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The world has achieved brilliance without wisdom, power
without conscience. Ours is a world of nuclear giants and
ethical infants. We know more about war than we know about
peace, more about killing that we know about living.

— Omar Bradley

Education without values, as useful as it is, seems rather to

make man a more clever devil.
—C. S. Lewis

... he that increaseth knowledge increaseth sorrow.

— Ecclesiastes 1:17-18



Abstract

V poslednich dvou dekddach regresni modely na bazi gaussovskych procesti
prozily markantni rozvoj ve strojovém uceni a jsou atraktivni alternativou k
mnoha ustédlenym regresnim modeldim v Sirokém rozsahu aplikaci. Regrese
s gaussovskym procesem je bayesovsky neparametricky model, ktery slucuje
vysokou flexibilitu s traktabilni bayesovskou inferenci.

Prvni aplikaci GP modelti v této disertaci je identifikace nelinedrnich ¢asové
invariantnich systému afinnich v fizeni s funkciondlni nejistotou. V disertaci
navrhuji identifika¢ni metodu s rekurzivnim gaussovskym procesem, kterou

dale aplikuji ve funkciondlnim dualnim adaptivnim fizeni.

Ve druhé ¢asti disertace se soustfedim na lokdIni nelinedrni sigma-bodové
filtry, které aproximuji netraktabilni momentové integraly numerickymi kva-
draturnimi pravidly. GP regrese hraje dtileZitou roli v bayesovské kvadratufe,
kterd nahliZi na kvadraturu jako na problém pravdépodobnostni inference.
Principu bayesovské kvadratury vyuzivdm ke konstrukci obecnych kvadra-
turnich momentovych transformaci na bazi gaussovského a studentského
t-procesu, které nasledné aplikuji pro konstrukci sigma-bodovych filtr.
Na varianci integralu je nahliZeno jako na model integra¢ni chyby, kterou
navrzené momentové transformace reflektuji ve vyslednych kovariancich.
FindlIni pfinos je vénovan vyuziti derivace integrované funkce ke sniZeni
variance integrdlu. Déle také dokazuji spojitosti s lineariza¢ni transformaci

vyuzivané rozsifenym Kalméanovym filtrem.



Abstract

In the last two decades, Gaussian process regression models have experi-
enced a resurgence in the machine learning community and continue to be
an attractive alternative to the established regression models in wide range
of application areas. Gaussian process regression is a Bayesian nonpara-
metric model, which combines high expressiveness with tractable Bayesian

inference.

The first application of GP models in this thesis is the identification of non-
linear time-invariant systems affine in control with functional uncertainty.
I develop a recursive GP system identification method and apply it in a

functional dual adaptive control.

In the second part of this thesis, I focus on the local nonlinear sigma-point
filters, which approximate the intractable moment integrals by means of
numerical quadrature rules. GP regression plays an important role in devel-
opment of the Bayesian quadrature (BQ), which views numerical integration
as probabilistic inference. I use the BQ approach to construct the moment
transforms based on the Gaussian process quadrature and the Student’s
t-process quadrature. Variance of the integral is seen as a model of the
integration error, which the proposed moment transformations reflect in
the resulting covariances. The final contribution is devoted to utilization
of derivative observations for decreasing the integral variance. Further-
more, I show connections to the linearization transform employed in the
well-known extended Kalman filter.
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Chapter 1
Introduction

In the last two decades, Gaussian process regression models have experienced a resur-
gence in the machine learning community and continue to be an attractive alternative to
the established regression models in wide range of application areas. What caused this
sudden interest in regression models, that have been known in geostatistics community
since the 60’s? What makes them so attractive to many researchers today? To answer
this, we have to look back to PhD thesis authored by Neal [1995]. Conventional wisdom
at the time was that a neural network with very large number of hidden units would
overfit the data and that the parameter optimization in such cases would be numerically
unfeasible [Le Roux and Bengio, 2007]. Neal proposed a counterexample, which showed
that Bayesian neural network with a Gaussian prior on hidden-to-output weights con-
verges to a Gaussian process prior when the number of hidden units approaches infinity.
Since expressive models are highly desirable for modeling complex functional depen-
dencies, this was an encouraging discovery, which motivated Rasmussen and Williams
to conduct further research into GP models. Gaussian process regression is a Bayesian
nonparametric model, which combines high expressiveness with tractable Bayesian
inference. For suitable choices of covariance functions, many conventional regression
models are just special cases of GP regression [Rasmussen and Williams, 2006]. Fa-
vorable analytical properties of GP models make them the natural first choice when
it comes to dealing with functional uncertainty. They were utilized for probabilistic
formulation of time-frequency analysis [Turner and Sahani, 2014], predictive control
[Kocijan et al., 2003], reinforcement learning [Deisenroth, 2009] and many other areas.

The first application of GP models in this thesis is in the system identification [Ko-
cijan et al., 2005]. The system model is obtained in a primarily data-driven manner,
which is in direct contrast to mathematical modeling, where the primary source of
knowledge are the natural laws from physics or biology. Broadly speaking, the models



can be categorized as either parametric, which typically assume rigid structure with finite
number of parameters, or non-parametric, where the model structure changes with the
dataset and which can be construed as having potentially infinite number of parameters
[Orbanz and Teh, 2010]. Well-known parametric structures include for example ARX
and ARMAX models for linear systems [Ljung, 1999], while for non-linear systems, the
NARMAX [Billings, 2013] or the various types of neural networks [Fabri and Kadirka-
manathan, 2001] can be named. Methods based on frequency response and correlation
analysis [Pintelon and Schoukens, 2012] are the typical examples of nonparametric
methods for linear system identification. For its many favorable properties, the GP
regression model is a uniquely suited candidate for the nonparametric identification of
nonlinear systems. In Chapter 5, I develop a recursive GP system identification method
and apply it in a functional dual adaptive control, which has been largely dominated
by neural networks [Fabri and Kadirkamanathan, 2001].

Dynamic systems are widely used to model the behavior of real processes through-
out the sciences. In many cases, it is useful to define a state of the system and conse-
quently work with a state-space representation of the dynamics. When the dynamics
exhibits stochasticity or can only be observed indirectly, the problem of state estimation
becomes relevant. Estimating a state of the dynamic system from noisy measurements is
a prevalent problem in many application areas such as aircraft guidance, GPS navigation
[Grewal et al., 2007], weather forecast [Gillijns et al., 2006], telecommunications [Jiang
et al., 2003] and financial time series analysis [Bhar, 2010]. When the state estimator is
required to produce an estimate using only the present and past measurements, this is
known as the filtering problem.

If the system dynamics and measurement functions are linear and state and mea-
surement noises are white, additive and independent of the state initial condition, then
the best linear unbiased estimator of the system state, in the sense of least mean square
error, is known as the Kalman filter (KF) [Kalman, 1960; Kalman and Bucy, 1961]. It was
soon realized that the requirement of linearity posed by the KF can be very restrictive,
which naturally led to the development of filters that were able to cope with nonlin-
earities in the system description. The first of such was the extended KF (EKF) [Smith
et al., 1962], which rests on the idea of local linearization by Taylor series expansion. A
conceptually different approach is used by the unscented KF (UKF), where the idea is
to approximate probability densities by a finite set of sigma-points.

I focus on the nonlinear local filters, which approximate the intractable moment in-
tegrals by means of numerical quadrature rules. GP regression plays an important role
in development of the Bayesian quadrature (BQ), which views numerical integration as



probabilistic inference. A great advantage of BQ is that it provides probabilistic charac-
terization of the integration error as part of the result. BQ fits into a broader emerging
field of probabilistic numerics [Hennig et al., 2015] which views numerical computation
as a process of Bayesian statistical inference, where the result is a probability measure
over the solutions - not just a single solution.

The first part of the thesis covers the preliminaries. Chapter 2 outlines the problem
of system identification, describes the popular parametric models and concludes with
a section containing a detailed description of the GP regression. Chapter 3 is mainly
devoted to introduction of the local nonlinear filtering. The transformation of moments
is identified as the central problem in local nonlinear filtering and summary of the
most commonly used moment transformations and corresponding filters is provided.
Bayesian quadrature is discussed in the last section of the chapter. The second part of
the thesis contains the contributions. Application of GPs for system identification in the
context of functional dual adaptive control is covered in Chapter 5. Chapter 6 develops
a general purpose moment transformation based on the Gaussian process quadrature
(GPQ), which is later used for design of GPQ Kalman filter. I further propose the use of
the Student’s t-process quadrature (TPQ) as an alternative to GPQ. The general-purpose
TPQ moment transform is defined, applied for construction of the TPQ Student’s ¢-
filter and compared with the GPQ in numerical experiments. Finally, I propose the
use of derivative observations in GPQ and show connections of such quadratures to

linearization.



Chapter 2
System Identification

Discovering the workings of the physical reality is one of the preeminent goals of the
scientific endeavor. Human beings and other intelligent lifeforms obtain data through
their qualitatively limited sensory observations and then infer a mental model of the
external world on a daily basis. The mental model can thus be understood as a summary
of the current state of belief about the external world.

System identification is a discipline largely developed in the control engineering
community whose main objective is to infer models of dynamical systems primarily
on the basis of measured data. The goals of system identification are twofold. Firstly,
the objective is to build a model of the dynamical system that is a good approximation
to the measured input-output data and, at the same time, minimizes the prediction
error. Building on top of this, the second objective is to find a parsimonious model
structure with easily interpretable parameters that reveals the underlying dynamic
system characteristics. We will be predominantly concerned with building models
with good predictive performance. This is also referred to as black-box or, in case more
assumptions are placed on the model structure, gray-box modeling.

In our discourse, a system is understood to be a part of unknown physical reality,
which can only be observed indirectly through noisy sensory measurements. Since many
natural processes of engineering interest evolve in time, we will restrict our attention
to dynamical systems, which describe how variables interact with each other in order
to produce observable signals of interest, called outputs, in response to the external
stimuli. Inputs are the signals that can be manipulated by the observer. Any other
external stimuli are called disturbances, which represent an unpredictable influence on
the system.

Before the identification can begin, it is necessary to design the experiment, which
involves specifying a sufficiently rich input signal so that the obtained dataset is maxi-
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Figure 2.0.1: A diagram of a dynamical system turning the input signal «(#) into an output y(¢).
The whole system is affected by unpredictable external disturbances v(t).

mally informative. Designing an ideal experiment is not always possible, though; in
which case, data from the normal operation of the system has to be used.

Once the data has been collected, we have to choose a model set, usually on the basis
of intuition and prior knowledge of the system, where every model is identified by
a specific parameter values. Broadly speaking, models can be categorized as either
parametric, which typically assume rigid structure with finite number of parameters; or
non-parametric, where the model structure changes with the dataset and can be construed
as having potentially infinite number of parameters [Orbanz and Teh, 2010]. These
differences are discussed more in Section 2.2.1. The final step is to use an appropriate
identification method, which processes the measured data in order to find optimal values
of the model parameters.

In the discussion that follows, I have left out the non-parametric methods for linear
systems based on frequency response, correlation, transient and spectral analyses.
Interested reader is referred to [Pintelon and Schoukens, 2012] for detailed coverage of
the frequency response analysis. Great overview of the non-parametric identification
methods can be found in the classics by Soderstrom and Stoica [1989] and Ljung [1999].

2.1 Parametric Models

In this section, I briefly summarize the contemporary parametric models for linear and
nonlinear systems, and also mention the commonly employed identification methods.

The Autoregressive Moving Average Model with Exogenous Input (ARMAX) is a
well-known parametric model for linear systems. The form is given by

y(k) + Z aiy(k —i) =Y bu(k —i) + (k) + Z cie(k —1), (2.1.1)
=1 =1 =1

where y(k) is the system output, u(k) is the input and (k) is a noise signal with zero
mean and finite variance. The quantities n,, n, and n. are the maximum lags for the



relevant signals. Setting certain parameters to zero, results in several recognized special
cases of the ARMAX model which are listed in the Table 2.1.1 along with the conditions.
Other forms, such as Box-Jenkins model, are covered in [Billings, 2013].

Model structure Conditions

ARMA bi=0
ARX CZ':()
AR bi:ci:O
MA ai:bi:()

Table 2.1.1: Several widely recognized substructures of the ARMAX model.

The parameters of the ARX model can be easily estimated by the ordinary least squares
(OLS) and the solution is available in closed-form. In general though, finding optimal
parameter values for the ARMAX model, is a nonlinear regression problem requiring
iterative methods, such as the extended least squares (ELS), the prediction error method
(PEM) or the instrumental variables (IV). Note that PEM and IV are general model fitting
frameworks containing concrete algorithms (such as ELS) as special cases.

The NARMAX model is a natural generalization! of the above in that it allows for

arbitrary nonlinear combination of inputs, outputs and noise terms. The model is given

by

y(k) = g(y(k — 1), y(k —2), ..., y(k —ny),
uk—d—1), u(k—d—2), ..., u(k —d —ny),
e(k—1),e(k—2),...,e(k—mne)) +e(k) (2.1.2)

where g is an arbitrary nonlinear function, the time delay is typically set to d = 1 and
the quantities n,,, n,, n. are maximum lags of the corresponding signals. “A significant
proportion of nonlinear systems can be represented by a NARMAX model including
systems with exotic behaviors such as chaos, bifurcations, and subharmonics” [Billings,
2013].

The unknown nonlinearity g is most commonly parametrized by the power-form
polynomial representation of given degree, which has been extensively studied and for
which many identification algorithms have been developed. Polynomials are smooth
functions and, thanks to the Weierstrass theorem, there are approximation guarantees

for continuous functions on closed domains. However, the expansion can be ill condi-

!By definition, the term “nonlinear” excludes the linear case. Strictly speaking then, NARMAX
complements ARMAX.



tioned due to the rapid growth of terms in the expansion. Rational functions [Zhu and
Billings, 1993], general basis function expansions [Billings and Chen, 1989], wavelets
[Wei and Billings, 2004] and neural networks [Chen et al., 1990] have been used as
successful alternatives.

When the unknown nonlinear function is represented as linear-in-parameters, the
identification method of choice for NARMAX models is the orthogonal least squares
algorithm [Korenberg et al., 1988]. The solutions are typically sparse, which means that
most of the terms in the expansion will be eliminated. The resulting model parsimony
is a beneficial property for practical computational reasons, but it also reveals more
about the underlying system dynamics (i.e. more than a black-box model).

2.2 Gaussian Process Regression

Gaussian process models [Barber, 2012; Bishop, 2007; Murphy, 2012; Rasmussen and
Williams, 2006] are flexible non-parametric Bayesian models for regression and classifi-
cation, that are enjoying a great surge of interest in recent decades. Gaussian process
models are also at the heart of the Bayesian quadrature, a novel methodology for nu-
merical approximation of integrals [Briol et al., 2015; Osborne et al., 2012; Rasmussen
and Ghahramani, 2003], which might offer promising research directions in nonlinear
filtering [Priither and Simandl, 2015; Sarkka et al., 2014; Sarkk et al., 2016].

The basic mathematical entity underlying these models is a stochastic Gaussian
process. Formally, stochastic process is defined as a collection of random variables
{f(x) : z € X} indexed by elements of an index set X [Grimmett and Stirzaker, 2001].
Although in the literature the stochastic processes are often discussed in the context
of temporal settings (the index set is one-dimensional and represents time; X = R*),
note that by definition there are no restrictions placed on the index set. Thus a stochas-
tic process can just as easily be defined on spacial domains (as it is common in geo-
statistics [Cressie, 1993]) as well as d,-dimensional Euclidean spaces2 (eg. X = R%).
A stochastic process is characterized by specifying a finite dimensional distribution
p(f(z1), f(x2),..., f(zn)) for all finite subsets {z1, x2, ..., zn} of an index set [Jazwin-
ski, 1970]. For a Gaussian process it holds that all its finite dimensional distributions
are Gaussian. Intuitively, Gaussian process (GP) can be understood as an infinite-
dimensional extension of the multivariate Gaussian distribution and thus defines distri-
bution over functions®. Analogously to the Gaussian distribution, a GP is fully specified

2A more accurate term for this mathematical entity is random field [Adler, 1981].

*Functions can be informally regarded as N-tuples of function values [f(z1) f(z2) ... f(zn)] T

for which N — oo, i.e. as infinite-dimensional vectors.



by its mean and covariance functions. For a GP distributed random function we will
write
f(@) ~ GP(m(z), k(z,2)) (2.2.1)

where m(x) is the mean function and k(zx, «') is the covariance function. The covariance
function is also often referred to as the kernel in machine learning literature [Rasmussen
and Williams, 2006; Scholkopf and Smola, 2002]. The GP kernel k(z,2") : X x X - R
is a symmetric non-negative definite function; and conversely, every symmetric non-
negative definite function defines a centered (zero-mean) GP [Janson, 1997]. In the
following exposition, we will use the zero mean function m(z) = 0 because it simplifies
notation.

Gaussian processes are the basis for the class of non-parametric GP regression
and classification models, which are gaining on popularity in the machine learning
community, because of their expressive power, flexibility and number of favorable
theoretical properties [Rasmussen and Williams, 2006]. In the following, we will focus
on the GP regression model as it lends itself nicely to function approximation, which is
a problem prevalent in many applications, including nonlinear filtering [Sarkka, 2013;
Sarkka et al., 2014; Turner and Rasmussen, 2010], system identification [Kocijan et al.,
2005; Priither and Simandl, 2014], model predictive control [Kocijan et al., 2003], time
series forecasting [Girard et al., 2003], functional dual adaptive control [Kral et al., 2014]
and reinforcement learning [Deisenroth, 2009; Kuss and Rasmussen, 2004; Park et al.,
2013].

Gaussian process regression is a powerful non-parametric Bayesian model for solving
nonlinear regression problems. Many parametric regression models, such as polynomial
regression, neural networks and splines, can be obtained as a special case of the GP
model [Rasmussen and Williams, 2006] by a suitable choice of the covariance function.
Consider a dataset of input-output pairs D = {(x1, y1), ..., (xXn, yn)}, where the
outputs are related to inputs through some unknown function

y=f(x)+e, e~N(0,0%), (2.2.2)

and are corrupted with zero-mean Gaussian noise. The goal of regression is to esti-
mate the functional relationship between the observed data which also needs to give
satisfactory predictive performance. Parametric regression models typically specify the
regression function f(x) by some parametric form as in eq. (2.2.14), which introduces
rigid assumptions on the modeled relationship between inputs x and outputs y. The
key distinguishing idea of the GP regression is that the unknown function is modeled



asa GP
f(x) ~ GP(0, k(x,x")) (2.2.3)

where the modeling assumptions are introduced through the choice of the kernel
(covariance) function k(x, x’). The zero-mean assumption is for notational and analytical
convenience and does not present any serious limitation to the model flexibility, because
the posterior mean is given as a weighted sum of kernels, which will become apparent
later (see eq. (2.2.13)). Specifying the mean function is only important if we want to
improve model’s interpretability and predictive performance for inputs that lie far away
from the training set. If we lack any meaningful nominal model that could be used as
the mean function, one can always use any type of parametric basis function model as
the mean [Rasmussen and Williams, 2006, Sec. 2.7].

From the viewpoint of Bayesian inference one could say that we have just specified a
prior distribution over functions themselves. Since the unknown function in eq. (2.2.3) is
a GP, the distribution for any finite subset of function values f = [f(x;) ... f(xy)] !
is multivariate Gaussian and will be denoted as

p(f|X,0)=N(f|0, K), (2.2.4)
where the kernel matrix is given by pair-wise evaluations of the kernel function

k(xl,xl;e) k(xl,xN;O)
K= : : . (2.2.5)
k(xn,x1;0) ... k(xy,xn;0)

The kernel function further depends on the parameters 8, where the dependence will be
omitted to keep the notation uncluttered. For a set value of 8, we can draw samples from
a GP prior. The Figure 2.2.1 shows the samples from a GP prior that uses RBF kernel.
By choosing this kernel, the model operates with the assumption that the unknown
function is smooth.

In the following, let f* = [f(x}) ... f(x%,)] " be a vector of function values for a

-
given festing set X* = {x}, ..., x};} andletX = {x1, ..., xy}andy = [y; ... yn]

denote the training set. The GP posterior is given by the Bayes’ theorem as

y I, X)p(f|X,86)

_p(
p(f|X,y,0)= oy 1X.0) ,

(2.2.6)

where the term p(y | X, ) is called marginal likelihood, which is useful for setting the



X*

Figure 2.2.1: Gaussian process prior distribution with the RBF kernel. The mean function (bold),
GP prior samples (gray), predictive uncertainty (gray band).

f, 02) =
f, 0°I), the inference can be done exactly and results in a Gaussian posterior

kernel parameters (see Section 2.2.2). For a Gaussian likelihood, that is p( y
N ( y

p(£1X,y,0) = N(f ( K(K+0%) 'y, K- K' (K +021)_1K). 2.2.7)

With the posterior distribution in hand, we can ask what function values f* the model
predicts for new test inputs X*. We arrive at the predictive distribution by first consid-
ering the joint distribution over the function values at the training and test inputs

£ 0 K K. (2.2.8)
|| K] Kol o

where K, is N x M a matrix with elements k(x;, x;) and K,, is an M x M matrix

p(f,f*IX,X*,y,9)=N<

with its elements given by k(x;,x}). The joint predictive distribution is formed by

marginalizing w.r.t. posterior distribution over functions

p(F*|X*, X,y,0) = /p(f*|f,X*,X,y)p(fyX,y,9)df. (2.2.9)

Note, that f in eq. (2.2.9) has the same role as the parameter w in eq. (2.2.15), only
now f can have arbitrarily large dimension depending on the size of the training set.
Predictions of function values f* at testing inputs X* have the mean and covariance
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given by

E[f* | X*,X,y,0] = K] (K +¢°1) 'y, (2.2.10a)
Clf* | X*,X,y, 0] = K., — K] (K + 1) 'K, (2.2.10b)

For a single test input x* the predictive mean and variance of f(x*) are given by

m(x*) = E[f(x*) | D] = k(x*)T (K + 02T) "y, (2.2.11a)
o(x*) = VIf(x*) | D] = k(x*,x*) — k(x*) T (K + 0°T) 'k(x*), (2.2.11b)
where k(x*) = k(x*,X) = [k(x*, x1) ... k(x*, XN)]T. The GP mean function and

the predictive variance are depicted in Figure 2.2.2. The expression (2.2.11a) for the

x* X

Figure 2.2.2: Gaussian process posterior distribution using RBF kernel. True underlying function
(dashed), the GP posterior mean function m(x*) (bold), posterior predictive variance o2 (x*)
(gray area), training data (black dots) and the GP posterior samples (gray).

predictive mean can be rewritten using the substitution

a=(K+o1) 'y (2.2.12)
as
N
m(x*) = Z a; k(x;, x). (2.2.13)
=1

An interesting and useful property is that the mean function has a finite-dimensional
representation, despite the fact that the mean function is an infinite dimensional object.
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The insight we can draw from this is twofold 4. First, we see that the GP prediction is a
linear combination of kernel evaluations, thus (2.2.11a) is a linear predictor [Rasmussen
and Williams, 2006]; and second, the more training data is used, the more compli-
cated the expression for the posterior mean function will become, which is expected
characteristic behavior of non-parametric models.

2.2.1 Relation to Parametric Models

The undisputed advantage of the GP models is that they are non-parametric. The
nomenclature can be somewhat confusing, because 'non-parametric” here does not
mean that the model has no parameters - in fact, non-parametric models have as much
parameters as is needed (potentially infinite number of them) [Orbanz and Teh, 2010].
Another characteristic of such models is that they are not restricted by any prescribed
parametric structure and their number of ‘parameters” depends on the size of the
dataset.

