• design and implement active cosmic veto FPGA firmware for DANSS

• design and implement the algorithm for the S3 detector

The method must detect the inverse beta decay process 𝜐̃ + 𝑝 → 𝑒+ + 𝑛, where antineutrino

𝜐̃ reacts with a proton p and produces positron 𝑒+ and neutron n.

This thesis is divided into the introduction, eight chapters and the conclusions. The second

chapter briefly describes the way neutrinos are detected. Chapters 3 and 4 describe the DANSS

and S3 experiments.

The author’s involvement begins with chapter 5, where the DANSS data acquisition system

is described in detail. Chapter 6 describes the FPGA firmware newly developed for the DANSS

DAQ.

Chapter 7 describes the C++ software implementation of an application capable of online

experiment monitoring, visualization, analysis and the inverse beta decays signature detection.

Chapters 8 provides results of technical measurements obtained during the commissioning

of the DANSS detector in the KNPP.

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

13

2 Detection of neutrinos

Neutrinos are particles which have very small probability of interaction (cross-section) with

ordinary matter. Therefore, the detectors have to be either very large (kilometer scale) , as is

the case for detection of cosmic neutrinos or very close to a source of neutrinos, e.g. a nuclear

reactor. There are two methods of their detection, using Cherenkov radiation and using inverse

beta decay detection.

2.1 History

A hypothetical particle, electrically neutral and having mass smaller than that of the proton

was first proposed by Wolfgang Pauli in 1930 [4]. In 1933 Enrico Fermi named it a “neutrino”

to distinguish it from the newly discovered neutron [5].

At first, neutrinos were considered massless. Their first detection was done by F.Reines and

C.Cowan [6] using nuclear reactor as a strong source of antineutrinos using inverse beta decay.

They used a liquid scintillator where the electron antineutrino interacts with a proton, emitting

a positron and a neutron. The positron annihilates creating two 511 kEv gamma photons and

the neutron is captured by a proton creating a deuteron and emitting gamma rays with energy

of 2.2 MeV (Figure 2-1).

Figure 2-1 Inverse beta decay in a liquid scintillator

Several experiments with solar (R. Davis et al [7]), atmospheric, accelerator and reactor

neutrinos have provided the existence of neutrino oscillations driven by non-zero masses and

neutrino mixing. Neutrino oscillation is a quantum mechanical phenomenon whereby a neutrino

created with a specific lepton flavor (electron, muon, tau) can later be measured to have a

different flavor. The probability of measuring a particular flavor for a neutrino varies between

32 known states as it propagates through space. The neutrino oscillations were first predicted

by Bruno Pontecorvo in 1957 [8], [9], [10].

Since neutrinos are massless in standard model of electroweak interactions, this verification

of neutrino oscillations (and therefore mass) was first strong evidence for physics beyond the

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

14

standard model. This convincing evidence for neutrino oscillations has been confirmed by other

experiments (SNO [11], RENO [2], Daya Bay [12]). Neutrino oscillations experiments are not

sensitive to the nature of the neutrino mass and give no information on the absolute neutrino

mass scale [8].

Neutrino oscillation is a function of the ratio L/E where L is the distance travelled and E is

the neutrino energy. To measure neutrino oscillation for different distances from the source is

an important task. Also, several experiments announced the reactor anomaly [13], which can

be explained by existence of sterile neutrinos. These questions can be solved by detector of

neutrinos located as close as possible to the nuclear reactor [5].

2.2 Cherenkov detection

The interaction of a high energy cosmic neutrino in the detector volume produces electrically

charged particle which travels faster than the local speed of light while emitting Cherenkov

radiation. The photons are then detected by sensitive light detectors - photomultipliers. The

particle track can be then reconstructed from the times of arrival of the Cherenkov photons.

Figure 2-2 Principle of high energy neutrino detection

Currently, there are several such detectors either operating or being built in the world.

• Super-Kamiokande – operational, 40 m steel tank with ultrapure water [14]

• Ice-Cube – operational, South Pole observatory using about cubic kilometer of Arctic

ice as detector volume [15]

• Baikal Gigaton Volume Detector – under construction, 1 km3 of clean Russian lake

Baikal water [16], [17]

• ANTARES/KM3NeT – operational, 1km3 of Mediterranean sea [18]

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

15

2.3 Inverse beta decay detection

The IBD detection method is used mostly in detectors of reactor neutrinos. The antineutrino

interacts with a proton producing a positron and a neutron. The positron immediately annihilates

with emission of two gamma rays of 511 keV each. The neutron is thermalized by collisions

with light nuclei and captured. Neutron capture by Gadolinium emits several gamma rays with

the total energy of 8 MeV. The IBD method looks for the characteristic signature of annihilation

and following spatially close gamma rays of the neutron capture.

Experiments based on IBD include

• Daya-Bay [12] – Eight 20 ton kerosene based antineutrino detectors in three locations

within 2 km of six nuclear reactors in Daya Bay, China

• DANSS [3]– 1 cubic meter polystyrene based detector about 10 m from the nuclear

reactor in the Kalinin nuclear power plant, Russia.

3 DANSS Detector

The detector is constructed from 2500 scintillating strips with dimensions of 4×1×100 cm.

Each strip is coated by a reflexive layer containing Gadolinium (Figure 3-2) and contains

wavelength shifting fibers for light collection.

Figure 3-1 DANSS Team members with the detector in the KNPP technical room [3].

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

16

Each successive layer of the detector is built perpendicularly to the previous one. Ten parallel

layers of 5 neighboring strips form one detector section (module - Figure 3-3). The X and Y

sections are intercrossing so that the positional information of the interaction can be extracted.

Every detector section is connected to one PMT.

The light is collected through wavelength shifting fibers by PMT and MPPCs. Each bundle

of 100 WLS fibers from 50 strips is connected to one PMT. The average yield from single strip

of is about 35 photoelectrons per 1 MeV [3].

Figure 3-2 Scintillating strip

Figure 3-3 Detector internal layout

Every PMT is connected to an analog frontend (AFE) containing the high voltage power

supply, pulse shaper, analog comparator and controlling MCU with a DAC. All AFEs are

controlled from the acquisition PC via RS-485 bus. The output pulse from the pulse shaper is

about 100 ns long and is accompanied with above-set-threshold digital pulse.

The MPPCs are connected to a separate data acquisition system which is not a subject of this

thesis.

The DANSS detector uses the inverse beta decay as its detection principle (Figure 3-4). The

electron antineutrino coming from the reactor core interacts with a proton inside the scintillator

and produces positron and a neutron. The positron annihilates and creates a characteristic pair

of 511 keV gamma rays – “prompt signal”. After 2 to 20 µs the neutron moderates and is

captured by Gadolinium. The resulting gamma rays have a total energy of 8 MeV and should

be detected within a sphere of about 20 cm from the original neutrino interaction – “delayed

signal”. This method of detection was verified by small scale DANSS detector demonstrator

DANSSino [19].

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

17

Figure 3-4 Inverse beta decay detection

Thanks to the segmented nature of the detector and the way the strips are placed, the IBD

produces a characteristic signature which can be searched for. Therefore, the data acquisition

system must be able to register a coincidence of two events separated by few microseconds.

Generally, both prompt and delayed signals can come from the same PMT channel. The DAQ

must be sufficiently responsive so that the delayed signal does not fall within the dead time.

Additionally, the DANSS detector is using cosmic muons with vertical tracks for calibration

purposes and the DAQ must also record them.

4 S3 detector

The S3 detector project is a result of cooperation between DLNP JINR and IEAP Prague. Its

main goal is the improvement of the energy resolution by optimizing the scintillating elements.

The detector will be placed next to the DANSS detector in the Kalinin NPP and possibly in the

Temelin NPP in the Czech Republic. The Czech contribution is being funded by a grant of the

Czech Technological Agency TE 01020445 – CK RANUS.

Figure 4-1 S3 scintillating plate with WLS fibers

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

18

The S3 detector consists of 80 20×40×1 cm plates (Figure 4-1) manufactured by the NUVIA

Group placed in a X-Y pattern like the DANSS detector. The plates contain 19 grooves for

WLS fibers collecting light. In contrast with the DANSS strips, the plates are not co-extruded

with reflective and Gadolinium bearing coating, but manually wrapped in Teflon tape, as the

co-extrusion process thermally changes the properties of the scintillator. Low density

polyethylene foils doped with 10%wt Gd2O3, manufactured by the Institute of Macromolecular

Chemistry (IMC) of Czech Academy of Sciences, are placed between the plates. The light from

each individual plate is sensed by SiPM and amplified by an analog frontend.

Figure 4-2 S3 detector schematic

To understand properties of the detector a prototype called S-cubino was constructed (Figure

4-3). It consists of 18 plates divided into two interleaved groups connected to two Hamamatsu

R7600U-300 PMTs.

Figure 4-3 S-cubino detector

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

19

It is shielded by a 10-cm layer of hundred years old lead (for low internal radioactivity) to

shield from gamma radiation, 8 cm of polyethylene for thermal neutron shielding and 8 cm of

borated polyethylene for fast neutron shielding.

Figure 4-4 Construction of the scubino detector

Initial measurements with the S-cubino detector were made in the building of the Faculty of

Mathematics and Physics of the Charles University in Troja in Prague and then the detector was

moved into the underground shelter Bezovka in Prague.

The full detector is being constructed as of spring 2018 in the IEAP CTU for testing. All 19

WLS fibers are connected to one SiPM.

In Russia, the second S3 detector prototype, in parallel development, prototype is being

constructed. It will also consist of 80 scintillating plates, but will have use traditional PMTs for

light collection. In addition, the detector will have a “gamma catcher” scintillating plates

(5x50x100 cm) around the active detector to catch gammas generated inside the detector. As

with the DANSS detector there will be active veto system to detect the fast neutron background

events mimicking the IBD signature. Together, the detector will have 80 PMT per-plate

channels, 16 bigger PMTs connected to the second scintillating side, 8 gamma catcher channels

and 16 active veto channels totaling 120 channels to be sampled by the data acquisition system.

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

20

Active VETO

Shielding

Gamma Catcher

S3

Figure 4-5 S3 Detector layout, Russian version

The schematic layout of the S3 detector is shown on Figure 4-5. Figure 4-6 shows the start

of the prototype construction with one gamma catcher scintillator placed between lead

shielding.

Figure 4-6 Gamma catcher scintillator

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

21

5 DANSS spectrometer

The data acquisition system is installed together with the DANSS detector assembly in a

technical room underneath the reactor. Since the room is inside controlled-access part of the

nuclear powerplant, the DAQ is connected via fiber optic ethernet connection to a control room

(Figure 5-1).

Figure 5-1 Overall system schematics

The acquisition PC collects data from the measurement electronics and saves them onto a

disk. Monitoring PC connects to the DAQ via TCP connection for online monitoring of the

detector by on-duty personnel. There is no outside connection out of the monitoring room,

therefore acquired data can to be only transferred from the powerplant using an approved (by

KNPP) USB Flash drive.

5.1 Signal path

Every PMT channel has its individual analog front-end electronics which is placed inside

the detector shielding. A ribbon cable carries configuration RS-485 bus and power for the AFEs.

The RS-485 is connected via an interface box to the acquisition PC. The AFE provides a

configurable high voltage source for the photomultiplier and control voltage for above-

threshold digital trigger comparator. Pulse shaper lengthens and amplifies the pulses so they

can be captured by the electronics. Since the trigger logic has a propagation delay, it is necessary

to delay the analog signals using a delay line (coax cable with 80 ns tpd).

