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Anotace

Tato disertac¢ni prace se zabyva adaptaci jazykového modelu na téma v redlném case.
Jde o mechanismus navrzeny pro snizeni chybovosti automatického rozpoznavace teci
v ulohéach zivého prepisu vicetématickych promluv, kde obecny jazykovy model neni
schopen dostate¢né popsat rozdilné statistiky posloupnosti slov v jednotlivych tématech.
Zékladni myslenka spocivd v dynamickém piizpusobovéani jazykového modelu béhem

zivého rozpoznavani na zakladé tématu detekovaném v rozpoznané reci.

Nejprve je shrnut aktudlni stav poznéani této problematiky doplnény detailnim teoretic-
kym zakladem pro pouzité metody a modely. Popsané metody zpravidla kombinuji dvé
vyznamné vyzkumné oblasti: automatické rozpoznavani feci v redlném cCase a automa-

tickou identifikaci tématu.

Poté je navrzeno inovativni rozsifeni existujictho automatického rozpoznavace feci o
adaptaci jazykového modelu na téma v redlném case. Originalita navrzeného feSeni
spociva predev8im v minimalizaci prodlevy adaptace na téma diky paralelnimu béhu
dvou dekodéru (obecného a tématického) zaroven a naslednému spojeni obou vystupt,

coz vede ke snizeni chybovosti slov pfi zivém rozpoznavani feci.

Navrzeny adaptabilni systém byl implementovan a otestovan na dvou vicetématickych
problémech: zivy piepis televizniho zpravodajstvi a zivy prepis televiznich sportovnich
prehledi. Experimenty v této praci v obou piipadech prokazaly, ze navrzeny systém
pracuje vyznamné lépe nez neadaptabilni systém a ze adaptace jazykového modelu na
téma snizuje chybovost zivych piepisu, zejména pak vlastnich jmen tzce spjatych s jed-

notlivymi tématy.






Annotation

The research area of this thesis is online topic-based language model (LM) adaptation. It
is a mechanism designed to reduce word error rates of real-time automatic speech recog-
nition (ASR) systems in multi-topic tasks, where a general LM cannot model varying
word sequence statistics in particular topics appropriately. The base idea is to dy-
namically adjust the LM during live decoding based on topics detected in the decoded

transcripts.

First, the thesis surveys the state of the art of the problem including also detailed theo-
retical background of used methods and models. Described methods usually combine two
very important research areas: real-time automatic speech recognition and automatic

topic identification.

Next, an innovative solution to extend existing real-time ASR system by online topic-
based LM adaptation is proposed and described in details. The originality of proposed
solution lies primarily in minimizing latency of the topic-based adaptation by using two
parallel decoders (general and topic-specific), and online merging their outcomes in order

to reduce word error rate during online speech recognition.

The proposed adaptable system was implemented and tested for two multi-topic real-
time ASR problems: live transcription of TV news and live transcription of TV sports
summaries. For both problems, experiments in this thesis showed that proposed system
performs significantly better than a system without LM adaptation, and that topic-based
LM adaptation can reduce error rates of live transcripts, especially by better recognizing

topic-specific proper nouns.
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Chapter 1

Introduction

Automatic speech recognition (ASR) systems have become very useful in people’s ev-
eryday lives. ASR system produces a digital transcript of uttered speech automatically
without the need of typing words manually. The transcript can then be used to extract
various information in order to analyze the speech. Thus, it can save a lot of time and
work in human-to-computer interactions, which are increasingly important in present

days.

Typical applications, in which ASR is indispensable, are: (1) chatbots, virtual assis-
tants and dialogue systems, where people are conversing with computers, (2) dictating
systems, where people need to note a large amount of information without typing it,
(3) in-vehicle systems, where hands-busy and eyes-busy drivers need to operate onboard
devices, (4) multi-media searching in large audio or video databases, where manual tran-
scription would be unfeasible, (5) forms with voice input allowing people to fill any text
field (e.g. queries to search engine or SMS content) by speaking on a mobile phone or
computer, or (6) closed captioning of live videos, which helps deaf and hard-of-hearing

audiences to access the speech in videos.

However, if the domain of the recognized speech does not match the domain the ASR
system has been trained for, the resulted transcript is usually errorful. For example, if we
take ASR system trained for medical dictating system and use it to transcribe political
debates, we will most likely obtain unintelligible transcript, because politics and medicine
have markedly different vocabulary and word sequence statistic. Such domain mismatch
often arises when dealing with multi-topic speech, in which the speaker switches from

one topic to another frequently.

A standard mechanism used in the literature to reduce effects of the domain mismatch in

multi-topic tasks is a language model (LM) adaptation. The principle of LM adaptation
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is to use a domain-independent general language statistics in the first pass to get a base
transcript of the speech. This transcript is then analyzed and a topic is predicted for
each utterance. Based on predicted topic, each utterance is then recognized again in the

second pass using system adapted to the particular topic.

Much more complicated situation occurs when the ASR system must transcribe a multi-
topic speech online, i.e. in the real time. In such tasks, the transcribed words must
be available at the very same time (or with reasonably small delay) as the words are
uttered. The online LM adaptation is required especially in dictating systems, where
the user can change the topic of his speech anytime and the system must adapt quickly,
or during closed captioning of live multi-topic TV shows. For example, in the task
of closed captioning of live TV news, each individual report can be about completely
different topics and the captions must be shown to the viewer very soon after uttered
in order to match text with the underlying video. In such online tasks, the standard
two-pass approach cannot be used. Instead, the topics must be dynamically identified
in just-uttered words and whenever a topic change is detected, the system must adapt

as soon as possible.

This thesis deals with the problem of online topic-based language model adaptation. The
proposed solution combines two very important research areas: real-time automatic
speech recognition and automatic topic identification. The objective is to build a com-
plex ASR system capable of real-time speech recognition and low-latency topic-based
LM adaptation in order to reduce word error rates in multi-topic tasks. The originality
of this work lies in minimizing latency of the adaptation by using two parallel decoders
(instead of a common two-pass approach, which cannot be used online) and online merg-
ing their outcomes. The way the change of topic is detected from partial hypotheses is

also innovative in this work.

1.1 Outline of the Thesis

After this introduction chapter, the main objectives of the thesis are listed in chapter [2}
Then, in chapter [3 the theoretical background for approaches discussed in this thesis
is summarized. The chapter covers three key research areas this thesis is building on:
automatic speech recognition (section , automatic topic identification and lan-
guage model adaptation . Chapter 4| sums up the state of the art of the problem

including all inspiring and relevant approaches we are aware of.

An innovative solution to extend existing online ASR system by topic-based language

model adaptation is proposed and described in chapter |l Proposed solution was tested
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in two challenging multi-topic tasks: online transcription of TV news (chapter @ and
online transcription of TV sports summaries (chapter . The most important results
are tabulated in chapter[8|along with a test of their statistical significance, and discussed

in chapter [9

Finally, the last chapter [10| concludes the thesis and suggests future work.






Chapter 2

Objectives of the Thesis

The main objectives of this thesis are:

1. Survey the problem of language model adaptation with accent on online and topic-

based methods.

2. Propose a solution to extend existing online ASR system by online topic-based
language model adaptation. The proposed system should be able to detect a
change of a topic in a real-time speech and adapt the language model online with

the latency as low as possible.

3. Implement proposed solution in suitable programming language. The implemen-
tation should be fully modular allowing user to easily change component modules.
Default parameters should be set to reasonable values. By changing default val-
ues, the user should be able to experiment with the system in order to fine-tune

parameters for particular task.
4. Select suitable multi-topic real-time ASR problems to test the proposed system.

5. On selected tasks, use existing online ASR as a baseline system and evaluate error

rates.
6. On selected tasks, use proposed ASR system and evaluate error rates.

7. Compare error rates and evaluate the improvements of the proposed system over

the baseline system.






Chapter 3

Theoretical Background

This chapter provides reader with theoretical basis and relevant mathematical formulas
from three key research areas this thesis is building on: automatic speech recognition

(section 3.1)), automatic topic identification (section [3.2)) and language model adaptation

(section [3.3).

3.1 Automatic Speech Recognition

The goal of Automatic Speech Recognition (ASR) is to automatically convert spoken lan-
guage into a text using a computer. The research of ASR started with recognition of iso-
lated words with a small vocabulary (e.g. digits) and continued to a large-vocabulary con-
tinuous speech recognition (LVCSR) systems, where by ”large-vocabulary” researchers
usually mean hundreds of thousands words and by ” continuous” that words in the speech
are running together naturally (Martin and Jurafsky, 2000). Nowadays, almost every
modern ASR system is LVCSR, especially for highly inflected languages, where the vo-
cabulary have to incorporate even few million words and word forms in order to avoid

high OOV-rate.

In present days, ASR has many useful applications, for example in dictation systems,
dialogue systems, virtual personal assistants, home assistants, multi-media archives,
voice-navigated systems, in-vehicle systems, closed captioning systems and many others.
ASR is especially useful in hands-busy or eyes-busy applications, where the user needs
to interact with the computer, but cannot concentrate on typing (e.g. when driving a

car).

Mathematically, ASR system can be defined in the following way. Given the observed

acoustic signal represented as a sequence of observation vectors O, we are searching for

7
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a sequence of words W*, which is the most probable one of all possible word sequences
in a language .Z:

W* = argmax P(W|O). (3.1)
Wez

Using a Bayes rule, we obtain

W* = arg max —P(O|W)P(W)

PR (0) (3.2

Since P(0O) is a constant value for all word sequences W, it can be ignored, and we can

write a key formula for ASR system

W* = argmax P(O|W)P(W). (3.3)
Wwe¥
P(W), the prior probability of word sequence W, is modeled by a language model (LM)
and P(O|W), the probability that given the word sequence W, the observation sequence
is O, is modeled by an acoustic model (AM).

acoustic lexi language
model exieon model

s eech acoustic WOl’dS
)>> —bp features decoder
extractlon

FIGURE 3.1: General framework for ASR system.

A typical framework for an ASR system is depicted in figure The speech signal
is processed by acoustic features extraction block, which extracts characteristic features
from the observed signal. Then, the acoustic and language model together with a lexicon
(defining the pronunciation of all words in the vocabulary) contribute to solving the
equation [3.3] which is a problem usually referred to as a decoding. The part of ASR
system dealing with the decoding problem is called a decoder. In following subsections,

these blocks will be discussed in more detail.