The non-parametric models stand in stark contrast to parametric models, which have
a fixed structure and a finite number of parameters. To illustrate, consider a parametric

Bayesian linear (in parameters) regression model
y=f(x;w)+e, e~N(0,0? (2.2.14)

where the goal is to infer posterior distribution of the parameters p(w | D ) from data in
the form of input-output pairs D = {(x1,¥1), ..., (Xn,yn)}. Once the posterior over
parameters is obtained, the predictive distribution p(y* | x*, D) over an output (model
response) y* given a new input x* is given by

p(y*|x*, D) = /p<y*|x*,w>p<w|9>>dw. (2.2.15)

The limitation of parametric models now becomes clearer. The following intuition from
Ghahramani [2013] is especially helpful: “We can think of all models as information
channels from past data D to future predictions y*. The parameters w in a paramet-
ric model constitute a bottleneck in this information channel. The complexity of the
model, and the capacity of the channel, is bounded, even if the amount of observed
data becomes unbounded. Parametric models are therefore not generally very flexi-

*Another insight is gained by using the substitution 8 = k(x*) " (K + ¢°I) "~ !, which leads to m (x*) =
Zf;l Bi yi. The prediction at x* is formed by weighted sum of noisy observations y;, which indicates that
2.2.11a is a linear smoother.
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ble.” Increasing the number of parameters to infinity, would ensure that the flow of
information from data to predictions is unlimited, which would essentially remove the
parametric bottleneck. Indeed, constructing non-parametric models as a limiting case
of parametric models is a proven strategy [Neal, 1995; Rasmussen, 1999].

2.2.2 Setting Kernel Parameters

The problem of model selection in the context of GP models refers to the optimal setting
of the kernel parameters 6. Seeking an optimal value for the parameters is a frequentist
resolution to the problem, whereas a fully Bayesian treatment would employ integration

over parameter posterior for making predictions
P 1XXy) = [p(E] X7 Xy, 0)p(6]X) do. (2216)

A popular way of finding an optimal setting of kernel parameters is maximization of
the marginal log-likelihood. Other ways of dealing with kernel parameters are outlined
in [Rasmussen and Williams, 2006]. Marginal likelihood (evidence [MacKay, 2003]) for
the GP regression model is given by

p<y|x,e>:/p<y\f,X>p<frx,0>df, (2.2.17)

which is just the denominator in eq. (2.2.6) and is essentially a combination of likelihoods
weighted by the prior over the "parameter’ f. In practice, it is convenient to work with
the logarithm of marginal likelihood, which, for a Gaussian likelihood, has an analytic

form

1 _ 1 N
logp(y\X,B):—gyT(K(O)—{—UzI) 1y—§log‘K(0)+021‘—510g27r. (2.2.18)

data fit complexity penalty

Maximizing (2.2.18) w.r.t. € automatically trades-off the data fit term, which encourages
complex models, with the complexity penalty term, which penalizes complex models
and prevents overfitting. Gradient-based optimization algorithms, such as nonlinear
conjugate gradient descent, can be used to obtain the ML-II estimate. The likelihood
gradient is given by

9 logp(y|X,0) = ;Tr{ <aaT - K(a)—l) (2.2.19)

2 OK (0) }

00;
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were a is given by eq. (2.2.12). The marginal log-likelihood has multiple local maxima,
which could be construed as different explanations of the observed data. When using
this method, Wilson [2014] observed consistent model underfitting on small datasets.
Proper setting of kernel parameters is thus of crucial importance for predictive perfor-
mance of the GP model as illustrated in Figure 2.2.3, where mean functions of the GP
with kernel k(z,2) = exp(— 52 (z — 2/)?) are compared for three different values of
the input lengthscale parameter \.

A=0.92
A =0.10
- A =250
- -
- - - = R
- - ~>_:
' N
— 7 \ 4
- ~ 2
w ’ / R
S~— , b
= s’
”
-
Xx

Figure 2.2.3: Predictive performance of a GP regression model with radial basis function
covariance kernel is strongly affected by the values of the input lengthscale . For values that are
too large (A = 2.50) the predictive variance is unreasonably low (green), whereas for too small
values (A = 0.10) the posterior mean function changes too rapidly (yellow). The value A = 0.92
was determined by marginal likelihood maximization (blue). The true function (dashed) is in
red.

2.2.3 Approximations

The Gaussian process regression computes the predictions using all the available data
points, which becomes computationally expensive, even prohibitive, for data sets that
grow in size with time. For the standard GP regression the computational demands
for prediction grow as O(N3) and memory requirements grow with O(N?), where N is
the size of the training set. This fact can be easily seen from egs. (2.2.11a) and (2.2.11b),
where the complexity is dominated by the inversion of N x N matrix K + oI

For this reason, a number of approximations for the GP regression have been pro-
posed, which typically reduce the computational demands to O(M2N) where M < N.
The subset of regressors approximation was proposed by Wahba [1990]. Another obvi-
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ous approach is to avoid using the whole data set, but instead only use an informative
subset of the data [Silverman, 1985]. Bayesian committee machine [Tresp, 2000] divides
the dataset and forms the final predictive mean as a combination of the predictive
means computed on each of the data partitions. Sparse greedy GP regression [Smola
and Bartlett, 2001] is a representative of a greedy approximation strategy. The general
idea is to maintain an active set of data points, which are added to the set only if a
certain criterion is satisfied. Csaté and Opper [2002] proposed the sparse online GP,
which processes the data sequentially and gradually builds up a set of representative
data based on information criteria. Another approach was proposed by Williams and
Seeger [2001], who used the Nystrom method for approximation of the kernel matrix.
The sparse pseudo-input GP was proposed by Snelson and Ghahramani [2006], where
the main idea is to jointly optimize the pseudo-input locations with kernel parameters.

Quifionero Candela and Rasmussen [2005] presented a unifying framework, which
recasts the problem of approximate inference with exact prior as a problem of exact inference
with approximate prior. The framework rests on the idea of inducing variables u, which turn
out to be equivalents of, what other authors referred to as, “active set”, “pseudo-inputs”
or “support points”. The joint Gaussian prior (2.2.8) can be written as

p(E*,£) = / p(£*, £, u) du = / p(£*,£ [u)p(u) du, (2.2.20)

where u ~ N(0, K,,,). The fundamental approximation, which gives rise to most sparse
approximations, is to assume that f* and f are conditionally independent given u, such
that

p(f*,f) ~ q(f*,f) = /q(f* |u)g(f|u)p(u)du. (2.2.21)

Additional assumptions about the training conditional q(f | u) and the test conditional
q(f*|u) then lead to different approximation algorithms. Among the more recent
approaches, Hensman et al. [2013] worked with the idea of inducing variables and
introduced a stochastic variational inference for GP regression achieving O(M?3) com-
plexity, where M is the number of inducing variables. The idea behind the approach of
Lazaro-Gredilla et al. [2010] is to use sparse spectral representation of the GP. Sarkka
and Hartikainen [2012] proposed a solution which converts the GP regression to the
state-space representation, where inference can be done using the Kalman smoother
with linear O(V) complexity. This approach is limited in that it can only be applied to
one-dimensional inputs (e.g. temporal processes). Huber [2013], drawing on the work
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of Reece and Roberts [2010], proposed the recursive Gaussian Process algorithm, where
the main idea is to specify a priori positions of the so-called basis vectors. The function
values at the basis vectors are updated recursively together with kernel parameter
[Huber, 2014]. The equations take on the form reminiscent of the Kalman smoother.
This approach is not limited by the dimensionality of the input but the number of
basis vectors, necessary to achieve good results, scales exponentially with dimension
[Prither and Simandl, 2014]. Bui and Turner [2014] proposed a tree-structured GP
approximation suitable for time series data.

Quifionero Candela et al. [2007] gave an overview of the approximation methods
based on the inducing inputs as well as fast matrix vector multiplication algorithms.
Some methods are also discussed in [Rasmussen and Williams, 2006]. Schwaighofer and
Tresp [2003] compared some of the approximations developed earlier, while Chalupka

et al. [2013] proposed an evaluation framework.

Recursive Gaussian Process Regression

The recursive Gaussian process (RGP) approximation is heavily utilized in contributions
to nonlinear system identification, discussed in Chapter 5, which is why it is described
here in more detail. RGP was proposed by Huber [2013] as a solution to the problem
of GP regression for on-line processing of sequentially arriving data. The main idea
of this approximation is to use a predefined set of basis vectors, which are updated
and effectively summarize the obtained information about the unknown function on
a user-defined domain from currently available measurements. Instead of using all
the data for prediction, as in the case of vanilla GP (cf. eqgs. (2.2.11a) and (2.2.11b)),
predictions of the RGP model are computed from the basis vectors. The number of
basis vectors S < N (where NN is the number of data points) is fixed throughout the
operation of the algorithm, which enables to keep the computational demands in check.

Keeping with the notation in [Huber, 2013], let ® = [¢; ... ¢g] denote D x S
matrix of the basis vectors and f = f(®) the corresponding vector of values of the
unknown latent function. Because f is a GP, the distribution pg (f’ ) = N(f’ ’ o, f]o) at
initial time step k = 0 is Gaussian. For any time step k£ > 0, new set of L observations
Ye = [yk1 ... yrz]atinputlocations X; =[xz ... xyz] is processed. The goal
is then to calculate posterior distribution

p(f"yl:k) - N(f‘ﬂk, i:k> (2.2.22)

at time k, wherey,., = [y; ... y}], by combining the new observations y; with the
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distribution
p(F|yins) = N(F| s, Sen) (22.23)

from the previous time step, which functions as a prior in Bayesian setting. Calculation

of the posterior p (f‘ ‘ Yi k,) is performed in two steps:

Inference: calculating the joint prior p ( f, £} ‘ Y1 kfl) given the prior (2.2.23), where
£ = f(Xk),

Update: updating the joint prior with new observations and integrating out f.

I summarize the RGP algorithm below, without going further into more detail. For
the purposes of this thesis, I only ever consider processing of one observation y;, at
any given time. The RGP algorithm operates by means of the two sets of intertwined

equations
Ji = k(xg, ®)k(®, @)L, (2.2.24a)
fi = m(xg) + Jp (B — m(®)), (2.2.24b)
67 = k(xp, xi) + Jp (Si—1 — k(®, @))J,, (2.2.24¢)
Gi =Sk 1] (63 +0%) 7, (2.2.25a)
A = g1 + Gr(yk — fik), (2.2.25b)
Sk = Sk—l — Gkaka_l, (2225C)

where
~ AT - - T

m(®) 2 [m() ... mids)| . (2.2.26)
B(xi, ®) 2 [k(x, ¢1) . k(xi, s)] (2.2.27)

k(P d1) .. Koy, ds)
: e : (2.2.28)

_k((z)Sv &1) k(&)SW &S)
Note, that in the above summary, we assumed non-zero GP prior mean function. The
egs. (2.2.24a) to (2.2.24c) describe how to compute the RGP model predictive mean /i,

and variance &z at the test point x;. The egs. (2.2.25a) to (2.2.25c) define the update
step, where the first two moments of the posterior (2.2.22) are updated using the
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latest function value observation y;,. For detailed explanations and derivation of the
egs. (2.2.24a) to (2.2.25c) reader is referred to the original article [Huber, 2013].

2.3 Student’s t-Process Regression

An attractive alternative to the GP regression is the Student’s t-process (TP) regres-
sion [Shah et al., 2014; Solin and Sarkka, 2015], which makes less restrictive assumption
on the functional uncertainty and thus may provide more accurate predictive variances.

Consider a real-valued function f: R” — R which is assigned a TP prior, de-
noted as f(x) ~ TP(0, k(x,x’), v4). This implies that for any finite collection of points
{x1, ..., xn} the function values are jointly Student’s ¢-distributed

[F(x1) - flxn)] ~St(0, K, ), 2.3.1)

with the degrees of freedom (DoF) v, > 2. The kernel (covariance) matrix K is made
up of pairwise kernel evaluations, so that [K|;; = k(x;,x;; @), where 0 are the kernel
parameters. For brevity, dependence on 8 will be made explicit only when absolutely

necessary. Conditioning on the function value observations y = [f(x1), ..., f(xn)]"
at the inputs x1, ..., xy, collectively denoted as D = {(x,, f(xn))}_,, results in a TP

posterior with predictive mean and variance [Shah et al., 2014; Solin and Sarkka, 2015]

Ef[f(x*) | D] = k(x*) 'Ky, (2.3.2a)
—9 TK—I
VA | D] = S ke X — k) TR G|, (232)

where [k(x*)], = k(x*, x;). Evidently, the posterior mean is identical to that of the GP
regression (cf. eq. (2.2.11a)), but the posterior variance (2.3.2b) has an additional data-
dependent scaling coefficient. The DoF v, is an additional tunable parameter allowing
for control of the heavy-tailed behavior of the TP. The lower the DoF, the heavier the
tails and vice versa. For increasing DoF, the scaling factor becomes less dependent on
the function values and eventually (v, = co) the GP predictive variance is recovered,
which means the GP regression can be interpreted as a special case of the TP regression.

As in the case of GP, the kernel parameters 6 and the DoF v, can be fitted by
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maximizing the marginal likelihood, which has the form

logp(y | X,0,v4) = - ;_ = log (1 - v ﬁ?) B %logﬂK(g)D
g
vg+N
—g log ((vy — 2)7) + log (W) (2.3.3)

where 3 =y K (6)'y. The likelihood gradients are given by [Shah et al., 2014]

9 g p(y|X.0,v,) = ;Tr{ (”“LN T_ K(e)—1> OK(6) } (2.3.4a)

6 vy —2+ 8 6,
0 1 I (vg+ N)pB
B, BPY X, 8,09) = =3 log (1 Y, 2) 2y 2l 21 7]
Vg + N 1% N
+¢( 2 > —w(gg) T (2.3.4b)

where a = K™ 'y and ¢ is a digamma function [Abramowitz and Stegun, 1965]. The
difference in the predictive variance is depicted in Figure 2.3.1, where the GP and TP
are compared using the same values of kernel parameters. The mean functions of both
models, which approximate the true underlying function, are identical. The TP is able to
inflate the predictive variance due to its heavy-tailed nature, resulting in more realistic

functional uncertainty given the available data.

10
X
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Figure 2.3.1: Comparison of predictive moments of the Gaussian process (top) and the Student’s
t-process (bottom) regression models using the same set of kernel parameters. The DoF of the
TP model was set to v, = 10. The true function (dashed red), the posterior mean (solid black)
and predictive variance (gray band).
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Chapter 3
State Estimation

In this chapter, I summarize a variety of filtering algorithms, which were originally
derived under disparate assumptions. In order to simplify the exposition and unify the
various filtering algorithms, I view the filters from the Bayesian perspective.

Consider an autonomous dynamic system (no exogenous input) with additive white
noise. The structural description of such a system is given by the state-space model
(SSM) in the form

xp = f(Xp-1) T A1, a1 ~ N0, Q) (3.0.1a)
Zj = h(Xk) +7rg, T~ N(O, R) (3.0.1b)

where x;, € R% is the system state at time instant k and z; € R% is the corresponding
state measurement. The state noise q;, € R% with covariance Q and measurement
noise r; € R% with covariance R are both considered white, mutually independent and
independent of the state initial conditions xg ~ N(0, P{). The system dynamics f(xy) :
R% — R% and measurement function h(x;) : R% — R are known vector functions.
The SSM comprises a set of two equations. The first is the system equation (3.0.1a)
describing the state dynamics. The system state x;, is hidden from the observer and
only an indirect observation is possible. The way the measurement of the state z
arises is modeled by measurement equation (3.0.1b). The structural description can be

generalized to time-variant systems

xg = fr(Xp—1, A1) s (3.0.2a)
zj, = hy(xg, rp), (3.0.2b)

where the state noise q;, € R% and measurement noise rj, € R% do not necessarily
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affect all state dimensions. Furthermore, the noises do not have to be additive, Gaussian
or homoscedastic, so that C[q;] = Q, and C[rx] = Ry, where C|[-] is the covariance
operator.

Alternatively, a dynamical system can be specified probabilistically by a set of
conditional probability density functions (PDF),

x0 ~ p(Xo), (3.0.3a)
Xp ~ p(Xg | Xp—1), (3.0.3b)
z ~ p(Zk | Xp ). (3.0.3¢)

At the first time step k = 0 the state is described by the initial state PDF (3.0.3a). The
transition PDF (3.0.3b) specifies how the distribution of the current state depends on
the previous state. The state evolution is effectively modeled as a Markov process.! The
measurement PDF (3.0.3c) describes the dependence of the current measurement on
the current state. Owing to the Markovian conditional independence structure, which

Figure 3.0.1: Graphical model depicting conditional independence structure of the SSM. The

hidden state sequence is a first-order Markov chain. The observed random variables are in gray.

is encoded by the graph in Figure 3.0.1, the joint PDF over the states and measurements
factorizes as

K
p(x0:x, z1:x) = p(xo) | [ P2k | %0 )p(xk [ x1-1), (3.04)
k=1
where xg.x = {x0, ..., Xk} and z1.x = {z1, ..., zx} denote the set of states and

measurements for the indicated range of time steps. In principle, we could utilize
the Bayes rule and infer the distribution over the unknown state at all time instances

given all the available measurements p(xo.x | z1.x ). In dynamic settings, where the

'A discrete-time stochastic process is called Markov process if p(Xx-+1 | Xk, Xk—1) = p(Xpt1 | %k ). In
other words, the future is independent of the past given the present (all information about the past is
concentrated in the present).
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data arrive sequentially, this kind of inference becomes prohibitively expensive. This is
because the posterior p(xo.x | z1.x ) would have to be recomputed on every occasion
a new measurement arrives. Utilizing the conditional independence structure of the
model (see Figure 3.0.1) is thus of paramount importance in search for a tractable
inference algorithm. For practical purposes several inference tasks were formulated
that are conducive to efficient implementations. We talk about

e prediction: which is concerned with inferring the state, which is one or several
steps into the future, given the past available measurements; p(xy | z1.x—;) for
I<i<k+1,

e filtering: which is concerned with inference of the present state given the all cur-

rently available measurements; p(xy, | z1.% ), or

e smoothing: which is concerned with inference of the state at the past time instants

given all the available measurements; p(xy | z1.x ), where k < K.

Maybeck [1982] notes that a number of smoothing problems can be defined, but recog-
nizes the three most important ones due to their practical applicability. These are

e fixed-point smoothing: The state estimate at a chosen past time of interest is re-

calculated given the increasing amount of data.

o fixed-lag smoothing: The state is estimated in a restricted moving window of past

time instances.

o fixed-interval smoothing: The state at all past time instances is estimated given the

data up to the present time.

3.1 Nonlinear Filtering

The posterior (filtering) PDF p(xy, | z;.;, ) of the system state at each time step is given by
the following Bayesian recursive relations

Z X X VAR
p(Xk|Z1:k;):p( b 10 )P (X | Z1k—1). (3.1.1a)
(2 | 21:6—-1)
p(Zk | Z1—1) = /p(Zk | %1 )p( Xk | Z1:k—1 ) dXp, (3.1.1b)
p(xk | Zrp1) = / P(xk | 501 )P(Xpr | Zrpor) Ay, (3.1.10
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The numerator of eq. (3.1.1a) consists of the likelihood term p(zy, | x;, ), determined
from the measurement model (3.0.1b) and the predictive PDF p(xy, | 2;.x—1 ), which
acts as a prior and is determined from the system dynamics (3.0.1a). The term in the
denominator is a normalizing constant for the posterior, called the marginal likelihood
(also known as evidence [MacKay, 2003]). The Bayesian recursive relations describe a
general solution to the filtering problem, which is unfortunately intractable except for
a few special cases (linear functions and Gaussian noises in egs. (3.0.1a) and (3.0.1b)).
Filtering algorithms can be divided into two categories:

e The global filters provide an estimate of the whole filtering PDF at each time step,
which enables them to keep track of multi-modalities. This is paid for with their
increased computational burden.

e The local filters, on the other hand, only keep track of the moments of the filtering
PDF and the estimates are only valid in a limited area of the state space.
3.1.1 Gaussian Filtering

Gaussian filters fall into the category of local filters governed by the approximative

assumption that the joint PDF of the state and measurement p(xy, zj | z1.x—1 ) for any
time step £ is Gaussian. That is

[X’“ ~ N( ) : (3.1.2)
Zj;

For the SSM with additive noise, given by egs. (3.0.1a) and (3.0.1b), the predicted state
mean and predicted state covariance are given in the form of expectations

X xr Tz
My k-1 Priio1 P

i

z zT z
Mye—1 k-1 Phir—1

mi|k—1 = Ex,  [f(xx-1)], (3.1.3a)
ngc:|k—1 =Ex,_, [(f(xk—l) - mi\k—l) (f(xk—l) - mim_l)—r} +Qy, (3.1.3b)

where x;,_1 ~ N <mi_l| 1 ’,27” k71>' The measurement mean, measurement covari-

ance and state-measurement cross-covariance are given by

my, = Ex, [h(x )} (3.1.4a)
2 T
Pl = Exk[ (h(x —my, 1)(h<xk)_mk\k71) ]+Rkv (3.1.4b)
Tz 2 T
klk—1 = Exk[ Xk mk‘k 1 (h(Xk)—mk|k_1) }, (3.1.4¢)
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where xj, ~ N(mz| 1> Pi| kfl) . Filtered state mean mi| ,, and filtered state covariance
P}, are determined by the conditioning formula for Gaussian densities

T x 2\ T
My, =My, 1+ K (Zk - mk) ) (3.1.5a)
e =Pl — KiePj Ky, (3.1.5b)
xz z -1
Ky = k\k—l( k\k—l) . (3.1.5¢)

The equations above define formal Gaussian filtering framework rather than a practical
algorithm, because the moment integrals cannot be evaluated in closed-form. Equations
for the filtered mean and covariance in egs. (3.1.5a) to (3.1.5c) are reminiscent of the well-
known Kalman filter. However, in the Kalman filter the moments given by egs. (3.1.3a)
to (3.1.4c) are computed analytically, because the functions in the system description in
egs. (3.0.1a) to (3.0.1b) are considered linear. Review of linear filtering theory can be
found in the works of Sorenson [1970] and Kailath [1974].

The basic steps of a general nonlinear Gaussian filter are summarized by the follow-
ing algorithm.

Algorithm 1: General Gaussian filter algorithm.

K
Input: Sequence of measurements {z }, _,, initial conditions m{j,, Pgq

K
. 3 s xT x
Output: Sequence of state estimates and covariances {mg, , P, }k:1

1 fork < 1to K do

// state and measurement predictive moments

2 my, ., Py,_y < MomentTransform(my_,, ;, P¥_y;_1)

3 my, Pir—1, Pifeo1 < MomentTransform(my,, ;, Piie—1)
// update

s | Kt P (P)

5 my, < my, o+ Ky (zk — mi)—r

6 | Py Ph_ - KPiu Ky

7 end

Moment transformations are responsible for computing predictive state and measure-
ment moments in eqs. (3.1.3a) to (3.1.4c) and will be discussed in more detail in Sec-
tion 3.2.
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3.1.2 Student’s t Filtering

The Gaussian assumption might become too restrictive, when the measurements are
corrupted by outliers or the state disturbances are heavy-tailed. In such cases, the
Student’s t-distribution has become popular alternative for modeling heavy-tailed
behavior, that contains the Gaussian distribution as a special limiting case. Student’s
t-filter for linear systems was presented by Roth et al. [2013], where it was found to
increase robustness with respect to assumptions on the noise statistics in the sense of
mean error. It was later extended to the non-linear and non-additive noise case by
Tronarp et al. [2016].