Figure 5-2 PMT Signal Path

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

22

5.2 CAEN VME-Based Spectrometer

Overall schematics of the PMT spectrometer are shown in Figure 5-3. The spectrometer is

installed in three NIM crates and one VME crate. NIM crate is used for signal fan-out and the

VME crate for the spectrometer itself. The spectrometer consists of signal acquisition modules

(QDC, ADC, FPGA), control (FPGA) and conversion (FPGA). The author of this thesis has

been responsible for the development of the firmware for the FPGA V1495 modules. Hardware

of the spectrometer is composed of several modules mentioned below.

50×
PMT

 +
 AFE

Acquisition
Linux PC

Delay
line

NIM Crate

Analog
Outputs

Logic outputs

VME Crate

4x Prompt V965 QDC

4x Delayed V965 QDC

Active Shielding V1495

R
ES

ET

DATA, IRQ

13× N625 Analog Fan In/
Fan Out

13× N454 Digital Fan In/
Fan Out

P
U

LS
E

TRIGGER

G
A

TE
S

64Ch V1740 ADC

Se
rP

ro
t

Master control V1495

VME Controller V2718

2x NIM/ECL V1495

Figure 5-3 Hardware schematics

5.2.1 N625 Quad Linear Analog Fan-In/Fan-Out

The CAEN N625 has 4 groups of 4 analog summed inputs with 4 analog outputs each. This

card is used to branch the analog signals from AFEs to Prompt, Delay QDCs and the ADC. For

50 channels, 13 such cards are required.

5.2.2 N454 Logic Fan In/Fan Out

CAEN N454 has 4 groups of NIM logic digital OR-ed inputs with four direct outputs and

two negated outputs. It is used for as a signal repeater and a fan-out for debug purposes.

5.2.3 V2718 Controller

The CAEN V2718 VME Controller serves as a bridge between the VME crate bus and a

Linux PC with DAQ software. It is connected via a multimode optical fiber link. The VME

cards are addressable by 32-bit address, where the first 16 bits are set by either by a rotary

switch (VME64 crates) or slot position (VME64X crates). The VME64 bus has bandwidth of

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

23

80MB/s. The VME bus supports single read/write, burst 4KB block (BLT) and chained burst

(CBLT) accesses modes. The chained block access mode uses a multicast target address which

is set for a group of similar adjacent cards. The CBLT is used for reading data from the V965

QDCs. The VME Bus has also 8 IRQ lines, the V2718 bridges them to a PC IRQ.

5.2.4 V965 Charge to Digital Converter (QDC)

The 16-input charge to digital converter integrates the charge on input channels during active

level-sensitive GATE signal and converts it using 12 bit ADC and creates an data event

accessible via the VME bus. Each channel is converted twice, once with gain of 1× and once

with gain of 8×. The GATE signal must precede the analog input by at least 15 ns [20]. The

conversion of all channels takes 5.7 µs, with a total dead time of 6.9 µs.

5.2.5 V1740 ADC Digitizer Card

CAEN V1740 is a 64-input 12 bit 62.5 MSPS simultaneous analog to digital converter with

a 2 Vpp input range. It has a 192k samples per channel memory buffer, which can be divided

into up to 1024 separate events (of 192 samples each). The digitizer can be triggered either

internally by any channel exceeding a threshold voltage, or externally via an edge-sensitive

GATE signal. After a trigger, all enabled channels are sampled and stored to event buffer.

Additional triggers during the acquisition window can be either ignored or cause the acquisition

to be prolonged (trigger overlapping mode). The digitizer operates without a dead-time. That

is, another event can be acquired as soon as previous ends without any delay.

5.2.6 V1495 GPIO FPGA Card

CAEN V1495 is a VME card with an empty user-programmable Altera Cyclone I EP1C20

FPGA with 20K Logical Elements and 36 KiB on-chip ram. The card provides two 32 channel

LVDS/ECL/PECL high-density (3M P50E-068-P1-SR1-TG) inputs, one 32 channel LVDS

outputs, 2 LEMO NIM/TTL inputs/outputs and one LED. Additionally, three add-on slots are

available, which can be filled by 32-channel LVDS/ECL/PECL inputs, 32-channel LVDS

output, 8-channel NIM/TTL LEMO input/output daughter cards.

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

24

Figure 5-4 Development VME Crate

5.3 Data Acquisition Software

The spectrometer data are collected, monitored and partially on-line processed by a system

described in detail in [21]. It is a system running on a Linux PC. An interesting feature of the

system is that not only the vendor-specific raw data from the VME modules are written to the

disk, but the system also translates them into a unified data(u-data) format formed by a tuple

(channel_id; value) hiding the complexity and variability of the specific hardware. It also

allows on-line calculation of areas (charges) of pulses. That allows creation of data processing

programs universally usable for differently configured crates. Both raw and u-data are available

for remote access via TCP/IP and so is program control. Figure 5-5 shows the overall DAQ

schematics. The measurement-specific acquisition algorithm is described using an XML based

language containing sections appropriate for different phases of the measurement (crate

initialization, start, IRQ handling operations, end and data storage). The DAQ also contains an

Qt/ROOT-based application allowing for on-line status monitoring.

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

25

Figure 5-5 DAQ System Architecture

5.4 Data event structure

Figure 5-6 shows simplified example of inputs together with the output data structure of the

DAQ event. Each input pulse is identified by its relative timestamp(TS), collected charge from

both ADC and QDC and a bit mask of associated active shielding veto events.

Figure 5-6 DAQ Crate event structure

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

26

Figure 5-7 shows the responses of the control FPGA to example trigger inputs. The firmware sends

enabling GATE signals to appropriate prompt and delayed QDCs, ADCs and the active shielding FPGA

firmware.

Figure 5-7 V1495 Master Control Waveforms

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

27

6 DANSS Firmware Implementation

The development of the FPGA firmware for the V1495 cards of the DANSS PMT

spectrometer has been the responsibility of the author of this thesis.

The final configuration of the spectrometer requires the V1495 in 4 roles served by different

firmware variations:

• master crate measurement control

• active shielding pattern recorder

• pattern generator.

• NIM/LVDS translator

The master measurement control firmware monitors incoming above-threshold pulses from

PMT AFEs and if a configured pattern is observed, sends GATE signals to appropriate QDCs,

ADC and the active shielding pattern recorder.

 The pattern recorder firmware continuously samples above-threshold pulse outputs of the

shielding scintillators and stores events inside a circular buffer with their relative timestamps.

The NIM/LVDS translator is a simple logic level translator.

Pattern generator firmware generates configurable pulses used for testing of the entire data

acquisition system.

However, because the functionality can be useful in other experiments, the firmwares have

been designed with as much run-time configurability via the VME bus as possible and there is

no hardcoded configuration.

6.1 V1495

The firmware is designed for the user FPGA of the CAEN V1495 card used in the

spectrometer. V1495 contains a CAEN-programmed system FPGA and an empty 20K LE

Cyclone I chip.

The system FPGA interfaces the VME bus, contains 256 32-bit word data readout FIFO and

can assert configured VME IRQ line and maps VME read/write accesses to a local bus. User

FPGA is connected to 195 user I/O. Schematic diagram is shown in Figure 6-1.

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

28

System FPGA

User FPGA

32 x LVDS/ECL IN

32 x LVDS/ECL IN

32 x LVDS OUT

2x NIM/TTL IN/OUT

Expansion header

Expansion header

Expansion header

C
R
A
T
E

VME

Lo
ca

l b
u

s

Figure 6-1 V1495 schematic diagram

6.1.1 V1495 local bus interface

The signals used between the system and user FPGAs are shown in Table 6-1. The bus

supports single read, single write and burst (BLock Transfer - BLT) read .The local bus supports

only 32-bit word VME access mode.

Signal name Direction Width [bits] Description

nRESET in 1 System reset

CLK in 1 40 MHz system clock

nADS in 1 Start of Address Data Cycle

nBLAST in 1 Terminate transfer

WnR in 1 Write or Read

nREADY out 1 Output data ready or BLT request

LAD inout 16 Bidirectional data/address bus

nIRQ out 1 Interrupt request

Table 6-1 V1495 local bus signals

Single read and write cycles start with the system FPGA deasserting the nADS signal and

placing 16-bit address on the bus. In the single read (Figure 6-2) bus cycle the system FPGA

waits until the nREADY signal is deasserted. In the single write (Figure 6-3) cycle data follows

the address immediately.

Figure 6-2 Local bus read cycle

Figure 6-3 Local bus write cycle

The BLT transfer is used to transfer event data from the user FPGA to the system FPGA

FIFO for data readout. The cycle begins with the user FPGA deasserting the nREADY signal

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

29

and the system FPGA performing read access to address 0x0000. If the system FIFO becomes

full, nBLAST is deasserted and the transfer is interrupted.

Figure 6-4 Local bus BLT cycle

6.2 Firmware framework

It was impossible to fit all the required roles in one firmware due to the small size and

performance of the user FPGA. Therefore, a modular approach to development was used. Each

firmware variant is built from a common code base and contains a shared VME interface part,

variant-specific part and external signal routing (Figure 6-5).

Data &
Control
I/O Map

Configuration
registers

Event FIFO

Control registers

Status registers

Data registers

Local bus
Interface

Firmware variant
specific logic

VME Interface

Front Panel
I/O

V1495 local
bus

Figure 6-5 Firmware framework structure

6.2.1 Build process

The firmwares are generated from single Quartus project using revisions. Each firmware has

its separate revision. Project source code is stored in a git repository. The build process uses

external Makefile.

At the beginning of compilation a pre-flow TCL script generates a VHDL file containing the

revision name and revision version in the format of YYMMDDcc, where cc is the number of

git commits made on the build day. These constants can be read from the firmware via the VME

bus to verify used variant and revision of the source code used. A post-flow script converts the

firmware bitstream to the required RBF format and renames the output file to reflect the variant

name and revision.

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

30

After the compilation finishes, make executes a ModelSim testbench which generates a list

of all available configuration registers and their default values. The list is then converted to

XML format used by the DAQ software and VHDL for testbench creation.

6.3 Firmware building blocks

6.3.1 Configuration and status

The configuration and status block implements VME-accessible 32-bit registers. Each

register can be set to either read, write or read/write access. The logic circuit used is shown in

Figure 6-6. VHDL implementation of procedure is shown in Listing 6-1 and their example use

in Listing 6-2.

ADDR

WRDATA

RDDATA

=

REG

CLK EN

wide OR

0xADDR CLK EN

WREN

RDEN

one register

Figure 6-6 Configuration registers schematics

procedure reg(raddr : unsigned; -- register address
 variable regval : inout unsigned; -- register variable
 racc : reg_t; -- register access (r, w, rw)
 purpose : purpose_t; -- documentation: (cfg / stat)
 pgroup : natural; -- documentation: group
 gtype : gatetype_t; -- documentation: type of gate
 name : string; -- documentation: name
 desc : string; -- documentation: description
 values : string -- documentation: possible values

) is
 variable isaddr : std_logic;
 variable tmp : std_logic_vector(regval'range);
begin
 -- synthesis translate_off

print_reg(raddr, std_logic_vector(regval), racc, purpose, pgroup,
 gtype, name, desc, values, "unsigned", regval'length,
 "D32"); -- used by ModelSim in the build flow
 -- synthesis translate_on
 if racc = r or racc = rw then
 isaddr := '0';
 if addr = raddr then
 isaddr := '1';
 end if;
 tmp := std_logic_vector(regval) and (regval'range => isaddr);
 -- rd is a process-wide variable
 rd(regval'range) := rd(regval'range) or tmp;
 end if;

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

31

 if racc = w or racc = rw then
 if addr = raddr and wr_en = '1' then
 regval := unsigned(wr_data(regval'range));
 end if;
 end if;
end procedure reg;

Listing 6-1 VHDL implementation of registers

reg(X"100C", c.fw_ver, r, status, "FW_VER", "Firmware version", "YYMMDDrr");
reg(X"101C", c.fw_name, r, status, "FW_NAME", "Firwmware identifier",
 "ASCII encoded");
for i in 0 to 7 loop -- QDC gates
 addr_base := 16#5000# + i * 16#100#;
 sub := c.gate_conf(i);
 reg(u(addr_base + 16#04#), sub.tmr_wait_gate.duration, w, cfggate, i,
 core_qdc, "GATE_" & to_string(i) & "_PRE_DURATION", "Pre-gate duration",
 "Number of 5 ns clock periods");

Listing 6-2 Example use of register

6.3.2 System timestamp

A 32-bit counter running at the core frequency (200 MHz) is used for timestamp of data

events. A clock divider (default is 1 μs) and its overflow period can be configured. It is possible

to reset the system timestamp either using the serial protocol or a dedicated edge-sensitive time

synchronization input.