3.1.1 Acoustic Features Extraction

Acoustic features extraction is a task of converting an acoustic signal into a sequence
of feature vectors (observations). Typically, the input speech signal is sliced into short
time-segments, called frames. A typical duration of one frame is 10ms. In such a
short time interval, the acoustic signal is considered to be a stationary signal, from

which characteristic spectral features are extracted. The most popular features used
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in ASR systems are Perceptual Linear Predictions (PLPs) and Mel-Frequency Cepstral
Coefficients (MFCCs). To put it simply, these features are reflecting how much energy
in the signal is at different frequencies. For detailed comparison of various feature types

see (Davis and Mermelstein, [1980]).

It has been shown (Furui, 1986) that the performance of ASR system can be greatly
enhanced by concatenating the feature vector with its time derivatives. These derived
features are known as delta coefficients. The delta coefficients ¢ of a basic (static)

coefficients ¢; in the time (frame) ¢ can be computed as

Ct+A — Ct—A
ctA = T, (3.4)

where A is the size of the frame window which is usually set to 1. Also, the second-
order derivatives known as delta-delta or acceleration coefficients can be calculated and
concatenated with the feature vector in the same way, but they are calculated from the

deltas, not from the static coefficients.

3.1.2 Acoustic Model

The acoustic model (AM) models the relationship between the sequence of observations
(parameterized audio signal) and the basic phonetic units in the language (e.g. phones,
triphones etc.). The most common way how to do that is using hidden Markov models
(HMMs).

Word Model
by(0)  \ byloy PO /P00y o
Observation
Sequence
0, O, 0; 0, Oy 0

F1GURE 3.2: An example of a HMM word model generating the observation sequence

01,09, ...,06 taken from (Martin and Jurafsky, 2000). The underlying word is "need”

consisting of phonemes n, iy, d. Transition probability from state i to state j is denoted

as a;; and observation likelihood of k-th observation vector being generated from a

state i is denoted as b;(0x). Note that self-loops a;; are here to model variable phone

duration. For instance, phoneme iy is spread across 3 frames in the audio signal and
phoneme d fills in only one frame.
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HMM, as depicted in figure is basically a stochastic automaton with a stochastic
output process attached to each state. HMM is defined by a set of possible states,
transition probabilities between these states and observation likelihoods expressing the
probability of an observation being generated from a state. The term ”hidden” refers to

a fact that we can observe only the output of the process, not the states.

In HMM used in ASR systems, each possible phonetic unit in the language is represented
by one or more states, and within each state, a probability distribution over the obser-
vation space is stored. To describe the probabilities of observations for each state, one
can employ Gaussian mixture models (GMMSs) or, recently much more popular, Deep
Neural Networks (DNNs) (Hinton et al., 2012). Parameters of AM have to be estimated

from (large enough) annotated audio corpus.

Since this work is focused mainly on the language models, we will not discuss AMs any
deeper here. A detailed overview about acoustic processing of a speech and HMMs in
ASR can be found e.g. in (Rabiner, |1989; Martin and Jurafsky, 2000).

3.1.3 Language Model

The goal of a language model (LM) is to estimate a probability of any sequence of words
W, ie. P(W) = P(wi,wy,...,wy), in the language. The most popular solutions in
present days are statistical n-gram LMs, which are based on a statistical evidence of
word sequences in the training corpus, and LMs based on recurrent neural networks,
RNN LMs (Mikolov et al., 2010). Since the adaptation of RNN LMs is still an open
problem due to a high computational complexity of training and updating (Chen et al.,
2015; Deena et al., 2019)), in the rest of the thesis, we will focus only on statistical n-gram
LMs.

Statistical LM is based on a decomposition of a joint probability of a contiguous sequence
of N words P(W) = P(w;,ws, ..., wy) into a product of conditional probabilities. The

decomposition is performed via the statistical chain rule

P(wy,wa, ..., wy) = P(wy)P(ws|wy) P(ws|wy, we)...P(wy|wi, wa, ..., wn_1)

(3.5)

N

HP(wi|w17 e Wis1),
i=1

where each component P(w;|ws, ..., w;—1) is a probability of seeing the word w; given its
history wy, ..., w;—1.

Since the number of possible word sequences W (and thus the number of parameters

to be estimated) is immense, there will never be enough training data for estimating
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all probabilities (components) in Instead, in n-gram LMs, each probability is ap-
proximated to the probability conditioned with a shorter word sequence. Taking only &
words from the history into account, the probability of seeing the next word w; can be
approximated as

P(wi|w1, ceey wi—l) ~ P(wi|wi,k, ceey wi—l)- (36)
Using such approximation, the formula for n-gram LM can be rewritten as

N
P(W) = Hp(wz‘|wi—k, oy Wi—1), (3.7)
i=1
where the probability of each approximated component can be estimated from a training

corpus as
C(wi—k7 ey Wi—1, wl)

c(Wi—p, ...y Wi—1)

P(wi]wi,k,...,wi_l) = (38)

where ¢(W) denotes observed frequency (count) of a word sequence (n-gram) W in the

corpus.

The simplest n-gram LM is unigram (1-gram), where no history of words is taken into

account, i.e. P(W) =[], P(w;). However, in practice, usually bigram (2-gram) LM

N
P(W) = [ P(wilwi-1) (3.9)
=1
or trigram (3-gram) LM
N
PW) = [ [ P(wilwi—2, wi_1) (3.10)
i=1

is typically used.

Since the training corpus is usually sparse, it can be expected that in testing data, there
will be n-grams never seen in the training data. Such unseen n-gram would obtain zero
probability from the LM which would lead to a zero probability of whole word sequence
To deal with this zero-frequency problem, some additional parameters are usually

computed in order to smooth the LM:

e Some probability mass is taken from observed n-grams (so-called discounting) and

it is assigned for all unseen n-grams to avoid the zero-frequency problem.

e Lower-order n-grams observed in the training data are also incorporated into the
LM. When calculating the probability of n-gram, also information from lower-
order models can be taken into account. There are two main ways how to combine
information from higher- and lower-order models: linear interpolation (Jelinek
and Mercer} [1980) and back-off model (Katz, 1987), which is ”backing-off” to
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lower-order model whenever there is not enough evidence about the n-gram in the

higher-order model.

The most popular smoothing techniques in present days are Good—Turing discounting
and modified Kneser-Ney smoothing. The detailed description of them along with many
other smoothing techniques can be found e.g. in (Chen and Goodman, (1999).

A drawback in using n-gram LMs is that they are not able to capture long-range de-
pendencies. This drawback can be slightly suppressed by using mazimum entropy LM,
which can combine more knowledge sources (Wu and Khudanpur, [2002), or by using

some topic-based adaptation technique discussed later in chapter

3.1.4 Lexicon

Lezicon, also referred to as pronunciation dictionary, is a connector between words from
the LM and phonetic units from the AM. The pronunciation is usually defined as a
phonetic transcription of each word, i.e. as a sequence of phonemes that are expected to

be observed when correctly pronouncing the word.

Obtaining the lexicon with correct pronunciations is not a trivial task. Phonetic tran-
scriptions can be obtained either manually by a human expert leading to accurate, but
expensive and time-consuming solution, or automatically which is cheap and fast, but the

transcription is usually errorful when transcribing words with irregular pronunciation.

Building an automatic phonetic transcriber is a challenging task. Many language-specific
rule-based automatic phonetic transcribers have been built. However, most of them
cannot correctly transcribe words with irregular pronunciation, words adopted from

foreign languages etc.

Some attempts to train a stochastic so-called grapheme-to-phoneme (G2P) model from
an existing lexicon in order to estimate a phonetic transcription for arbitrary word have
been reported. The most popular stochastic G2P model is Phonetisaurus (Novak et al.,
2012)). However, not even G2P model is usually able to cover rare language-specific
pronunciation irregularities, since it gives priority to the most frequent pronunciation
seen in the training lexicon. The author of this thesis showed in (Lehecka and Svec
2013)), that enriching the LM with inclusions from other language (English) and updating
the lexicon automatically using G2P might lead to more accurate speech recognition.
(Rao et all |2015) showed, that G2P model based on sequential learning of recurrent
neural network outperforms stochastic models and that best results are obtained when

combining both approaches.
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3.1.5 Decoder

Finally, in the decoding stage, the acoustic model, language model and the lexicon are
used to build a recognition network and to find the sequence of words (i.e. a hypothesis),

which has the highest probability given the acoustic signal, i.e. to solve equation

Since the number of possible sentences in the language is immense, an exhaustive com-
putation of all of them and selecting the best one is not the right way to go. Instead, the
space of all possible sentences should be searched more efficiently disregarding unlikely
hypotheses. Typically, the searched space is represented as a trellis, which is an oriented
graph, where the nodes (states) are organized vertically into connected time-frames, as
depicted in figure In the speech recognition tasks, each time-frame of the trellis is

moreover associated with one observation (parameterized frame of audio signal).

F1GURE 3.3: An example of a trellis downloaded from http://en.wikipedia.org/
wiki/Trellis_(graph). At each time-frame, which is formed of vertically organized
set of all possible states, each state can be associated with any state from the previous
time-frame and the next transition can lead to any state from the future time-frame.
In this figure, there are four possible states (00,01,10,11) and five time-frames. When
each transition (arrow) is associated with some transition probability (weight), the
most likely sequence of states can be found as a path with the highest join probability
of transitions along the path through the trellis. Note that this example shows only
the simple trellis, but in ASR task, nodes (states) are additionally associated with
an observation likelihoods expressing the probability of time-synchronized observation
being generated from a state.

The most popular decoding algorithm is Viterbi algorithm. It uses forward dynamic
programming to find the most likely sequence of states in a trellis, that results in a
sequence of observations. It exploits the Markov propertyﬂ and recursively performs an
efficient search while remembering the backpointers in order to backtrack the most likely

sequence of states after passing through the whole trellis.