Analogously to the Gaussian filter, the ¢-filter update equations [Barndorff-Nielsen
et al., 1982; Roth et al., 2013] can be derived from the assumption that the state and the
measurement are jointly Student’s ¢-distributed, such that

, 1/), (3.1.6)

Xk ~ St mi|k*1
Zk mp,

where, for convenience, I have chosen to parametrize the ¢-density by the covariance
matrix (see Appendix A). For the general SSM in egs. (3.0.2a) and (3.0.2b), the predicted
state mean my, , and predicted state covariance Py, , are computed as

xr xz
Pt Prjr

zZT z
Pli—1 Phipo

Y

mzvﬁ—l = E(xk—LQIcfl) [f(xk’—la qkfl)] > (3.1.7&)
X X x T
Prik—1 = Exe_1a,_1) [(f(xk—h A1) — gy ) (F(xk—1,ap-1) — Mg, _,) }, (3.1.7b)

with the input variable distributed according to

Xk—1 ~ St mi—1|k71 Pz—l\k—l 0 Jv . (3.1.8)
Qi1 0

0 Qy
The same applies for the measurement mean mj,, ,, covariance Pj, ; and cross-

)

covariance Pﬁfk_l, which are computed as

mz|k—l = E(xk,rk) [h(xka rk)]7 (319&)
Plik—1 = Epgry) {(h(xm ry) — mZ\k_1) (h(xp, 1)) — mZ|k—1)T}’ (3.1.9b)
kr—1 = B re) [(Xk —my; ) (h(xg, rx) — mzlkfl)T], (3.1.9¢)
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with input variable distributed according to

rg 0

Note that even though the state and noise are uncorrelated, under the assumption

)

P’ 0
v (3.1.10)
0 Ry

(3.1.6), they are still dependent. The filtered state is distributed according to a posterior
density
xi | 71~ St(mfy PE v, (3.1.11)

with the statistics given by

my, = my, |+ Pifk_ﬂpak—ﬁfl(zk —mp;_q), (3.1.12a)
T v—2+ B T Tz z —1lpzz
Kk = m( k-1 — Pt (Pre_1) lPk|k71)7 (3.1.12b)
5= (o — iy ) (Ph ) o — i) (1120
V,f|k =v+d,. (3.1.12d)

These equations constitute the ¢-filter measurement update rule, where mj,, - and Py,
are the filtered state mean and covariance, respectively.

A little disconcerting feature of the update rule is highlighted by eq. (3.1.12d), which
indicates that the asymptotic behavior of the Student’s ¢-filter is indistinguishable from
the Gaussian filter. With increasing DoF parameter v, , the heavy-tailed behavior of
Student’s t-density is gradually diminished and the cherished resilience to outliers is
eventually lost. To prevent this from occurring, a common solution [Roth et al., 2013;
Tronarp et al., 2016] is to fix the DoF parameter to a predetermined value v*. In the
algorithm below, we choose the moment matching approximation, so that

st ( ] i Pl vl ) = St(x ‘ m, Ph v ). (3.1.13)
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Algorithm 2: General Student’s t-filter algorithm.

. K . .. L * v
Input: Sequence of measurements {zj, } 1, initial conditions mg,,, Pgo, #* and
desired DoF v*
K
o i i x z
Output: Sequence of state estimates and covariances {mkl o P klk}k,:l

1 fork < 1to K do

// state and measurement predictive moments
x x x T
2 my, Prje—1 < MomentTransform(mk_llk_l, P k1)

z z Tz T T
3 mp, g, Phik—1: Pijr—1 < MomentTransform(mk‘k_17 Piik-1)

// state filtered moments

—1
4 my, < my, g+ P (Pr)” (ze —mi, )
T -1
5 B (2 — mZ|k71) (Phr—1)" (2 — m;\kq)
l/’f‘ _1—2+8 -1
6 Py < 71,5:711,2%2 k=1 — Proo1 (Phje—1) " Prle—1 )

// fix DoF of the state posterior

7 *
7 Vklk%u

s end

3.2 Moment Transformations

From the above discussion, it is apparent that the core of the local nonlinear filtering is a

moment transformation problem. Consider a nonlinearly transformed random variable

y = g(X), X p(X), (321)

where g : RP? — R¥ defines arbitrary nonlinear function, which can stand for either
system dynamics f or measurement function h, depending on which moments need to
be computed. Non-additive noise can be easily subsumed into the above formulation by
augmenting the state vector with the noise vector components. The goal of a moment
transformation is to compute the output (transformed) moments

p = Ex [g(X)], (3.2.2a)
I = Ex|(g(x) — 1)(g(x) — 1) |, (3.2.2b)
C =Ex {(x —m)(g(x) — u)T], (3.2.2¢)

given the first two moments m and P of the input variable x. Examining egs. (3.2.2a)
to (3.2.2¢), it becomes evident, that all moments are just integrals of some nonlinear
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function «(x) of the form

/ v (x)p(x) dx, (3.2.3)

which are intractable due to « being nonlinear. Thus the whole moment transformation
problem boils down to an integral approximation problem, which all local filters have
to deal with, one way or another.

3.2.1 Linearization

The simplest way to approximate the moment integrals is by leveraging the Taylor series
expansion around the input mean m to linearize g. The first-order Taylor expansion of
g in the neighborhood of m is given by

g(x) ~ g(m) + G(m)(x — m), (3.24)

where G(m) denotes the Jacobian of g evaluated at m. Since the approximation is
valid only in the vicinity of the linearization point m, it is not suitable for severe
nonlinearities. Applying expectation and covariance operators yields approximations

of the transformed moments

B~ pa = g(m), (3.2.5a)
I~ Iy = Gm)PG(m)', (3.2.5b)
C~C,=PG(m)". (3.2.5¢)

These equations define a general purpose moment transform, which can be viewed algo-
rithmically as a procedure, where the input arguments are the mean m and covariance
P of the input random variable x and the outputs are the approximations of the output
mean u, covariance IT and cross-covariance C of the transformed random variable y.
The linearization moment transform is summarized by the following algorithm

Algorithm 3: Linearization moment transform.

1 Function LinearizationMT(m, P)
2 pp < g(m)

3 | Iy + G(m)PG(m)'

4 Ca + PG(m)"

5 return p,, IT, Cp

6 end

and can be utilized for all sorts of applications, one of which is local nonlinear filtering.
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The extended Kalman filter (EKF) [Smith et al., 1962], originally developed at NASA,
was the first attempt to deal with the estimation of nonlinear dynamics and can be
considered a standard in navigation and tracking applications to this day. The EKF
is obtained by replacing the place-holder MomentTransform() routine in the general
Gaussian filter template, in Algorithm 1, with the linearization moment transform
LinearizationMT (), in Algorithm 3. One limitation of the EKF is that, in case of severe
nonlinearities, the error incurred by the first-order Taylor approximation may result in
filter divergence.

The iterated filter, also called iterated extended Kalman filter (IEKF), employs a
technique that improves the EKF performance in case of large approximation errors
[Jazwinski, 1970]. The idea is to successively refine the filtered estimate by re-linearizing
the measurement function in each iteration until maximum number of iterations is
reached or the user-defined tolerance is attained. Bell and Cathey [1993] have shown
that the IEKF iterates are identical to the Gauss-Newton method approximating the
maximum likelihood estimate of the state.

The second-order filter [Athans et al., 1968; Jazwinski, 1970] is a natural progression
of the EKF and uses the second-order Taylor expansion for the approximation of non-
linear functions in the state-space system description. Comparison of the EKF, IEKF
and second-order filter was presented by Wishner et al. [1969]. Simon [2006] notes
that “Although the second-order filter often provides improved performance over the
extended Kalman filter, nothing definitive can be said about its performance” and
refers to Kushner [1967], who showed an example of unstable second-order filter. The
implementation for higher-dimensional systems can be cumbersome due to the large
number of entries required in the Hessian matrices, although efficient implementations
have also been developed [Roth and Gustafsson, 2011].

A notable disadvantage of Taylor approximation is that it requires differentiability
of g. The divided difference filters (DDF) overcome this limitation by using a simplified
multivariate extension of the Stirling’s interpolation formula, which can be viewed as
the Taylor series expansion where the derivatives have been replaced by the central
differences [Norgaard et al., 2000]. Simandl and Dunik [2009] showed similarities
between the DDFs and the sigma-point filters. The central difference filter (CDF), originally
introduced in the context of the quadrature-based filters [Ito and Xiong, 2000], is a
special case of the DDF filter.
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3.2.2 Quadrature Approximations

A more principled approach to integral approximation is to utilize numerical quadrature
rules, which are the basis for an entire class of sigma-point moment transformations.

The goal of quadrature2 is to approximate intractable definite integrals of the form

I[g] = /Qg(x)w(x) dx (3.2.6)

where w(x) > 0 is the weight function and the integration domain €2 is the support of
w, that is Q = supp[w(x)] = {x € RP : w(x) # 0}. For reasons of notational brevity,
integration limits will be suppressed. The problem of numerical quadrature revolves
around the design of suitable weights w;,, and sigma-points® x,,, such that the approxi-
mation

N
Ilg] ~ Qlg] £ ) " wng(xn) (3.2.7)
n=1

achieves the smallest error with minimum number of function evaluations.

In local nonlinear filtering, we often contend with integrals where the weight
function is either a Gaussian w(x) = N(x|m, P) or a Student’s ¢-density w(x) =
St(x|m, X, v). Before numerical quadratures can be leveraged, the integrals need to
be converted to a form where the w(x) is standardized density. For integrals w.r.t. an
arbitrary Gaussian, this is achieved by means of a stochastic decoupling substitution
x = m + L&, where L is a matrix factor, such that P = LL. We get

I[g] = /g(x)N(x |m, P)dx = /g(m + L&EN(E] 0, I)déE. (3.2.8)

The same can be achieved for Student’s ¢-densities with substitution x = m+ A&, where
T =AA".

A common way to characterize the degree of accuracy of a quadrature rule is to look
at the highest-degree of a (multivariate) polynomial, which can be integrated exactly
(i.e. I[g] — Q[g]| = 0). A monomial is a function of the form Hle x5, also denoted as
x%, for multi-index a € NP. A D-variate polynomial a(x) : R” — R is a finite linear

2The D-dimensional numerical integration rules are also referred to as cubatures. However, we will
use a single term “quadrature” irrespective of the dimensionality of the integration domain, since the
problems are fundamentally the same.

* Also known as abscissas or design points.
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combination of monomials

a(x) = Z caXx® (3.2.9)

acA

where A is a finite set of multi-indices. Let us define the following two notions of
degrees [Cools, 1997] for multivariate polynomials.

Definition 1. The degree of a multivariate polynomial is defined as
dega(x) = max {|a| : a € A},

where [a| = 20 o,

Definition 2. The overall degree of a multivariate polynomial is defined as
pdeg a(x) £ max {max{a1, ..., ap}: o € A}.

Definition 3. A quadrature rule Q[g] for an integral I[g] has a degree r if it is exact
for all polynomials of degree at most r and is not exact for at least one polynomial of
degree r + 1.

The various sigma-point moment transforms are obtained when the moment inte-
grals in egs. (3.2.2a) to (3.2.2¢c) are approximated by the quadrature in eq. (3.2.7). The
transformed moments for any sigma-point transform can be written in a general form
using matrix notation as

py =Y w, (3.2.10a)
Iy = (Y — pa) T W(Y = pay), (3.2.10b)
Ca=(X-m)"W,(Y — ), (3.2.10c)

where w, W and W, are the quadrature weights, [YT] o = 8(Xn), (X-—m)'] =

*7

x, —mand [(Y —pa) "], =8(xy) — s, and where [ ], denotes the n-th column.
Specific transforms differ in the way they define the weights for each moment and the
placement of sigma-points. Significant research effort has been devoted to development
of various sigma-point moment transforms over the years, which were mainly applied
for construction of local nonlinear sigma-point filtering algorithms. Below, I list the
most significant moment transforms and mention the filters which utilize them.
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Unscented Transform

The Unscented transform (UT) [Julier and Uhlmann, 1996] was originally conceived of as
a method for approximation of the input densities with deterministically chosen set
of sigma-points. It later became recognized as a special case of the fully-symmetric
quadrature rules [McNamee and Stenger, 1967].

The UT uses N = 2D + 1 sigma-points x,, = m + L§,,, where D = dim(x) and the
unit points are defined as

& & o &n] =0 ap —ap), (3:2.11)

where ¢ = v/ D + X and )\ is a parameter. The Figure 3.2.1 illustrates the placement of
the points. The UT weights are defined as [Van der Merwe and Wan, 2001]

-
w = [wo wy ... wN} , (3.2.12)
W=W, = diag( [wg W wf\,} ) (3.2.13)
where forn=1,..., N
A 1
_ S 3.2.14
DIy T ey (3214
C A C
W= 5y +(1—-a?+p), we=wp, (3.2.15)

and the scaling parameter A = o?(D + k) — D. The parameters o and 3 were introduced
by Julier [2002], where « determines the spread of sigma-points around the mean of x
(usually set to a small positive value) and f3 is used to incorporate prior knowledge of
the distribution of x, (for the Gaussian distribution 8 = 2 is optimal). The parameter
“provides an extra degree of freedom to ‘fine tune’ the higher order moments of the
approximation, and can be used to reduce the overall prediction errors.” [Julier et al.,
2000]. When x is assumed Gaussian a good heuristic is setting x = 3 — d,.. For state
dimension d, > 3, the & is negative, which can lead to numerical instability, because
the computed covariance matrices may lose positive definiteness. The scaled UT [Julier,
2002] was proposed to alleviate this problem.
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X2

Figure 3.2.1: Left panel: samples from a Gaussian density (dots) with UT sigma-points (circles);
Right panel: nonlinear transformation of the Gaussian distributed samples on the left and the
corresponding sigma-point representation (circles).

Algorithm 4: Unscented moment transform.

1 Function UnscentedMT(m, P, &, «a, 3)
2 D + dim(m)

3 A< a*(D+k)—D

4 c<—VD+ A

// compute UT weights

A 1 4T
5 W [(D-M) 2(D+>\)12D}

6 Wediag({ﬁ+l—a2+5 ngD
7 W.+ W

// form UT sigma-points

s | B« [0 dp —p

9 L + MatrixFactor(P)

10 X<+ m+LE

// evaluate nonlinearity at sigma-points
1 Y + g(X)

// compute transformed moments

12 Ha — Y'w

13 Ia < (Y —pp) TW(Y — py)

14 Ca+ (X—m)"W.(Y — up)

15 return g, ITn, Ca

16 end
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The unscented Kalman filter (UKF) [Julier and Uhlmann, 2004; Van der Merwe and
Wan, 2003] is obtained by replacing the MomentTransform() routine in Algorithm 1 with
the unscented transform UnscentedMT (), in Algorithm 4. In the original publication
[Julier and Uhlmann, 2004], the UKF is contrasted with the EKF and shown to provide
superior performance in tracking and navigation applications. Advantage of the UKF
over the EKF is that it does not require calculations of the Jacobian matrices, which is
often tedious and error-prone process.

Over the years, the UKF has received much treatment in the research community
and many filters contain it as a special case. Gustafsson [2010] has shown that the
mean calculated by the UKF converges to that of the second-order EKF. The scaled UT
[Julier, 2002] introduces additional parameters that allow for increased accuracy in the
covariance computations. The reduced sigma-point filters use d,, + 1 points [Julier and
Uhlmann, 2002] positioned at the vertices of an d,-dimensional simplex. Van der Merwe
and Wan [2003] gave an efficient square-root forms of the sigma-point filters, which,
instead of updating the covariance matrix, update the Cholesky factor of the covariance
matrix. The stochastic integration filter (SIF) [Dunik et al., 2013] based on the third-
order spherical-radial stochastic integration rule is also called randomized UKF (RUKEF).
Straka et al. [2014] compared the RUKF with an adaptive UKF (AUKF), which chooses
the scaling and rotation of the sigma-points adaptively. Turner and Rasmussen [2010]
learned the placement of sigma-points from data by a Gaussian process optimization
of the log marginal likelihood of the UKF parameters. Steinbring and Hanebeck [2013]
developed smart sampling KF (S?KF), which includes the UKF as a special case, and
uses a low-discrepancy Dirac mixture approximation of Gaussian densities. According
to Steinbring and Hanebeck [2013]: “This approximation comprises an arbitrary number
of optimally and deterministically placed samples in the relevant regions of the state
space, so that the filter resolution can be adapted to either achieve high-quality results or
to meet computational constraints.” Similar theme is developed in [Kurz and Hanebeck,
2017]. Sandblom and Svensson [2011] designed a marginalized transform, which
is based on modeling the transforming nonlinear function by a parametric Hermite
polynomial model. The function model is given a Bayesian treatment and a prior
distribution is placed on the model parameters, which are then integrated out during
the computation of moments of the transformed distribution. This approach is related
to the use of Gaussian process quadrature in sigma-point filtering [Sarkka et al., 2014].

34



Spherical-Radial Transform

The spherical-radial transform (SRT) was proposed by [Arasaratnam and Haykin, 2009]
as a more numerically stable alternative to the UT that would perform better in higher
dimensions. The transform is based on the third-degree spherical-radial quadrature
rule proposed by Genz and Monahan [1996] and can also be seen as an instance of
the fully symmetric rule [McNamee and Stenger, 1967]. The main trick employed by
the SRT is conversion of the integral over a symmetric weight function (e.g. Gaussian
density) from Cartesian coordinates into the spherical-radial coordinate system, which
allows to exploit the weight function symmetry and ultimately reduce the number of
sigma-points to N = 2D. The unit sigma-points are given by

0 o] [-1 0 0
0 0 0 ~1 0

E=l A ]| (3.2.16)
o] |0 1 0 0 ~1

w, = —, for n=1,...N. (3.2.17)

The placement of SR points is shown in Figure 3.2.2. It is now evident that for x = 0,
a = 0and 8 = 0 the UT reduces to the SRT. Both transforms integrate multivariate
polynomials {a(x) : dega(x) < 3} exactly.

The SRT is the basis of the cubature Kalman filter (CKF), which can be obtained by re-
placing the general MomentTransform() in Algorithm 1 with the SphericalRadialMT ()
routine in Algorithm 5. In the original publication [Arasaratnam and Haykin, 2009] the
CKEF is presented as a superior alternative to the UKF mainly for the numerical accuracy
and stability reasons. It is shown that for state dimensions d,, > 3 the stability factor of
the UT, given by > |wy|/ >, wy, is greater than one, which signifies perturbations in
numerical estimates of the moment integrals. Arasaratnam and Haykin [2009] debated
the use of higher-order rules and concluded that the use of such rule in the design of
CKF “may marginally improve its performance at the expense of a reduced numerical
stability and an increased computational cost.”
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Algorithm 5: Spherical-radial moment transform.
Function SphericalRadialMT(m, P)
2 D + dim(m)

3 ¢+ D

// compute SRT weights
W %121)

W «+ diag(w)
W.+ W

[

// form SRT sigma-points
=+ [CID —CID]

8 L <+ MatrixFactor(P)

9 X+~ m+LE

// evaluate nonlinearity at sigma-points
10 Y + g(X)

// compute transformed moments

11 Ha — Y'w

12 Ha (Y — pp) "W(Y — py)

13 Ch+ (X—m)"W,(Y — up)

14 return p,, ITx, Cy

15 end

T2

Figure 3.2.2: Left panel: samples from a Gaussian density (dots) with SR sigma-points (circles);
Right panel: nonlinear transformation of the Gaussian distributed samples on the left and the
corresponding sigma-point representation (circles).

Gauss-Hermite Transform

The Gauss-Hermite transform (GHT) is based on the well-known Gauss-Hermite quadra-
ture rule [Gautschi, 2004] for approximating integrals with standard Gaussian weight
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function. For one-dimensional integration domain the approximation is of the form
P
Jotonel0, 1)dg = > wngléo), (3:2.18)
n=1

where the unit sigma-points &, are chosen as the roots of the p-th degree Hermite
polynomial, which can be generated by Rodrigues’ formula

2 2
Hy(§) = (—1)Pexp (g) (f;p exp <—§2> (3.2.19)

and quadrature weights can be computed in closed form using the formula

p!

m for n=1,...,p. (3.2.20)
p—1{Sn

Wy =
Choosing the sigma-points in this way guarantees that all polynomials of the degree at
most 2p — 1 will be integrated exactly.
The D-dimensional quadrature rule is constructed from one-dimensional sigma-
points by the Cartesian product, which yields

£(i17i27---7iD) — E(il) 5(1’2) g(iD)]T’ (3_2_21)

forig=1,...,pand d = 1,..., D. This extension mechanism to higher-dimensional
domains comes with a drawback. Namely, that given a p-th order quadrature rule,
the number of sigma-points grows exponentially with the dimension as N = p”. Fig-
ure 3.2.3 shows the sigma-point placement of the 5-th order Gauss-Hermite quadrature
rule in two dimensions. Due to the larger number of points, the transformed distri-
bution is represented more accurately than in the case of the UT (cf. Figure 3.2.1) at
the expense of increased computational requirements. The weights for D-dimensional
quadrature are constructed by multiplication of the one-dimensional weights

Wiy, g, ...yiq, — Wip X Wiy X+ X Wy, (3.2.22)

Finally, the D-dimensional integral is approximated as

p p p
/g(E)N(£ 10, )dE~ D> Y - > wiy i, i, g (€0 ), (3.2.23)

i1=112=1 ip=1

The p-th order GH rule integrates all multivariate polynomials {a(x) : pdega(x) < 2p — 1}
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exactly.

Algorithm 6: Gauss-Hermite moment transform.

1 Function GaussHermiteMT (m, P, p)

// form GHT sigma-points

&1, ..., & < RootHermite (p)

Z < CartesianPoints(y, ..., &)
L < MatrixFactor(P)

X+ m+LE

g e W N

// compute GHT weights

p! p!
P2[Hp—1(ED]?7 7777 pP[Hp—1 (&)
7 W < CartesianWeigths(wy, ..., wp)
8 W «+ diag(w)
9 W.+ W

// evaluate nonlinearity at sigma-points

10 Y «+ g(X)

// compute transformed moments

6 Wi, «eey Wy

11 Ha — Y'w

2 | s+ (Y —pa) WY —py)
13 Ch+ (X—m)"W.(Y — up)
14 return g, ITo, Ca

15 end

€2

Figure 3.2.3: Left panel: samples from a Gaussian density (dots) with Gauss-Hermite sigma-
points (circles); Right panel: nonlinear transformation of the Gaussian distributed samples on
the left and the corresponding sigma-point representation (circles).

For single dimensional systems, the 3rd-order GH quadrature rule coincides with
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the UT sigma-point rule, when x = 2, = 1, 8 = 0. The main difference between the
two algorithms is in the way they choose the locations of sigma-points and generalize
to higher-dimensions. Indeed, the UT sigma-points grow linearly with the dimension
(2D + 1), whereas the number of GH quadrature sigma-points grows exponentially as
a result of the Cartesian product construction. This is often referred to as the curse of
dimensionality, which prohibits its use in real-world problems for dimensions higher than
5 or 6 [Wu et al., 2006]. The problem has not gone untreated in the research community
and several solutions have emerged. Well-known non-product rules include Monte
Carlo [Doucet et al., 2001], quasi-Monte Carlo [Guo and Wang, 2006] and the sparse-grid
methods [Gerstner and Griebel, 1998; Smolyak, 1963].

3.3 Bayesian Quadrature

The early idea of Bayesian quadrature (BQ) can be traced all the way back to Poincaré’s
publication in 1896. The work was then later picked up by Diaconis [1988] and O’'Hagan
[1992]. The key feature that distinguishes the BQ from the classical quadrature is that
the computation of integrals is treated as a problem of Bayesian statistical inference.
This involves specifying a prior distribution over the value of the integral and inferring
the posterior by conditioning on the sampled values of the function. When the integral

Ig(x)] = / g(x)p(x) dx = Ex[g(x)] (3.3.1)

is viewed as a linear operator acting on a function g(x), the distribution over the integral
is induced by specifying a stochastic process model over the functions. At first the idea
of introducing uncertainty over the integrand may seem strange. Consider, however,
that even though the function is known, any quadrature will only ever work with finite
number of function evaluations g(x,,) at selected sigma-points x,, - at any other point,
the function is effectively unknown. Whereas the classical treatment of the quadrature
is unable to reflect this functional uncertainty, the Bayesian treatment offers a natural
resolution. In principle, any probabilistic model of the integrand could be used as a
prior over the space of functions.