6.3.3 Signal input

Above-the-threshold signals are synchronized to the 200 MHz core clock domain and

configurable signal edge is detected. A de-glitch filter is applied to ignore any additional edges

within configured time. Output of this block is an edge signal asserted for one core clock cycle.

6.3.4 Data read-out controller

Data read-out block controls the measurement. After reset, it is initialized to a standby IDLE

state. A register write to the ARM register starts the measurement. The read-out controller waits

until assertion of EVENT_READY signal from the firmware core. Then it requests a BLT

transfer from the system FPGA and after its completion, an IRQ is asserted. It is possible to

delay the IRQ request using a settable timer to allow other VME crate modules to finish their

processing. The readout controller then either waits for another write to the ARM register or re-

arms the system automatically, after a settable timer.

The size of the event transferred to the system FPGA FIFO is tracked and available for

reading. If the FIFO is full, automatic rearms are blocked. Reading the FIFO_SIZE register

resets it. Thus, the read-out cycle from the point of view of the DAQ is as follows:

1. Write 1 to ARM register

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

32

2. Wait for IRQ

3. Read FIFO_SIZE register

4. Block transfer from the V1495 card

Measurement
core

EVENT
RAM Event

formatting

READOUT
controller

Registers

VME interface

DATA

ARM

DATA

DATA_RDY
EV_RDY
EV_SIZE

ARM FIFO_SIZE

REG R/W

BLT_REQUEST

IRQ

BLT_DATA

Firmware core

Core clock System clock

Figure 6-7 Data readout schematics

The relationship of the readout controller to other modules is shown in Figure 6-7.

6.3.5 Serial communication

The V1495 does not allow the user firmware to request a transfer on the VME bus, therefore

any communication between two V1495 cards must be performed via the front-panel I/O. A

simple pulse width modulation is used. The Table 6-2 lists all currently implemented

commands.

Command Pulse Length

[5 ns]

Accepted length [5 ns] Description

SAMPLE 2 1 – 3 Detector pulse

WIN_FAIL 5 4 – 6 Coincidence window unsuccessful

WIN_OK 8 7 – 9 Coincidence window successful

ARM 11 10 – 12 Re-ARM

TIMESYNC 14 13 – 15 System TS overflow

RESET 23 22 – 24 System reset

Table 6-2 Serial protocol commands

6.3.6 Output GATE generation

6.3.6.1 Single gate

The single output gate generates a level-active signal of configurable polarity which has a

programmable pre-gate wait, gate and post-gate duration as shown in Figure 6-8 . The GATE

signal is routed to the V1495 front-panel I/O and the BUSY signal can be used internally in the

firmware core.

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

33

Figure 6-8 Single GATE timing diagram

6.3.6.2 Dual alternating gate

The dual alternating gate has two outputs, GATE1 and GATE2. It can operate in two modes,

latency hiding and always alternating. In the latency hiding mode the GATE2 is used for output

gates only if the GATE1 output is already busy (Figure 6-9) and not currently generating active

gate signal. A configurable timer can lengthen the time the other channel is blocked after the

end of active gate signal.

Figure 6-9 Alternating gate - Latency hiding mode

In the always alternating mode (Figure 6-10), additional input DP (Detector Pulse) is used

to switch between gate outputs.

Figure 6-10 Alternating gate - Always alternating

The dual gate can be also configured to swap output channels, generate output in both

channels at once and to stop generating pulses after two triggers (until system RE-ARM).

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

34

6.3.7 Status gate

Monitoring of internal status of the firmware is possible using the status gate. It is configured

using a bitmask register. The output is either selected level-active internal signal or an edge-

sensitive signal lengthened using the single output gate. Table 6-3 lists available output signals.

Type Value Description

edge 0x1 Any detector pulse

0x2 Recorded detector pulse

0x4 Successful coincidence window

0x8 Unsuccessful coincidence window

0x10 System RE-ARM

0x20 External time synchronization

0x40 System timestamp overflow

level 0x100 System measuring (i.e., not dead-time)

level 0x200 System is in the RUN state

level 0x400 IRQ signal is asserted

level 0x800 Measurement window open

level 0x1000 Waiting for DAQ (active between IRQ assertion and ARM reception)

Table 6-3 Status signals

6.4 Firmware cores

6.4.1 Coincidence core

The coincidence core implements the temporal coincidence of spatial coincidences of 64

input channels operating at 200 MHz (5 ns sampling time). Whenever an edge is sensed at the

input, a small (~100 ns) detector pulse coincidence window opens and captures trigger pattern

occurring in the detector. Its purpose is to capture a single physical interaction in the detector

which was due to the varying propagation delays in the detector and analog electronics chain

captured at different clock edges. The DP opens a main coincidence window (~ 100 μs). If the

coincidence conditions are met, an event is generated. The event contains a coarse system

timestamp and a list of detector pulses with their channel patterns and fine timestamp relative

to the main coincidence window start. Schematics of the module are shown in Figure 6-11.

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

35

Edge
detectors

Detector Pulse
detection

(spatial coinc.)

Coincidence
(temporal)

Event
RAM

Output
gates

Window
gates

Event
Format

DET_PULSE

PATTERN

MULTIPLICITY

SUCCESS FAILURE

TS

PATTERN

ADDR

DATA_RDY

DATA_SIZE

SUBPULSE

Figure 6-11 Coincidence master schematics

6.4.1.1 Coincidence core modules

The DP spatial coincidence module opens a coincidence window whenever any edge

detector asserts a single clock pulse. For the duration of the window, the 64-bit input vector

pattern is logically summed. The module also counts the number of ones in the vector. After

the window closes, the module asserts the DET_PULSE signal to the main coincidence module

together with its 64-bit pattern and multiplicity (i.e. the number of ones in the vector). A dead-

time after the window end can be set to disable inputs for configured time.

The main coincidence module operates in two different modes – fixed and dynamic

window. In fixed window mode, the coincidence window always lasts the configure time and

at the end the window is considered as successful if the number of pulses is either within

configured range (minimum and maximum) or a multiplicity of any pulse is higher than

configured. In the dynamic mode, the window ends as soon as the minimal number of pulses or

multiplicity is recorded. Each pulse pattern and its relative timestamp is stored in the Event

RAM. A counter keeps track of the total number of detector pulses observed between two

successful coincidence windows. This allows the DAQ to calculate the ratio between recorded

pulses and total pulses of the detector (i.e. the detection efficiency).

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

36

userwait

gatewait

measure

cleanup

SUCCESS | IRQ_FAIL

ARM!GATES_BUSY

FAILURE

Figure 6-12 Coincidence master measurement state machine

The measurement is controlled by a state machine (Figure 6-12). The measure state waits

until the main coincidence window finishes. Successful window results in the shared data

readout module notification. A configuration option is present to generate IRQ even in case of

coincidence window failure (used when there is a need to programmatically clear some other

block in the VME crate). In the userwait state the machine waits for the DAQ to send the ARM

command. The gatewait state waits until all output gates are completed. In the cleanup state all

gates are reset and the state machine transitions back to measure state after 2 clock periods.

6.4.1.2 Coincidence core outputs

The coincidence core can be generated with two kinds of output gates – eight 8:1 single

gates or four 16:1 dual alternating gates. For the 8:1 single gates, inputs 0 to 7 are mapped to

first output channel, 8 to 15 to second and so on. Similarly, channels 0 to 15 are mapped to the

first output dual alternating gate. If the always alternating mode is enabled, like in the DANSS

spectrometer, the 4 output gates act effectively as one dual output alternating gate.

The core contains one single gate triggered by coincidence window success, one for

coincidence window failure and 8 independent configurable status gate outputs.

If enabled, the core is generated with the serial protocol master for control of slave modules

(the active shielding pattern recorder).

6.4.1.3 Coincidence core event format

The format of the event (Table 6-4) produced by the core is designed to be similar to other

CAEN VME modules to simplify event decoding by the DAQ and users. GEO is an identifier

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

37

of the card location inside the VME crate and must be configured by the user. CRATE denotes

the number of VME crate in the measurement system and is also configured by the user.

N_DETECTOR_PULSES is the number of detector pulses detected by the system starting at

the end of the previous event. The coarse event timestamp is typically configured to 1 μs period

and the HIT_TIME period is always 5 ns, with the first hit having a time of zero.

Header

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GEO[4..0] 0 1 0 CRATE[7..0] DATA_SIZE

Data size is the length of the event without header and footer.
Coarse Event TS

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GEO[4..0] 0 0 0 0x02 TS_LOW

GEO[4..0] 0 0 0 0x03 TS_HIGH

Detector pulses since last IRQ

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GEO[4..0] 0 0 0 0x04 N_DETECTOR_IMPULSES

Reset after the end of a successful coincidence window.

Event data x N

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GEO[4..0] 0 0 0 0x01 HIT_TIME

PATTERN 31 – 0

PATTERN 63 – 32

Repeated as many times as required.

Footer

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GEO[4..0] 1 0 0 EVENT_CNT[23..0]

Table 6-4 Coincidence master event bit structure

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

38

6.4.2 Pattern recorder core

Pulse pattern recorder core is designed to record events around given point of time, such is

the case when registering events from active veto detectors. It samples inputs using 5 ns clock

and continuously records Detector Pulses into a circular buffer. Pulses which are over

configured numerical limit or are too old are removed. After an external trigger signal is

received an event is generated.

Edge
detectors

Detector Pulse
detection

(spatial coinc.)

Circular
buffer

&
expiration

logic

Event
RAM Event

Format

DET_PULSE

PATTERN

TS

PATTERN

ADDR

DATA_RDY

DATA_SIZE

External trigger

Figure 6-13 Pattern recorder core schematics

Figure 6-14 Pattern recorder event example

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

39

6.4.2.1 Pattern recorder core event format

Header

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GEO[4..0] 0 1 0 CRATE[7..0] DATA_SIZE

Data size is the length of the event without header and footer.
Coarse Event TS

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GEO[4..0] 0 0 0 0x02 TS_LOW

GEO[4..0] 0 0 0 0x03 TS_HIGH

Detector pulses since last IRQ

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GEO[4..0] 0 0 0 0x04 N_DETECTOR_IMPULSES

Reset after the end of a successful coincidence window.

Event data x N

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GEO[4..0] 0 0 0 0x01 HIT_TIME

PATTERN 31 – 0

PATTERN 63 – 32

Repeated as many times as required.

Footer

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GEO[4..0] 1 0 0 EVENT_CNT[23..0]

Table 6-5 Coincidence master event bit structure

6.5 Gate generator core

It is useful to be able to generate artificial pulses of given structure for DAQ testing purposes.

The gate generator outputs groups of pulses in a repeated window. After specified number of

cycles, an IRQ can be generated. Each channel produces one pulse of specified duration relative

to the start of the window in 5 ns steps. After each cycle, this offset can be either incremented

or decremented and such adjustment be kept for given number of cycles. The gate generator

core is useful for hardware in the loop testing of systems, including testing of various race

conditions.