When using simple Viterbi algorithm, the output of the decoder is one most likely se-
quence of words. However, when ASR is a part of some more complex system, usually
more informative output is required. Following outputs are used frequently in the liter-

ature:

!The future state depends only upon the present state, not on the history.
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e N-Best List — Viterbi algorithm can be extended to find not one but N-best
paths (hypotheses) in the trellis.

e Word Lattice — a labeled, weighted, directed acyclic graph in which each complete
path represents an alternative hypothesis, weighted by its recognition score for a
given utterance. In a word lattice, each arc represents a word associated with a
score from decoder and each state (node) represents a point in time. The basic idea
behind lattices is that they can represent a large number of alternative hypotheses

in more compact way than N-best list can.

e Sausages — a compact representation of a word lattice, which can be seen as a

word confusion network (Mangu et al. 1999).

3.1.6 Implementation

The mostly used paradigms to implement an ASR system require a combination of
some HMM toolkit (e.g. HTK (Young and Young, |1993)), LM toolkit (e.g. SRILM
(Stolcke et al., 2002))) and a special file containing the lexicon. However, in present days,
there is a significant trend in using also alternative implementations, which are usually
based on one unifying framework capable of representing all the different knowledge
sources needed for ASR system. The most popular of them are presented in following

paragraphs.

WEFST

An ASR system implemented as a Weighted Finite State Transducer (WFEFST) offers
unified framework to efficiently represent major components of speech recognition sys-
tems, including HMMs, context-dependency models, pronunciation dictionaries, statis-
tical grammars, and word or phone lattice (Mohri et al.; 2008)). Speech recognition with

WEFST is used e.g. in Kaldi speech recognition toolkit (Povey et al., 2011)).

The typical way of using WFST-based ASR system is as a static recognizer. The main
advantage of using static WFST is that the graphs can be heavily optimized (i.e. deter-
minized and minimized) before the recognition starts, therefore at the decoding time,

more compact recognition network is to be searched.
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Neural Networks

With increasing computational power of today’s computers and GPUs, training neural
networks (NNs) capable of learning complex problems related to ASR system has become

popular.

The problem of representing an acoustic model with NN or building a hybrid model
combining HMM with NNs has been studied mostly in 80’ and 90’. Proposed methods
used mainly time-delay and recurrent NNs. The survey of the most important methods
can be found in (Trentin and Gori, 2001). Most of them were designed to replace only
one part of the speech recognition pipeline with NNs. In recent years, a significant im-
provement in acoustic modeling has been reported e.g. in (Hinton et al., 2012), where
GMDMs were replaced with deep feed-forward NNs. The problem of implementing a lan-
guage model with NN has been studied intensively in recent years. The most promising

method has been proposed in (Mikolov et al., [2010)).

However, the incorporation of all ASR components into one global end-to-end NN-
based ASR system, which would take the acoustic signal on the input while outputting a
sequence of decoded words, is still a challenging task (Graves and Jaitlyl 2014)). Recently,
there has been reported several promising approaches, such as Deep Speech (Hannun
et al., [2014), Listen, Attend and Spell (Chan et all 2016) or a multi-head attention

architecture with sequence-to-sequence models (Chiu et al., 2017).

3.1.7 Evaluation

To measure how well the ASR system performs, the common approach is to count
differences between the reference text (i.e. what was the true sequence of words) and the
recognized sequence of words. The most popular performance measure is a Word Error

Rate (W ER) or its complement to 100 % known as a Word Accuracy (Acc).

Since the two examined sequences of words (reference and ASR output) can have different
number of words, Levenshtein alignment is usually used to align them. Levenshtein
alignment is based on Levenshtein distance, which is the minimum number of operations
needed to convert one sequence to another. Possible operations are insertion, deletion
and substitution. If we denote the total number of insertions as I, deletions as D,
substitutions as S and the total number of words in the reference transcript as IV, then
we can define WER as

I+D+S
WER = % - 100 % (3.11)
and g
N—I-D-—
Ace =100 - WER = - 100 %. (3.12)

N
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Since there can be more operations needed than words in the reference transcript, WER
can be higher than 100 % and Acc can be negative. For instance, if the reference tran-
script is "hello word” and the ASR output is ”hi our low word”, there are 3 operations
needed to convert the reference into the ASR output (substitute ”hello” with "hi” and
insert ”our” and ”low”, thus I = 2, D = 0, S = 1 and N = 2), which leads to
WER = 150% and Acc = —50 %. To overcome this problem, a Correctness (Corr) can
be measured as
N-D-S

CO?"T' = T - 100 %, (313)

i.e. all insertions are ignored, which keeps the value within the interval [0, 100].

3.2 Topic Identification

The goal of Topic Identification (TI) can be defined as follows: given an unstructured
text corpus, automatically associate each document in the corpus with a relevant la-
bel(s) identifying the topic(s) of the document. The set of target topics depends on the

particular domain and objective.

First, let us clarify the terminology. In the literature, several terms for the task of
automatic document labeling can be found, namely text classification, text categorization,
topic identification, topic detection, and topic spotting, all of them meaning roughly the
same. According to the survey on text categorization (Sebastiani, 2002), terms text
categorization, text classification and rather historical term topic spotting share the
same definition of ”labeling natural language texts with thematic categories from a
predefined set”. However, this definition excludes unsupervised text clustering, which is
very popular document-organizing method, in which the set of categories is not known
in advance (see section . On the other hand, term topic detection usually stands
for a task of detecting, whether some new topic (event) is present in a stream of text
documents (e.g. tweets (Cataldi et al., [2010|) or broadcasting news (Allan, [2012))), or if
the arriving document falls into some existing topic. The term topic identification, in
my opinion, fits best to the definition of the task of associating each document with
a relevant topic-label while covering all important approaches (including unsupervised
text clustering), which is the reason this term will be used to address the task in this

thesis.

The T1I task is closely related to several other research areas, mainly information retrieval
(IR), machine learning, natural language processing (NLP), information extraction and
tert data mining. Note that borders between these disciplines are not always exactly

delimited. TI makes use of NLP techniques and information extraction methods to
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preprocess the text and convert each document to a vector of relevant features, machine
learning algorithms are often used to build a classifier assigning topics for unlabeled
documents, and the whole process of TI can be viewed as an instance of both text data
mining, which aims to discover or derive new information by analyzing large quantities
of text, and IR, which is usually defined as the process of finding documents that satisfy

user’s information needs (asked in the form of queries) (Hearst, 1999).

Depending on the data, the TI task can be divided into several cases:

e Supervised text classification requires training data with correct label(s) as-
signed to each text document. Usually, one of popular classifiers from the machine
learning area is adopted. See subsection for details.

e Unsupervised topic modeling does not require correct labels, it aims to uncover
hidden (latent) semantic relationships between words and documents and thus
reveal hidden ”topics” or substantial keywords of documents. See subsection

for details.

e Semi-supervised learning requires a part of training data to be correctly labeled
and the rest unlabeled. Since semi-supervised learning usually extends some of the
methods mentioned above to fit appropriately to some particular data, it will not
be discussed in this work. An overview about existing semi-supervised learning
methods can be found e.g. in (Zhul 2005)).

Depending on the application, the TT task can be of two cases: (1) single-label TI, in
which exactly one label must be associated with each document, and (2) multi-label T1

(see section [3.2.5)), in which any number of topics can be present in each document.

3.2.1 Text Preprocessing

First of all, some text modifications are usually done in each document to obtain the text
cleaner, the vocabulary smaller or the corpus more suitable according to the problem
to be solved. These modifications are called text preprocessing. Usually, some of the
following text preprocessing methods are employed:

e cleaning — remove boilerplate, comments, tags etc.,

e tokenization — convert text into a sequence of tokeng?}

e true-casing — determine the correct capitalization of each word,

2Tokens are usually words, but can be also phrases, symbols, syllables, or other language elements.
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e word normalization — convert inflected forms of words into stemf] (stemming)

or into lemmag’| (lemmatization),

e text normalization — convert written forms of abbreviations, numbers, dates,

acronyms etc. into their spoken form, i.e. into a sequence of words,

e stop words removal — remove undesired or topic-neutral words.

3.2.2 Document Representation

When dealing with a text, direct use of text representation (i.e. a sequence of tokens)
in TT task is impractical, because of a variable length of each document. Therefore, it
is desirable to convert raw text data to a so-called wvector space, where each word or

document in a corpus is represented as a vector of predefined features.

Inspired by debates whether the knowledge in the human brain is stored in some specific
regions or it is rather spread across the entire cortex, document representations can be

divided into two groups:

(1) local representation — only several features encode the document while the ma-

jority of features is not activated, i.e. the representation is sparse,

(2) distributed representation — each feature contributes to the representation, i.e.

the representation is dense (Hinton et al., |1986]).

Typical example of (1) is tf-z’dfﬂ, which is a bag-of-words (BOW) model converting the
corpus into a document-term matrix, or 7-of-V (also known as one-hot) encoding, where
each word is represented as a vector full of zeros with 1 only on the position of the word
in the vocabulary of size V. A typical examples of (2) are autoencoders (Hinton and
Salakhutdinov, [2006), word2vec (Mikolov et al.,|2013) and its subword extension fastText
(Bojanowski et al.l [2016), GloVe (Pennington et al., [2014)) or paragraph vectors (Le and
Mikolov}, 2014). Moreover, topic models discussed later in subsection can be also

used to generate distributed representations of documents.

Recently, it has become very popular to use word-based representations (such as 1-of-
V, word2vec or GloVe) as inputs to TI models with sequential learning (e.g. recurrent
neural networks (Dai and Le, 2015; |Johnson and Zhang}, |2016))), or to view the sequence
of word vectors as an "image” and adopt popular image-processing models, such as

convolutional neural networks (Johnson and Zhang, 2015; |(Conneau et al., 2016)).

3Stem is a common part of all inflected variants of the word.
4Lemma is a base lexical form of the word.
Shttps://en.wikipedia.org/wiki/T£%E2%80%93idf
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3.2.3 Text Classification

The Text Classification (TC) task aims to label natural language texts with thematic
categories from a predefined set (Sebastiani, 2002)). This is usually done by a classifier
trained from some amount of data with correct labels, i.e. supervised learning is used to

set classifier parameters.

Because of the vast number of papers about TC task published in recent decades, it is
almost impossible to discuss all different algorithms in this short survey. Therefore, we
will mention only several most popular classifiers and for those used in this thesis, we

will also provide detailed mathematical background.