3.3.1 Gaussian Process Quadrature

Gaussian processes were the first to be considered as priors over functions in the BQ
setting for their favorable analytical properties and they remain to be studied most
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extensively to this day. In the early work, Diaconis [1988] used the Wiener process as a
prior. Later, O'Hagan [1991] used a GP with the RBF covariance and called his method
Bayes-Hermite quadrature. Throughout this thesis, I will refer to this family of methods
as Gaussian process quadrature (GPQ) [Sarkka et al., 2014], which I view as a member of a
broader family of BQ methods.

Applying an integral operator on a GP distributed function results in a Gaussian dis-
tribution over the value of the definite integral*. The Figure 3.3.1 provides a simulation-
based view of the GPQ. A function is drawn from a GP posterior, integrated and
the value of the integral is plotted. Repeating this process reveals that the results of

integration are Gaussian distributed.

GP posterior Integral

density

Figure 3.3.1: Simulation-based view of GP quadrature. A function is drawn from a GP posterior
and integrated. Values of the integral have a Gaussian density. Left: plot of GP posterior mean
(solid black) and the true function (dashed red). Quadrature only sees the true function through
a set of evaluations (black dots) which implies functional uncertainty (gray area) in between
the sigma-points. Right: integral values of various realizations of the GP posterior (black dots)
have a Gaussian density (solid red).

The posterior mean of the integral is

E, o [Ex[g(x)]] = / / 9(x)p(x) dxp(g| D) dg

= [| [st0mte1D)dg|px) dx = Ex[Eyolo)]. @32

*This is analogous to the invariance of a Gaussian under affine transformations.
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which shows that computing the posterior mean of the integral is, in fact, equivalent to
integrating GP posterior mean [Rasmussen and Ghahramani, 2003], which acts as an
approximation of the integrand. The GP regression is much more flexible model for
approximation of arbitrary nonlinear integrands than Hermite polynomial series used
in the Gauss-Hermite quadrature. The BQ is thus expected to perform better on average,
when integrating a wider class of functions in comparison with classical quadrature
rules, which are designed to perform with zero error on a narrow class of functions.
The posterior variance of the integral is

Voo Exlg)] = | [Exlo()] - Eyo Exlo)]])p(9 | D) dg
- / / / l9(x) — 31 [9(<) — 3()]p(g | D) dg p(x)p(x’) dx
= [ [unlot) 0 pxipix) axi 6339

where the GP posterior mean and the GP posterior covariance are given by

Egip[9(x)] = k(%) 'K~'f £ g(x), (3.3.4a)
Cyip[9(x), 9(x')] = k(x,x') — k(x) K k(x'). (3.3.4b)

These equations are special cases of egs. (2.2.10a) and (2.2.10b) for zero observation
noise, because in the quadrature settings we assume that the integrand can be evaluated
(perfectly observed)®. More specifically, for p(x) = N(x | m, P) and radial basis function
(RBF) kernel

k(x,x") = a®exp (—%(x —x)TA H(x - x')), (3.3.5)

where A = diag([\? ... \2]), theintegrals inegs. (3.3.2) and (3.3.3) can be evaluated

50f course, nothing prevents us from modeling the function evaluations as noisy observations. In
practice a small perturbation diagonal term is added for numerical stability when inverting the kernel
matrix K.
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analytically®, which results in posterior integral mean and variance

Eyp[Ex[g(x)]] = /k(x)TN(x |m, P)dx K !f = q' K!f, (3.3.6a)

VyolExlgol) = [ [k x) = k(o) TR | NG, PON( [m, P)
—22A P +1| 7~ qTK g, (3.3.6b)
where
[aln = AP + 1] exp (—%(xn —m) (A +P) Y(x, — m)). (3.3.7)

Defining w' = q" K~! one can see that the expression for posterior mean of the integral
in eq. (3.3.6a) has a form of weighted sum of function evaluations

Egp[Ex[g(0)]] = w'f =Y " wug(xn), (3.3.8)

which is the same structure used by the classical quadrature rules in Section 3.2.2. Note
that BQ does not prescribe the sigma-points x,,. This is an additional degree of freedom
not found in classical treatments of quadrature and presents an opportunity for further
investigation.

One way of choosing the sigma-points would be to minimize the posterior integral
variance in eq. (3.3.3) as was done by Minka [2000]. Another contribution by Huszéar and
Duvenaud [2012] elaborated on the equivalence of the BQ and weighted kernel herding,
which is a deterministic method for choosing samples to summarize a probability
distribution. Gunter et al. [2014] proposed an active learning approach for choosing
sigma-points in the BQ so as to maximize the information gain from every sample.
Karvonen and Sarkka [2017b] showed that the BQ weights can be computed efficiently
and exactly if the density, kernel and the integration domain are fully symmetric and
the sigma-point set is a union of fully symmetric point sets. For certain choices of the
kernel and the sigma-points, the BQ reduces to classical quadrature rules [Karvonen
and Sarkkd, 2017a] and the posterior integral variance collapses to zero [Sarkka et al.,
2016]. Theoretical analysis of the BQ, including the convergence proofs and behavior in
misspecified settings can be found in [Bach, 2017; Briol et al., 2015; Kanagawa et al., 2016].
Connections between linearization and BQ approximation with derivative observations

®This also holds for Gaussian mixture densities as well as other types of kernels (e.g. polynomial).
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are discussed in [Prither and Sarkks, 2016].

3.3.2 Student’s t-Process Quadrature

In Section 2.3,  mentioned the advantage of the Student’s ¢-process over the GP. Namely,
the dependence of the predictive variance on function values, which can result in more
accurate and robust description of functional uncertainty, especially in low data regimes.
Since the quadrature seeks to restrict the number of points, for computational reasons,
I believe the t-process is ideally suited to be applied in the BQ setting.

Analogously to the GP case, the t-distribution is affine invariant, which implies that
a TP posterior distribution over the integrand g(x) induces a ¢-distribution over the
integral Ex[g(x)] = [g(x)p(x) dx with mean and variance given by

Egn[Bxlg(x))] =a Ky, (3.3.9a)
vy —2+y Ky
Vg —2+ N

Vo [Exlg(x)]) = Eew[ktx)] —a'K '], (3:39)
where q = Ex[k(x)]. The mean is identical to the GPQ case, whereas the integral
variance is now scaled by a data-dependent term in comparison. Integrals of general
vector functions g: R” — R¥ can be evaluated by applying the above equations to each
function output independently with the same kernel and DoF.
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Chapter 4

Thesis Goals

The main limitations of the GP regression model in the context of system identification
derive mainly from the sequential nature of the data. The model in its original form
is simply not suited for recursive processing, because as the dataset size grows with
time, the demands for inversion of the kernel matrix grow indefinitely; not to mention
the fact, that at each time step, we need to perform iterative kernel parameter optimiza-
tion. The RGP algorithm appears to be a promising candidate for alleviating these ills,
however a way to bound the per-iteration computational cost of the kernel parameter
optimization still remains to be found. Hence, the first set of goals of this thesis revolves
around leveraging advantages of the Gaussian process regression for recursive system
identification.

One of the common applications of moment transforms are the local nonlinear filters,
which are often plagued by overly optimistic covariance estimates. I postulate this is
due to the leaking integration error in computation of the transformed moments in
egs. (3.2.2a) to (3.2.2c), which the classical moment transforms cannot account for. I do,
however, recognize the fact that errors in local filters have other sources as well (chief
among them being the joint Gaussianity assumption). The Bayesian statistical view of
quadrature is a very promising avenue to pursue in this regard, because the integration
error is treated probabilistically and thus could be more easily reflected in the moment
transformation process. Since the integral variance in BQ characterizes the integration
error, it is natural to ask how it could be decreased. One potential way would be to
incorporate observations of the derivative of the integrand. I also suspect that, for a
certain special cases of point-sets, theoretical connections could be found between the
BQ with derivatives and the classical linearization based on the Taylor series. This is
why, the main theme for the second set of goals, is investigation of how the statistical
view of numerical quadrature could be used to improve the current state-of-the-art
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moment transformations.

To summarize, the goals for this thesis are the following:

Goal 1. Leverage advantages of the Gaussian process regression for recursive system
identification.

(a) Investigate suitability of the RGP algorithm for recursive system identifi-
cation as means for decreasing computational demands of the original
GP model.

(b) Bound the computational demands for kernel parameter optimization.

Goal 2. Improve the current state-of-the-art moment transformations with the help of
Bayesian quadrature.

(a) Leverage the statistical view of quadrature for the design of general pur-
pose moment transformations.

(b) Incorporate the approximation error in the output mean, in eq. (3.2.2a),
into the moment transformation process.

(c) Use the proposed moment transformations to improve estimate quality
of the nonlinear sigma-point filters; especially in terms of credibility of

the covariance estimates.

Goal 3. Explore the question of derivative information in BQ as means for reducing the

integral variance and attempt to find connections with classical linearization.
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Chapter 5

System Identification with GP
Regression Models

This chapter draws together contributions from the following articles, which are mainly
concerned with the use of GP regression models for black-box non-linear system identi-

fication.

e L.Kr4l, J. Prither, and M. Simandl. Gaussian Process Based Dual Adaptive Control
of Nonlinear Stochastic Systems. In 22nd Mediterranean Conference of Control and
Automation (MED), pages 1074-1079, 2014. doi: 10.1109/MED.2014.6961517

e ]. Prither and M. Simandl. Gaussian process based recursive system identification.
Journal of Physics: Conference Series, 570(1):1-9, 2014. doi: 10.1088/1742-6596/570/
1/012002

e J. Prither and L. Kral. Functional Dual Adaptive Control with Recursive Gaussian
Process Model. Journal of Physics: Conference Series, 659:012006, 2015. ISSN 1742-
6588. doi: 10.1088/1742-6596/659/1/012006

First, I review the problem setup in Section 5.1 and then I identify fundamental draw-
backs of the full GP model in Section 5.2. The Section 5.3 presents contributions mainly
from [Priiher and Simandl, 2014], where the recursive GP regression model is proposed
and its overall performance compared with the standard full GP model. Finally, the
Section 5.6 collects results from [Krél et al., 2014; Priither and Kral, 2015] and presents
performance comparison of the bicriterial dual controllers with the full GP and the

recursive GP models.
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5.1 Problem Setup

All contributions in this chapter are formulated for a non-linear stochastic discrete
time-invariant dynamical system given by

Y1 = f(xk) + 9(Xp)up + €1, exy1 ~ N(0, o2), (5.1.1)

where f, g : Rl 5 R are unknown non-linear functions, u;, yx € R are control

input and system output respectively, e, is the noise term and

-
Xk = Uk - - Yk-n, Uk—1 --- Uk—nu] e Rwtnutl (5.1.2)

is the state vector. Additionally, the following assumptions are considered:
A1: The non-linear functions are infinitely differentiable, i.e. f(xx), g(x;) € C*.
A2: The structural parameters n, and n, of the system are known.

A3: The system has a globally uniformly asymptotically stable zero dynamics and
Vxp : g(xx) > 0 [Chen and Khalil, 1995].

2

A4: ¢y, is a white Gaussian noise sequence with known variance o;.

This system can be seen as a special case of the NARMAX structure and was chosen,
because it is useful for functional dual adaptive control (FDAC) design [Fabri and
Kadirkamanathan, 2001].

5.2 Full GP Model

This section covers identification of a non-linear system in eq. (5.1.1) by means of the GP
regression algorithm in it’s original formulation. I call this model full Gaussian process
(FGP), because it works with the entire dataset at any given time. It also serves as a
baseline for experiments and as a motivation for the recursive GP regression algorithm
proposed in the subsequent section.

Let ¢, = [x] uy] be a vector of regressors of dimension D = n,, +n, + 2 and let
@, =[¢py ... ¢,_1] beaD x k design matrix. Denoting h(¢;) £ f(xk) + g(xx)uk
we can write the system as

Yk+1 = h(¢k) +ek, e~ N(O7 O-g)' (521)
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The whole idea of GP modeling is to put a Gaussian process prior on the function #,
resulting in the following model

h ~ GP(ma (@), kn(dp, @), (5.2.2a)
Ji1 = h(ey) +er,  ex ~N(0, 02), (5.2.2b)

where the mean function m;, and the covariance kernel k;, need to be chosen by the
designer. For our purposes, the mean function is chosen as m,(¢;,) = 0, because it is
analytically beneficial and does not take away from the generality of the model. Kernel
is determined by applying the covariance operator to the model output, which yields

Clik+1, Gi41] = Cu[h(Pr), h(@y)] + Cleg, el (5.2.3)
= C[f(xx) + g(xp)ur, f(x1) + g(x)w] + 026, (5.2.4)

= Cs[f(x), f(x)] + Cylg(xn), g(x0)Junws + o241, (5.2.5)

= kp(xp, x1) + kg(x, X)) upu; + o 5kl, (5.2.6)

where we used the fact that the functions f and g are modeled as independent GPs and
the noise e, is white and independent of h. From the above, we can deduce that the GP
covariance is given by

kn(or, &) = ky(Xk, x1) + kg(Xk, x1)upuy. (5.2.7)

The same form of the covariance function was used by Sbarbaro and Murray-Smith
[2003]. Since, per assumption Al, the functions f and g are smooth, we are justified in
using the radial basis function (RBF) form for kernels k; and k.

To summarize in more detail, the first two moments of the GP prior are given by

ma(¢y) =0, (5.2.8a)
kn(br, &) = kp(xp, x1) + kg(xp, xp)upuy, (5.2.8b)

where the RBF kernels are given by

1

kp(xk, x1) = af exp <_2(Xk —x1) A7 (i — Xz)>, (5.2.9a)
1

kg(xp, x1) = ag exp (—Q(Xk — Xl)TAgl(xk — Xl)). (5.2.9b)

The parameters o, a4 are output lengthscales. The input lengthscale matrices have the
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form

Af:diag([A§1 )\}DD, (5.2.10a)

Ay =ding( 22 . 2], (5.2.10b)

For notational convenience, all kernel parameters are collated into one vector

.
0=loy A Ap ag Mg o Agp| (5.2.11)

Compared to the parametric regression models, where the assumptions on the
modeled function are typically expressed in a fixed model structure, the assumptions of
non-parametric GP models, expressed by the choice of covariance function, are much
weaker. For instance, it is more restrictive to search for the unknown function in the
space of fixed-order polynomials, rather than searching in the space of smooth functions.
The RBF kernels k; and k; are often called squared exponential' and they are a popular
choice in a many applications [Deisenroth et al., 2012; Kocijan et al., 2005]. Because the
lengthscale matrices have independent lengthscale parameters for each input dimension,
the kernels are said to exhibit the automatic relevance determination property. This is to
say, that the relevance of individual input dimensions can be revealed after iterative
optimization of lengthscales has taken place. Evidently, the RBF kernel is not the only
choice. Since, roughly speaking, any symmetric semi-definite function of two arguments
is a valid kernel [Janson, 1997], there is a plethora of covariance functions to choose from;
each expressing different assumptions about the true underlying functional relationship.
For comprehensive account of covariance functions and their relation to established
parametric regression models see [Duvenaud, 2014; Rasmussen and Williams, 2006;
Wilson, 2014].

With the help of the egs. (2.2.11a) to (2.2.11b), which define the GP posterior predic-
tive mean and variance, we can now determine what will the GP model output look
like. Since we are dealing with a GP, the model output (at a particular time step) is a
Gaussian random variable, so that g1 ~ N(ﬂk+1, 6,% +1)' where the mean and variance
are given by

~ ~ —1
fiet1 2 EBlfri] =k, (K + JEI) Yis (5.2.12a)
621 2 V[a] = kss — K, (K +02T) 'k, (5.2.12b)

1As pointed out by Neil Lawrence, this terminology is incorrect, in that the kernel is not a squared
exponential function but rather an exponentiated quadratic (i.e. exp (:c2) # exp(z)?). Since this name does
not quite roll off the tongue as easy, we call it the RBF kernel.

49



where

K = kp(®g, Pr), (5.2.13)
ks = kg + ksgur, (5.2.14)
kss = ks + kssqus + 02, (5.2.15)
with
ksf = ]{f(Xk, Xk), kssf = k’f(Xk, Xk), (5.2.16)
ksg = kg(Xk, Xk-) o ug, kssg = k‘g(Xk, Xk), (5217)
T T, - ~ T T
where X, = [xg ... xj_1| isa partof the design matrix, so that ®; = [X} u/] .
The variables y; = [yo . yk] and ug = [ug . Uk—l] denote vectors containing

system outputs and inputs respectively, up to time k. The symbol o denotes element-
wise product and the following shorthand notation is used

k(@ xp) 2 :k:(qbo, xg) ... k(qsk,l,xk)r, (5.2.18)
[ k(0. d0) - k(B dri)

(P, ) = : ; (5.2.19)
E(Pr—1s o) -+ k(b1 Pro1)

The mean of the GP model output /i is taken to be the one-step prediction of the
system output.

What remains at this point is to find optimal values of the kernel parameters, so
that the GP model predictions can be calculated. To do that, I maximize the logarithm
of marginal likelihood, given by

1 -
logp(yk]q)k,a):—g[yZ(K—l—agI) 'y +log [K + 21| + klog(2m)|.  (5.2.20)

The advantage of this optimization objective is that it automatically trades-off data
tit and model complexity, as described in Section 2.2.2, and therefore the resulting
model is “just right” (provided enough data is available [Wilson, 2014]). The marginal
likelihood objective is nonlinear in 8, hence finding the global solution may be practically
unattainable (even though with increasing data set size the number of local solutions
should decrease [Rasmussen and Williams, 2006]).

The FGP system identification method, that I propose in this section, works in batch
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mode; which is to say, whenever new data point arrives, it is added to the dataset and
the parameter optimization is started anew (from the same initial guess) at every time
step.

Algorithm 7: Full Gaussian process system identification.

Input: Measurements D = {(¢,,, yk+1)}§:1, initial kernel parameters 6, probing gain
parameter 7).
Output: FGP model summarized by (D, 0x).

1 fork < 1to K do

// Measure the new data point ¢, = [XZ uk} and update datasets.

2 Yi < [yo yk]
3 up < [UO A Uk—l]
4 Xg [X() . kal]

// Kernel parameter optimization (starts from 6g).
5 0}, < argming logp(yy | Xk, 0)
6 end

Algorithm 8: Function for calculating predictions of the FGP model.
1 Function FGPPrediction(D, 8*)

// Unpack the data.
2 [Xk uy yk} ~ D

// Kernel evaluation.
ksof < ki (X, xi; Ok)
kssg < kg (Xka Xk; ok)

kos < kssp + kssgui + 03
ksf — kf(Xk, Xk Bk)

ksg — kg(Xk7 Xk; Hk) o ug
k, + ksf + ksguk

K+ kh(Xk, Xk; Ok)

// System output prediction.
N -1

0 | g <k (K402,

| 62, ke — k! (K+021) 7'k,

© 0 NN S Ul e W

12 return i1, 67,4
13 end

Because of the sequential nature of the data, the full GP faces two main challenges.
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1. First, consider an offline setting, where all the data are readily available. The
egs. (5.2.12a) to (5.2.12b) show that the prediction is calculated using all data points,
which is the key distinguishing feature of non-parametric models in general. In
such case, calculating model prediction calls for one-time inversion of a large
covariance matrix K, which scales unfavorably with data size (complexity of order
O(k?)). The situation is even worse with sequential data, because the size of K
grows with every new measurement, leading to ever increasing computational

demands for matrix inversion.

2. The kernel matrix inverse is also present in the marginal likelihood objective, as
is evident from eq. (5.2.20). Note that in this case, the matrix inversion needs to
take place in each iteration of the optimization solver (and the parameters need to
be optimized at every time step).

Naturally, these issues could be dealt with if we could devise a recursive solution,
which would update kernel parameters 6, using the current data point (yx, ¢;,) and
the previous parameter estimate 8;_;. Recursive parameter optimization is hinted
at in [Hartikainen and Sarkké, 2010], however it assumes the index set of the GP is
one-dimensional, which is too restrictive for our application. The two points, mentioned
above, are the main motivation for using the recursive Gaussian process algorithm
[Huber, 2013].

5.3 Recursive GP Model

The great advantage of parametric models is that they lend themselves nicely to the
possibility of devising a recursive estimation algorithms, which are typically realized by
some kind of nonlinear filter [Haykin, 2001]. As GPs are non-parametric models, where
number of parameters increases with the dataset, developing a recursive algorithm is
becoming much more complicated. Typically, it is necessary to consider some kind of
GP approximation to counteract the problem of increasing data size.

Recently increased effort has been given to the design of approximate GP regression
algorithms, which eliminate such drawbacks [Chowdhary et al., 2014; Csat6é and Opper,
2002; Huber, 2013; Ranganathan et al., 2011; Sarkka, 2013]. Sarkka [2013] proposed
a solution to this problem based on Kalman filtering and smoothing applied to the
state-space representation of the GP with specific covariance functions. This solution,
however, works for one-dimensional inputs only and is thus inappropriate for our pur-
poses. A very frequently used alternative is the Sparse Online Gaussian Process (SOGP)
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[Chowdhary et al., 2014; Csat6é and Opper, 2002; Ranganathan et al., 2011], which,
however, does not solve the problem of online kernel parameter learning. This section
investigates usefulness of the recursive Gaussian process (RGP) algorithm, proposed by
Huber [2013], for non-linear system identification. I rely on the brief outline of the RGP
from Section 2.2.3 and present an ad-hoc procedure for kernel parameter estimation.

Assume, that we have chosen a set of .S basis vectors (regressors) arranged into a de-
sign matrix structured as ® = [XT a'| ' With GP prior specified by egs. (5.2.8a) to (5.2.11),
we can now derive expressions for prediction of the system output and its variance.
Using the egs. (2.2.24a) to (2.2.25c), we obtain

fi1 = Bljry] = Jfiy_q, (5.3.1a)
521 2 V] = kos + I (St — K) I, (5.3.1b)

where J,, = k] K~! and

K =k, (®, @), (5.3.2)
k, = ksf + ksguk, (533)
kss = kssf + k;ssgui + Uz, (534)
with
ko =k (X, x), kssp = kf (X, X)), (5.3.5)
kg = kg(X, xz) 0 @, kssg = kg (Xp, Xp), (5.3.6)

where the symbol o denotes the element-wise product of two vectors. The quantities /i,
and 3, which are to be used to generate predictions in the next time step, are calculated
by the familiar equations

Gy =53] (63 +0%) 7, (5.3.7a)
A = g1 + Gr(yk — k), (5.3.7b)
i)k = Sk:—l - Gk']kik—l- (5.3.7C)

5.3.1 Ad-hoc Kernel Parameter Learning Procedure

It is evident by now, that the RGP algorithm is able to reduce the GP model prediction
complexity in sequential data processing. Note however, that the kernel parameters 0
still have to be determined, in order to compute model predictions (given by egs. (5.3.1a)
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to (5.3.1b)). One possibility would be to use the RGP* algorithm [Huber, 2014], which is
able to learn the parameters in recursive manner in addition to recursively performing
the GP regression. Nonetheless, the implementation of RGP* proved to be problematic,
which is why I sought alternatives.