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

40

6.6 Firmware resource usage

Table 6-7 shows the Cyclone I FPGA resource usage for different variants of the firmware.

Firmware ID Description

QDCM Coincidence firmware

MPPC Pattern recorder

GGEN Pattern generator

NECL NIM->ECL translator

ECLN ECL->NIM translator

Table 6-6 Firmware ID codes

Firmware ID Logical element usage Memory usage [bits]

QDCM 7524 28 672

MPPC 7692 98 304

GGEN 17833 8192

NECL 168 0

ECLN 170 0

Table 6-7 Firmware resource usage

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

41

7 S3 software coincidence analyzer

The spectrometer for the S3 detector is based on the CAEN 64 channel 12-bit 62.5 MSPS

V1740 VME Digitizer (Described in 5.2.5). The V1740 is configured in a self-triggering mode

where rising edge on any input triggers simultaneous sampling of all enabled channels. The

data is stored in an internal event buffers, IRQ is generated and read out by a PC running the

NWVME DAQ software by Zdenek Hons [21]. Captured events are stored on the hard drive

together with a system UNIX timestamp.

As part of this thesis, the SwCoinc application for data analysis was created by the author of

this thesis. Its design requirements were:

• implement the inverse beta decay search algorithm

• Ability to process offline and online data from the DAQ and oscilloscopes

• online data reduction (coincidence, filtering)

• online data visualization

• ROOT file data output

The software framework has been written in C++ and uses the CERN ROOT framework for

data visualization.

The description of the final inverse beta decay search algorithm implementation can be seen

on Figure 7-1. The blue rectangles represent processes and green data. At the start of the

processing is the raw ADC data file and at the end is a data structure containing coincidences

of a group of pulses with likely IBD candidate detector events.

Parse ADC data Extract pulses
Find pulses within

100 ns window

Find coincidences
within 60 μs

window

Detect IBD
signature

ADC Event ADC Event Coinc Event Coinc Event

ptr n×ptrn×ptr

Figure 7-1 SwCoinc data flow

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

42

7.1 SwCoinc software description

7.1.1 Data input

The SwCoinc framework reads VME crate events created by the Hons DAQ and LeCroy

oscilloscope TRC wave traces and supports offline and online processing.

 In the offline mode, a directory or a file is specified as an argument on the command line

and the application recursively scans the directories for registered file extensions and ZIP

archives containing them. One archive or one directory is defined as a single data acquisition

(run). The files are sorted using a regular expression according to their extensions – the VME

files have format DDMMYY:HHMMSS-n_0.vme_r, where n is the file sequence number, and

the LeCroy TRC files Cx_y.TRC, where x is the oscilloscope input channel with y-th

acquisition. Separate sets are created for each input channel.

In the online mode, only VME DAQ is supported and the application takes the path to the

VME DAQ binary as an argument and monitors the /proc file system using the Linux inotify

facility to detect whether it is running. If found, the /proc/pid/fd directory is scanned for the

location of its log file. The VME log file is parsed to detect the state of the DAQ and possible

file names of an active run.

The input data files are parsed into the Event class structure. Each Event contains aligned

ADC samples from all active input channels and the timestamp. When segmented oscilloscope

files are read, first Event contains first acquisition from all input channel files.

7.1.2 Data analysis

Events are processed through Analyzer, a vector of Filters. The framework contains two

analyzers – ADCPrinter and SCube. ADCPrinter outputs every a trace of ADC Events to a

separate PNG file. The SCube analyzer implements the spatial and temporal coincidences to

detect reactor antineutrinos.

7.1.3 Data visualization

The coincidence software contains graphing classes based on ROOT’s TH1 and TGraph.

The visualization classes automatically create histograms for individual channels with correct

names and axes and graphs of tracked variables depending on time (such as system load, pulses

per second). After data processing is done, all graphs and histograms are saved as PNG files to

output directory and as well as a ROOT data file.

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

43

Online monitoring uses the embedded HTTP ROOT server, which allows online access to

open ROOT files via the JSROOT interface (Figure 7-2).

Figure 7-2 JSROOT web interface

7.1.4 Command and control

The JSROOT interface allows starting and stopping of NWVME. The SwCoinc connects to

the control interface of the DAQ and issues the start/stop command.

7.2 Analyzer software architecture

SwCoinc program structure is shown on Figure 7-3. Different colors represent separate

processing threads which communicate through asynchronous message queues.

DataStore

Discovery Run Scheduler

Analyzer

Visualization Web (JSROOT)

Processed data
(ROOT)

Data

Metadata

Run

Run

RunReader
 (Data Parser)

EventsData

Run

Command and
control

Figure 7-3 SwCoinc architecture

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

44

7.3 Analyzer software class overview

This chapter describes the most important C++ classes in the SwCoinc system.

7.3.1 Config

A global singleton class accessible via the GLOBALS macro holding configuration of the

SwCoinc system. The configuration can be set via command line arguments and an XML

configuration file.

7.3.2 Log

Uses the boost::log classes to allow logging of system events to console, a file or JSROOT

console. There are six logging levels supported by – fatal, error, warning, info, debug and trace

and each output channel can be set to a different severity level.

7.3.3 RootServer

Starts and stops the ROOT HTTP server. To allow interaction between the JSROOT

interface and SwCoinc, it was necessary to use the ROOT’s embedded LLVM compiler. A C++

statement with a functional pointer to required SwCoinc function is compiled using the LLVM

compiler which can then called by the JSROOT.

char buf[256];
sprintf(buf, "typedef void (*fptr)(); fptr setExitFlag = (fptr) %pLL;", &setExitFlag);
gROOT->ProcessLine(buf);

m_serv->RegisterCommand("/ExitRoot", "setExitFlag();", "rootsys/icons/ed_delete.png");

Listing 7-1 Connecting ROOT to SwCoinc

7.3.4 IThread

Derivable interface class implementing C++11 std::thread. Each thread executes lambda

expressions from a message FIFO in an event loop. The messages are used for inter-thread

communication. It also provides the Sync method thread synchronization based on the

std::future and std::promise. Listing 7-3 shows part of the implementation detail and Listing

7-3 exemplifies how the message passing is used within the SwCoinc application.

typedef std::function<void()> Operation;
class IThread {

…
MessageQueue<Operation> m_msgQueue;
…

}
bool IThread::Sync() {
 std::promise<bool> res;
 auto msg = [&]()
 {
 res.set_value(true);
 };
 m_msgQueue.Write(msg);

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

45

 return res.get_future().get();
}
void IThread::m_Run() {
 m_ThreadStart();
 while (!m_ThreadDone) {
 Operation op;
 if (m_msgQueue.TimeOutRead(op)) {
 op(); // Execute message
 }
 }
}

Listing 7-2 Partial IThread implementation

class DSScheduler : public IThread {…}
void DSScheduler::ScheduleTask(RunTask task) {
 auto msg = [this, task = std::move(task)]() mutable
 {
 task.runreader->Execute(task.run, m_DataSink);
 };
 m_msgQueue.Write(std::move(msg));
}

Listing 7-3 Asynchronous message passing use example

7.3.5 DataStore

This class keeps track of all data sources and Run instances. It is executed in a separate

thread. Spawns the Discoverer and Scheduler threads. Routes messages between the data source

discovery thread and scheduling threads.

7.3.6 Scheduler

The scheduler sequentially executes available Runs by creating an instance of a RunReader.

For each run a new thread is created. In the future, it should be possible to extend the scheduler

to be able to run multiple tasks concurrently. However, at this time ROOT is not completely

thread-safe and causes issues whenever one ROOT file is accessed by multiple threads.

7.3.7 Event

The Event class contains measurement data which is processed through the system. The

parsers transform raw source data into an instance of this class. Listing 6-1 shows the

declaration of this class.

class Event
{
public:
 enum class EventTypes
 {
 VME_DATA, TRC_DATA, ADC_DATA, ENERGY_DATA, COINCIDENCE_DATA
 };

 Run *run;
 EventTypes Type;
 Time EventTime = Time::Zero();
 Time LastTime1 = Time::Zero();
 Time LastTime2 = Time::Zero();
 uint64_t EventTimestamp; // TS in nanoseconds
 uint64_t EventN = 0; // Event ID

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

46

 bool hasADC = false;
 bool hasPulse = false;
 bool hasCoincidence = false;
 bool hasVMECrate = false;
 int CoincidenceOrder = 0; // depth of coincidences
 int MergedEvents = 0; // number of overlapped ADC trigger windows merged
 int MergeDelta = 0; // time delta of overlapped triggers
 int CrateEventPos = 0; // position of event inside the crate event
 PulseEventData Pulse; // Energy, from Pulse Extractor
 VMECrateData VME; // TS of start and stop of IRQ handler
 std::map<int, EventChannelData> ChannelData; // ADC data
 std::vector<std::shared_ptr<Event>> CoincidenceData; // events in coinc

 int PeakPulseAmplitude();
 bool hasCoincidenceChannels(const std::vector<int>& channels);
 bool CoincidenceChannelsEqualTo(const std::vector<int>& channels);
 bool hasCoincidenceMap(const std::vector<std::vector<int>>& map);
};

Listing 7-4 The Event class

7.3.7.1 VMECrateData

Instance of this class is created for each VME crate event and contains Unix timestamps of

the beginning and the end of a single VME IRQ handling.

7.3.7.2 ADCEventData

Contains V1740 event data, both raw ADC samples, calculated sample voltages, trigger

threshold, trigger polarity and the sampling period.

7.3.7.3 PulseEventData

The PulseExtractor filter creates a new Event with PulseEventData filled. Such Event keeps

pointer to the original ADC Event.

7.3.7.4 CoincidenceData

Event output by the Coincidence filter contains a vector of all Events which are in a defined

coincidence window. The CoincidenceOrder member variable holds the level of nesting

7.3.8 DataSource

Interface base class for classes which originate Events. Implements overridable virtual

methods listed in Table 6-1. Any class which instantiates a DataSource should call the SetSink()

method to set the sink of the source.

Method Time of call by implementing method

DataStart At the start of data processing

RunStart At the start of a single run processing

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

47

SendEvent When an Event to be send is generated

RunEnd At the end of a single run processing

DataEnd At the end of data processing

Table 7-1 DataSource interface method

7.3.9 DataSink

Interface base class for classes which process Events. Methods are listed in Table 7-2. The

update method is called to re-generate online monitoring graphs every one real time second.

Method Time of call by a DataSource

DataStart At the start of data processing

RunStart At the start of a single run processing

ProcessEvent When an Event to be send to be processed

RunEnd At the end of a single run processing

DataEnd At the end of data processing

Update Periodically, should run time intensive calculations

Table 7-2 DataSink interface method

7.3.10 Filter and LambdaFilter

The Filter class is a base for classes which act both as a sink and a source. Inheriti from both

DataSource and DataSink. The LambdaFilter is a filter which takes a C++ lambda as a

parameter to be applied on each Event.

7.3.11 PulseExtractor

Pulse extractor is a Filter which scans the ADC data and searches for spectroscopic pulses,

rejects pileups, calculates their energy in nVs and produces an Event for each individual pulse.

First, a moving average of the samples is calculated until the delta between the sample and the

average is higher than configured threshold. The energy is then calculated as a sum of samples

with baseline subtracted. Figure 7-4 shows an example extracted pulse in red as drawn by the

PrintADCPulses function. The temporal order of events is preserved by first sorting the events

by their timestamps before sending them down the processing chain.

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

48

Figure 7-4 Example extracted pulse (ADC value vs sample)

7.3.12 Coincidence

This filter finds events which are in a coincidence. New events are added to a FIFO of

configured duration. Before expiring old events from the FIFO, the number of events is checked

and if higher than specified threshold is reached a new coincidence Event is generated. Such

event contains pointers to the individual events. It is possible to perform coincidence of any

type of event, enabling multi-level coincidences as required by the anti-neutrino detector.