To solve a TC problem, one can employ for example decision trees (a hierarchically
organized set of rules which are used to decide about the topic of a document) such as
C4.5 algorithm (Quinlan) 2014)), probabilistic classifiers (models that aim to estimate the
probability that a document belongs to a topic) such as naive Bayes classifier (Zhang,
2004)) or proxzimity-based classifiers (models assuming documents from the same topic are
likely to be close to each other in the vector space) such as k-nearest neighbor classiﬁeﬂ
Another two popular classifiers, which are used in this thesis, are described in following

paragraphs.

SVM

A Support Vector Machine (SVM) classifier (Joachims,|1998)) aims to divide the space of
input vectors by a hyperplane which separates the positive examples from the negative
ones with the widest possible margin, as depicted on figure [3.4l Training vectors most
difficult to classify, i.e. vectors lying on the very edge of the margin, are called support

vectors.

Given a training dataset with n samples (z1,41), ..., (Tn, Yn), where y; € {1, —1} denotes
the class membership of the sample z; (positive of negative class), SVM classifier solves

the following primal problem: minimize
L+ e 36 (3.14)
2 i=1 Z ‘
subject to y;(w - x; —b) > 1 — ¢ and ¢; > 0,i = 1,...,n, where the hyperplane is

defined by its normal vector w and bias b (w - x — b = 0), ¢; is hinge loss function, i.e.

¢ =max(0,1 —y;(w - z; — b)) and C > 0 is the penalty parameter of the error term.

Shttps://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
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o documents of class 1

documents of class 2 = -

FIGURE 3.4: A hyperplane in SVM taken from (Hotho et al., 2005)). The hyperplane is
dividing documents in the vector space into two classes. The hyperplane has the widest
possible margin.

Its dual problem is to minimize

n

DI NI CENIIEY P 519

i=1 j=1 =1

subject to > ; oy, =0 and 0 < o; < C,i = 1,...,n, where oy, ..., o, (as for short) are
dual variables and K is a kernel function. Most of the as will turn out to have the value
zero. The non-zero as will correspond to the support vectors. Knowing the as, we can
compute w = Y ' | y;x;, i.e. w is a linear combination of support vectors. Selecting

some support vector x;, the bias can be computed as b = ZZ:1 oy K (zg, ;) — yi.

Finally, the decision about some new sample x is made by computing signum of the
decision function
n
Yy = sgn (Z yioi K (x;, ) — b) . (3.16)
i=1
Note that most of as will be zero, and so the decision is made using only several support

vectors. When classifying text documents, usually the linear kernel K = (z;-x;) is used.

SVM classifier is designed to solve a dichotomyﬂ problem. If there are more than two
classes to be distinguished among, usually one vs. the rest strategy is employed. It
trains one SVM classifier per topic. During the training phase, documents belonging to
the topic are presented as positive examples while all other documents are considered
to be negative examples. During the classification, the topic with the highest decision

function should be assigned.

"Classification into two classes: positive and negative.
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Multi-class SVM produces an uncalibrated soft prediction (decision function output)
that is not a probability. Based on (Niculescu-Mizil and Caruanal 2005), better result
can be achieved when calibrating predictions in order to obtain a posterior probability
distribution over classes. In this work, we used sigmoid method described in (Platt

et al.l [1999) to calibrate SVM’s decision function outputs.

LSTM

Long Short Term Memory (LSTM) classifier is a member of RNN classifiers family
designed to avoid the vanishing and exploding gradient problemsﬂ Each LSTM cell in

the network consists of four neural network layers connected as depicted in the figure

°® o o
S
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1 O — > <

Neural Network Pointwise Vector
Layer Operation Transfer

Concatenate Copy

FicUrReE 3.5: The scheme of LSTM cell, adopted from http://colah.github.io/
posts/2015-08-Understanding-LSTMs/.

Mathematically, LSTM cell can be defined as follows. Given the cell output h;—; from
the previous time step and current input vector x;, the forget gate layer, parameterized

by its weight matrix Wy and bias vector by, is

Je=0Wy - [he—1, 2] + by), (3.17)

8The exploding gradients problem refers to the large increase in the norm of the gradient during
training. Such events are due to the explosion of the long term components, which can grow exponentially
more than short term ones. The vanishing gradients problem refers to the opposite behavior, when long
term components go exponentially fast to norm 0, making it impossible for the model to learn correlation
between temporally distant events. (Pascanu et al.,|2013)
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where o is a sigmoid activation function and [., .] means concatenation of two vectors.
This gate decides what information to throw away from the cell state. Analogously, the
input gate layer

it =o(W; - [hi—1,x¢] + b;) (3.18)

decides which values in the cell state to update with new candidate values
Cy = tanh(We - [he—1, 2] + be). (3.19)
Now, the cell state C;_1 from the previous time step can be updated by computing
Cy = fi % Cy_1 + i % Cy, (3.20)

where * is element-wise matrix multiplication. Having a new cell state, the output gate
layer
oy = O‘(Wo . [htfl, .%'t] + bo) (321)

decides what information will be outputted from the cell state, and finally, the new
output is computed as
ht = O * tanh(Ct). (322)

In this way, LSTM network itself decides which information to store and which informa-
tion to forget. The sigmoid function in each gate ensures each output is between zero

and one, describing how much of each element should be let through the gate.

In text classification tasks, the NN architecture usually consists of several layers of LSTM
cells followed by some flattening layer (e.g. pooling over time or connecting only the last
output from the last LSTM cells) followed by several fully connected feedforward layers,
where the last one is a sigmoid layer with the same number of neurons as the number of
target classes. The sigmoid activation function at the end of the network maps logitsﬂ
into interval between zero and one, encoding how much the input sequence belongs to

each class.

LSTMs have been successfully used to solve text classification problems e.g. in (Dai and
Le, [2015) or (Johnson and Zhang) 2016)).

3.2.4 Topic Models

Unsupervised T1 task aims to organize a set of documents according to discovered topics

without any supervisor information. Common statistical models solving such document

9The vector of raw (non-normalized) predictions that a classification model generates.
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K
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F1cURE 3.6: Plate notation of LDA model. In this model, word w is the only observable

variable, N is number of documents, My is number of words in document d, K is number

of latent topics and a value in the upper left corner of each rectangle means repetition
count of its content.

clustering problem are called topic models. They aim to uncover hidden semantic rela-
tionships between words and documents in a corpus and thus reveal hidden topics or

substantial keywords of documents.

In the last three decades, there has been published a lot of studies dealing with unsu-
pervised topic modeling. The earlier approaches used mainly Latent Semantic Analysis
(LSA) (Deerwester et al., [1990) or probabilistic LSA (pLSA) (Hofmann| 1999). However,
the leading paradigm in unsupervised topic modeling during the last 15 years is Latent
Dirichlet Allocation (LDA) (Blei et all 2003).

In LDA, documents are random mixtures over latent topics generated from Dirichlet
distribution with parameter o = (a1, a, ..., ax ) where K is the number of latent topics,
and latent topics are random mixtures over words generated from Dirichlet distribution

with parameter § = (f1, B2, ..., Bv), where V' is the size of corpus vocabulary.

The plate notation of LDA is shown in figure Each document is represented by a
topic distribution 6 ~ Dirichletx (), while each topic is represented by a word distri-
bution ® ~ Dirichlety (3). For each word position in each document, a latent topic z is
drawn from 6, corresponding word distribution ®, is found in ® and word w is drawn
from ®,. In order to predict the topic distribution for an unseen document, we are using

online variational inference (Hoffman et al., 2010) in this work.

Since topic models are searching for hidden relationships without any knowledge about
the corpus, a topic is usually represented as a probability distribution over vocabulary
with no human-understandable label. A very illustrative visualization of latent topics
are for example word cloudslﬂ Also, comparing more topic models is difficult, because
without supervisor’s information and without human-understandable labels, it is not

clear which topic is correct for a document (Wallach et al., 2009; Lau et al. 2014).

10 An electronic image that shows words of different sizes according to how often they are used in the
text.
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3.2.5 Multi-label TI1

In the case of multi-label TI, any number of topics can be present in each document.
Based on the predicted vector of per-topic scores s = (s, S92, ..., sSi) called in the lit-
erature categorization status values or soft prediction, the classifier must decide, which
topics are relevant for the document and which are not. In the literature, this decision is
usually called thresholding strategy and the result of the decision is a vector of per-topic

binary values (assign the topic or not), called hard prediction.

The first published thresholding strategies were very simple, e.g. assign only topics
with probability higher than one fixed threshold (probability thresholding) or assign only
k best topics (rank-based thresholding, RCut). The first paper addressing the thresh-
olding strategy as a non-trivial problem, was (Lewis|, 1992), where proportion-based
thresholding PCut had been introduced. In PCut, each topic is assigned to its top scor-
ing documents in proportion to the frequency of the topic in the training corpus. The
drawback of this strategy is that it expects all the testing data to be fully available at

the prediction time.

(Yang, [1999) presented more complex thresholding strategy SCut, where an optimal (in
terms of F} measure) per-topic thresholds had been trained using validation data. The
results in the paper indicated that SCut outperforms both RCut and PCut, which have
been confirmed later by (Montejo-Raez and Urena-Loépez, [2006). A deep analysis of
SCut thresholding behavior in different tasks can be found e.g. in (Pillai et al.l 2013).

In (Largeron et al., 2012), a thresholding strategy MCut (Maximum Cut), where thresh-
olds are estimated automatically without training, was presented. For each tested docu-
ment, let us denote sorted list of scores s as S = (s(l),l =1, ..., k). The highest difference

between successive scores is at position
t = argmax{(s(l) —s(l+1)),l=1,....k — 1} (3.23)

and the threshold is set to
s(t) + s(t+1)

MCut =
Cu 5

(3.24)

Experiments in the paper did not confirm that MCut performs better than other thresh-
olding strategies, however roughly similar results were obtained in completely automatic

way without any learning phase.

In WISE 201/ Challenge (Tsoumakas et al.,|2014)), many interesting thresholding strate-

gies have been tested. The strategy of the first two winning teams was simple, yet
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effective: assign i-th topic, if

Sq

> 3.25
max (81, 52, ..., SK) p ( )

with threshold p optimized on validation data.