The proposed ad-hoc approach treats the current estimate of the latent function
values 1) as perfect observations. In practical terms this entails modification of the
marginal likelihood objective function eq. (5.2.20), whereby the noisy observations
y} are replaced with the observations ji, at basis vector locations ®. The marginal
likelihood is effectively approximated by

logp(yy, | Bk, 0) ~ logp(ﬁk ’ P, 0), (5.3.8)

where the approximate marginal likelihood is given as
1 i | &.0) = — L[ K(6) i, + log [K(8)] + Slog(2 5.3.9
ogp( fy, | ®, 0) = — | i K(6) ™" fuy, + log [K(8)| + Slog(2) |, (5.3.9)

where K(0) = k(®, ®; 0). Since the number of basis vectors S is pre-defined by the
user and fixed throughout the operation of the algorithm, the computational demands
for evaluation of the likelihood do not grow with time. In practical implementation,
the objective eq. (5.3.9) is maximized in every time step using an iterative optimization
solver, where the initial guess are the kernel parameters from the previous time step. I
limit the maximum number of solver iterations to keep the computational requirements
in check. The notation K(6#) emphasizes the fact that the kernel matrix is a function
of parameters 8. The Algorithm 9 summarizes the RGP regression with an ad-hoc

parameter learning for system identification.

5.4 Numerical Experiments and Evaluation

The RGP was compared with the performance of the FGP in numerical simulations on
the following benchmarking example [Fabri and Kadirkamanathan, 2001] of non-linear
stochastic discrete-time system

1.5y

Yk+1 = ﬁyi

+ (2 + cos(yr) )ur, + ext1, (5.4.1)
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Algorithm 9: Recursive Gaussian process system identification. The subroutine
RGPPrediction is defined in the Algorithm 10.

Input: Measurements {(qS ks yk+1)}kK:1, initial kernel parameters 6.
Output: RGP model summarized by (fix, Xk, 0x).

// initialization

f <0

2 21 «~—1

3 fork < 1to K do

Jury

// System output prediction.

4 fit1,6%, 1,k < RGPPrediction(dy, fiy, Tk, @, 04)

// Update RGP model.

5| G B0 30 (67, +02)

6 Piyr < By, + Gr(Yrr1 — fkg)

7 Y1+ B — Gpdp g

// Kernel parameter optimization (starts from 6j).
8 0141 < argming logp(/lk+1 ’ @, 0)

9 end

Algorithm 10: Function for calculating predictions of the RGP model.

1 Function RGPPrediction (¢, jiy, X, P, 0%)

// Unpack the data.

2 [xp  uk] < @y

// Evaluate the kernel.
kssf < kf(X, X Ok)

kssg kg (X, Xk; O)

kes kssf + kssgui + Us
ksf < k:f(X, Xk Gk)

Ksg < kg (X, Xk 03) o
k, + ksf + ksguk

9 K+ kh(‘i, ‘i’; Gk)

// System output prediction.

@® NN S Ul e W

10 | Jpe kK

11 fet1 < Iy,

12 Oior1 <_kss+']k(2k _K)JZ
13 return fi; 1, 6;%+1/ Jk

14 end
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where the sequence ey, is a zero-mean white Gaussian noise with variance o2 = 0.025.

In this case the vector of regressors ¢, = [yk_l Uk—l] is two dimensional. Kernel

parameters were initialized with values 8o = [0 0 0 0] ! for both algorithms. As the
excitation signal uy, I considered uniformly random noise within the interval [—3, 3].

In case of RGP algorithm, 75 basis vectors were used to create a 15 x 5 grid, that
covered the area of state space, where the system operates. Ad-hoc kernel parameter
optimization routine was started with the estimate obtained in previous iteration. The
FGP was trained using all available data up to the current time step, where the parameter
optimization routine was started with initial values 8,. We used MATLAB’s fminunc ()
solver with the maximum number of iterations set to 100.

The experiments focused on the comparison of the two approaches in terms of
obtained GP model error and computational demands for prediction in every time step.
Root mean square error (RMSE)

Kts

> (ke — ) (5.4.2)

ts =1

RMSE =

was used to measure the error in model validation process, where y;, is the measurement
of system output and g, is the GP model prediction. Furthermore, the logarithm of
average predictive variance

Kts
LOGVAR = log ( ; ZV[@Q) (5.4.3)

was used to quantify the overall model prediction uncertainty. Both metrics were
calculated at each of the K = 300 time steps using K;s = 1600 test points, which
were obtained from the system operation. The computational demand is assumed
to be the sum of the time required for obtaining the current parameter estimate and
the time required for computing the one-step prediction (model response). This was
implemented by employing MATLAB'’s tic/toc command functionality and results
recorded for every time step. 100 MC simulations were run with the results shown in
figures.

As seen in Figure 5.4.1a, RMSE of the FGP is slightly lower than that of the RGP
algorithm. This can be caused by the fact, that the RGP uses a fixed amount of predefined
basis vectors for prediction. The FGP, however, makes predictions based on all available
past data points. The main drawback of the RGP is that, when prediction is to be made
further away from the area covered by the basis vectors, it’s quality will be significantly
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Figure 5.4.1: (a) Root mean square error. (b) Logarithm of average predictive variance.
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Figure 5.4.2: System response (dashed) compared to the RGP (top) and FGP (bottom) model
response with the increasing amount of data used for system identification (GP model training).
The grey band represents the model uncertainty.
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Figure 5.4.3: (a) Hyper-parameter development in time. (b) Computation time per iteration.

worse than that of the FGP.

Development of the LOGVAR in Figure 5.4.1b suggests, that predictions of the RGP
algorithm are less confident than those of the FGP. Figure 5.4.2 compares the system
and model response during training. Note how the model response approaches the
true system response and the model uncertainty is reduced with the increasing amount
of training data. Figure 5.4.3a shows converging parameter estimates. These may not
always converge to the same values since the marginal likelihood has multiple local
extrema. The Figure 5.4.3b demonstrates the unsurprising fact, that the RGP algorithm
has constant computational demands per time step. On the contrary, time requirements
of the FGP algorithm for prediction increase with each time step.

5.5 Conclusion

In this section, I proposed use of the RGP algorithm with an ad-hoc kernel parameter
learning procedure for the non-linear system identification. The RGP algorithm was
compared with the FGP in terms of computational demands per iteration as well as the
RMSE and the logarithm of average predictive variance. In simulations I demonstrated
that the RGP algorithm is clearly superior to the FGP approach in terms computa-
tional demands. Compared to the FGP, the RGP algorithm provides more conservative
predictions and achieves comparable RMSE.

Main disadvantage of the RGP algorithm is that the number of basis vectors increases
exponentially with the dimension of the state space (vector of regressors). Also, quality
of predictions at the locations further away from the area of state space covered by the
basis vectors is worse than those of the FGP, however this effect could be mitigated by

suitable specification of the prior mean function.
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5.6 Application: Functional Dual Adaptive Control

Cybernetics can be characterized as an inter-disciplinary scientific endeavor that seeks
to design optimal control systems. Need for such controllers arises in wide array of
engineering disciplines such as design of aircraft autopilots, industrial robotics and
control of chemical reactors and other industrial processes.

In the real-world, dynamical properties of the controlled process are changing with
time, such as, aircraft loosing its mass due to fuel consumption or mechanical properties
of parts changing due to wear. Anideal control law should take these considerations into
account. We can observe variety of biological systems in nature which are able to thrive
under changing environmental conditions. This is in no small part due to the presence of
adaptive control systems on a microscopic level, which inspired researchers to engineer
control systems emulating such behavior in hopes of improving control quality of
processes under varying conditions. A controller containing a mechanism for changing
its own parameters is termed adaptive?. Diagram of a model-based adaptive control is
depicted in Figure 5.6.1. Realistically speaking, dynamical properties of all controlled

Design < Model

Y

"'k Uk Yk+1
—>0O—>| Controller »| System >

Figure 5.6.1: Adaptive control loop. The model serves as a surrogate for the unknown system,
which is continuously being refined by the new incoming measurements of the input u; and
output yi+1. The identification method produces the model parameter estimates, which are
used for the adaptation of the controller.

processes are subject to certain degree of uncertainty. In order to deal with this problem,
adaptive model-based control uses a surrogate system model with unknown parameters
to summarize the state of knowledge about the controlled process up to the present
time. The Model block contains an identification algorithm which produces parameter

2 Astrom and Wittenmark [1995] note that there is no generally accepted definition of adaptive system
in the control community.
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estimates based on observed past control inputs and noisy system response data -
effectively performing system identification. Resulting parameter estimates are fed into
the Design block, which decides how the controller parameters should be adapted in
response to newly obtained knowledge about the controlled process.

Depending on what process information is used to produce the control action, sev-
eral classes of controllers were identified. In the simplest case, the controller uses point
estimates of all parameters as if they were the true values of the unknown quantities
and disregards any uncertainties in the estimates. This is known as certainty equivalence
principle, which holds in a few special cases, one of which is the well-studied linear
quadratic Gaussian (LQG) control [Astréom and Wittenmark, 1995, p- 360]. Due to their
limiting theoretical assumptions, certainty equivalent controllers can often perform
unsatisfactorily in real-world scenarios. The cautious controllers are more realistic, be-
cause they use additional information about the uncertainty of estimates. Typically,
the magnitude of controller action is in this case inversely proportional to the model
parameter uncertainty. Unfortunately, cautious controllers are susceptible to the turn-off
effect. That is to say, whenever the model uncertainty is high, the control action will be
small and consequently the amount of new information elicited from the system will
decrease. Model uncertainty will therefore decrease minimally, leading again to ever
so smaller control action in the subsequent time instances, which interferes with the
control effort.

The dual controllers remove this problem from occurring by enriching the control
action with a probing component. Fel’dbaum [1965] observed that in order to control
an unknown process the controller design needs to find a delicate compromise between
two mutually opposing requirements, which are

control (exploitation): using available process information to maximize the control

quality (demands lower band-width) and

probing (exploration): perturbation of the process in order to gain more information
about it (demands higher band-width).

To give an analogy, when a driver wants to improve his driving skills with a new car
and, at the same time, get to his destination safely and cheaply, he needs to perform
reasonably safe test maneuvers (probing) to get the feel for the car, so that he can drive
better in the future, all the while keeping on the road (control). Fel’dbaum’s proposed
solution to the dual control problem is in the form of functional Bellman equation, which
is analytically and even numerically intractable, except for a few simple cases. This
is why a lot of research effort is focused on finding various approximate sub-optimal
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solutions [Filatov and Unbehauen, 2004], which, nevertheless, still preserve the key
aspects of the stochastic control principles (caution and probing).

Recent developments in adaptive dual control focused predominantly on the class of
linear systems with unknown parameters. The functional dual adaptive control (FDAC)
of nonlinear stochastic systems [Fabri and Kadirkamanathan, 2001; Herzallah and Lowe,
2002; Sarangapani, 2006; Sbarbaro et al., 2004] can be understood as a natural effort of
extension of the adaptive control to the class of complex systems, where the functional
relationships describing the nonlinear dynamics themselves are completely unknown.
The FDAC problem is more difficult to solve, because no rigid parametric structure of
the dynamics function is assumed. The original concept of the functional approach was
formulated by Fabri and Kadirkamanathan [1998], where the innovation dual control
(IDC) criterion, originally proposed by Milito et al. [1982], was used as a cost function
together with two types of neural networks as a model for the unknown nonlinear
functions. This was followed by Simandl et al. [2005], who, instead of the IDC, utilized
bicriterial cost function [Filatov and Unbehauen, 2004] and a Gaussian sum filter for
parameter estimation. Further efforts tackle the individual problems, such as a practical
demonstration in control of the nonholonomic wheeled mobile robot [Bugeja et al., 2009]
or an extension to a more general MIMO class of nonlinear systems [Fabri and Bugeja,
2013; Kral and Simand], 2011]. In recent years, several sub-optimal dual control methods
have been applied successfully in the functional approach for their positive qualities
(superior control quality and admissible computational demands) and subsequently
extended in several directions [Bugeja et al., 2009; Fabri and Bugeja, 2013; Fabri and
Kadirkamanathan, 1998; Kral and Simandl, 2011; Simand] et al., 2005].

5.6.1 Bicriterial Control

We start with the formalization of the bicriterial approach to adaptive control design,
first introduced by Filatov and Unbehauen [2004]. Later, we design dual adaptive
controller based on the full and recursive GP models, discussed previously. Our con-
tribution differs from [Simandl et al., 2005] and [Kral and Simandl, 2011] in two main
aspects: (a) we use a non-parametric GP model instead of the parametric neural network
model, (b) the resulting dual control respects the GP model prediction uncertainties.
From another point of view, this contribution is an extension of the GP-based cautious
controller [Sbarbaro et al., 2004] by the duality property.

The key idea of the bicriterial approach is based on the cost function exploiting two
separate criteria. Each criterion introduces one of the mutually opposing goals between
estimation and control (caution and probing). The optimal control action is obtained by
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first minimizing eq. (5.6.1) to solve for cautious control component, which is then later
used to determine the probing component by subsequent minimization of the second
criterion in eq. (5.6.3). The first of the criteria has the following form

Ji =E| (rks1 — yet1)? ) Ik}, (5.6.1)

where I” is the information state containing all measurable system inputs and outputs
available up to time instant k£ and rj is a bounded reference signal. The cautious control

action, resulting from the minimization

uj, = arg min Jj, (5.6.2)
U
respects uncertainties in the knowledge of the unknown functions in the system de-
scription (5.1.1). The second criterion is chosen as

Jt=—E[ (e — 3r0)” [ 1], (5:63)

where g1 is a one-step model prediction of the system output. The single term in the
criterion penalizes deviation of the future system output as predicted by the model
Uk+1 and the actual system output y;. It therefore forces reduction of uncertainty in
the system model and thus effectively encourages exploration. Finally, the dual control
is obtained by minimizing

u, = arg min Ji, (5.6.4)
URENg
where Q) = [uf — J, uf + 6] defines a symmetrical Pareto set centered around the

cautious control u. as a region of permissible values of uj, which represents an efficient
trade-off between the criteria J! and J.. The presence of the design parameter ¢, which
determines the region €, stems from the reasoning that it is necessary to enrich the
cautious control with a probing signal proportional to the uncertainty of the model.
The situation is illustrated in Figure 5.6.2.

Looking at the criterion in eq. (5.6.3) it becomes evident that a vital part of the control
design is a system model for generating predictions g;,1. Previously, in Sections 5.2
and 5.3, I described how the full GP and the recursive GP can be used as system models.
In the following two sections, we utilize these models and identification algorithms for
the design of a dual adaptive controller.
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Figure 5.6.2: The core principle behind bicriterial dual control design. First, the cautious control
component is determined as a minimizer of J;. In the subsequent stage, the final dual control is
determined by minimizing J over a set of permissible control actions, whose boundaries are
parametrized by the uj,.

5.6.2 Control Design with Full GP

Using the kernel structure in egs. (5.2.14) to (5.2.17), the GP model prediction and

variance can be written as

[kt = frr1 + Orrrtn, (5.6.5a)
Oh1 = HKUR — VUL + Ck + O, (5.6.5b)
where

; -1

frr 2 k(K +02) Ty, (5.6.6a)

~ -1

Gre1 2kl (K+02) yy, (5.6.6b)
e 2 Egsg — oy (K +021) k], (5.6.6¢)
cr 2 ksp — kor (K +021) 'k}, (5.6.6d)
v 2 2k (K + 021) k[, (5.6.6¢)
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The criterion in eq. (5.6.1) can be written as

Jp=E [(Tkﬂ — Yr1)? ) Ik} = <7"k+1 -E [yk+1 ‘ IkD2 (5.6.7)
2

= (?“k+1 — (forr + §k+1uk)> + Ui — v + ci, (5.6.8)

where we used the approximation E [ yj.1 | j | ~E[ k1 | I* |. Setting derivative w.r.t.
the control action to zero

aig

dur *2(7%+1 — fra1 - §k+1Uk)§Jk+1 + 2ppup — v =0 (5.6.9)

and solving for uy, yields the cautious control component, given by

et — frt1) Gt + S0k
( 3

ug, = - (5.6.10)
’ Grar + ik
The second criterion in eq. (5.6.3) can be expressed as
JE = —ppui + vpug — cp. (5.6.11)

For a non-parametric GP model it is suitable to modify the probing component design
[Filatov and Unbehauen, 2004; Kral and Simandl, 2008] so that it respects the uncertainty
in the model predictions. The main idea of the proposed modification is as follows.
Efficiency of the system excitation is represented by the shape of the criteria J} in the
neighborhood of uj, as is illustrated by Figure 5.6.2. If J;! has a slope close to zero, the
desired decrease of the criterion value could not be achieved even with large probing
amplitude. In such cases, the criterion J;! changes negligibly with perturbations in uy,
and thus it is not beneficial to enhance the control signal with probing. Otherwise,
when the slope of J} is significant, an appropriate excitation of the system could be
achieved even with small perturbations in the control uj. In this case, it makes sense to
introduce the probing signal as it can significantly accelerate uncertainty reduction in
the model.

With these considerations in mind, it is suitable to choose the domain 2 as symmetric
and bounded with a constant, so that 2 = [u, — 6, u + 6], where ¢ is a design parameter.
Since eq. (5.6.4) defines a constrained optimization problem with a concave objective
Ji(ug), the extreme is found on the boundary of the domain 2. For dual control, we
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can therefore write
w, = uf + sign (JE(uf + ) — JA(ug — 0p), (5.6.12)

where 7 > 01is a design parameter, which represents gain of the probing. The expression
in brackets evaluates to
dJg
duk

o JE(uf, + 0k) — Ji(ug, — 0x) = 20(—2uxuf, + vi) (5.6.13)
up=ug
where the multiplicative constant 24 is subsumed into the design parameter 7 in
eq. (5.6.12). Note that the derivative is a function of p;, and v, that quantify uncer-
tainty of the model functions f and §. Consequently, a higher amplitude of the probing
signal is generated in case of high model uncertainty and vice versa. Finally, the resulting
bicriterial dual control action is given by

up = uj, + n(—=2ppuy, + vi), (5.6.14)

where the cautious component uj, is given by eq. (5.6.10). The proposed bicriterial
dual full Gaussian process (BD-FGP) adaptive control algorithm is summarized in
Algorithm 11. Note that the system output prediction on lines 14 to 17 is unnecessary
to generate the control action.

5.6.3 Control Design with Recursive GP

The control design with the RGP model is very similar. We start with the same form for
GP predictive mean and variance in egs. (5.6.5a) and (5.6.5b), with the difference that
now we define

frnt 2 k(K + 021) " iy, (5.6.15a)
den 2k (K +021) (5.6.15b)
fir; 2 kssg + k Ty, (5.6.15¢)
k= kssy + ki Tksy, (5.6.15d)
v £ 2k Tk,y, (5.6.15¢)
T2 (K+02) (£ —K—o2)(K+02T) (5.6.15f)
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Algorithm 11: FGP-based bicriterial dual control.

NS g e W

10

11

12

13

14
15

16

17
18

Input: Measurements {(gb > yk“)}f:l, initial kernel parameters 6, probing gain

Output: Sequence of control actions {uk}szl.

parameter 7).

fork < 1to K do

end

// Kernel parameter optimiz
0y, « argming log p(y; | X, 6)
// Kernel evaluation.
kssf < kg (Xk, Xi; Ok)
kssg < kg(Xk, Xi; Ok)
ksf — kf(Xk, Xk Bk)
ksg — kg(Xk, Xk; Ok) o Uy
K<+ kh(q)k, Dy Ok)
// Control action.
2 -1
Jr1 < k;rf (K+02I) 'y,
. —1
k1 < k;; (K+02I) 'y,
i kssg — k;rg (K+ U?I)_lksg
v 2k (K +021) ks
(Tk+1—fk+1)§k+1+%l/k
Giy1 Tk
up = uj 4+ n(—2ppug + vi)

c
Up,

// System output prediction (if needed).

kss < kssf + kssqus + 02

k < ko + ksgup

N —1

i1 < kg (K+02I) yy

62,1 ks — k] (K +021) 'k,

ation (starts from 6).
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The cautious control component is given as

(i1 — frs1)Gs1 — 51

uy, = -
i1 + H

(5.6.16)

The dual control is then
up = uf, + nsign (2uguf, + vg). (5.6.17)

Notice the change of signs, when compared with egs. (5.6.10) and (5.6.14), which is due
to the fact that the quantities in egs. (5.6.15a) and (5.6.15f) are defined differently.

The Algorithm 12 summarizes operation of the proposed bicriterial dual recursive
Gaussian process (BD-RGP) adaptive controller. Note, that unlike in the BD-FGP case,
the RGP model predictions on lines 25 to 29 are necessary for calculating the control
action.

5.6.4 Numerical Experiments and Evaluation

The proposed bicriterial dual controllers were tested on the synthetic example [Fabri
and Kadirkamanathan, 2001] of non-linear stochastic discrete-time system

1.5yy

Trg " (2 + cos(yr))ur + ex+1, (5.6.18)

Ye+1 =
where ey is a white Gaussian noise with variance Jg = 0.0025. In this case, the vector
of regressors ¢, = [yk uk] ! is two-dimensional. The bicriterial dual controller with
the full Gaussian process model (BD-FGP) as well as the recursive GP model (BD-RGP)
used the same set of initial kernel parameter values 8 =log ([0 0 0 0] )T. The set of
basis vectors for the BD-RGP was initialized as a rectangular grid of 7 x 5 points in the
interval [-2, 2] x [-1, 1].

The main motivation for designing the BD-RGP algorithm was to alleviate the
prohibitive computational demands of the BD-FGP. The Figure 5.6.3 is a result of
averaging execution time measured in each control loop iteration of both algorithms
over 100 Monte Carlo runs. Clearly, the demands of the BD-RGP algorithm remain
constant, thus making it superior alternative to the BD-FGP in this regard.

The other experiment was focused on the assessment of control quality, which was
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Algorithm 12: RGP-based bicriterial dual control.

N SN Ul R W N -

10
11

12

13
14
15
16
17

18

19

20

21
22

23

24

25
26

27
28
29
30

Input: Measurements { (¢, y+1) }kK:v set of basis vectors ®, initial kernel parameters

Output: Sequence of control actions {uk}le.

0y, probing gain parameter 7.

// Initialization.
ity < Uniform(0, 1)
20 < k’(‘i, ‘i7 00)

‘[Ll — e1

(AT% — e

K « k(®,®; 6))

ks — /{f(X,XO; 00) + kg(X,XO; 00)61
J kK

fork + 1to K do

end

// RGP model update.
Gk — i}k_leT(&,% + 0’3)_1
B < By + Gr(ye — fik)
Sk Zpo1 — GRIp e

// Kernel parameter optimization (starts from Oj_;).

0 < argming logp(/lk @, 0)
// Kernel evaluation.

kssf — kf(Xk, Xk; Ok)

kssg < Ky ()fka Xi; O)

ka — kf(X7 X Hk)

kg kg(X, Xk; Bk) ou

K « ky (@, ®; 05)

// Control action.

frer k;rf (K+ Uzl)ilﬂk
gra1 kL (K+ UEI)_lllk

T (K+02) (2 - K- o20)(K+02I) "

pik < kasg + K Tkog

Vi < QkSTgI‘ksf

(7’k+1—fk+1)§k+1—%uk
Giyp1 ik

ug, < uf, + n(2upug + vy)

c
Uy, <

// System output prediction.

kss — kssf + kssguz + Ug

k, < kof + kgup

Jp — k! (K+021)7"

fky1 < Ty,

62,1 kes + T (B — K)JI
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Figure 5.6.3: Average execution time per time step of the BD-FGP and BD-RGP control algorithms.
The computational requirements of the BD-RGP controller remain constant, while the demands
BD-FGP controller continue to grow indefinitely with every time step.

measured by
1 X

T = K Z (Yk+1 — Trr1)’s (5.6.19)

k=m

where m > 1 is the offset, which is meant to counteract the initial transition effects in
the system response. We compared the control quality of the BD-FGP controller, which
uses the exact non-recursive GP model, with the BD-RGP controller, which uses the
approximate recursive GP model. Ideally, we would like the quality of the approximate
BD-RGP to remain close enough to the exact BD-FGP. Each controller was simulated for
K = 60 time steps and the reference signal r;, was chosen as a square wave for k£ < 30
and a sine wave for 30 < £ < 60.