7.3.13 DataParser and DataParserFactory

Root class for data parsers. Child classes are instantiated using the ParserFactory interface.

Each parser type uses the ParserInfo (Listing 7-5) structure to register (Listing 7-6) with the

factory. The Discovery classes then use this data to search for files. Two types of parsers are

supported – STREAM_BASED and FILE_BASED, which differ in behavior during data

parsing.

struct ParserInfo
{
 DataParser::DataParserType Type; // STREAM or FILE
 std::string ID; // used for command arguments
 std::string Name; // Human readable name
 bool supportsZip; // If .zip files supported
 std::string FileRegex; // Matches file extension
 std::string ConfigRegex; // Matches file extension
 std::string ChannelRegex; // SubMatches channel ID (if any)

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

49

 std::string FileNumberRegex; // SubMatches file number (if any)
 int AdcMin;
 int AdcMax;
};

Listing 7-5 ParserInfo structure

// In VMERawDataParser.cpp
struct ParserInfo VMERawDataParser::m_ParserInfo
{
 DataParserType::STREAM_BASED,
 "VME_R", // ID
 "VME Hons Raw", // Human Readable name
 false, // zip supported
 ".*\\.VME_R", // Matches file extension
 ".*\\.XML", // Matches configuration file
 "", // SubMatches channel ID
 ".*-(\\d+)_\\d+\\.VME_R", // SubMatches file number,
 0, // adcmin
 4096 // adcmax
};
bool VMERawDataParser::isRegistered =
DataParserFactory::inst().RegisterParserType<VMERawDataParser>(
VMERawDataParser::m_ParserInfo);

Listing 7-6 Parser registration

The stream parse function expects to be called each time with a new buffer of data and keeps

internal state. File based (TRC) parsers are called once with a buffer containing entire source

data. Such is the case for TRC files decompressed from a ZIP file to in-memory buffer.

7.3.13.1 HonsVMEXMLParser

Uses the boost::property_tree classes to read the XML configuration file of NWVME. Looks

for the base VME address of the V1740 and its registers settings. Extracts enabled input ADC

channels, their offsets, sampling window length and trigger polarity.

7.3.13.2 TrcDataParser and Trc

The Trc class parses data created by LeCroy WaveRunner oscilloscope wave capture and

supports both single shot and segmented files. The TrcDataParser encapsulates traces in an

Event class. As each TRC file contains samples from one channel a multi channel measurement

requires multiple instances of the classes.

7.3.13.3 VMERawDataParser

Parses the stream data generated by the NWVME. The state-machine parser of the data file

has following states which transition based on the parsed 32-bit data word.

• IDLE – after program startup

• RUN – RUN_HEADER detected, present at the beginning of the first file

• CRATE – CRATE_HEADER, denotes start of a crate event - generated whenever

the VME crate asserts an IRQ

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

50

• TIME1 – Unix timestamp of the IRQ wake-up time

• TIME2 – Unix TS after VME crate handling is done

• V1740 – A V1740 event detected in the data

The V1740 supports overlapped trigger mode operation where instead of ignoring triggers

occurring during active sampling window it extends the sampling window. It is possible to

detect this only by checking the next V1740 event whether it has correct a timestamp occurring

at the end of the previous window and may be shorter than the configured window size.

Therefore, the VMERawDataParser has to store every event in a queue and send the Event only

for analysis only if the following one is unrelated.

The V1740 event parser decodes the bit packed 12-bit ADC data and converts to the Event

class and its state-machine is based on the word position of the V1740 event.

7.3.14 Discovery

Root class for source data gathering. Child classes detailed below can be instantiated via the

DiscoveryFactory class. One virtual method is exposed - ScanURI(std::string uri), where

URI is the target of the data source scanning process.

7.3.14.1 FileDiscovery

Implements the ScanURI method for file system directories or files. Directories are scanned

recursively for data and configuration files registered by the data parsers and sorted using

boost::regexp. For each data type in a directory or an archive one instance of the Run class is

created and added to the DataStore instance.

7.3.14.2 NWVMELogDiscovery

Implements online monitoring of the Hons VME DAQ process log file. When started, with

the DAQ copies the configuration file to an output directory, creates a log file. For each Run, a

new timestamped data directory is created. The NWVMELogDiscovery class detects the path

of the logfile, parses configuration file location and data files.

The class creates a new thread and scans the /proc filesystem every second for a process with

matching the executable path specified as SwCoinc command line argument. If found, the

processes’ open file descriptor list is scanned for the DAQ log file.

A inotify watch for closing and write access is created for the log file. The file is read in a

loop and the state of the DAQ is detected as follows:

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

51

• STARTUP – the DAQ is started

• READY - VME crate is configured and the DAQ ready for measurement

• RUNNING – current measurement is running, look for data files

• QUIT – VME DAQ terminated

If the DAQ is in the RUNNING state when the end of the file is reached, a new instance of

the Run class is created and added to the DataStore. Any new DAQ data files are then added.

7.3.15 Run class

The Run class encapsulates information of a single measurement. Contains list of data

sources and associated configuration. It is able to provide certain data about the measurement,

if provided by the data source type, such as length of the measurement, time of first and last

events and number of events.

7.3.16 RunReader

A RunReader class instance describes a task. Takes a set of input data, creates instances of

parsers, opens the files, reads the data and calls the parsing functions. There is a hierarchy of

classes derived from the RunReader, each providing a different way of reading input data.

7.3.16.1 FileStreamRunReader

Simple file based reader for stream based data, such as offline VME, which iterates through

the list of all files and reads the data block by block.

7.3.16.2 InotifyFileStreamRunReader

Derived from FileStreamRunReader. Used for online NWVME processing. The DAQ

continuously adds new VME events into the output file. Therefore, whenever this RunReader

encounters an end of file it waits until a new data is appended, the file is closed by the DAQ,

new data file is detected or the acquisition stops. It uses the Linux inotify_watch() to detect file

changes.

7.3.16.3 MultiFileRunReader

Used for reading oscilloscope files. Reads contents of entire input file into memory and calls

the parser function and does so for all channel files of a single acquisition. From each input

channel it reads exactly one event to align the events.

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

52

7.3.16.4 ZipMultiFileRunReader

Derived from MultiFileRunReader, but with the ability to decompress files from ZIP

archives using the libzip library. Ability to read ZIP files is useful for handling tens thousands

of files if a single file per trace mode of the oscilloscope is used.

7.3.16.5 NetStreamRunReader

Reads stream data from a network TCP socket.

7.3.17 VBase

Visualisation base class which holds the TCanvas ROOT object. The Export method causes

the canvas to be saved as a PNG file to the output directory. Overloaded virtual getters

isPNGLoggable, isPNGLoggable2D, isPNGLoggable2DZ control whether the graphs are

additionally saved with (Y, YZ, XYZ) axes set to logarithmic scale. The Update method re-

draws the TCanvas if the isDirty member variable is set.

7.3.18 VGraph, VGraphErrors

Holds a TGraph object and the Export function writes the graph to the output ROOT file.

VGraphErrors holds a TGraphErrors object for plotting with error bars.

7.3.19 VH1D, VH2D

Its constructor creates the TH1D or TH2D in specified folder of the output ROOT file. Sets

histogram title and axes labels. Provide CloneTagScale method for creating a scaled copy of

the histogram and is used for generating normalized graphs during image generation at the end

of Run processing. The Fill method adds a new value to the histogram.

7.3.20 VTimeGraph

A TGraph encapsulation for plotting of time series data with automatic data reduction. Its

constructor has time start, time span, time step arguments and data reduction option.

Possible data reduction and visualization options are specified as a bit mas of the GraphOpts

enum class as specified in Table 7-3.

Option Description

None Plot last value during each time span

SUM Plot a sum of values during each time span.

AVG Plot an average of values during each time span.

MAX Plot the maximum of values during each time span.

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

53

MIN Plot the minimum of values during each time span.

SHOW_MINMAX Show average and draw minimum and maximum as error bars.

ROLLING Used for “show last 3 hours” graph. Points older than span are deleted.

RATE Number of calls to Fill() during each span is added to the graph.

Table 7-3 VTimeGraph options

7.3.21 TimeSeriesHistoGraph

A visualization class which combines the VH1D and VTimeGraph. The Fill member method

takes a time point and value arguments. It can automatically generate multiple time-dependent

histograms and time series plots. For example, when plotting the count rate of a spectroscopic

channel, it can generate a histogram for every hour, day and week in a separate VH1D objects

and plot a graph of the rate vs time. Each created object is saved as a separate PNG file during

export and as a separate object in the output ROOT file.

7.3.22 MultiVH2D

A template class for creating std::map of VH2D objects. The type of the index is specified

as a template parameter. It creates a new VH2D object upon call to Fill() with a new index. The

root file path, name of the new instance are formatted using boost::str and boost::format to

replace placeholder tokens in path, name and title constructor with an index converted to string.

 Listing 6-1 shows an example instantiation of the MultiVH2D object with an int type index.

The %1% token in the fields is replaced with the channel number.

// in DataSink::RunStart
m_VH2D2.emplace("PulseAmplitudeVsEnergy",
 std::make_unique<MultiVH2D<int>>(run,
 "/Pulse/CH%1%", // ROOT file folder path
 "PulseAmplitudeVsEnergy_CH%1%", // Graph Name
 "Pulse Amplitude vs Energy- CH%1%", // Graph Title
 "ADC", "Energy [nVs]", // Axes labels
 0, 4096, 4096, // X axis minimum, maximum, number of bins
 0, EMAX, 100 // Y axis minimum, maximum, number of bins
));

// in DataSink::ProcessEvent
m_VH2D2["PulseAmplitudeVsEnergy"]->Fill(ev->Pulse.Channel, ev->Pulse.PeakAmplitude,
ev->Pulse.Energy);

Listing 7-7 Example of MultiVH2D instantiation

7.3.23 MultiTimeSeriesHistoGraph

A template class for creating std::map of TimeSeriesHistoGraph objects used the same way

as MultiVH2D class. Listing 7-8, taken from the scube analyzer, shows an example of an

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

54

instance of this class used to generate separate spectra for each pulse of each 100 ns spatial

coincidence of each 60 us temporal coincidence.

// in DataSink::RunStart

m_TSG3.emplace("60us_DANSS_Energy",
 std::make_unique<MultiTimeSeriesHistoGraph<std::tuple<int,int>>>(run,
 "/Neutrino/P%1%/CH%2%", // ROOT file folder path,

 // %1% and %2% are taken from std::tuple values
 "60us_N_Energy_P%1%CH%2%", // Graph Name
 "60 us coincidence Pulse energy - P%1% CH%2%", // Title: Pulse idx.1 Channel idx.2
 "Energy [nVs]", // X axis label
 0, EMAX, 4096, // X axis min, max and number of bins
 defTSGopts, // Generating options
 defVGopts // TimeSeriesGraph options and
));

// in DataSink::ProcessEvent
for (auto const &ced : ev->CoincidenceData)
 for (auto const &e : ced->CoincidenceData)
 {
 m_TSG3["60us_DANSS_Energy"]->Fill(

std::make_tuple(pulse, e->Pulse.Channel), // index, pulse is n-th pulse in the
 // coincidence window

ced->EventTime,
e->Pulse.Energy

);
 pulse++;
}

 Listing 7-8 MultiTimeSeriesHistoGraph Example

7.3.24 Analyzer and AnalyzerFactory

The Analyzer base class is a DataSink which is named and registered with the

AnalyzerFactory. The user can specify which analyzer is used for data analysis either on

command line or in the configuration file. SwCoinc contains two analyzers: adcprint and

scube_vme.