In this section, only the most popular thresholding strategies were presented, although
many other threshold selection and optimizing algorithms exist and can be found in the

literature, e.g. in (Draszawka and Szymanski, [2013)).

3.3 LM Adaptation

The core idea behind LM adaptation is to use a small amount of domain-specific data to
adjust the general LM and thus, reduce the impact of linguistic differences between the
training and testing data (Chen et al.l 2004). After LM adaptation, the LM should be

more suitable to recognize a domain-specific speech, but not overfitted to this domain.

in-domain Information domain-specific
corpus Extraction knowledge

LM
Adaptation

adapted
P(w|h)

general LM initial
corpus Estimation Po(wih)

FIGURE 3.7: Basic framework for LM adaptation (Bellegarda, (2004]).

Typically, LM adaptation approaches follow a basic LM adaptation framework depicted
in figure where one large general corpus is used to model the domain-independent
language and another in-domain corpus is used to adapt the LM. Existing LM adap-
tation approaches differ mainly in what the domain-specific knowledge extracted from
in-domain corpus looks like and how to combine this information with the general LM

during the LM adaptation.

Based on the time, when the adaptation is applied on the general LM, two modes of LM

adaptation can be employed:

e offline LM adaptation can be used in ASR systems, where the real-time perfor-
mance is not required and the recognition can wait until the adapted LM is ready;

the most popular offline method is multi-pass speech recognition (see section [4.2]),
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e online (on-the-fly, dynamic, just-in-time) LM adaptation is applied dynamically
during the recognition; this mode should be used when the system must run in the

real time and the topic of the speech is highly changeable.

More challenging is, of course, the online mode, since tasks such as knowledge extraction,
in-domain data selection or LM interpolation have to be usually done simultaneously

with the recognition as fast as possible. This thesis is focused on the online mode.

In the rest of this section, commonly-used techniques of how to combine in-domain

corpus with general LM will be presented along with its mathematical background.

3.3.1 Linear Interpolation

Linear interpolation is the most common LM adaptation technique. It first trains
domain-specific LM Pp(w|h) from the in-domain corpus and then interpolates it with

the general LM Pg(w|h) at the n-gram level:
P(w|h) = APg(w|h) + (1 — X\) Pp(w]|h), (3.26)

where A € [0,1] is an interpolation coefficient and h is history of word w. A can be
set empirically or more often, it is estimated using Expectation-Maximization (EM)
algorithm to maximize the likelihood (or minimize the perplexity) of some held-out text
data (Schwarm et al., [2004; Martins et al., 2007; Tur and Stolckel 2007)).

Linear interpolation technique can be used also in tasks, where there is a set of K
domain-specific LMs, Pp, (wl|h), ..., Pp, (w|h), which we want to combine in order to

compute the adapted LM:

K

P(w|h) = > \Pp, (wl|h), (3.27)
k=1

where Zfil A; = 1 and As are mixture coefficients, which can be set e.g. according to
scores obtained from a topic identifier or by using EM algorithm to get optimal weights
for so-far recognized words (Clarkson and Robinson, (1997). These adapted LMs are

typically referred to as mizture models.

3.3.2 MAP Adaptation

When the interpolation is not done at the n-gram level, but earlier, at the corpus level,
i.e. a weighted mixture of raw n-gram counts is used to train adapted LM, the adaptation

approach is known as mazimum a posteriori (MAP) adaptation.
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Let Cg(h,w) and Cp(h,w) be a raw count of n-gram consisting of history h followed by

word w in the general and in-domain corpus, respectively, then the mixture count is
C(h,w) = ACp(h,w) + Cg(h,w) (3.28)

and the adapted LM is estimated as

C(h,w)
ACp(h) + Cg(h)’

P(wlh) = (3.29)
where A is a mixture coefficient which can be estimated empirically (Bellegardal, 2004]).
Note that when A is not an integer, after this count merging method, the counts are not
necessarily integers and hence any smoothing algorithm that relies on counts of counts

(such as Kneser-Ney or Good-Turing) does not apply (Wang and Stolcke, 2007)).

A comparison experiment (Chen et al., 2004)) indicated, that using MAP adaptation can
bring modest reduction of perplexity, but no improvement in terms of WER in an ASR

system.

3.3.3 Language Model Fill-Up

Language model fill-up adaptation strategy, proposed in (Besling and Meier, 1995)), is
an alternative to the interpolation strategy. It is not combining probabilities from both
models as the interpolation does, but it is rather "filling up” the sparseness of the in-

domain corpus using the general LM:

Pp(w|h if Cp(h,w) >T;

P(wlh) = (wlh) (h,w) (3.30)
BPg(w|h) otherwise,

where T is an empirical threshold, and the back-off coefficient 3 is calculated to ensure

that P(w|h) is a true probability (Bellegardal [2004)).

This strategy prefers in-domain LM probabilities for n-grams that were seen frequently
in the in-domain corpus while falling back to general LM probabilities for the rest of
n-grams. This adaptation strategy can be used especially when the adaptation model
has been obtained on insufficient amounts of training material (Besling and Meier], [1995;
Klakow), 2006]).
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3.3.4 Constraint Specification

Constraint-based approaches are using extracted knowledge from in-domain corpus to
compute constraints the adapted LM must satisfy. The most popular constraint-based
approach is known as Minimum Discrimination Information (MDI) adaptation. The
goal of MDI adaptation is to find out a new LM whose probability distribution satisfies
some constraints derived from a specific task and whose relative entropy with the baseline

LM is minimal (Lecorvé et al., 2009).

In MDI, K constraints on the adapted joint probability distribution are defined as

> Ii(h,w)P(h,w) = ap(hy, i), (3.31)
{(hw)}

where [}, is the indicator function selecting an appropriate subset of n-grams and « D(ﬁk, W)
denotes the relevant empirical marginal probability estimated from the in-domain cor-
pus (Bellegarday, |2004). Also, its minimum Kullback-Leibler distance from the joint
probability distribution of the general LM is required.

It can be shown (Darroch and Ratcliff, [1972), that in MDI adaptation, we are searching
for a joint probability distribution belonging to the exponential family

P w) = Lo w

K
)
— Al (h 3.32
Z(h.w) kHleXp{ i lk(h, w)}, (3.32)
where Z(h,w) is a normalization factor, Pg(h,w) is the joint probability distribution in
the general LM and A, is MDI parameter. Since the solution is searched in the family
of exponential distributions, LMs adapted with MDI are often referred to as exponential

models.
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Existing Methods

In this chapter, existing methods dealing with language model adaptation, which are
relevant to this thesis, are briefly summarized. In the literature, LM adaptation has

been successfully employed in three main multi-topic speech recognition tasks:

(1) offtine recognition — the whole audio record can be processed in multiple passes

using progressively more and more domain-specific LMs,

(2) online recognition with LM adaptation controlled by user — the online ASR system
adapts the LM on demand, i.e. the user decides about change of topic in the speech
and triggers the LM adaptation,

(3) online recognition with automatic LM adaptation — fully automated online ASR

system, where LM adaptation is handled by the system itself.

This thesis aims to deal with the task (3), which is the most difficult of all three tasks
mentioned above. However, since methods used in other two tasks are often highly

related to this work, these methods will be also briefly described in this chapter.

The first section of this chapter lists various approaches of how to accumulate the in-
domain corpus, which is an important problem common to all LM adaptation methods
(except for methods described in section . The second section presents commonly
used multi-pass offline method, and in the last three sections, existing LM adaptation
methods are grouped based on what information they use to adapt the LM. More detailed
review of existing methods has been written down by the author of this thesis in his

report for State doctoral examination (Lehecka), 2016)).

29
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4.1 In-Domain Corpus

Since each domain has its specific word and n-gram usage, the relevance, suitability and
recency of in-domain corpus is crucial for the LM adaptation task. In the literature,
a paradigm to accumulate relevant in-domain corpus according to the speech to be
recognized, which can incorporate also tasks from different research areas (e.g. topic

identification, information retrieval or text data mining), usually follows these steps:

1. Put all available knowledge about the speech together, e.g.:

e use known metadata about the speech if available, e.g. announced theme of
the speech, presentation slides (Maergner et al., |2012), information about the

speaker, expected style or previous audio records (Tur and Stolckel 2007)),

e use all information from the recognizer’s output, which is available at the
time of required LM adaptation, e.g. n-best list or lattices of a recent speech

or a transcript obtained with general LM in the first decoding pass.

2. Use the knowledge about the speech to accumulate in-domain data; this is where

tasks from different research areas are usually applied, e.g.:

e the topic of the speech is identified in the available data, and based on this
topic, corresponding prepared subcorpus in a topic-clustered database is se-
lected (Shi et al., [2012; [Echeverry-Correa et al., 2015)),

e the knowledge is used to retrieve relevant documents from some (external)
data source, e.g. substantial keywords are extracted and used as queries to
retrieve documents from a large text corpus (Chen et al., 2001, 2003)) or when
the domain can be absent from the corpus, documents can be retrieved from
web via search engine (Berger and Miller, 1998; [Zhu and Rosenfeld, 2001;
Monroe et al., 2002; [Sethy et al., 2005} [Ito et al., 2008} [Lecorvé et al., 2012;
Maergner et al., 2012),

e some distance between available documents and knowledge about the speech
can be defined and only documents with minimum distance are used to form

the in-domain corpus (Nanjo and Kawaharal 2003; Bigi et al., [2004),

e some kind of data augmentation is used to obtain more data, e.g. based on se-
mantic similarity of words used in the speech, new n-grams can be artificially

generated without observing them (Janiszek et al., 2001]).
3. Combine in-domain data with the general LM, e.g.:

e use some adaptation technique described in section
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e select only relevant novel words and incorporate them into the general LM
(Auzanne et al., [2000; [Venkataraman and Wang} 2003; |[Federico and Bertoldi,
2004; Schwarm et al., 2004; |Allauzen and Gauvain, [2005; Boulianne et al.|
2006; Martins et al., |2007; [Maergner et al., 2012).

4.2 OfHine Multi-pass Method

Multi-pass speech recognition has been originally used to reduce computational demands
of ASR systems with large LMs. The idea was to apply simple models earlier to prune
the search space for subsequent passes using more computationally expensive models

(Bates et al., [1993; [Richardson et al., 1995).