Table 5.6.1 compares the control quality of the BD-FGP and the BD-RGP controllers
for offsets m = 1, which evaluates the criterion using the whole trajectory, and m = 15,
which ignores the first few steps to assess the behavior after the GP model adaptation.
The quality of the BD-RGP is two orders of magnitude worse than that of the BD-FGP,
when evaluating eq. (5.6.19) over the whole trajectory. This is caused by the longer
adaptation of the RGP model. However, the values of the offset criteria indicate that
this adaptation quickly disappears (after about 15 time steps) and the BD-RGP control
quality is then close to the BD-FGP. The reason for this behavior is the fact, that the RGP
model is an approximation of the exact FGP model, and as such takes longer to adapt
(slower convergence). This intuition is corroborated by our earlier results published in
[Prither and Simand]l, 2014].

Figure 5.6.4 compares the two dual controllers in terms of the system output response
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Controller .J; V[4] Jis V[ Jis5)

BD-FGP 1.08e-01 2.02e-04 1.12e-02 3.79e-05
BD-RGP 1.07e+01 9.66e+00 1.42e-02 1.0le-04

Table 5.6.1: Control quality of the bicriterial dual controller based on full (BD-FGP) and recursive
Gaussian process (BD-RGP) model. Results are averaged over 100 Monte Carlo simulations.
Variance estimates of the means of the criteria were obtained by bootstrap method.

to the reference signal. The output response for the BD-RGP is more erratic at the start,
which explains the results in the Table 5.6.1, but then stays close to the BD-FGP output
response. Figure 5.6.5 shows the evolution of the FGP and the RGP model predictive

system reponse
|
—
1

0 10 20 30 40 50 60
time [k]

Figure 5.6.4: Comparison of the typical system output response yj+1 to a reference signal r, for
the BD-FGP and BD-RGP controllers. The controller using the approximate recursive GP model
(BD-RGP) exhibits slower adaptation than the BD-FGP.

uncertainty. The RGP model provides more conservative predictive variances across the
whole trajectory, which is a desirable behavior considering the RGP is an approximate
model.

5.6.5 Conclusion

In this chapter, I addressed the Goal 1 set out in Chapter 4. I proposed the use of the
RGP regression model for reducing computational demands of the BD controller based
on the full GP model, when applied for control of non-linear discrete time-invariant
stochastic systems with functional uncertainties. The GP regression models are applied
for the approximation of unknown functions in the system description. We utilize
an approximation to the marginal likelihood, which makes it possible to keep the
computational demands fixed when learning the kernel parameters. We derived the
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Figure 5.6.5: Comparison of model variances (gray band); the RGP model predictive vari-
ance (right) is more conservative than that of the FGP model (left). Since RGP model is an
approximation of the FGP, this is a desirable behavior.

bicriterial dual controller with RGP model, whose computational demands do not

increase with time. Even thought the BD-RGP controller takes longer to adapt, the
control quality stays close to the baseline BD-FGP controller.
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Chapter 6

Bayesian Quadrature Moment
Transforms

Contributions in this chapter can be found in the following author’s publications:

e J. Prither and M. Simand]. Bayesian Quadrature in Nonlinear Filtering. In 12th

International Conference on Informatics in Control, Automation and Robotics (ICINCO),

volume 01, pages 380-387, July 2015

e J. Prither and M. Simandl. Bayesian Quadrature Variance in Sigma-point Filtering.

In Informatics in Control, Automation and Robotics, 12th International Conference,
Colmar, Alsace, France, 21-23 July, 2015 Revised Selected Papers, volume 370 of Lecture

Notes in Electrical Engineering. Springer International Publishing, 2016

e ]. Priiher and O. Straka. Gaussian Process Quadrature Moment Transform. IEEE
Transactions on Automatic Control, Pre-print(99):1-1, 2017. ISSN 0018-9286. doi:

10.1109/TAC.2017.2774444

e J. Priiher, F. Tronarp, T. Karvonen, S. Sarkkd, and O. Straka. Student-t Process

Quadratures for Filtering of Non-linear Systems with Heavy-tailed Noise. In 20th

International Conference on Information Fusion (Fusion), pages 1-8, July 2017. doi:

10.23919/1CIF.2017.8009742

Throughout this chapter I rely heavily on the exposition of the state estimation prelimi-

naries in Chapter 3 and mainly that of Bayesian quadrature in Section 3.3.
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6.1 General Bayesian Quadrature Moment Transform

The purpose of this section is to present an abstracted general BQ moment transform
framework that underlies both of the proposed moment transforms; namely, the GPQ
as well as the TPQ. I assume the familiar setup from eq. (3.2.1), where a nonlinear

transformation
y = g(x) 6.1.1)

is considered, with an input random variable x being distributed according to p(x).
Some sort of probabilistic model of the integrand g(x) will be further assumed, in the
sense that both the mean E4[g(x)] and the variance V,[g(x)] exist.

Let us first consider a case when the nonlinearity in eq. (3.2.1) is a scalar function
g(x) : RP — R. Note, that in the following derivations we omit the conditioning on
data and use the shorthand notation E4[g(x)] £ Ey[g(x) | D], V,4[g9(x)] £ V4[g(x) | D].
Since the source of uncertainty is now, not only in the input x, but in the nonlinearity g as
well, the transformed moments also need to reflect this fact. The general BQ transform
approximates the moments as follows

Efy] = Ex[g(x)] = Egx[g(x)] (6.1.2a)
VIyl = Vx[g(x)] = Vg x[g(x)] (6.1.2b)
Clx,y] = Cx[x, 9(x)] = Cy x[x, 9(x)] (6.1.2¢)

Egx[9(x)] = Eg[Ex[g(x)]] = Ex[Eg[g(x)]], (6.1.3a)
Vox[g(x)] = Eg[Vx[g(x)]] + V, [Ex[g(x)]] (6.1.3b)
= Ex[Vg[g(x)]] + Vx[Eq[g(x)]], (6.1.3¢)

Cyx[x, 9(x)] = Ex[xEq[g(x)]] — Ex[x]Eq x[g(x)] (6.1.3d)

The eq. (6.1.3a) shows that the mean of the integral is equivalent to integrating the
mean function. Since the variance decompositions in egs. (6.1.3b) to (6.1.3c) are equiva-
lent, both can be used to achieve the same goal. The form (6.1.3c) was utilized in the
derivation of the GP-ADF [Deisenroth et al., 2012], which relies on the solution to the
problem of prediction with GPs at uncertain inputs [Girard et al., 2003]. So, even though
these results were derived to solve a seemingly different problem, by using the form
(6.1.3c), the uncertainty of the mean integral (as seen in the last term of eq. (6.1.3b))
is implicitly reflected in the resulting covariance. Furthermore, the form (6.1.3c) is
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preferable, because it is more amenable to analytical expression and implementation. In
a deterministic case, when the integrand variance V,[g(x)] = 0 and the integral variance
Vy[Ex[g(x)]] = 0, the egs. (6.1.3a) to (6.1.3d) fall back to the classical expressions given
by egs. (3.2.2a) to (3.2.2c). Compared to the deterministic case, the transformed BQ
variance is inflated by the uncertainty in g.

Extension to the case of vector functions g(x) : R” — RE is fairly straightforward.

The BQ transformed moments now become

pa = Egx[g(x)] (6.1.4a)
= Eg[Ex[g(x)]] = Ex[Eg[g(x)]], (6.1.4b)
Iy = Cgx[g(x)] (6.1.4¢)
= Eg[Cx[g(x)]] + Cg[Ex[g(x)]] (6.1.4d)
= Ex[Cglg(x)]] + Cx[Eg[g(x)]], (6.1.4¢)
Ca = Cgx[x, g(x)] (6.1.4f)
= Ex[xEqg[g(x)] '] — Ex[x|Ex[Eg[g()])- (6.1.4g)

6.2 Gaussian Process Quadrature Moment Transform

I propose a moment transform based on the GPQ (see Section 3.3.1). First, I define a
general algorithm, which works with any kernel function, and then give relations for a
GPQ transform based on the popular RBF kernel. As a remark, consider the fact that a
vector function g(x) : R? — R¥ can be written as

Ex)l. (6.2.1)
Throughout this section I will assume that

A1l: the input variable is Gaussian distributed with x ~ N(m, P),

A2: the stochastic decoupling substitution
x=m+L¢ where P=LL" and ¢~ N(0,1)

in the integrals has taken place, and

A3: the integrand is GP distributed according to g(&) ~ GP(0, k(&, £'; 0)) for e=
... E.
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The last assumption essentially means that a single GP! is used to model every output
dimension of the integrand.

Expressions for the GPQ transformed moments are derived by plugging in the
GP predictive moments from egs. (2.2.11a) to (2.2.11b) into the general expressions in
egs. (6.1.4b) to (6.1.4g). The transformed mean in eq. (6.1.4b) thus becomes

pa = Ee[Bglg(m + LE)]) = YK 'Ee [k(§)] = Y 'w, (62.2)

where the e-th column of Y, given by [y§ ... v%] T, comprises function values of
the e-th output of g(x) and K|, = k(§,,&,,). Using eq. (6.1.4e), the transformed

covariance can be written as

nm

Iy = C¢[Eg[g(m + LE)]| + E¢[Cglg(m + LE)]]

— B¢ [Eg[g(m + LE)|Eg[g(m + LE)] '] — papd + Be[Colg(m + LE)]]
=Y 'K 'Ee[k(€k(€)KY — papp + 01, (6.2.3)

where
o? =Ee[02(§)] = Ee[k(€,€)] — tr (Ee [k(€)k ' (§)]K™). (6.2.4)

The diagonal matrix in the last term of eq. (6.2.3) reflects the fact that the outputs of
g, as seen in eq. (6.2.1), are not correlated. Finally, the cross-covariance in eq. (6.1.4g)
becomes

Ca = B¢ [€Eg[g(m + LE)] | — Ee[€]Ee[Egg(m + L)),
= LE¢[¢k' (§)]KY. (6.2.5)

In summary, the proposed general GPQ-based Gaussian approximation of the joint
distribution of x and the transformed random variable y = g(x), where x ~ N(m, P),

[X ~ N( ) , (6.2.6)
y

where the transformed moments are computed by the Algorithm 13. Note, that the unit

is given by
P Cyu
CL Iy

m

K

)

sigma-points §,, can be chosen arbitrarily, because, unlike the classical quadrature, the
BQ does not prescribe any. The advantage to using the decoupling substitution (see
eq. (3.2.8)) is that it allows to formulate the GPQ weights as independent of the input
moments, which becomes crucial in filtering applications.

'same values of kernel parameters
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Algorithm 13: Gaussian process quadrature moment transform. The function takes the
input mean m and covariance P together with the kernel parameters 8 and unit sigma-
points &, arranged in columns of a matrix Z to produce the transformed moments
HAs II A, C A

1 Function GPQMT(m, P, 0, &)

© @ NN S !

10
11
12
13

14
15
16

17
18
19
20

21

// Form sigma-points.
L < MatrixFactor (P)
X<+ m+LE

// Evaluate nonlinearity at sigma-points.
Y «+ g(X)

// Evaluate kernel expectations.

k— E¢[k(£,€;0)]

forn «+ 1to N do

[a],, < Ee[k(£,€,;0)]

[R],,, < E¢l€k(,€,,:0)]

form < 1to N do
(Ql,,., ¢ Ee[k(§,€,,:0)k(, €., 50)]
(K] < k(&0 €03 0)

end

end

// Compute GPQ weights.

w <+ Klq

W« K 1QK™!

W, + RK™'

// Compute transformed moments.
02 ¢ F—tr (QK™)

Ha ~Y'w

My < Y WY — pppji + 021

Chr «~ LW_.Y

return gy, ITx, Cp

22 end
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Evidently, the GPQ moment transform hinges upon the kernel expectations as
seen in lines 5 to 10. Since we are already using one quadrature to approximate the
moments, it is thus preferable that these expectations be analytically tractable. A list
of tractable kernel-density pairs is provided in [Briol et al., 2015]. A popular choice in
many applications is an RBF kernel, expectations of which are summarized below.

Theorem 1 (GPQ transform with RBF kernel). Assuming a change of variables has taken
place in the Gaussian weighted integrals given by eq. (3.2.8) and the kernel is of the form

k(€,€) = a’exp (56— €) AT (E-¢), (62.7)

where o is a scaling parameter and A = diag([\? ... M\4]) is a lengthscale, then the
expectations given in lines 5 to 10 of Algorithm 13 take on the form

[a]; = Crexp (—3&] (A+1)7'¢)), (6.2.8)
(Q,; = Coexp (—3 (67 A7€;+€,47"¢;-

2l (20 +1) Z¢j)> 7 (6.2.8b)

[R],; = Crexp (—3&] (A+1)7'¢))(A+ 1), (6.2.8¢)

k=a’ (6.2.8d)

1 _1
where Cy = o?|A™" + 1|72, Co = o|2A7" + 1| 2 and z;; = A1 (&, + ).

Proof. The expressions can be derived by writing the RBF kernel as a Gaussian density
and making use of the formulas for the product of two Gaussian densities (and the
normalizing constant). Derivations are confined to the appendix in Appendix A, so as
not to detract from the flow of the text (see also [Deisenroth, 2009]). O

An important requirement is for moment transforms to produce a valid covariance
matrices. Theorem 3, given below, states that the proposed GPQ transform always
produces a positive semi-definite covariance matrix. For the proof, I use the following

lemma.

Lemma 2. For any m x n matrix X and a positive definite n x n matrix A, the matrix XAX T
is positive semi-definite.

Proof. See [Horn and Johnson, 1990, Observation 7.1.6, p. 399]. O

In the following, let A >~ 0 < x' Ax > 0, Vx € R for any n X n matrix A.
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Theorem 3. The GPQ transformed covariance on the line 31 of Algorithm 13 is positive
semi-definite.

Proof. Using the expressions for the GPQ weights on lines 26 to 28 of Algorithm 13, we
can write

=YK '(Q-qq" K'Y+ 1=2"QZ+ 0’1 =11 + o1, (6.2.9)
where I = ZTQZ, Z =K 'Y and Q =Q-qq'. We recognize that
Q=Ck(x)]=E [k(x)kT(x)] — E[k(x)]E[k(X)]T. (6.2.10)

From the property of covariance matrices it follows that Q = 0. The Lemma 2 implies
that TI = ZTQZ > 0 for any matrix Z. Finally, since 0? > 0, we have that IT =
1 + 021 = 0. ]

6.2.1 Choice of Kernel Parameters

It is now evident that the GPQ transformed moments depend on the kernel parameters,
which need to be set prior to computing the weights. A typical approach in the GP
regression would be to optimize the kernel parameters by marginal likelihood (evidence)
maximization. However, in the BQ setting this method would likely yield unreliable
parameter estimates due to the inherently limited amount of available data. For these
reasons, I resorted to a manual choice of the parameter values, which were mostly
informed by the prior knowledge of the integrated function.

In the following theorem, I prove the independence of the GPQ weights on the
kernel scaling parameter.

Theorem 4 (Kernel scaling independence). Assume a scaled version of a kernel is used, so
that k(x,x') = ¢ - k(x,x'), then the weights of the GPQ transform given on lines 26 to 28 of
Algorithm 13 are independent of the scaling parameter c.

Proof. Define a scaled kernel matrix K’ = ¢K, and scaled kernel expectations [q'],, =
Ex[k(x,%x0)], Q' = AEx[k(x,x5)k(x,xm)], [R],,, = cEx[xk(x,X,,)]. Plugging
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into the expressions for the GPQ weights given on the lines 26 to 28, we get

w =d (K’)_1 =cc lqgK™! = w, (6.2.11a)

W= (K) QK"
=2 2KTIQK L =W, (6.2.11b)
W.=R/(K) " =cc 'RK' = W,. (6.2.11c)
O

Corollary 5. The kernel scaling affects only the additive term in the transformed covariance,
which becomes o* = c[k —tr (QK™')]. The transformed mean on the line 30 and cross-

covariance on the line 32 are unaffected by the scaling.

Since the scaling has no effect on the GPQ weights, the main attention is given to
the input lengthscales. The form of A in the RBF kernel formulation above exhibits,
so called, automatic relevance determination (ARD). That is to say, by optimizing the
lengthscales ¢;, dimensions contributing most to the variability in the data can be
discovered, where a small /; would indicate high relevance of the d-th dimension and
vice versa. As an initial guideline, I considered a priori knowledge of the nonlinear
transformations encountered in the experiments. Whenever a certain output is observed
to be linearly dependent on d-th input, the lengthscale parameter ¢; should be set to
a large value relative to all other lengthscales {/. : e # d}. Conversely, when strong
nonlinearity is encountered a relatively small value of lengthscale should be selected.
A several proposed nonlinearity measures [Dunik et al., 2016] could be utilized as an
aid for assessing severity of the nonlinearity in question.

Further point to consider, are the numerical issues with calculating the kernel matrix
inverse. Choosing a lengthscale that is too high would cause the kernel matrix to become
singular. Generally speaking, the smaller the distance between the sigma-points, the
lower is the upper bound on the numerically allowed lengthscale.

With these guidelines in mind, the parameters can be further fine-tuned by eval-
uating relevant performance criteria, which in all cases involves running preliminary
simulations. As an example of this process, consider Figure 6.2.3 which illustrates
sensitivity of the GPQ filter performance to changing lengthscale.

6.2.2 Experiments

The proposed GPQ moment transform is first tested on a polar-to-Cartesian coordinate
transformation, while the later experiments focus on its applications in the nonlinear
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filtering. In all cases, the GPQ transform uses the RBF kernel given by eq. (6.2.7). Since
the sigma-point locations are not prescribed and their choice is entirely arbitrary, I used
the point-sets of the classical rules mentioned in Section 3.2 for all examples.

The Gaussian process quadrature Kalman filter (GPQKEF) is obtained by replacing
the MomentTransform() routine in Algorithm 1 with the GPQ transform GPQMT (), in
Algorithm 13. The GPQKEF is an umbrella acronym for all nonlinear Kalman filters
based on the GPQ regardless of which point-set they use.

Mapping from Polar to Cartesian Coordinates

The conversion from polar to Cartesian coordinates is a ubiquitous nonlinearity appear-

ing in radar sensors or laser range finders and is given by

H - [r Cf)s(m] . (6.2.12)
Yy rsin(6)
Since the mapping is conditionally linear (for a fixed #) and we use a kernel with ARD
in the moment transform, we can exploit this fact and set the kernel lengthscales to
A = diag([60 6] ) while the scaling was set to & = 1. Note, that we set the length-
scale corresponding to the range to a relatively large value. This is because the larger
lengthscales in the kernel correspond to a slower variation in the approximated function.
I compared the performance of the spherical radial transform (SR), which is basis of
the cubature Kalman filter [Arasaratnam and Haykin, 2009], and the GPQ transform
with SR points (GPQ-SR) for 100 different input moments. The 10 different positions
on a spiral in polar coordinates were chosen as input means m; = [r; 6;]. For each
mean I assigned 10 different input covariance matrices P; = diag( [0 a5 j} ), where
o, = 0.5 m and azimuth standard deviations were uniformly placed in the interval o ; €
[6°, 36°] for j = 1,...,10. Figure 6.2.1 depicts the input means in polar coordinates.
As a measure of an agreement between the approximate moments (14, IT4) and the
ground-truth moments (u, IT) I used the symmetrized KL-divergence of two Gaussian

densities given by

SKL = 2 {KLIN(y |, T) | N(y | a. TL)] + ELIN(y |y, Ta) [ N(y | 1, T}
1

=1 {(H — ) I (= pp) + (e — ) T (g — )

+tr(IT U0, + tr(IT; 1) — zE} , (6.2.13)

where E = dim(y). The ground truth transformed mean and covariance were computed
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270°

Figure 6.2.1: Input means are placed on a spiral. For each input mean m; = [r; 6;] (black dot)
the radius variance is fixed at o, = 0.5 m and 10 different azimuth variances are considered so
that o € [6°, 36°].

using the Monte Carlo method with 10 000 samples. Two SKL scores were considered;
the average over means and an average over azimuth variances.

The Figure 6.2.2 shows the SKL score calculated for each configuration on the spiral.
The left pane of Figure 6.2.2 shows results for individual means averaged over the

0.06 0.06
1 0.04 + 0.04 A —@—- GPQ-SR
uMs -@— SR
0.02 1 0.02 A
0-0-0-0-0-0-0-0-0-0
0.00 4 0.00 -|
T T T T T
5 10 10 20 30
Position index i Azimuth STD [o]

Figure 6.2.2: Performance comparison of the spherical radial (SR) and GPQ with SR points
(GPQ-SR) moment transforms in terms of averaged symmetrized KL-divergence. Left: average
over a range of azimuth variances; Right: average over the range of input means (positions on
the spiral).

azimuth variances, whereas the right pane displays averaged SKL over the means.
In both cases our proposed moment transform outperforms the classical quadrature
transform with the same SR point-set.
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Univariate Non-Stationary Growth Model

The performance of nonlinear sigma-point filters based on the GPQ transform was
first tested in [Prither and Simandl, 2016] on a univariate non-stationary growth model
(UNGM), where the system dynamics and the observation model are given by

1 20xk—1
1
= oty 1 (6.2.14b)

with the state noise ¢;—1 ~ N(0, 10), the measurement noise r;, ~ N(0, 1) and initial
conditions x|y ~ N(0, 5). This model is frequently used as a benchmark for the particle
filtering algorithms [Gordon et al., 1993; Kitagawa, 1996].

For this problem, all of the considered GPQKFs used the same kernel scaling o = 1.
The lengthscale was set to A = 3.0 for the UT, A = 0.3 for SR and GH-5, and A = 0.1
for all higher-order GH sigma-points. The GPQKFs that used the UT and GH sigma-
points of order 5, 7, 10, 15 and 20 were compared with their classical quadrature-based
counterparts, namely, the UKF and the GHKF of the same orders. The UKF operated
with £ = 0. We performed 100 simulations, each for K = 500 time steps. As a baseline
for comparison, I used the bootstrap filter with stratified resampling and 10 000 particles
(BS-PF).

For evaluation of the filter performance, I used the root-mean-square error (RMSE)

) K 1/2
RMSE = (K > llxi — m”é|kll2> . (6.2.15)
k=1

to measure the overall difference between the state estimate mi| ; and the true state x;
across all time steps. Since the BQ-based MTs, are primarily focused on incorporating
additional uncertainty by inflating the estimated covariance, I used the inclination
indicator (INC) [Li and Zhao, 2006] as a metric which takes into account the estimated
state covariance. The indicator is given by

Xk — mﬁ\k)T(Pim)_l (%1 — mi|k)

10 & (
INC = kzl logyo , (6.2.16)

(e —miy,) ' By (x — i)

where 3, is the sample mean-square-error (MSE) matrix, which can be computed from
samples of the true system state trajectories. When the indicator is INC = 0 the estimator
is said to be balanced, which is to say that the estimated covariance is on average equal
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Pointset N GPQ Classical
BS-PF 10000 - 5.657 £ 0.032
SR 2 6.157 £ 0.071 13.652 £+ 0.253
UT 3 7.124 £0.131 7.103 £0.130
GH5 5 8.371 £ 0.128 10.466 £ 0.198
GH7 7 8.360 £ 0.043  9.919 £ 0.215
GH10 10 7.082 £ 0.038 8.035+0.193
GH15 15 6.944 4 0.048 8.224 4+ 0.188
GH20 20 6.601 £ 0.058  7.406 +0.193

Table 6.2.1: The average root-mean-square error.