7.3.25 ADCPrinter

 ADCPrinter class provides a simple analyzer which outputs each ADC Event as a PNG

image and Text file output. The code for the analyzer is shown in Listing 7-9 and Listing 7-10.

#pragma once
#include <memory>
#include "Event.hpp"
#include "DataSink/DataSink.hpp"

class ADCPrinter : public DataSink
{
public:
 ADCPrinter(std::string name) : DataSink(name) {}
 virtual void ProcessEvent(const std::shared_ptr<Event>& ev);
};

Listing 7-9 ADCPrinter.hpp

#include "Utility/PrintADCEvent.hpp"
#include "Analyzer2/AnalyzerFactory.hpp"

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

55

#include "ADCPrinter.hpp"
static struct AnalyzerInfo AnalyzerInfo_ADCPrint
{
 "adcprint", // Name used as a command line parameter
 "Exports ADC Events as graphs", // Description
 []() { return std::make_shared<ADCPrinter>("adcprinter"); } // Factory allocator
};
static bool isRegistered[[gnu::unused]] =
AnalyzerFactory::inst().Register(&AnalyzerInfo_ADCPrint);

void ADCPrinter::ProcessEvent(const std::shared_ptr<Event>& ev)
{
 if (!ev->hasADC)
 return;
 PrintADCEvent("ADC", ev); // Output Event as PNG
 ExportADCEvent("ADC", ev); // Output Event as TXT
}

Listing 7-10 ADCPrinter.cpp

7.3.26 Scube VME Analyzer (scube_vme)

Implements the Inverse-Beta Decay coincidence search method. Pulses extracted from the

raw ADC data are checked for the Detector Pulses using a 100-nanosecond coincidence filter.

These coincidence events are run through another 60 microsecond coincidence window. The

scube_vme analyzer allocator function is shown in Listing 7-11.

static std::shared_ptr<DataSink> scube_vme()
{
 DataSink *v = new DataSinkVector(
 {
 new VMESystemGraphs("VMEGraphs"),
 new ADCEventGraphs("ADCEvents"),
 new PulseExtractor(new DataSinkVector({
 new PulseGraphs("PulseGraphs"),
 new Coincidence(Duration::OneNanoSecond() * 100, 1, 0, new DataSinkVector({
 new SubCoincidenceGraphs("SubCoincidence"),
 new Coincidence(Duration::OneMicroSecond() * 60, 2, 0, new DataSinkVector({
 new CoincidenceGraphs("Coincidence")
 }))
 }))
 })),
 });
 std::shared_ptr<DataSink> sv(v);
 return sv;
}

Listing 7-11 scube_vme allocator function

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

56

8 DANSS Firmware Results

The measurement is done in coincidence mode controlled by the V1495. Events from active

shielding are collected by second V1495 controlled via serial protocol. Due to parasitic pulses

which sometimes occur approximately 500 ns after a pulse, the controlling V1495 is set to

ignore any pulse closer than 2 µs. The main coincidence window lasts up to 80 µs. Statistical

data from a single run is shown in Table 8-1.

Run length 88 020 s

Block length 60 s

Crate events 18 398 866

Average time between IRQs 4.8 ms

Average IRQ handling duration 112 us

Total handling time 2068 s

Total handling time [%] 2.4%

Table 8-1 DAQ Statistics for one run with QDC only

Figure 8-1 shows the distribution of number of events per second, the discrete nature of the

graph is due to the way this statistics is collected by the DAQ system. The number of events

per second shows that the peak count rate has been about 550 events per second.

Figure 8-1 Average number of events per second in one run (Counts vs Counts per second)

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

57

Time required for crate readout is shown in Figure 8-2. The average time to service an IRQ

is 115 µs. First, the source of the interrupt is checked and appropriate VME board status

registers are read. Depending on the source, either data are read from QDCs using CBLT and

the control V1495, or from active shielding V1495. Because the QDC event does not contain a

timestamp, the acquisition process is blocked during the readout process to assure that only

related data are put into the crate event. Despite that, it can be seen that the system has been

blocked only for 2.4% of the run duration.

Figure 8-2 IRQ handling time with QDCs only (Counts vs time in us)

Figure 8-3 and Figure 8-4 show typical spectra of randomly selected PMT prompt and

delayed channels during the 24-hour run. Both spectra show the cosmic muon peak and have a

range of about 56 MeV. The sharp peak at the beginning is the result of all detector channels

being converted when any channel triggers the DAQ and is therefore a peak of a zero charge.

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

58

Figure 8-3 Prompt PMT Channel spectrum

Figure 8-4 Delayed PMT Channel spectrum

Distribution of multiplicities of section pulses in prompt and delayed DANSS pulses and

their correlation are shown in Figure 8-5. Both axes contain the number of active detector

sections (50 strips connected to 1 PMT) in the DANSS pulses.

Figure 8-5 Number of active PMT channels in prompt vs delayed DANSS pulses

The spatial correlation of prompt DP and delayed DP are shown in Figure 8-6. X and Y axes

contain the PMT channel number. These data are collected from hardware triggers by the

V1495 which allows up to 64 logical inputs and only 50 PMTs are connected, explaining the

gaps in the data. The figure also shows a hardware problem which was detected in channel 34

analog frontend causing ringing and higher-than-normal coincidence rate. Generally, the

dispersion of the parameters is caused by non-uniformity of the shielding (mechanical, position

on the lifting mechanism), dispersion of strip parameters, trigger threshold levels and

differences in noise levels [3].

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

59

Figure 8-6 Active PMT channels in prompt vs delayed pulses

8.1 Digitizer performance results

Another spectrometer based on the V1740 digitizer is connected to the detector in parallel.

Many tests were performed on a small part of the detector in the laboratory. The digitizer

capture length is set to 288 ns, or 18 samples. Figure 8-7 and Figure 8-8 show results of pulse

digitization capturing interaction of a testing scintillator connected to a DANSS AFE with

cosmic muons in laboratory setting.

Figure 8-7 Sum of all digitized waveforms

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

60

Figure 8-8 Digitizer samples of natural background

Figure 8-9 show spectrum of natural background in the laboratory which was obtained by

online charge integration of the digitized window.

Figure 8-9 Laboratory background spectrum (Counts vs ADC value)

The digitizer is configured with all of its 64 input channels enabled. In this case 64 * 18

samples have to be read during each IRQ. The average readout time is about 120 µs (Figure

8-10), thanks to the digitizer’s compact event structure and support for VME block read (BLT).

Like in the QDC spectrometer case it is calculated as a difference between Linux system

timestamp just after the acquisition process is woken up by IRQ and a call to wait for further

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

61

interrupts. The peak around 20 µs is caused when V1740 asserts its interrupt line but the queried

status register reports no available event prepared to be read out.

Figure 8-10 Digitizer DAQ readout time (Counts vs time in us)

To ensure practically zero dead time the V1740 is configured to work with 8 FIFO buffers

for each channel. When the digitizer internally triggers and captures samples, it generates an

interrupt and immediately is ready to capture next event. Given the average count rate of

DANSS detector and its active shielding is about 2500 pulses per second and the average time

it takes to read one event is about 120 µs, it is clear that it is indeed possible to capture all events

in the “event by event” mode.

The V1740 is configured to not allow interleaving triggers. That means, that as soon as any

channel triggers internal acquisition, other triggers are ignored and samples from all channels

are recorded relative to start of the acquisition window. Pulses which arrive later can be sampled

incompletely, however the 288 ns long sampling window and associated 50 ns DANSS window

provides for correct sampling of all PMT pulses forming the DANSS Pulse and compatibility

of charge integration.

8.2 Combined spectrometer results

The configuration of the DANSS DAQ operating as of fall 2016 contains both the QDC and

Digitizer spectrometers operating together in a single crate. Both the QDC and Digitizer are

controlled by one V1495

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

62

Figure 8-11 and Figure 8-12 show comparisons of a DANSS channel spectra obtained by

QDC (black) and the Digitizer (red and green). The FADC energy is calculated as a sum of all

samples within the window scaled by a constant.

Figure 8-11 Prompt QDC and FADC

spectra (Counts vs xDC value)

Figure 8-12 Delayed QDC and FADC

spectra (Counts vs xDC value)

Figure 8-13 shows the total required interrupt handling time to read data from all 8 QDC,

one V1740 digitizer, controlling V1495 and active shielding V1495. The required time varies

with event complexity.

Figure 8-13 IRQ handling time QDC+FADC+Activeshielding (Counts vs time in us)

Table 8-2 shows the statistics of a 28 hour run.

Run time 102 780s

Average IRQ per second 86.70

Average IRQ handling duration 494 us

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

63

Total handling time 4398 s

Total handling time [%] 4.28%

Detector DANSS Pulses 101 544 038

Detector DANSS Pulses per second 988

Total active Shielding DANSS Pulses 238 883 876

IRQs 8 911 093

IRQs with one pulse events (≥8 active

PMTs)

2 277 876

Table 8-2 DAQ Statistics for one run with QDC, Digitizer and active shielding

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

64

9 New data acquisition system proposal – Я3DAQ

During the design and development of the S3 detector a need for a new DAQ arose. Based

on experience with the existing NWVME, the main requirements for the new system are easier

configuration, quality of data logging and the capability of on-line reduction of data.

The NWVME XML configuration file is generic and consists of a sequence of raw VME

register access commands. This has advantages and disadvantages. The advantage is that it can

be used with any card and implement any read-out algorithm without changing the program

sources. However, it is rather difficult for ordinary users to change specific configuration detail,

such as enabling or disabling specific channel or trigger thresholds. In the DANSS experiment

experience, members of the team rotate in the detector control room in the nuclear powerplant.

This room has no internet access and therefore configuration cannot be done remotely by an

experienced user.

The quality of data logging is important for measuring how well the data acquisition system

performs. Information about hardware serial numbers, operating temperature should be logged

at the system start and performance metrics, such as number of events per second, should be

logged during the measurement. Both histograms and time evolution of the values should be

stored. Histograms show the ranges of measured values and time evolution graphs allow the

operators to notice abnormal behavior and possibly correlate them with external events (such

as hardware failure, time of day, people in the room, etc.). The quality of data logging is also

essential for estimation of measurement dead-time.

The third requirement – on-line reduction of data comes from the fact that the DANSS

experience has shown the need to collect full spectroscopic spectra from all channels to

characterize the detector and hardware triggering (as described previously) removed that

possibility. The new S3 DAQ is based on Flash ADC converters with QDC firmware which

allows collection of all pulses without any dead-time. However, to reduce the number of

recorded events, on-line processing and filtering is needed. Detector events can be separated

into three categories – events which are known to be interesting (such as calibration muons and

events with IBD-like signature), events which are known to be not interesting (such as random

single events) and can be discarded and events whose category is not known and demand further

analysis. For discarded events a summary spectroscopic spectrum is generated.

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

65

9.1 Overall architecture

The DAQ should be divided into three conceptual parts – DAQ, the BOX and The View.

This reduces the number of possible bugs, similar to the UNIX philosophy – set of small utilities

doing one task. The DAQ can be thought as an evolution of the NWVME, the BOX as an

evolution of the software processing system described previously in section chapter 7.

Figure 9-1 DAQ Architecture

The DAQ application is responsible for hardware configuration, operation and data readout.

It is instrumented for data quality measurement – such as events per second, buffer occupancy

and latency measurement. Data can be stored to disk or made available for network TCP clients.

For remote clients a control socket, measurement configuration is also available. During

hardware initialization the DAQ needs to test communication with the hardware, verify that the

configured card type matches with the actual card and record card information – hardware and

firmware revision.