This approach was then adopted into LM adaptation frameworks. The idea is to apply a
general domain-neutral LM in the first decoding pass and based on information extracted
from decoded result, find domain-coherent segments and apply progressively LMs more
and more suitable for particular domains. This approach was used e.g. in (Martins et al.,
2007} [Lecorvé et al.l 2012).

4.3 Methods Using Directly ASR Output

The main idea behind using ASR output directly to adapt the LM is that if the word or
n-gram has been recently used, it is very likely to be used again in the near future. It is
also the only possible adaptation method, if no in-domain corpus is available. Typical
examples of these methods are dynamic cache LMs (Kuhn and De Mori, |1990; |Jelinek
et al., [1991; (Clarkson and Robinson, 1997), where an unigram LM built from words
recognized in a recent history (i.e. a cache) is dynamically interpolated with the general
LM. However, experiments in (Iyer and Ostendorf,|1999) showed that static topic-specific
LM can outperform the dynamic cache LM.

In the ASR output, there is usually a lot of errors and misrecognized words, which
deteriorate the positive impact of adaptation using directly ASR output. One attempt
to deal with this problem is to use more hypotheses from n-best list or from lattice and
weight them appropriately. For instance in (Souvignier et al. 2000), each hypothesis in
the n-best list is weighted by its confidence score. The idea behind this approach is that
well-understood parts of a sentence will occur in most of the hypotheses of an n-best
list, whereas for misrecognitions there will usually be several alternatives. Thus, the
effect of a recognition error is distributed over several competing hypotheses and does

not result in a strong error reinforcement.
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Another attempt is to detect misrecognitions and do not use them for the adaptation. For
instance, (Gretter and Riccardi, [2001) used word lattices to estimate an error probability
distribution over recognized words, which is then used to filter possible misrecognitions

by a probability threshold.

4.4 Methods Extracting Semantic Knowledge

Adaptation approaches taking advantage of semantic knowledge are usually based on
finding semantically close words, n-grams or documents to the underlying discourse and

tuning the LM appropriately.

One possible approach is to use triggers (Lau et al., [1993; Rosenfeld, 1996)), usually in
a form of word trigger pairs, which are pairs of words that co-occur frequently close to
each other. The main idea behind this approach is that if one word from a trigger pair
occurs in the speech, the second word is very likely to be used in a short time future,
therefore its probability in the LM should be tuned. In practice, usually the mutual
information has been used to reveal the relevant trigger pairs and exponential models,
where each trigger pair forms a constraint to be satisfied, have been used to implement

trigger pairs.

In present days, triggers are obsoleted by more systematic frameworks, which are able
to reveal and learn relevant semantic relations between words and documents, such as

LSA, LDA, word vectors and many other methods.

An example of an adapted LM can be e.g.

P(wl|h,h) = —(f", (4.1)
h)

where h denotes the global bag-of-words representation of the history, p(w,ﬁ) is the

correlation between the word w and history & in the low-order vector space (e.g. LSA)

and Z(h,h) is the normalization factor (Bellegarda, 2004). In contrast to standard

n-gram LMs, LM can encode much longer history into & with no additional compu-

tational cost, however, the order of words in the history is lost since the bag-of-words

representation is used.

Also, all methods searching for similar documents, which do not identify the topic of
the speech explicitly can be put into this group of LM adaptation methods. In such
approaches, usually some kind of IR task is performed in some data source. For in-

stance, an ASR output (or only selected keywords (Chen et al., 2003; Ito et al., 2008))
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can be used as a query to retrieve relevant documents to accumulate the in-domain cor-
pus (Berger and Miller} [1998; [Schwarm et al., 2004; Maergner et al., [2012)), or the ASR
output can be used to find most similar documents based on some distance measure (or
similarity), such as cosine similarity (Ananthakrishnan et al., 2011)), Kullback-Leibler
distance between unigram probabilities (Bigi et al.l 2004)), perplexity of training docu-
ments with LM built from the ASR output (Nanjo and Kawaharal, 2003} Haznedaroglu
and Arslan, 2014) etc.

In (Korkmazsky et al.l |2007), ASR lattices are used to form word clusters reflecting the
mutual information between the words and distance in the lattice (in terms of speech
frames), i.e. not only semantic, but also syntactic information is extracted. The best
clusters are used to adapt the probabilities in the background LM. Very modest reduction
in WER was achieved (from 59.2% to 58.8 %) using this method.

In (Wiggers and Rothkrantz, [2006; [Shi et al 2011)), an alternative to classical n-gram
models using dynamic Bayesian networks is proposed. In contrast to n-gram models, it
can take additional semantic information into account, since it is a generalization of the
n-gram models and HMMs. For instance, the topic state or POS (part-of-speech) state

can be explicitly modeled as a variable in the dynamic Bayesian network LM.

As an online semantic-based adaptation method, we can also count LM adaptation
methods proposed for spoken dialog systems such as (Lucas-Cuesta et al. 2013), where
the LM is dynamically adapted at each dialogue turn based on the knowledge extracted
from the context of the ongoing dialogue. Here, the knowledge is in a form of a dialogue

concept or the goal of a dialogue.

Most Relevant Methods

In this place, let us describe in more details several papers which fall into this group of

methods and which are in my opinion most relevant to this thesis.

In (Shi et al.,|2012)), an online method for recognition of the spoken Dutch was presented.
In this work, the most suitable LM is being dynamically selected from a set of prepared
topic-specific LMs. The estimating of interpolation coefficients during the speech and
LM interpolation itself is omitted. All LMs are prepared in advance and based on
the recognized speech, the ASR system dynamically switches between prepared LMs.
At each point in time, the LM with the highest probability of the current history is
used in the ASR. Each topic-specific LM is interpolated from the complete corpus and
topic-specific subcorpus, thus all LMs share the same vocabulary to avoid overfitting.

Experiments showed roughly 12% reduction in perplexity, especially in the broadcast
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news domain, but reduction in WER was not evaluated. The main difference from our
approach is that our system allows also to interpolate new topic mixture on demand
during the recognition and TI is used to extract topic information from the recent

hypotheses.

In (Maergner et al) |2012)), LM adaptation via interpolating background LM with topic-
specific LM was applied on lecture speech recognition. In advance of each lecture, the
text from the presentation slides had been used to select similar documents on the web.
Documents were searched based on queries in the search engine. Queries were short
text sequences from the slides not containing common words. After some amount of
documents had been collected, a vocabulary of the most relevant words was created and
background topic-independent LM was adapted, which resulted in 57% relative reduction
of OOV-rate and 12.5% relative reduction of WER. The LM adaptation in this work

was not applied during the recognized speech, but in advance.

(Martins et al., 2007) presented an offline adaptation of LM in WFST-based ASR system
recognizing Portuguese broadcast news on daily basis, i.e. once a day it processes all
video records from the last 24 hours. Each day, as the background data, general corpus
is interpolated with web news articles from the last one week. Since the size of the
vocabulary is fixed in this work, new words found in new articles replace low-frequency
words from the background vocabulary. Not all words are added into the vocabulary,
but a sophisticated algorithm based on the distribution of POS classes in the in-domain
corpus is used to select only the most relevant words to be added. Hypotheses from
the first decoding pass are heuristics-based segmented into topic stories and used as
queries to the IR database to retrieve relevant documents to mix a topic-specific LMs
for the second decoding pass. Experiment results on two hours long evaluation speech
showed that a significant reduction in OOV-rate and WER is obtained after the first
decoding pass and some more reduction after the second pass. From the baseline, a
reduction of 65% in OOV-rate and 6.5% in WER was achieved while covering almost

every topic-specific words and keeping the vocabulary size fixed (57k).

In (Federico and Bertoldi, [2004), an offline LM adaptation in Italian broadcast news
transcription system is presented. On a daily basis, news reports are downloaded from
the web servers, novel words are extracted, their phonetic transcriptions are automati-
cally generated and the background LM is interpolated with small adaptation LM trained
on selected news texts from the repository. Experiments showed relative reductions of
58% in OOV-rate, 16% in perplexity, and 4% in WER. Basically, it is very similar work
to (Auzanne et al., [2000), but the adaptation is done not on weekly basis, but on daily

basis.
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4.5 Topic-based Methods

In topic-based LM adaptation approaches, the general LM is adapted in order to adjust
to the underlying topic of the speech. In online topic-based methods, topics must be
identified at the precise time when they appear in the speech. Since this thesis is
focused on online topic-based LM adaptation, papers mentioned in this section are the

most related existing approaches we are aware of.

A work which is to my knowledge the most related to this thesis, is (Echeverry-Correa
et al., 2015). In this paper, various topic identification methods and various dynamic
language model adaptation methods are tested on TI and ASR task using data from
Spanish partition of the European Parliament Plenary Sessions. The proposed system
has 2 recognition passes. In the first one, the general LM is used to generate hypothe-
ses, from which the topics are identified. Then, the general LM and previously trained
topic-specific LMs are used to interpolate the adaptation LM, which is then used to
re-decode the audio signal in the second pass. In the TI experiments, two different doc-
ument representations have been tested: BOW and LSA. Results suggested, that LSA
improves the TI error over the BOW-based approaches. The improvement is significant
especially for shorter audio segments (roughly 1 minute). In the dynamic LM adapta-
tion task, 3 different interpolation schemes have been tested: (1) hard (interpolate 1
topic LM), (2) soft (interpolate all topics), (3) topl0 (interpolate ten top-scoring LMs).
Surprisingly, the language model was adapting better to short segments even though
the topic identification error is increased for those segments. The best results have been
obtained when using top10 interpolation scheme. Another surprising result in this paper
is that topic-specific LMs based on automatic document clustering (k-means with LSA
representation) perform better than LMs based on manual labeling of the corpus. The
main difference from our approach is that presented method is adapting the LM only
on speaker-turns or after roughly 1-minute audio segment and then the whole segment
is re-decoded, while we are aiming at an online ASR system, which analyzes the ASR

output at each time step and adapts LM without re-decoding the signal.