Pointset N GPQ Classical
BS-PF 10000 - 9.211 £ 0.196
SR 2 3.328 +£0.026  56.570 £+ 2.728
uT 3 4.970 £0.343  5.306 +0.481
GHb5 5 4.088 +£0.064  14.722 4+ 0.829
GH7 7 4.045+0.017  12.395 + 0.855
GH10 10 3.530 £0.012  7.565 4+ 0.534
GHI15 15 3.468 £ 0.014  7.142 +0.557
GH20 20 3.378 £ 0.017  5.664 4+ 0.488

Table 6.2.2: The average negative log-likelihood.

to the true state MSE matrix. For INC > 0 the estimator is said to be optimistic, while
for INC < 0 it is considered pessimistic. Finally, the negative log-likelihood (NLL) of the
state estimate mj, and covariance Py,

NLL =

log [27P | + (x — i) T (PE) " (xk — miy,) | (6.2.17)

N —

was used to measure the overall model fit [Gelman et al., 2013].

Tables 6.2.1 to 6.2.3 show average values of the performance criteria across simula-
tions with bootstrapped estimates of £2 standard deviations [Wasserman, 2007]. Note
that IV in the tables denotes the number of sigma-points. As evidenced by the results in
Table 6.2.1, the Bayesian quadrature achieves superior RMSE performance for all sigma-
point sets. In the classical quadrature case the performance improves with increasing
number of sigma-points used. Table 6.2.2 shows that the performance of GPQKEF is
clearly superior in terms of NLL, which indicates that the estimates produced by the
GPQ-based filters are better representations of the unknown true state development.
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Pointset N GPQ Classical

BS-PF 10000 - —12.838 £ 0.016
SR 2 1.265 £ 0.010 18.585 £ 0.045
UT 3 0.363 = 0.108  0.897 £ 0.088
GH5 5 4.549 £0.013  9.679 & 0.068
GH7 7 4.638 £0.006  8.409 £ 0.076
GHI10 10 2.520 £0.006  5.315 4+ 0.058
GH15 15 2.331 £0.008  5.424 + 0.059
GH20 20 1.654 £ 0.007  4.105 + 0.055

Table 6.2.3: The average inclination indicator.

The self-assessment of the filter performance is more credible in the case of GPQ, as
indicated by lower inclination v in the Table 6.2.3. This indicates that the GPQ-based
filters are more conservative in their covariance estimates - a consequence of including
additional uncertainty (integral variance), which the classical quadrature-based filters
do not employ. Also note, that the variance of all the evaluated criteria for GPQ-based
filters is mostly an order of magnitude lower.

Sensitivity of the performance for the GPQKF with UT sigma-points to changing
kernel lengthscale is shown in Figure 6.2.3.

R | MR | MR | MR | MR |
1071 10° o' 102
A

Figure 6.2.3: Sensitivity of GPQKF performance (using UT sigma-points) to changes in the
lengthscale parameter A. The choice A = 3 minimizes RMSE and yields nearly optimal inclination
V.

Target Tracking

As a more application oriented example, I considered a target tracking scenario adopted
from [Athans et al., 1968; Julier et al., 2000]. A spherical object is falling down from high
altitude entering the Earth’s atmosphere with a high velocity. The nonlinear dynamics
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is described by the following set of differential equations

p(t) = —v(t) + qi (1), (6.2.18a)
i(t) = —v*(£)8(t) exp (—p(t)) + g2(1), (6.2.18b)
0(t) = gs(t), (6.2.18¢)

where v = 0.164 is a constant and the system state x = [p v 6] consists of position
(altitude) p, velocity v and a constant ballistic parameter 6. The zero-mean state noise
is characterized by E[q(t)q(s)"] = Qd(t — s), where q = [q1 ¢2 ¢3]. The range
measurements are produced at discrete time intervals by a radar positioned at the
altitude of 30 km and 30 km horizontally to the vertical path of the falling object. Thus
the observation model is

y(k) = /52 + (s, — (k)2 + r(k), (6:2.19)

where (s, sy) is the radar position. The measurements were generated with frequency
10 Hz and the measurement noise is zero-mean with variance o7, = 9.2903 x 10~* km?.

The mean and covariance of the system initial condition were set to

X = [90km 6kms—! 1.5 (6.2.20)

P, = diag( [0.0929 km? 1.4865 km?s~2 10—4} > (6.2.21)
while the filter used different initial state estimate

mg‘oz {90km 6kms! 1.7 (6.2.22)

P, = diag( [0.0929km? 1.4865km?s~> 10| ) (6.2.23)

which implies a lighter object than in reality.

In the experiments, I focused on the comparison of the proposed GPQKF with the
UT points and the UKF, because this filter was previously used in [Julier et al., 2000] to
demonstrate its superiority over the EKF on the same tracking problem. The parameters
of the UKF were set to x = 0, a = 1, = 2, following the recommended heuristics
[Sarkkd, 2013]. The GPQKEF used different kernel parameters for the dynamics, oy =
0.5, Ay = diag( [10 10 10]), and the measurement nonlinearity, o, = 0.5, A}, =
diag([15 20 20]). All filters operated with a discrete-time model obtained by the
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Euler approximation with step size At = 0.1s. The discretized model is given by

p(k+1) =p(k) — Atv(k) + ¢ (k), (6.2.24a)
v(k +1) = v(k) — Atv?(k)0(k) exp(—yp(k)) + qa(k), (6.2.24b)
O(k +1) = 0(k) + q3(k). (6.2.24¢)

I generated 100 truth trajectories by simulating the continuous-time dynamics, given
by the egs. (6.2.18a) to (6.2.18c¢), for 30 time steps by 4th-order Runge-Kutta scheme
and computed the average RMSE and inclination indicator v for both tested filters.
Figure 6.2.4 shows realizations of the altitude and velocity trajectories along with the
average trajectory. Note, that when the object is passing directly in front of the radar at
approximately ¢t = 105 (i.e. altitude 30 km), the system is almost unobservable.
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Figure 6.2.4: Altitude and velocity evolution in time. Trajectory realizations (black) and the
average trajectory (red). The highest deceleration occurs in the period from 10 to 20 seconds.

Figure 6.2.5 depicts the RMSE for each time step averaged over trajectory simulations.
The RMSE of the GPQKF tends to be better for all state vector components. The biggest
difference is evident in the RMSE of the ballistic parameter where GPQKF shows
significantly better performance during the period of the greatest deceleration. Overall,
the UKF shows signs of an unbalanced estimator as evidenced from Figure 6.2.6, where
the inclination v rises significantly above zero, indicating excessive optimism. The
GPQKF manages to stay mostly balanced (v wobbles around zero) with the exception
of velocity, where it tips toward pessimism towards the end of the trajectory. This
behaviour is mostly likely caused by the inclusion of additional functional uncertainty
in the transformed covariance as shown in egs. (6.1.4d) and (6.1.4e).
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Figure 6.2.5: Evolution of the average RMSE in time for the GPQKF with the UT points and the
UKEF. From top to bottom: position, velocity and ballistic parameter.
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Figure 6.2.6: Evolution of the average inclination in time for the GPQKF with the UT points and
the UKF. From top to bottom: position, velocity and ballistic parameter.

6.3 Student’s t-Process Quadrature Moment Transform

Motivated by findings in [Shah et al., 2014] where it was concluded that “TP has many
if not all of the benefits of GPs, but with increased modeling flexibility at no extra

cost.”, my aim is to leverage the TP regression model for the design of a Student’s ¢-

process quadrature moment transform (TPQ-MT). I propose a moment transformation

for moments of the Student’s t-distributed random variables, which uses the Student’s

t-process quadrature. This contribution can be regarded as an extension of the previous
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work by Tronarp et al. [2016] with the BQ philosophy.

A common way of parameterizing the multivariate Student’s ¢-density is via the
scale matrix X, which is related to the covariance by ¥ = _*5P. Since we are trans-
forming moments, I find the alternative parametrization via the covariance matrix more
convenient and use it throughout this section. Both parameterizations are reviewed in
Appendix A.

Consider again the familiar setup of the moment transformation problem in egs. (3.2.1)
to (3.2.2c). Throughout this section we will assume that

A1l: the input variable is Student’s ¢-distributed with x ~ St(m, P, v),

A2: the stochastic decoupling substitution
x=m+L¢ where P=LL" and £~ St(0,1, v)

in the integrals has taken place, and

A3: the integrand is TP distributed according to ¢°(€) ~ TP (0, k(&, €'; 6), v) for e=
1 E.

g e ey

The last assumption essentially means that a single TP is used to model every output
dimension of the integrand.

In order to derive the TPQ transformed moments for x ~ St(m, P, v), I use the
familiar stochastic decoupling substitution x = m + L&, which allows for casting the
expectations in terms of a standard ¢ random variable £ ~ St(0, I, v), so that

Ex[g(x)] = E¢[g(m + L&)] = Eg ¢[g(m + LE)], (6.3.1)
Cxlg(x)] = C¢[g(m + LE)] = Cg ¢[g(m + LE)], (6.3.2)
Cx[x, g(x)] = C¢[§, g(m + LE)] = Cg¢[€, g(m + LE)], (6.3.3)

where P = LL". Relying on the same line of reasoning from Section 6.2, the TPQ
transformed moments become

A=Y K 'Ee[k(¢ ] (6.3.4)
Iy =Y 'K 'Ee[k(&k(&)'|K'Y — pppp + S, (6.3.5)
Ca = LE; [5k(§)T]K ly. (6.3.6)
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where

S = E¢[Cglg(m + L&)]] = diag( [stp ... s%p]), (6.37)
S = 7e | Eelk(&,€)) — tr (B [k(€)k(€) K ™), (6.338)
Ye=(vg—2+y K 'y,)/(vy— 2+ N). (6.3.9)

Immediately, we observe that the moments are largely similar to those of the GPQ-MT
inegs. (6.2.2), (6.2.3) and (6.2.5). The only difference is that the expected model variance
S is no longer isotropic, because the TP predictive variance depends on the realizations
of the output variable (see eq. (2.3.2b)).

In summary, the general Student’s ¢-process quadrature approximation to the joint
distribution of x ~ St(m, P, v) and a transformed random variable y = g(x) is given

by
X~ st
y

where the transformed moments are computed by the Algorithm 14.

P C,
C, I,

m

27\

)

, u> (6.3.10)

The transform is general in a sense that it can, in principle, operate with any kernel.
The RBF kernel in eq. (6.2.7) admits a closed-form evaluation of the expectations in
eqs. (6.3.4) to (6.3.6) for a Gaussian distributed input variable. However, for the Student’s
t-distributed inputs, we have been unable to find any reasonable kernel admitting closed-
form solution and thus we resorted to standard Monte Carlo approximations, given

by

I
Eelk()] ~ 7 k(&) 63.11)
=1
I
B [kEk()(E)T] = 1 D k(EK(E) (6312)
=1
1
Belek(©)T] ~ 7 Do k(). 63.13)

where §; are samples from £ ~ St(0, I, v). Since decoupling is used in the moment
integrals, the kernel expectations do not depend on the moments of the input density
and only need to be pre-computed once, which significantly reduces computational
cost, especially, when the TPQ-MT is utilized in filtering algorithms.
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Algorithm 14: Student’s t-process quadrature moment transform. The function takes
the input mean m and covariance P together with the kernel parameters 6, the unit
sigma-points §,, arranged in columns of a matrix = and a DoF parameter v, to produce
the transformed moments p,, ITo, Ca.

1 Function TPQMT (m, P, 0, &, v,)

© e N N U

10
11
12
13

14
15
16

17
18

19
20
21
22
23

24

// Form sigma-points.
L < MatrixFactor(P)
X+ m+LE

// Evaluate nonlinearity at sigma-points.

Y « g(X)

// Evaluate kernel expectations.

ko Eg[k(€,€:0)]

forn < 1to N do

[d],, < Ee[k(£,€,;0)]

[R],,, < E¢[€k(§,€,,:0)]

form < 1to N do
(Ql,v < Ee[k(§,8,,:0)k(&,€,,:0)]
[K]nm — k(én’ 5771, 7 9)

end

end

// Compute TPQ weights.
w <+ Klq

W« K 1QK™!

W, + RK™'

// Compute transformed moments.
0% k—tr (QKﬁl)
fore =1to E do

vg—2+y Ky, 2
‘ [S]ee — vg—2+N o

end

py —Y'w

My <Y WY — pypi +S
Cpr +~ LW.Y

return g, ITo, Ca

25 end

90



6.3.1 Experiments

In this section, I compare the performance of the proposed TPQ-based Student’s -
filters and the Student’s t-filter introduced by Tronarp et al. [2016], which is based on
classical quadrature. The Student’s t-process quadrature Kalman filter (TPQKF) is obtained
by replacing the MomentTransform() routine in Algorithm 2 with the TPQ transform
TPQMT (), in Algorithm 14. Performance is assessed with the help of the familiar RMSE
(eq. (6.2.15)) and INC (eq. (6.2.16)) metrics.

Univariate Non-Stationary Growth Model

In the first numerical illustration, I consider the univariate non-stationary growth model
(UNGM), which is often used for benchmarking purposes [Gordon et al., 1993; Kitagawa,
1996]. The system is given by the following set of equations

25l‘k_1
1+ xi_l

2 = 0.052% + 7. (6.3.15)

xr = 0.52,-1 + + 8cos(1.2k) + qr—1, (6.3.14)

The initial conditions were drawn from x ~ N(0, 1). Outliers in the state noise ¢, and
measurement noise r;, were simulated with Gaussian mixtures, such that

e ~ 0.8N(0, 07) + 0.2N(0, 1007), (6.3.16)
ri, ~ 0.8N(0, 07) + 0.2N(0, 10007), (6.3.17)

where 03 = 10 and 02 = 0.01. I simulated 500 trajectories for 250 time steps, which were
used for evaluation of the RMSE and INC performance metrics. All tested filters used
a state-space model with an initial condition distributed according to o ~ St(0, 1, v)
and the following noise statistics

ax ~ St(0, 07, v), (6.3.18)

i, ~ St(0, o2, v), (6.3.19)

r

where v = 4.
I compared the RMSE and INC of the proposed TPQSF with the SF [Tronarp et al.,
2016], the UKF [Julier and Uhlmann, 2004] and a Student’s t-filter using the GPQ

MT [Priiher and Simand]l, 2016] (abbreviated GPQSF). The TPQSF and the GPQSF
will be collectively referred to as the BQ filters. Student’s ¢-filters used the same 3rd
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RMSE STD INC STD

UKF 8.6924 0.1517 3.0012 0.1539
SF 17.4461 0.6236 51.8733 0.4417
TPQSF (v, = 3) 7.5683 0.1091 1.5837 0.1561
TPQSF(vy = 4) 6.8323 0.1044 23384 0.1713
TPQSF(v, = 10) 6.1423 0.0154 5.6910 0.0324
TPQSF(vy =100) 74399 0.1550 12.5120 0.1676
TPQSF(v, = 500) 7.5709 0.1546 13.2104 0.1623

GPQSF 7.6766 0.1554 13.5926 0.1595

Table 6.3.1: Performance of TPQSF compared in terms of average RMSE and INC. Standard
deviations of the criteria were estimated by bootstrapping. For increasing DOF parameter v, of
the TP regression model the performance approaches that of the GPQSF.

degree fully symmetric sigma-point set with x = 0 and the filter DoF fixed at v = 4.
The kernel parameters for all BQ filters were set to 8y = [3 1] and 0, = [3 3].
Table 6.3.1 reports MC simulation averages of both metrics along with bootstrapped
variances [Wasserman, 2007] of the averages (using 10 000 samples). It is evident that
the TPQSFs can outperform all the classical filters (UKF, SF) as well as the GPQSF
in terms of both metrics. The values of INC, being closer to zero, indicate increased
estimate credibility. For increasing DoF of the Student’s ¢-process model, we observe
the performance of TPQSFs approaching that of GPQSEF, which is an expected behavior,
since TPQSF with v, = oo is equivalent to GPQSF.

Radar Tracking with Glint Noise

As a second illustration, I consider tracking of a moving object where the range and
bearing measurements are corrupted with glint noise. I adopted the example from
Arasaratnam et al. [2007], where the tracking scenario is described by the following
state-space model

1 700 72/2 0
01 0 0 T 0
X = Xp—1 + 1, 6.3.20
k 00 1 - k-1 0 722 A1 ( )
0 0 0 1 0 T
[ 2 2
2y — Te Y | 4y (6.3.21)
latan?2 (yx, xx)
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with the system state being defined as x;, = [iUk Tr Yk yk] . The state components x},
and y;, are the Cartesian coordinates of the moving object and the pair (zy, yx) stands
for the velocity in the respective directions. During simulations, the discretization
interval was 7 = 0.5s, the initial state was drawn from x¢ ~ N(m{, P§) with

my = [10000m 300ms™' 1000m —40ms™!], (6.3.22)
P = diag( [10000m? 100m2s~2 10000m? 100m2s2]). (6.3.23)

The state noise is Gaussian distributed, such that q; ~ N(0, Q) with covariance Q =
diag( [50m2s™* 5m2s7*] ). The glint noise in the measurements is modeled by a
Gaussian mixture

r, ~ (1 — B)N(0, Ry) + AN(0, Ry) (6.3.24)

with Ry = diag( [50m? 0.4mrad?] ) and Ry = diag( [5000m? 16 mrad?] ), where 3
is the glint noise probability.

As in the UNGM experiment, I compared the performance of the proposed TPQSF
with the SF, the standard UKF and the GPQSF. The UKF used « = 0, following the
usual heuristic recommendation. For the TPQSEF, I considered two settings of the TP
model DoF parameter, v, = 2.2 and v, = 4. All of the Student’s ¢-filters assumed that
the initial state, the state noise and the measurement noise were characterized by the
Student’s t-distribution, such that

xo ~ St(mgg, P§, v°), (6.3.25)
aj, ~St(0, Q, v9), (6.3.26)
r;, ~St(0, R, ") (6.3.27)

where the initial filtered mean and covariance were

m§, = [10175m 295ms™' 980m —35ms~!], (6.3.28)
olo = Po, (6.3.29)

with the DoF parameters v* = 1000, v = 1000 and v" = 4.0. The kernel parameters for
the BQ filters were set to 6y = [1 100 100 100 100] for the dynamics model and
6, =[0.05 10 100 10 100] for the measurement model.

The filter performance was evaluated by simulating 1000 trajectories, each 100
time steps long, and computing the Monte Carlo averages of the performance scores.
Figure 6.3.1 shows box-plots of the time-averaged RMSE scores. The left pane shows
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that the UKF and SF have more extreme outliers than the proposed TPQSF, while in the
right pane we see that the classical SF is better in terms of median RMSE. It is worth
noting that because TPQ-based filters have a tunable DoF parameter, they were able to
achieve improved median RMSE over the GPQ-based filter. From Figure 6.3.2, showing

125004 o O 1209
10000 - 8 8 1009
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~ 75004 O o 80
]
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& 5000 4
§ S O O O
< 2500 A o 40 7
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Figure 6.3.1: Overall filter RMSEs shown with outliers (left) and a detail without outliers (right).

The proposed TPQ-based filters have less extreme outliers, whereas the median RMSE favors
the classical quadrature-based SF.

the time-averaged INC score, we can deduce that the BQ filters provide more balanced
estimates on average, whereas the classical filters are excessively optimistic in their
estimates. This behavior is in accordance with the expectations, because the BQ filters
account for the additional functional uncertainty as described in Section 6.1. Table 6.3.2
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Figure 6.3.2: Overall filter INCs shown with (left) and without (right) outliers. The proposed
TPQ-based filters display improved INC with most outliers in the pessimistic direction, whereas
the UKF and SF are excessively optimistic.

shows the mean of the overall average RMSE and INC along with the their standard
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deviations, which were estimated by bootstrapping with 10000 samples. Evidently,
TPQSFs drastically improve the mean of the overall average RMSE and, as mentioned
previously, provide much more balanced state estimates.

RMSE STD INC STID

UKF 803.99 231.62 1837 1.80
SF 45749 200.88 1222 0.58
TPQSF(v, =2.2) 7729 3217 239 038
TPQSF(v, =4) 7554 3195 192 0.39
GPQSF 81.04 3217 352 045

Table 6.3.2: Overall RMSEs for the radar tracking example. The average RMSE favours the
TPQ-based filters. Our proposed filters also give more balanced state estimates on average, as
shown by the inclination indicator (INC) being closer to zero.

6.4 Conclusion

In this chapter, I have shown how a Bayesian view of quadrature can be leveraged
for the design of general purpose moment transform, which meets the Goal 2 from
Chapter 4. Unlike the classical transforms, the proposed GPQ and TPQ-MTs are able to
acknowledge the limited extent of knowledge of the integrated function when evaluated
at finite number of evaluation points and thus they can account for the integration error
incurred in computing the mean, by inflating the transformed covariance. The under-
lying models in the proposed transforms are non-parametric, which brings a number
of advantages. Namely, the transform is not restricted by polynomial assumptions on
the integrand (unlike the classical methods) and it quantifies predictive uncertainty,
which eventually translates into integral uncertainty. Should a situation arise when we
do not trust the function evaluations for any reason, the models have the capability to
account for noise in function evaluations. The proposed moment transforms are entirely
general, in that the equations hold for any kernel and input density; however, analyt-
ically tractable kernel-density pairs are preferable. I showed that the transform may
outperform classical transforms on a coordinate conversion and nonlinear sigma-point
filtering examples. In all experiments, the filters based on the BQ give more realistic

estimates of the covariance, hence are better at self-assessing their estimation error.
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Chapter 7

GPQ Moment Transforms with
Derivative Observations

The quadratures seen up to this point relied only on the function values. When the
integrand is differentiable, it might be beneficial to consider incorporating the derivative
evaluations into the quadrature rule for improving the integral approximation.

This chapter proposes the use of function derivatives as a way of decreasing the
GPQ integral variance. While the use of derivatives in BQ is not a completely new idea,
their use has not yet been systematically analyzed in the present literature. I design
a general GPQ moment transformation which uses gradients as additional source of
information about the integrand and also reveal connections between the proposed
transform and the linearization transform in Algorithm 3, which is a center piece of the
well-known EKF. Contributions in this chapter can be found in the following author’s

publication:

e J. Prither and S. Sdrkkid. On the Use of Gradient Information in Gaussian Process
Quadratures. In IEEE 26th International Workshop on Machine Learning for Signal
Processing (MLSP), pages 1-6, Sept 2016. doi: 10.1109/MLSP.2016.7738903

7.1 Gradient Observations in GP Quadrature

The use of derivative observations in GP regression is a special case of using linear
operator observations, which has been previously discussed, for example, in [Murray-
Smith and Pearlmutter, 2005; Sarkka, 2011]. I briefly review the problem setup and
state the main result, which is later applied to incorporate derivatives into GPQ.