The BOX is responsible for data reduction. Data can come either from a directory structure

or network TCP connection. Incoming events from multiple sources (channels, crates, slow-

control) is chronologically ordered and passed through user configured set of filters. The filters

can be based on temporal or spatial coincidences, energies or channel sources (such as detector,

veto, slow control). Processed output is stored in the same format as the source data allowing

recursive operation – ie, basic on-line filtering done immediately without writing full measured

data to storage and more intensive off-line processing later.

Figure 9-2 shows the block diagram of the proposed BOX – The Soft QDC part is used when

reading events generated by the Waveform recording firmware. The input of the Time Ordering

Queue is an n-tuple [TimeStamp, Channel, Energy]. Each channel can have a defined class –

DAQ BOX

HDD

TCP

HDD

TCP

The View

Common library

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

66

in case of S3 detector it is detector, gamma catcher and the active veto allowing software trigger

definition.

Event
Read

Event
parse

Soft QDC Time
Ordering
Queue

FILTER
Event
Write

Statistics – Spectra, Time deltas, Time dependency

Figure 9-2 The BOX block diagram

Each logical block of the BOX generates its own quality of data statistics and

instrumentation. Histograms of time delta between adjacent event are used to spot non-random

events and the time dependency graphs are generated in per-hour, per-day and weekly.

The View is designed as a frontend for the user to view the data. Most likely it will be built

using Python programming language. Allows the user to view graphs, spectra and do analysis.

Networked operation allows using less powerful (i.e. less generated heat) computer in the

airconditioned detector room and have the filtering computer in the control room.

9.2 Types of supported VME Cards

Traditionally, the DLNP JINR has used spectrometers based on CAMAC standard and

CAEN QDC converters. It has been decided that new spectrometers, not only for the S3

detectors will be based on digitizers exclusively as they allow measurement with zero dead

time. They are offered with two major kinds of firmware – waveform recording and charge to

digital (QDC). It has been measured that a VME Crate with MBLT readout (50MB/s) and one

V1725 digitizer (16 channels, 250MSPS, DPP-PSD firmware) allows up to 4 million pulses to

be read out every second.

9.2.1 V1495 with custom firmware

The DAQ supports the Gate Generator as described in sectio 6.5 of this thesis.

9.2.2 CAEN Digitizer with ADC waveform recording firmware

These digitizers use analog to digital converters to continuously sample all input channels

and store samples in a circular buffer. Whenever a trigger occurs, configured pre and post

samples (acquisition window) from all enabled input channels are stored in an event buffer. The

internal memory can be divided to store multiple events allowing acquisition without dead-time

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

67

as long as the memory is not full. Depending on the model, the number of samples stored ranges

from 192k to 1.5M samples per channel.

Trigger can be sourced either from external connection (LVDS/LEMO), generated internally

by absolute under/above threshold value of any channel or forced by a register write. It is

possible to require minimum number of simultaneously triggering channels (coincidence

window). Triggers occurring during active acquisition window can be either ignored or cause

lengthening of the window, which is then divided into separate events with length up to the

configured window length.

Figure 9-3 ADC Waveform recording firmware modes [22]

9.2.3 CAEN Digitizer with QDC firmware

Digitizers with the Digital Pulse Processing (DPP) firmwares continuously sample each

input channel and calculate channel baseline (zero voltage). Whenever a relative threshold is

crossed the charge is integrated (sum of relative values). Each channel triggers independently

and data from non-triggering channels are not stored. Therefore, this firmware reduces the

amount of data recorded and is much better suited for multichannel detectors with relatively

sparse events - where only one or few channels out of all have interesting data. The format of

the event is configurable and the pulse samples can be also recorded.

The Caen VME V1740D supports the basic DPP-QDC firmware where only one gate is

present. Newer Digitizers (V1725, V1730, V1751) support the DPP-PSD firmware where for

each pulse two sums are calculated – peak and peak with tail allowing pulse shape

discrimination between neutrons and gammas by ratio of the short and long gate charges.

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

68

One disadvantage of this firmware is that the resulting VME events (called aggregates by

CAEN) are not chronologically ordered and have to be sorted during processing.

Figure 9-4 DPP-PSD Gates [23]

The DAQ has been tested with following CAEN VME Cards

• V1730 – 16 channel, 500MSPS, 14 bit, Waveform FW

• V1725 – 16 channel, 250MSPS, 14 bit, DPP-PSD FW

• V1740 – 64 channel, 62.5MSPS, 12 bit, Waveform FW

• V1740D – 64 channel, 62.5MSPS, 12 bit, DPP-QDC FW

• V1495 – FPGA card with the author’s Gate Generator FW

Figure 9-5 Test VME Crate with digitizers

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

69

9.3 Configuration

As opposed to the NWVME the new DAQ shall have knowledge about the features of

specific hardware and express it in the configuration file in a human readable format. An

example of setting channel input ranges and channel thresholds in NWVME is given in Listing

9-1.

<!-- Input range -->
<command name="CAENVME_WriteCycle" offset_32_address="0x1028" address_modifier="0x09"
data_width="32" input_value="0x0000" repeat="1"/>
<command name="DELAY" input_value="1000"/>
<command name="CAENVME_WriteCycle" offset_32_address="0x1128" address_modifier="0x09"
data_width="32" input_value="0x0000" repeat="1"/>

<!-- Trigger threshold -->
<command name="CAENVME_WriteCycle" offset_32_address="0x1080" address_modifier="0x09"
data_width="32" input_value="15700" repeat="1"/>
<command name="DELAY" input_value="1000"/> <!-- 1ms v
[us] vydrz -->
<command name="CAENVME_WriteCycle" offset_32_address="0x1180" address_modifier="0x09"
data_width="32" input_value="15700" repeat="1"/>
<command name="DELAY" input_value="1000"/> <!-- 1ms v
[us] vydrz -->
<command name="CAENVME_WriteCycle" offset_32_address="0x1280" address_modifier="0x09"
data_width="32" input_value="15700" repeat="1"/>

Listing 9-1 NWVME configuration file example

An example of configuration file of the new DAQ is given in Listing 9-2. The XML

configuration file is designed as self-documenting. An example configuration file of all

supported hardware is generated by the DAQ command and can be then used as a template by

the user. Any user should be able to find and modify important values easily, for example if

given an instruction over a phone. The configuration file should also keep the principle of

defining any important values once to prevent errors. That is very important for the DPP

firmwares, where every channel has many configuration parameters and any change needs to

be applied for all channels introducing a space for mistake. The format therefore supports the

#CLONE XML parameter which copies all unset options from other configuration node of the

same level or below (i.e. channel from channel, channel group from channel group, card from

card, VME crate from VME crate)

<!-- FrontPanelTrigger: Couple can trigger FP-TRGOUT -->
<!-- FrontPanelTrigger: Boolean - 0 1 -->
<!-- PulseType: Trigger Pulse Generation -->
<!-- PulseType: Enumerated: Programmable(0) Threshold(1) -->
<!-- Trigger: Couple can trigger -->
<!-- Trigger: Boolean - 0 1 -->
<!-- TriggerLogic: Couple Trigger Logic -->
<!-- TriggerLogic: Enumerated: AND(0) FIRST(1) OR(3) SECOND(2) -->
<couple id="0" #CLONE="" FrontPanelTrigger="0" PulseType="Programmable" Trigger="1"
TriggerLogic="OR">
 <!-- Name: Channel name -->
 <!-- Enabled: Channel enabled -->
 <!-- Enabled: Boolean - 0 1 -->

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

70

 <!-- Offset: DAC offset -->
 <!-- Offset: Unsigned integer range: 0 - 65535 -->
 <!-- PulseWidth: Trigger Coincidence Pulse Width, 16 ns step -->
 <!-- PulseWidth: Unsigned integer range: 0 - 255 -->
 <!-- DynamicRange: Input dynamic range -->
 <!-- DynamicRange: Enumerated: 0V5(1) 2V(0) -->
 <!-- Threshold: Trigger threshold -->
 <!-- Threshold: Unsigned integer range: 0 - 16383 -->
 <channel id="0" #CLONE="" Name="CH1" Enabled="1" Offset="4096" PulseWidth="2"
DynamicRange="0V5" Threshold="15000"/>
 <channel id="1" #CLONE="0" Name="CH2" Enabled="1" Threshold="15000"/>
</couple>
<couple id="1" #CLONE="0" Trigger="1" TriggerLogic="OR">
 <channel id="2" Name="VETOUP" Enabled="1" Threshold="15000"/>
 <channel id="3" Name="VETOBOT" Enabled="0" Threshold="14434"/>
</couple>

Listing 9-2 Я3DAQ configuration file example

The DAQ component then translates this hardware specific configuration file into

configuration file for the BOX – where only important information for every channel is kept –

sampling rate, dynamic ranges and threshold values.

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

71

10 Conclusions

This thesis deals with detection of the inverse beta decay in nuclear reactor antineutrino

detectors. The author has been involved in two such experiments – DANSS and S3. The DANSS

experiment was developed by the Dzhelepov Laboratory of Nuclear Problems of the Joint

Institute of Nuclear Research in Russia. The S3 experiment is being developed as a collaboration

of the Institute of Experimental and Applied Physics of the Czech Technical University in

Prague and the DLNP JINR.

The DANSS experiment has been in operational phase since summer 2016 and is still

collecting data in the technical room 10 meters underneath the reactor core of Kalinin Nuclear

Power Plant in Russia. The S3experiment is, as of August 2018, still being designed and

constructed.

The goals of the thesis were to devise and implement the method of detection inverse beta

decay and implement them for the two experiments.

For the DANSS experiment a method of a coincidence of a group of pulses (spatial and

temporal coincidence) was devised and implemented as an FPGA firmware for the main control

card of the data acquisition system. The DANSS spectrometer uses the charge to digital

converters for particle energy extraction and an FPGA based control card for trigger control. A

variant of the firmware was designed by the author for the active veto system of the detector

which records any events occurring around the time of the trigger. The author also participated

during the commissioning phase of the DAQ in the Kalinin NPP in technical data analysis.

For the S3 experiment the same coincidence method was implemented in a C++ application.

It can be used for both online and offline processing from trace recording oscilloscopes and

CAEN ADC digitizers. The resulting application allows data analysis, visualization, online

monitoring and data reduction down to a manageable level. The resulting DAQ has been tested

on the S-Cubino prototype.

Further, based on the experience obtained during the work on the thesis a new complete data

acquisition system has been proposed and its development has started and will be used for the

complete S3 detector both in Czech republic and Russia.