In (Boulianne et al.l 2006)), a system for French closed captioning of live TV broadcasts
in Canada was presented. The recognizer is WFST-based 1-pass system and its speed is
0.7xRT with maximum delay of 2 seconds between the input (speech of shadow speaker)
and the text output. Before a live captioning session, a number of configurations are
preloaded in memory, so that switching between topics and speakers happens instantly
during the session. Topic LMs are interpolated in advance based on optimizing the
perplexity of held-out data. The client software suggests before each session novel words,
pronunciation and association with topics to be validated by a shadow speaker. During

live production, the shadow speaker can change topics and insert punctuation or other
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symbols. After the session ends, the shadow speaker listens again to his voice and
correct all recognition errors to produce data for supervised training. The web-crawler,
which feeds the text database on a daily basis, retrieves about 1 million words of text
every night. On average, 6000 of these are unknown to the system, but only 200 or so
will survive the garbage filters and be added to the database and proposed to the user
for verification. The main difference from our approach is that in the paper, the topic
identification step is done manually by a shadow speaker, while we are aiming at fully

automatic system.

In several papers, the TI block has been implemented as a topic model (see section

3.2.4). Here, we will briefly describe those of them that are most related to this work.

e In (Tam and Schultz, |2005)), topic mixture weights are dynamically updated based
on decoded words (each word is in LDA modeled as a mixture of latent topic) and

the in-domain LM is interpolated with the background trigram LM.

e In (Hsu and Glass| 2006), an extension of LDA, HMM-LDA, was used. In this
work, LM is adapted not only to the underlying topic, but also to the style of the

speech modeled with latent syntactic states.

e In (Watanabe et al., 2011), the TT block is implemented as a latent topic tracking
model, which is an extension of LDA estimating additional parameters (Dirichlet
priors) of word-topic probabilities depending on the previous time steps, which
implements the time-dynamic. However, in this work, the improvement in terms

of WER is very modest at the cost of slowing the recognition to 2xRT.

e In (Chen et al., [2015]), adapted RNN LMs are (offline) trained using vectors from

topic models as an additional input.

e An online fully-unsupervised LDA-based approach was published also by the au-
thor of this thesis (Lehecka and Prazakl 2018).
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Proposed Solution and

Implementation

In this chapter, an innovative solution to the problem of online topic-based LM adapta-
tion is presented. The solution is a complex system, in which the existing online ASR
system (Prazak et al., 2012) was extended with an online topic-based LM adaptation
feature by the author of this thesis. The scheme of proposed solution will be outlined
and broken down into component blocks. Then, we will look into each component block
and describe details about how it works, how it is implemented, what is the default
setting and which parameters are optional to be experimented with. A complete list of

configurable parameters can be seen in appendix [A]

5.1 The Scheme of the Solution

The basic scheme of the solution is outlined in figure The core of the system is
online automatic speech recognizer (Online ASR block described in section [5.2)), which
is processing the input audio stream in the real time and generating partial hypotheses

about the content of the speech so far.

My first improvement over the existing (baseline) ASR system was to add one more
LM into the decoder resulting in a Parallel Decoder generating two different partial
hypotheses at each time step: one using a general LM and one using an adapted LM,

which can be replaced on the fly.

My second improvement is a Hypotheses Merger, in which information from both partial

hypotheses is merged together while favoring the information from adapted-LM decoder

(details in section [5.3).
37
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FI1GURE 5.1: The basic scheme of proposed solution.

My final improvement is a sort of ”feedback” adaptation loop around the ASR system, in
which current-speech topics are identified (Topic Identifier block, section , checked
if they are new in the speech (Topic-change Detector block, section and if so, a
suitable adapted LM is prepared (LM Mizer block, section and used to replace the
older adapted LM in the ASR’s decoder (LM adaptation arrow). After that, the ASR
immediately starts to generate decoded hypotheses using new adapted LM. In this way,
the system is being adapted online based on the current (or very recent) topics in the

speech.

The originality of this solution lies in minimizing latency of the adaptation by using two
parallel decoders (instead of commonly used offline multi-pass approaches) and online
merging their outcomes. The Topic Identifier and LM Mizer blocks incorporate mostly
publicly known models and approaches. However, the way the Topic-change Detector
decides in the real time about the change of the topic and the connection of all blocks in
the adaptation loop is an innovative contribution of this thesis, since we are not aware

of any published work with similar scheme.

The processing time needed for all computations in the adaptation loop depends on how
fast a computer is able to process particular blocks. In the Topic Identifier block, only
a short part of incoming hypothesis (only the most recent part) is typically analyzed
in order to identify current topics, therefore this block is causing only a small delay

depending on the complexity of the trained model. Similarly, the block Topic-change
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Detector is usually evaluated very fast, since it typically consists only of several yes-or-
no rules. The LM Mixer block, on the other hand, is the critical time-consuming part

of the adaptation loop, where a lot of computations need to be done as fast as possible

(see section [5.6.5)).

In some special cases discussed later in section the LM Mixer block can be accel-
erated by precomputing a restricted set of LM imagesﬂ leading to a dramatically fast

adaptation with almost no delay caused by slow computing.

I decided to write the system in Python programming 1anguageE|, because there has been
developed a vast amount of easy-to-use modules for fields like topic modeling, machine
learning, NLP, neural networks training etc., all written in Python and publicly available.
Also, our online ASR system has a Python API, so decoding process can be controlled
directly from a Python code and returned partial results can be Python objects. The
implementation of the system is fully modular and hence it can be easily extended by
plugging in any algorithm other than those presented in following sections, if the need
be.

5.2 Online ASR

The cornerstone of proposed system is an LVCSR system developed on our department
for low-latency real-time ASR (Prazdk et al., 2005). This system is being continuously
developed and extended with new methods to perform state-of-the-art recognition with
accent on online decoding and live captioning of TV shows (Prazak et al., 2012)). It is

written in C++ programming language with an API wrapped into Python.

For acoustic modeling, the ASR system uses three-state HMMs with output probabilities
modeled by a Deep Neural Network (DNN).

When the system starts, a parallel decoding using 2 decoders at the same time is ini-

tialized. The main purpose of particular decoders is following:

e Decoder D¢ uses a general LM. It is immutable during whole recognition and thus
it provides continuous stable stream of partial results (hypotheses) to the adap-
tation loop in order to identify topics dynamically. It is also used in Hypotheses
Merger to fill potential gaps in decoded results emerging from changing adapted
LMs.

! A special data structure suitable for fast loading into the decoder in ASR system
Zhttps://www.python.org
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e Decoder D 4 uses an adapted LM. It is a variable decoder, where the LM adaptation

takes place during the recognition on the fly.

After each LM adaptation, D 4 can start decoding with a feature called retro-recognition.
It means that it first re-decodes several last seconds of the audio stream and then
continues with online recognition. Retro-recognition can be used for online corrections of
the last decoded words using the new adapted LM and thus it can compensate short time-
delays emerged from the topic-change detector or LM mixer. However, retro-recognition
can be used only for several seconds back into history. Re-decoding longer epochs is
impractical, since the decoder must wait until retro-recognition finishes establishing real-

time decoding, and so, partial results would be too delayed behind the speech.

To implement the change of LM in the decoder D4 whenever the change in the top-
ics of the speech is detected and corresponding LM is prepared, following sequence of

commands is used:

1. Function StopParallelRecognition() is called to stop decoding with D4. Decoder

D¢ continues unchanged.

2. Function ChangeLanguageModel() is called to switch the LM in D4. Optional
arguments LanguageModel Weight and WordInsertionPenalty can be specified here.

3. Function StartParallelRecognition() is called to start again decoding with D 4.
An ID of a frame, from which D4 starts recognizing, must be specified as an
argument. Here, retro-recognition can be applied by passing ID of a frame from

some (reasonable) past time.

Additionally, LVCSR has many parameters which can influence the decoding process,
the acoustic model behavior, the audio processing etc. To name few of them which
are important for our work, one can set ResultPeriod (how often partial results are
reported), ProcessorNumber (how many cores are used) and the type of returned results

(lattices, 1-best hypotheses, ...). A complete list of configurable parameters can be seen

in appendix [A]

5.3 Hypotheses Merger

The Hypotheses Merger combines hypotheses from decoders D¢g and D 4 while favoring
the information from D4, if available. Let us denote 1-best hypothesis from decoder

D¢ as Hg, 1-best hypothesis from D4 as H4 and the combined (merged) hypothesis as



Chapter 5. Proposed Solution and Implementation 41

Hj;. The merger uses always Hg as a base information for Hy; and whenever H 4 is
available, it sticks Hy4 to Hg and thus overlays information from the general LM with

information from adapted LM in the output H),.

An example of merging Hg with H 4 is depicted in figure Without the knowledge
about the topics, the decoder D¢ is not able to decode correctly topic-related words like
7 Apple”, 7Jobs” or "NeXT”, because the general LM assigns higher probabilities for
homonymsﬂ "apple”, ”jobs” and "next” which are used more often in a common speech.
However, when our system sees the word ”computer” and bigram ”Steve Jobs”, it likely
triggers LM adaptation to the I'T domain, where I'T-related n-grams have much higher
probabilities. As long as the speech is related to the IT domain, both decoders run in
parallel and the merger gives preference to Dy over D¢ (words with blue background).
Whenever the topic-change detector decides the IT domain is no longer in the speech,

because another topics have just appeared, the system stops D4, merges Ha4 with Hg

and starts LM adaptation to the new topics.

Decoder Dg:

| Steve and next .|in with | next Jand

1997 ,‘apple ‘merged

jobs‘became‘CEO ‘ he had‘4 ‘ children

Jobs ‘founded ‘computer

software company

Decoder D,: CEO ‘ he had‘for|

the‘ware company‘ NeXT 4‘in ‘1997 ,‘Apple‘merged ‘ with‘ NeXW‘ and‘Jobs‘became

- —~ Y
merge-trim merge-offset merge-offset merge-trim

FIGURE 5.2: Example of merging two hypotheses. For better legibility, punctuation
was added into decoded text.

Based on my observations, the decoded words at the very beginning and end of H4 can
be unreliable due to the lack of context and because D4 can be started or stopped in
the middle of some word. For that reason, few seconds from both ends of each H 4 are
dropped (red words in the figure and the best place to cut a gap in Hg and stick
H4 to it is found. Finding the best place to cut and tie both hypotheses is based on
finding two words with the same (or very close) start-timing at the beginning of H,4 and

two words with similar end-timing at the end of H 4.