First, let’s consider the GP regression problem on a scalar function g : RP & R,
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where, in addition to observing function values g(x;,) for every input x,,, we also observe
gradients Vg(x,). We could look at it as having two observation models, so that

yn = g(xn) +¢,  £~N(0,0%), (7.1.1)
0, = d(x,) + €4, eq ~ N(0, o71), (7.1.2)

where d : RP? — RP is a gradient of function g(x) defined as
. dyg dg T
d(x) = Vg(x) = [871 %} . (7.1.3)

Since gradient is a linear operator acting on a GP distributed function g, the d is also a
GP. This fact is an infinite dimensional analogue of the affine invariance property of

Gaussian random variables. With gradient observations incorporated, our dataset is

N
n=1"

now D = {(xp, yn, On)}
In order to distinguish covariances, the following notation is adopted

kgg(x,x") = Clg(x), 9(x")], (7.1.4)
kga(x,x") = Clg(x),d(x")], (7.1.5)
]{de<X, X/) =C [d(X), d(X/ﬂ . (716)

Assuming the observations are exact (zero noise), the GP predictive mean and variance
are given by

Eqg(x) | D] = k(x) 'Ky, (7.1.7)
Vylg(x) | D] = kgg(x,x) — k(x) 'K 'k(x), (7.1.8)

where all observations are arranged in a (N + ND x 1) vector

Y1 01
y = ly9], where y, = | : and y;=1|:|. (7.1.9)
Ya
YN oN
The layout of the block matrices is
k K, K
kx) = |<9®)| ng k= Ko Ko (7.1.10)
kgq(x Ky Ky
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where

N
kgd(X) = Z e, ® kgd(x7 Xn)» (7.1.11)

n=1
N

Kyi= D, emey @ kyi(Xm,Xn), (7.1.12)

m,n=1
N

Kia = ) eme, ® kai(%m, %n), (7.1.13)
m,n=1

where ® denotes Kronecker product. Since

0

kga(x,x,) = @kgg (x, x’) , (7.1.14)
0? I
kgq(Xm, Xp) == mkgg(x,x') (7.1.15)

are a (D x 1) vector and (D x D) matrix respectively, the K q is (DN x IV) block matrix
and K 4 is (DN x DN) block matrix. The Figure 7.1.1b shows the reduced predictive
variance of GP regression fit when gradient observations are used. The same kernel
parameters are used in both cases.

Finally, with the augmented expressions (7.1.7) and (7.1.8) in hand, incorporating
derivative information into the GPQ is very straightforward. Plugging eqgs. (7.1.7)
and (7.1.8) into egs. (3.3.2) and (3.3.3), the expressions for first two moments of the
integral are obtained

E,[Ex[g(x)]] = Ex[k(x)] K 'y =q Ky, (7.1.16)
Vy[Exlg(x)]] =k —q K 'q. (7.1.17)

Since y contains gradient observations as well, the quadrature weights are stacked in
the following layout

w:[wl coowy (whHT (wi) ' (7.1.18)

where w¢;, € RP. This means, that eq. (7.1.16) is a quadrature rule of the form

N N
Qlg) = D wag(xa) + Y _(wi) " d(xn). (7.1.19)
n=1 n=1
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The Figure 7.1.1c illustrates the reduction in integral variance when the additional
gradient observations are included. Both the GPQ and GPQ with gradient observations
(GPQ+D) produce distributions centered on the true value of the integral.

(b)

(0

Figure 7.1.1: Approximation of the true function (dashed) with the GP mean function (solid).
(a) Approximation using function observations (dots) only. (b) Approximation using function
values and gradient observations (line segments). (c) Densities over the value of the integral.
The integral variance of GPQ+D (solid) is visibly smaller than that of GPQ (dash dot). Both
densities concentrate near the true value of the integral (dashed).

7.2 GPQ Transforms with Gradients

Mathematical derivation of the GPQ+D moment transform follows the same tem-
plate as the previous BQ transforms in Sections 6.2 and 6.3. I take the expressions for
GPQ+D integral mean and variance from egs. (7.1.16) and (7.1.17), and substitute them
into the general expressions for the BQ transformed moments in egs. (6.1.4b), (6.1.4e)
and (6.1.4g).

The only remaining issue is the extension of results from the previous section to
the case of vector functions g : R — RE. This is easily accomplished by extending
the matrix y with additional columns, each of which contains all observations of one
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particular output of g(x). For clarity, layout of the observation matrix is as follows

yi ys yr
Yn 7 yf
N P R | oo
ol ... 8¢ ... oF
g 55:«; oL
ON 5:% 5% ]

where n and e index sigma-points and outputs, respectively.
To summarize, the proposed Gaussian approximation of the joint distribution of

x ~ N(m, P) and the transformed random variable y = g(x) based on the GPQ with
derivative observations (GPQ+D), is given by

[X ~ N< > : (7.2.2)
y

where the transformed moments are computed by the Algorithm 15.

P Ca
C, Iy

m

127N

)

7.2.1 Connection to Linearization Transform

General GPQ+D moment transform is formulated for arbitrary kernel and sigma-point
sets. Below, I give proofs that GPQ+D reduces to linearized transform for two particular
choices of the kernel. In the derivations, I use the centered variant of the GPQ+D
transform, which uses a substitution x = m + 7, n ~ N(0, P) in the Gaussian integrals
in egs. (3.2.2a) to (3.2.2c). Thus GP models the function g(n) = g(x) = g(m + n), so
that g(n) ~ GP(0, k(n,n’)). Expressions for the mean and covariance of the centered
GPQ+D, on the lines 30 and 31 of Algorithm 15 respectively, remain formally the same,
except for the input-output covariance, which becomes

Cy = W.Y. (7.2.3)

In order for the GPQ+D to be equivalent to the linearization transform, clearly, the
expressions for the mean and covariance on the lines 30 and 31 of the Algorithm 15 and
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Algorithm 15: Gaussian process quadrature moment transform with additional deriva-
tive observations of the integrand. The function takes the input mean m and covariance
P together with the kernel parameters 8 and unit sigma-points §,, arranged in columns
of a matrix = to produce the transformed moments g, II5, Ca.

1 Function GPQDMT (m, P, 0, &)

10
11
12

13
14
15
16
17
18
19
20
21

22

23

24

25

26
27
28

29
30
31
32

33

// Form sigma-points.
L < MatrixFactor(P)
X+ m+LE

// Evaluate nonlinearity and its gradient at sigma-points.
Y, + g(X)
Y.+ Vg(X)

Y,
Y {YJ

// Evaluate kernel expectations.
k  Eglkgg(€,€:0)]
forn < 1to N do
[agy), ¢ Eelkgg (€, &,50)]
[Rg]*n — Eﬁ [ékgg(‘s £, 0)]
Kgd — Kgd +e,® k‘gd(ﬁ & 0)
Qgd — Qgd +te,® Eﬁ[ (]d(év Sn ) 0)]
Rd <~ Rd +e,® ]EE [skgd(éa Sn ) 0)]
form < 1to N do
[Kgg]nm A kgg(&m Em ; 0)
[Qgg]nm A E§ [kgg (57 Sm ; g)kgg (57 Sm, ; 0)}
Kiq <+ Kag + ene,), @ kqa(€,,,&,,;0)
di A di + ener—wrﬁ, ® ]E§ [kgg (gna E 5 e)kgd(£7 6
Qug — Qua +ene), @ Eglkag(€,,€:0)kga(€, €
end

end
K,, K/

K — 99 gd}

Kga Kag
qgg}

<_

4 [flyd

Qyy Qua

Q — 99 g
1Qga Qua

R+ [R Rd]

// Compute GPQ+D weights.

w <+ Klq

W« K 1QK™!

W, RK™!

// Compute transformed moments.
o2« F—tr (QKY)

Ha — Y'w

My < Y WY — ppj + 021

Cyr + LW.Y

return p,, I, Cy

34 end
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the cross-covariance in eq. (7.2.3) should be equal to egs. (3.2.5a) to (3.2.5¢) respectively.
This can be achieved when GPQ+D uses single sigma-point xg = m (1, = 0), in which

case Y = [g(m) G(m)] " and the weights are given by

e H,W:

Additionally, 02 = 0 must hold.
The linearized transform uses derivative at one point to approximate the nonlinearity

0 o'
0o P

1 0"
0 P

Y c —

. (7.2.4)

with a tangent line. The same can be achieved with GP regression using affine kernel
and gradient observations.

Theorem 6 (GPQ+D with affine kernel). Let the kernel be given as
kgg(m,m') = 0p +n' =nf

with ¥ = diag([o? ... o%]). Assume that one sigma-point 1y = 0 is used. Then the
general GPQ+D transform reduces to the linearized transform and the variance of the mean
integral is zero.

Proof. The kernel derivatives are

kga(n,m') = En, (7.2.5)
kaa(n,m') = =. (7.2.6)

After evaluating the kernel at 1, and its expectations, we find that

2 -2 T 4 T
ops 1 o 0 op O
= , K= , Q= 727
4 [0] [0 =1%o zpx 7.27)

plugging into the expressions for weight matrices w, W and W, from Algorithm 15, we
obtain the linear transform weights given by eq. (7.2.4). Expected GP variance reduces
to 02 = 02 + tr (PX) — (03 + tr (PX)) = 0. Plugging q and K~ ! into eq. (7.1.17), it is
easily verified that the variance of the mean integral is zero. ]

In a similar fashion, we can use the radial basis function (RBF) kernel with infinite

lengthscale to obtain linearized transform.

Theorem 7 (GPQ+D with RBF kernel and A — o). Let

Koo (n,m') = a?exp (=3 (n—n') A7 (n—n'))
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where A = X1 and )\ is the lengthscale parameter. Assume that one sigma-point n, = 0 is
used. Then the GPQ+D transform reduces to the linear transform for X — oo and variance of
the mean integral is a® — 1.

Proof. The kernel derivatives are
kga(n,m') = A~ (n =) kgg(n, 1) (7.2.8)

kaa(mn') = [T— A" (n— ') (0 — ') " JA kg (n, ) (7.2.9)

After computing all the necessary kernel expectations on the lines 7 to 19 of Algorithm 15,
we find that

a" = |a2[PA~t + 17 o (7.2.10)
—072 ol
K!= 7.2.11
0 o 2A ( )
b 0"
= 7.2.12
Q 0 bA 1A+ P H A ( )

and b= o2A7'P + 1]71/2. The weights are

_ T
w=[ATP+I 1 07| (7.2.13)
12 |1 o'

W = 2P + 1| /2 , 7.2.14
| | 0 A l4+PH! ( )

—1/2 |0 o'
W, =|A P41 P (7.2.15)

0 (At+pPHt

Taking a limit for A — oo, we obtain the linear transform weights in eq. (7.2.4). Expected
GP varianceis 02 = o? — b[a™2 + tr (2A~' + P71)7'A™1)] for which limy_,o, 0 = 0.
Plugging in q and K~ ! into eq. (7.1.17), the variance of the mean integral becomes

—-1/2

Vy[Enlg(n)]] = o?2A7 P+ 1|7 — AP 4+ 1|7,

which, for A — oo, approaches a? — 1. O
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7.3 Numerical Experiments

In all numerical experiments, I tested decoupled variants of GPQ and GPQ+D moment
transforms. Both transforms operate with the RBF kernel and use spherical-radial unit
sigma-points. The kernel parameters A and a were set to good heuristic values for each
experiment independently. Both transforms were compared against the spherical-radial
transform (SR) [Arasaratnam and Haykin, 2009].

7.3.1 Analytical example

In the first experiment, I considered a simple example, where the transformed moments
can be computed exactly. A well known fact is that a random variable given by sum of
squares function (SOS)

z=gsos(x) =x'x, where x~ N(0,Ip) (7.3.1)

has density z ~ x?(D) with mean D and variance 2D. Kernel parameters of both
GPQ-based transforms were o = 1 and A = 10. It is apparent from the Table 7.3.1, that,

D 1 5 10 25
Mean

True 1.00 5.00 10.00 25.00
SR 1.00 495 10.00 25.00

GPQ 1.00 5.00 10.00 25.02
GPQ+D 099 5.00 9.89 24.49

Variance
True 2.00 10.00 20.00 50.00
SR 0.00 0.00 0.00 0.00

GPQ 0.00 001 005 078
GPQ+D 192 9.61 19.16 46.44

Table 7.3.1: Comparison of transformed mean and variance for increasing dimension D com-
puted by the SR, GPQ and GPQ+D moment transforms.

while SR and GPQ transforms capture the mean fairly accurately, they completely fail
to capture the variance of transformed random variable. GPQ+D is the only transform
that comes close to the true transformed variances. Table 7.3.2 demonstrates that by
including gradient information the variance of the mean integral decreases. Figure 7.3.1
shows the GP regression fit to eq. (7.3.1) for D = 1. The ordinary GP regression fit, in
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Figure 7.3.1a, fails to capture the true function, whereas by including the derivative
information the fit improves significantly as seen in Figure 7.3.1b. This is because we
are using symmetric sigma-point set and eq. (7.3.1) is an even function.

(a) (b)
Figure 7.3.1: (a) Approximation used by GPQ. (b) Approximation used by GPQ+D.

D 1 5 10 25

GPQ 1.14e-08 5.56e-08 3.31e-07 4.62e-06
GPQ+D 6.62e-09 3.16e-08 2.75e-07 4.27e-06

Table 7.3.2: Comparison of variance of the mean integral for GPQ and GPQ+D. Overall, including
derivative information decreases variance

7.3.2 Sensor network measurements

The second experiment is inspired by Gustafsson and Hendeby [2012], who considered
nonlinear measurements commonly encountered in sensor networks. These are, time

of arrival (TOA), direction of arrival (DOA) and received signal strength (RSS) given by

g1oA (X) = [|x||2, (7.3.2)
gpoA (x) = atan2(zq, z2), (7.3.3)
grss(x) = 10 — 20log;o(|1x13), (7.3.4)

where atan? is the four-quadrant variant of atan. As an example of vector function, I
considered radar measurements (RDR) which arise as a mapping of range r and bearing
¢ to Cartesian coordinates given by

(7.3.5)

rsin 6

gror(X) = [T o 0] .

The symmetrized KL-divergence was used to measure the distance between the baseline
moments of the Gaussian distribution, computed by Monte Carlo transform with 20 000
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samples, and the transformed distribution computed by SR, GPQ and GPQ+D respec-
tively. The covariance of the input distribution was randomly generated and results
were averaged over 100 MC simulations. Since DOA and RDR functions are limited
to two-dimensional inputs, I tested for D = 2 only. Table 7.3.4 shows that including
gradient observations in GPQ can improve the average symmetrized KL-divergence;
in case of TOA, even by two orders of magnitude. Values of the kernel parameters for

TOA RSS DOA RDR

A 3.0 02 20 5.0
a 10 10 1 1

Table 7.3.3: Values of the RBF kernel parameters.

individual functions are summarized in Table 7.3.3.

SR GPQ GPQ+D

TOA  2.74e-02 3.37e-01 4.61e-03
RSS  4.48e+00 4.76e-01 4.70e-01
DOA  5.48e-03 5.99e-03 1.80e-03
RDR  6.48e-01 7.07e-01 2.94e-01

Table 7.3.4: Comparison of the SR, GPQ and GPQ+D moment transforms in terms of sym-
metrized KL-divergence performance.

7.4 Conclusion

In this chapter I analyzed the use of gradient observations in GP quadratures and
designed general moment transformations based on GP quadrature with gradients. The
proposed transforms were tested on a range of functions arising in the sensor network
applications. Using Monte Carlo simulations, I have shown that including additional
gradient observations improve the accuracy of computed moments as measured by the
symmetrized KL-divergence. Finally, I gave proofs for the two limit cases when the
proposed transform reduces to the linear transform based on Taylor series, which meets

the final goal of this thesis set out in Chapter 4.
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Chapter 8
Conclusion

This thesis focused on the application of the Gaussian process regression models for the
recursive system identification and applications of the Bayesian quadrature for design
of the moment transformations, commonly found in state estimation algorithms.

The early chapters were focused on the preliminaries necessary for building up the
background to the contributions presented in the later chapters. The contemporary
system identification algorithms for linear as well as nonlinear systems were reviewed
and detailed explanation of the non-parametric Gaussian process regression model was
presented. The current state-of-the-art in the local nonlinear filtering was reviewed next,
where the moment transforms were identified as the key component. The Bayesian
quadrature was presented as a novel alternative view to the numerical integration
offering many advantages over the classical methods.

Leveraging advantages of the Gaussian process regression for recursive system
identification was the main theme of the Goal 1 stated in Chapter 4 as:

(a) Investigate suitability of the RGP algorithm for recursive system identification as means for
decreasing computational demands of the original GP model.

(b) Bound the computational demands for kernel parameter optimization.

In Chapter 5, I applied the recursive GP algorithm to system identification and proposed
an ad-hoc kernel parameter optimization procedure, which significantly reduced the per-
iteration computational cost. The proposed RGP identification algorithm was compared
with the full GP in the system identification experiments. Even though the RGP is an
approximation, I found it gave overall comparable performance to the FGP under mild
assumptions on the boundedness of the state trajectory. The RGP identification was
later applied in the functional adaptive control loop. Despite its slower adaptation, the

107



experiments showed that the RGP control can achieve comparable performance in terms
of tracking error. With it’s current basis vector placement scheme, the proposed RGP
control algorithm is practically applicable to lower-order systems. For higher-order
systems, an alternative placement scheme, which scales favorably with the dimension
of the state vector, would have to be developed.

Chapter 6 focused on the moment transforms based on the Bayesian quadrature
and addressed the Goal 2, which revolved around improvement of the current state-of-
the-art moment transformations. The sub-goals were stated as follows:

(a) Leverage the statistical view of quadrature for the design of general purpose moment trans-
formations and incorporate the approximation error in the output mean, in eq. (3.2.2a), into
the moment transformation process.

(b) Use the proposed moment transformations to improve estimate quality of the nonlinear
sigma-point filters; especially in terms of credibility of the covariance estimates.

The problem of incorporating the integral variance was elegantly solved for any proba-
bilistic model of the integrand. I utilized the GP and the TP regression, because they
are analytically convenient, and designed the corresponding general purpose moment
transforms. Employing the BQ-based transforms in both the Gaussian as well as the
Student’s t-filters resulted in significantly improved credibility of the covariance esti-
mates, thus lending credence to the suspicions raised in the Chapter 4 about the leaking
integration error. For higher dimensions of the system state it is becoming increasingly
difficult to come up with good initial guesses for the kernel parameters that yield com-
petitive results, which is why I would recommend these filters for systems with lower
state dimension.

The Chapter 7 was concerned with the design of GPQ transforms that can make
use of the information about derivatives of the integrand and thus addressed the final
Goal 3 of this thesis, formulated as:

(a) Explore the question of derivative information in BQ as means for reducing the integral
variance and attempt to find connections with classical linearization.

Perhaps not so surprising theoretical connection, which I proved in Chapter 7, is that
the GPQ transform with derivatives can be reduced to familiar linearization for suit-
able choices of kernels and sigma-points. Including additional derivative information
helps reduce the integral variance and, as shown experimentally, the derivatives play a
decisive role in situations when the integrand is an even function and the sigma-point
set is symmetric.
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8.1 Challenges and Future Work

The Bayesian approach to quadrature is not without its challenges. One peculiarity
is that the point-sets are not prescribed by the rule, which can either be viewed as an
opportunity, because they could be optimized to minimize the integral variance; or a
burden, because the additional degree of freedom introduces ambiguity regarding the
choice of criteria for point selection. More importantly, the proposed BQ transforms
assume that we can guess suitable values of the parameters, which is certainly possible
if the analytic form of the integrand is known a priori, as is the case in nonlinear filtering.
The standard evidence maximization method for fitting GPs works well if the number
of points is large enough, but produces unsatisfactory estimates for minimal point-sets,
such as those used in local filters. A principled method for optimizing the parameters
for small point-sets still remains to be found and presents an interesting challenge for
future research.

In the GPQ and TPQ), the choice of the kernel plays a decisive role, because it encodes
assumptions on the integrand and also affects computations of the quadrature weights
through the kernel expectations. Ideally, we need to choose the kernel such that the
induced assumptions about the integrand are acceptable for the given application and
the kernel expectations are tractable. Meeting both criteria at the same time is very
hard, if not impossible in some cases, which is why the use of approximate kernel
expectations might become inevitable. The proposed moment transforms relied on the
commonly used RBF kernel for tractability reasons. The induced assumption is that
the integrand is infinitely differentiable (smooth), which may be unacceptable for some
applications.

In spite of these challenges, I hope to have shown that accounting for the integration
error in local filters is a worthy pursuit, which will spur further research.
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Appendix A

Appendix

A.1 Multivariate Gaussian Probability Density Function

N(x|m, P) = [27P| "2 exp (—;(x —m) P l(x— m)> (A.1.1)

Product of Two Gaussian Probability Density Functions

According to [Petersen and Pedersen, 2012] the formula for the product of two Gaussian
densities can be written as

N(X ’ mi, P )N(X ’ mgo, PQ) = N(m1 ‘ my, P; + P> )N(X ’ m, P) (A12)

where
m = P(Pl_lml + Pz_lmg) (A.1.3)
P=(P;l+Py )" (A14)

A.2 Multivariate Student’s ¢-density Function

In the following, let x € RP be a Student’s ¢t-distributed random variable. Multivariate
Student’s ¢-density can be defined in various ways, see [Kotz and Nadarajah, 2004].
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Scale parametrization

This is the most commonly encountered parametrization.

v+D ~5P
( ; ) - <1 + l(x _ m)Tzfl(X — m)) ? (A21)
r(%)|vrs|2 Y

St(x|m, ¥, v) =

Covariance parametrization

Plugging the relationship between the scale and covariance matrices ¥ = “-2P into
eq. (A.2.1), yields

r(=2) rpet E
St(x|m, P, v) = 1<1+ (x—m) P (x m))
I'(%)|(v —2)7P|2 v
(A.2.2)
A.3 RBF Kernel
For x,x’ € RP, the radial basis function kernel (RBF) is given by
k(x,x') = a®exp (—;(x —x)TA  (x - X/)) , (A.3.1)
with A = diag( [)\1 oA D} ), where a and \; are parameters. Comparing egs. (A.1.1)

and (A.3.1), the RBF kernel can be written with the help of Gaussian PDF as

k(x,x') = 042|27TA|%N(X | x', A) (A.3.2)
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RBF Kernel Expectations w.r.t. Gaussian Density

This section contains derivations of the RBF kernel expectations w.r.t. an arbitrary
Gaussian PDF.

(a, = Ex[k(x, xn)] = / k(x, x,)N(x | m, P)dx (A3.3)
- a2|27rAy%/N(x\xn, A)N(x|m, P)dx (A3.4)
= o®|2nA|2N(x, | m, A+P)/N(x|u, >) dx (A3.5)
— o2|27A|2N(x, |m, A + P) (A.3.6)

Using the definition of the Gaussian density in eq. (A.1.1), the expression simplifies to

q], = 042‘A*1 + I}_% exp (—%(Xn — m)T(A + I)fl(xn — m)> (A.3.7)
R),, = Ex[xk(x,x,)] = /xk(x,xn)N(x |m, P)dx (A.3.8)

= o?|27A|2N(x,, | m, A—i—P)/xN(x\u, »)dx (A.3.9)

= [a],p = [a], (A + 1) 'xp, (A.3.10)

where [q],, is defined above.
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Q. = Ex[k(x,xn)k(x, %) = /k(x,xn)k(x,xm)N(x |m, P)dx
:a4\(2w)2A2\5/N(x|xn,A)N(x\xm,A)N(x\m,P)dx
— a4‘(27r)2A2‘%N(xn‘xm, 2A)/N(x{znm, $A)N(x|m, P)dx

- a4\(2ﬂ)2A2‘%N(xn\xm, 2A)N(zpp, |m, A+ P) /N(x| o) dx

= o1](2m)2A2|7 |202A] 2 [20(3A + P)| 2

x exp (=300 = xm) T SAT (%0 = X))
X exp (—%(an —m)"(AA +P) Nz — m))
— o!2A71P + 1 (A3.11)
X exp (—%(xn —Xm)  SAT (xn — Xpm) = 3(Znm —m) " (GA +P) Nz, — m))
(A3.12)

where z,,,,, = %(xn + X,,). Deisenroth et al. [2009, p.22] gives a simplified form of the

exponent, so that

QL = 2A7P 1| exp (—1[CTATIC, + CLATIC,, — 20, R Pa )
(A.3.13)

where ¢,, = x, —mand R = QAP + 1.
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