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

72

11 List of relevant publications

11.1 Impacted publications

[IF1] Hons, Z., Vlášek, J. – Data acquisition system for segmented reactor antineutrino

detector, Journal of Instrumentation, 2017 JINST 12 P01022, ISSN 1748-0221

[IF2] Alekseev, I et al - DANSS: Detector of the reactor AntiNeutrino based on Solid

Scintillator, Journal of Instrumentation, 2016, JINST 11 P11011, ISSN 1748-0221

11.2 Proceedings papers

[PP1] Alekseev, I. et al - Neutrino Physics at Kalinin Nuclear Power Plant: 2002 – 2017,

Journal of Physics: Conference Series, Volume 934, Issue 1, 20 December 2017, ISSN 1742-

6596

[PP2] Alekseev, I. et al - Detector of the reactor AntiNeutrino based on Solid-state plastic

Scintillator (DANSS). Status and first results, Journal of Physics, Conference series, vol 898

ISSN 1742-6588

[PP3] Špavorová, M, et al – Testing of reactor antineutrino detector s-cube, AYSS-2016, p

250-254, ISBN 978-5-9530-0416-9

12 Other results

12.1 Other impacted publications

[OIF1] Mamedov, F, et al – Measurement of radon aktivity in air using electrostatic

collection to the Timepix detector, JINST, 2013 JINST C03011, ISSN 1748-0221

12.2 Other conferences

[OC1] Broulím, P, et al - Compact device for detecting single event effects in semiconductor

components, TELFOR 2017 Belgrade, Serbia

[OC2] Vlášek J – Use of Altera FPGA for digital signal processing, Elektronika a

informatika 2011, Part 2 Elektronika, p 119-120

[OC3] Vlášek J – Effect of sampling frequency on the accuracy of radiation spektrometry,

Elektronika a informatika 2012, Part 2, p 143-146

[OC4] Vlášek J – Antineutrino detector, Elektronika a informatika 2013, Part 2, p 93-96

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

73

[OC5] Vlášek J, et al, 21st – Software for rail traffic simualator, 21st Telecommunications

Forum (TELFOR) Proceedings Papers, p 594-596

[OC6] Křivka J, et al – Hardware for rail traffic simulator, 21st Telecommunications Forum

(TELFOR) Proceedings Papers, p 584-586

[OC7] Štětka P, et al – Control and navigation system for mobile platform 21st

Telecommunications Forum (TELFOR) Proceedings Papers, p 584-586

13 Prototypes and software

[FZ1] Pavlíček V, Vlášek J - Terminal for control of winding machine tools, 2012

[FZ2] Vlášek J, Georgiev V – USB hub with current measurement, 2012

[FZ3] Vlášek J, Georgiev V – Radiation spectrometer based on time measurement, 2012

[FZ5] Broulím J, Vlášek J, Georgiev V – Programmable power supply, 2013

[FZ5] Vlášek J, et al – Portable USB spectrometer for detection of radon

[SW1] Vlášek J, Georgiev V – Software for rail vehicle simulator, 2013

[SW2] Vlášek J, et al – Software for measurement and data processing for portable USB

spectrometer, 2012

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

74

14 List of figures

Figure 2-1 Inverse beta decay in a liquid scintillator ... 13

Figure 2-2 Principle of high energy neutrino detection ... 14

Figure 3-1 DANSS Team members with the detector in the KNPP technical room [3]. 15

Figure 3-2 Scintillating strip .. 16

Figure 3-3 Detector internal layout .. 16

Figure 3-4 Inverse beta decay detection... 17

Figure 4-1 S3 scintillating plate with WLS fibers .. 17

Figure 4-2 S3 detector schematic .. 18

Figure 4-3 S-cubino detector .. 18

Figure 4-4 Construction of the scubino detector .. 19

Figure 4-5 S3 Detector layout, Russian version ... 20

Figure 4-6 Gamma catcher scintillator ... 20

Figure 5-1 Overall system schematics ... 21

Figure 5-2 PMT Signal Path .. 21

Figure 5-3 Hardware schematics .. 22

Figure 5-4 Development VME Crate ... 24

Figure 5-5 DAQ System Architecture ... 25

Figure 5-6 DAQ Crate event structure ... 25

Figure 5-7 V1495 Master Control Waveforms .. 26

Figure 6-1 V1495 schematic diagram .. 28

Figure 6-2 Local bus read cycle ... 28

Figure 6-3 Local bus write cycle .. 28

Figure 6-4 Local bus BLT cycle .. 29

Figure 6-5 Firmware framework structure ... 29

Figure 6-6 Configuration registers schematics .. 30

Figure 6-7 Data readout schematics ... 32

Figure 6-8 Single GATE timing diagram .. 33

Figure 6-9 Alternating gate - Latency hiding mode ... 33

Figure 6-10 Alternating gate - Always alternating .. 33

Figure 6-11 Coincidence master schematics .. 35

Figure 6-12 Coincidence master measurement state machine ... 36

Figure 6-13 Pattern recorder core schematics .. 38

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

75

Figure 6-14 Pattern recorder event example .. 38

Figure 7-1 SwCoinc data flow ... 41

Figure 7-2 JSROOT web interface ... 43

Figure 7-3 SwCoinc architecture ... 43

Figure 7-4 Example extracted pulse (ADC value vs sample) .. 48

Figure 8-1 Average number of events per second in one run (Counts vs Counts per second)

 .. 56

Figure 8-2 IRQ handling time with QDCs only (Counts vs time in us) 57

Figure 8-3 Prompt PMT Channel spectrum ... 58

Figure 8-4 Delayed PMT Channel spectrum ... 58

Figure 8-5 Number of active PMT channels in prompt vs delayed DANSS pulses 58

Figure 8-6 Active PMT channels in prompt vs delayed pulses ... 59

Figure 8-7 Sum of all digitized waveforms.. 59

Figure 8-8 Digitizer samples of natural background.. 60

Figure 8-9 Laboratory background spectrum (Counts vs ADC value) 60

Figure 8-10 Digitizer DAQ readout time (Counts vs time in us) ... 61

Figure 8-11 Prompt QDC and FADC spectra (Counts vs xDC value) 62

Figure 8-12 Delayed QDC and FADC spectra (Counts vs xDC value) 62

Figure 8-13 IRQ handling time QDC+FADC+Activeshielding (Counts vs time in us) 62

Figure 9-1 DAQ Architecture .. 65

Figure 9-2 The BOX block diagram .. 66

Figure 9-3 ADC Waveform recording firmware modes [22] .. 67

Figure 9-4 DPP-PSD Gates [23] .. 68

Figure 9-5 Test VME Crate with digitizers ... 68

15 List of Listings

Listing 6-1 VHDL implementation of registers ... 31

Listing 6-2 Example use of register ... 31

Listing 7-1 Connecting ROOT to SwCoinc ... 44

Listing 7-2 Partial IThread implementation ... 45

Listing 7-3 Asynchronous message passing use example.. 45

Listing 7-4 The Event class .. 46

Listing 7-5 ParserInfo structure ... 49

Listing 7-6 Parser registration .. 49

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

76

Listing 7-7 Example of MultiVH2D instantiation ... 53

Listing 7-8 MultiTimeSeriesHistoGraph Example .. 54

Listing 7-9 ADCPrinter.hpp ... 54

Listing 7-10 ADCPrinter.cpp ... 55

Listing 7-11 scube_vme allocator function .. 55

Listing 9-1 NWVME configuration file example .. 69

Listing 9-2 Я3DAQ configuration file example ... 70

16 List of Tables

Table 6-1 V1495 local bus signals ... 28

Table 6-2 Serial protocol commands ... 32

Table 6-3 Status signals ... 34

Table 6-4 Coincidence master event bit structure .. 37

Table 6-5 Coincidence master event bit structure .. 39

Table 6-6 Firmware ID codes .. 40

Table 6-7 Firmware resource usage ... 40

Table 7-1 DataSource interface method ... 47

Table 7-2 DataSink interface method .. 47

Table 7-3 VTimeGraph options ... 53

Table 8-1 DAQ Statistics for one run with QDC only ... 56

Table 8-2 DAQ Statistics for one run with QDC, Digitizer and active shielding 63

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

77

17 References

1. Solar Neutrinos. Suzuki, Y. s.l. : World Scientific Publishing Company, 2000,

International Journal of Modern Physics A, Vol. 15, pp. 201-228.

2. Observation of Reactor Electron Antineutrinos Disappearance in the RENO Experiment.

Collaboration), J. K. Ahn et al. (RENO. 2012, Phys. Rev. Lett, Vol. 108, p. 191802.

3. DANSS: Detector of the reactor AntiNeutrino based on Solid Scintillator. Egorov, V. et

al. s.l. : arXiv:1606.02896, 2016, JINST, Vol. 11, p. P11011.

4. Pauli, W. Letter to L.Meitner and her colleagues. December 4 1930 .

5. Fukugita, M., Yanagida, T. Physics of Neutrinos and applications to astrophysics,. s.l. :

Springer-Vergag Berlin, 2003. ISSN 0172-5998.

6. Super-Kamiokande Collaboration. Fukuda, Y. et al. 1562, s.l. : Phys. Rev. Lett. , 1998,

Vol. 81.

7. A review of the homestake solar neutrino experiment. Davis, R. s.l. : Elsevier, 1994,

Progress in Particle and Nuclear Physics, Vol. 32, pp. 13-32.

8. Barger V., Marfatia D., Whisnant K. L. The Physics of Neutrinos. s.l. : Princeton

University Press, 2012. 0691128537.

9. Mesonium and antimesonium. Pontecorvo, B. Dubna : Zhurnal Eksperimental'noi i

Teoreticheskoi Fiziki, 1957, Vol. 33, p. 549.

10. Inverse beta processes and nonconservation of lepton charge. B, Pontecorvo. Dubna :

Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki, 1957, Vol. 34, p. 247.

11. The Construction and Anticipated Science of SNOLAB. Duncan, F. et al. 163-180, 2010,

Annual Review of Nuclear and Particle Science, Vol. 60, pp. 163-180.

12. The detector system of the Daya Bay reactor neutrino experiment. An, F.P. et al. s.l. :

Elsevier, 2016, NIM A, Vol. 811, pp. 133-161.

13. Reactor antineutrino anomaly. Mention, G. et al. 073006, s.l. : Phys. Rev. D, 2001, Vol.

83.

14. The Super-Kamiokande detector. Fukuda, S. et al. 2-3, s.l. : Elsevier, 2003, Vol. 501,

pp. 418-462.

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

78

15. IceCube: An instrument for neutrino astronomy. Halzen, F., Klein, R.S. s.l. : AIP, 2010,

Review of Scientific Instruments, Vol. 81, p. 081101.

16. The Baikal underwater neutrino telescope: Design, performance, and first results.

Belolaptikov, I. A, et al. 3, s.l. : Elsevier, 1997, Astroparticle Physics, Vol. 7, pp. 263-282.

17. The BAIKAL neutrino experiment—Physics results and perspectives. Belolaptikov, I. A,

et al. 1, s.l. : Elsevier, 2009, NIM A, Vol. 602, pp. 14-20.

18. ANTARES: The first undersea neutrino telescope. Ageron, M. et al. 1, s.l. : Elsevier,

2011, NIM A, Vol. 656, pp. 11-38.

19. DANSSino: a pilot version of the DANSS neutrino detector. Egorov, V and al, et. 2013,

p. arXiv:1305.3350.

20. CAEN. CAEN V965 User Manual. [Online]

http://www.caen.it/servlet/checkCaenManualFile?Id=5333.

21. A versatile DAQ, monitoring and data processing system for nuclear experiments in

CAMAC and VME standards. Hons, Z. 2015, p. arXiv:1508.01379.

22. CAEN S. p. A. V1740 User Manual. [Online]

http://www.caen.it/servlet/checkCaenManualFile?Id=13148.

23. CAEN S.p.A. DPP-PSD User Manual. [Online]

http://www.caen.it/servlet/checkCaenManualFile?Id=13080.

24. Egorov, V et al. DANSSino: a pilot version of the DANSS neutrino detector. [Online]

arXiv:1305.3350 [physics.ins-det].

25. Gilmore, Gordon R. Practical Gamma-ray Spectrometry – 2nd Edition. s.l. : John

Wiley & Sons, 2008. 978-0-470-86196-7.

26. Favi, Claudio and Edoardo, Charbo. A 17ps Time-to-Digital Converter Implemented

in 65nm FPGA Technology. [Online] http://infoscience.epfl.ch/record/139431.

27. Egorov, V et al. DANSSino: a pilot version of the DANSS neutrino detector. 2013.

arXiv:1305.3350 [physics.ins-det].

28. Gravitational Waves & High Energy Neutrinos. Antares. [Online] [Cited: March

10, 2018.] http://antares.in2p3.fr/users/pradier/gwhen.html.

Anti-neutrino detector data processing system Ing. Jakub Vlášek 2018

79

29. CAEN S.p.A. DPP-QDC User Manual. [Online]

http://www.caen.it/servlet/checkCaenManualFile?Id=12971.