The Merger has two optional parameters depicted also in the example merge-
trim defines how many seconds to drop from the beginning and end of Hy4 (default is
2). Only words lying entirely in the trimmed interval are dropped. Parameter merge-
offset defines the width of time-offset at the beginning and end of the rest of Hy4, in
which the place to cut and tie both hypotheses must be found (default is 3 seconds). If
words with the exact match of timings are not found, the merger selects two words with

minimum timing-difference within the allowed time-offset. This ensures that information

3Words which sound alike or are spelled alike, but have different meanings.



Chapter 5. Proposed Solution and Implementation 42

from H4 will be used even if there are completely different words with different timings

in both hypotheses.

5.4 Topic Identifier

Now, let us dive into the adaptation loop. The aim of the first block, the Topic Identifier
(TI), is to take the partial result from the general-LM decoder D¢ and decide which
topics are present in the current speech. The input result can be either a lattice or 1-best
hypothesis (see section . The detailed scheme of topic identifier implemented in

the system along with all parameters is depicted in figure [5.3

result from general-LM decoder

PARAMETERS Topic
(drop Ny last units ldentlﬂer
\
keep N, most Crop Result
recent units [— Result
unit type \ Encoder
"word" or "sec") ( Encode Result ) )
( trained encoder )/r Predict Topic N )
( units weighting y Scores } Soft
trained ~ H H Predictor
raine
topic predictor /\‘ o ”topicﬂs” aell ) )
[ Predict Relevant | |
p’ Topics Hard
N ) _t - 1_ — — - | | Predictor
( thresholding \/ i ULMtOPiJCSLMuML, )
strategy

set of predicted topics

FI1GURE 5.3: The detailed scheme of topic identifier.

In this place, let us clarify the terminology of using terms topic and topics. Since
our system works with both single- and multi-label topic identifiers, the speech can
theoretically contain any number of topics at any time. When speaking generally about
some TT without specifying if it solves single- or multi-label problem, we might use terms

like ”topic or topics”, "one or more topics” or similar. However, since this term will be
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very frequent in this thesis, we decided to use rather the short term topics whenever
speaking generally about some TI, meaning any number of topics. On the other hand,

we will use the term topic to underline that we mean exactly one sole topic.

5.4.1 Result Encoder

The first part of the TI subsystem, the result encoder, aims to convert the important

part of the input result into a suitable numerical representation (vector or matrix).

Crop Result

First of all, the input result needs to be cropped in order to select only the important
part of it. Based on my experience, it is reasonable to throw away the last few words of
the result as there is usually high uncertainty about them in partial hypothesis, and focus
only on short recent window. In some applications, it is desired to define boundaries
of the window in number of words (e.g. when a fixed number of words is required by
a predictor), sometimes it is better to use a time-window (e.g. when there are long

non-speech parts in the speech between topics).

To control boundaries of the window in focus, three optional parameters were added:
unit type ("word” or ”sec” defining whether boundaries are word counts or seconds),
drop Ny last units (how many last units are thrown away) and keep N most recent
units (how many last units are selected from remaining result, i.e. the width of the

window).

When the result is a lattice, boundaries must be set in seconds. When the result is
1-best hypothesis, both words and seconds can define boundaries. The default setting

is to drop last 2 words and then select window of fixed size 50 most recent words.

Encode Result

Next, the cropped result is processed by a trained encoder to produce a numerical
representation of the cropped result. It must be fully compatible with the trained
topic predictor to produce correct prediction, that is why these two blocks (encoder
and predictor) are usually trained together and used as one model. However, if units
weighting (discussed later) is used, it must be applied on the numerical representation,
i.e. after encoding result and before predicting scores. That is why the result encoding

is split into encoder and predictor blocks.

Following text encoders were incorporated in the system:
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o tf-idf — bag-of-words model combining sublinear cosine-normalized tf with idf;
it must be used in combination with SVM-like models; it is based on python

implementation from Scikit-learn package (Pedregosa et al., [2011));

e word2vec — sequence of fastText word vectors (Bojanowski et al., 2016); it must
be used in combination with LSTM-like models; to handle word vectors, python
Gensim package (Rehtifek and Sojka, 2010) is used and during encoding, word
vectors are assembled into a matrix representation capturing also the order of

words.
If the result is in form of a lattice, one of following alternative encoders must be used:

e lattice_tf-idf — probabilities of each term are aggregated across whole lattice

and used as term frequencies to build a tf vector;

o lattice_word2vec — the lattice is converted to word confusion network (also
known as a sausage) and for each node in the sausage, a weighted sum of word

vectors is computed based on probabilities of outgoing arcs.

Units Weighting

By default, if the result encoder does not take the order of words into consideration
(e.g. tf-idf), all words within the selected window are equally important. However, since
more recent words are naturally more significant for evolving topics, it seems reasonable

that the very recent words should have higher weights than older ones.

In our system, there is parameter units weighting to define which weighting function
should be applied on the selected window. By units we mean all words (in case of 1-best

hypothesis) or nodes (in case the result is a lattice) within the window.

Let U = (u1,ug,...,un) be the sequence of N units we want to analyze, u; the oldest
unit from this sequence and uy the most recent one. We are looking for a function
fru = a0 €[l,...,N]|, a; € (0,1), where «; is the weight of unit u; (the higher,
the more important the unit is). I have experimented with several functions plotted in

figure

Mathematically, these functions are defined by following formulas:

e constant (no weighting, default):

oy = 1, (5.1)
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Weighting window functions

1.0
0.8 A
3
< 0.6-
3
-
]
5, 0.4 1 constant
g linear
0.2 1 —— sigmoid
—— logarithmic
0.0 —— exponential
1 0.25*N 0.5*N 0.75*N N
(oldest analyzed unit) (most recent unit)

position of unit in the window (i)

FIGURE 5.4: Weighting functions which can be applied on a result-window. Higher
weight means higher importance of the unit in the encoded result. This graph has been
plotted for N = 50 units.

e linear:
o = %’ (5.2)
e sigmoid: )
;= m7 (5.3)
e logarithmic:
o; = logy (i), (5:4)
e exponential:
o = % T (5:5)

Based on my expectation of how the weights should evolve in time, I set parameter
A =0.25 in and p = 5 in As can be seen from figure all functions assign
minimal weight for the oldest unit and any = 1 to the most recent one, but each function

with a different trend.

These weights are then used to scale corresponding term frequencies in the ¢f weighting
scheme or corresponding word vectors in word2vec matrix, so the recent words influence

the predictions more than older ones according to selected function.
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5.4.2 Soft Predictor

The aim of a soft predictor is to convert encoded result into one vector characterizing
how likely is each topic present in the speech, i.e. to predict the per-topic scores. In
the literature, there can be found a vast collection of such predictors (see section ,
each having many hyperparameters, therefore it is not feasible to experiment with all of
them. Based on my experience and knowledge, several most promising and time-tested
predictors were selected and included into the system. However, the system is fully
modular and hence it can be easily extended by plugging in any other predictor, if need

be.

For datasets with topic-labeled data, I experimented with following supervised classifiers:

e SVM — Support Vector Machine classifier with linear kernel and one wvs. the
rest multi-class strategy; the input to the model must be tf-idf vectors; python

implementation from Scikit-learn package (Pedregosa et al., [2011) is used;

e calibSVM — the same as SVM, but extended with a probability calibration
wrapper, so the output is a probability distribution over topics (see section
for details);

e LSTM — recurrent neural network with 3 LSTM (Long Short Term Memory)
layers, each with 512 neurons (including max-pooling and dropout), followed by
one dense output layer with sigmoid activation function; the input sequence is
limited to the first 500 Wordsﬂ shorter documents are zero-padded; the input
to the network must be a sequence of word vectors, e.g. (Mikolov et al., 2013),
(Bojanowski et al., 2016]) or similar; python implementation based on Tensorflow
library (Abadi et al., [2015) is used.

For datasets without any topic-labels, I experimented with following unsupervised topic

model:

e LDA — Latent Dirichlet Allocation model with the number of clusters as a hy-
perparameter, trained in 5 passes over training data; the input is a plain text,

i.e. cropped 1-best hypothesis without any encoding; python implementation from
Gensim package (Rehtifek and Sojkal, [2010) is used.

“Based on my experiments, by looking at the first 500 words of a document, LSTM classifier gets
enough information to decide about the topic.
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5.4.3 Hard Predictor

The per-sample prediction from a soft predictor is a vector of per-topic scores s1, S, ..., Sk,
which has to be thresholded to obtain binary topics assignment. See section for
details.

Based on my experiments and knowledge, following thresholding strategies were included

into the system:

e FixedCut(t) — fix the threshold globally to the same value t for all topics and
samples, i.e. all topics with s; > t are assigned; the natural strategy for SVM
classifier is FixedCut(0);

e MCut (Mazimum Cut) — try to select only topics which have "really higher”
scores than the others by identifying the highest difference between successive

scores (Largeron et al.l [2012);

e RelCut(p) (Relative Cut) — set the threshold for each sample relatively to the

Si
max(81,52,..-,SK )

maximum predicted score, i.e. i-th topic is assigned, if > p; the most

common setting is RelCut(0.5);

e RCut(k) (Rank-based Cut, also known as k-per-doc) — for each sample, assign
exactly k topics with the highest scores; for example, RCut(1) ensures exactly one

topic is assigned for each sample.

The output from the hard predictor is a set of identified topics which is being online

monitored by a Topic-change Detector.

5.5 Topic-change Detector

The aim of a Topic-change Detector is to decide whether the current and past topics
identifications provide sufficient evidence of a change in the speech topics. The detailed
flowchart of topic-change detector implemented in our solution along with all parameters

is depicted in figure

Since topics are identified from only a short word history, there is usually some noise
in each individual prediction which must be somehow smoothed out over longer time
period. In our system, the key parameter which controls the smoothing of predictions
is topic steadiness. It defines, how many seconds into the history a topic must have

been continuously identified to be marked as a steady topic in the speech. For example,
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F1GURE 5.5: The detailed scheme of topic-change detector.

if topic steadiness is set to 5, only topics which occurred in every topic identification

during the last 5 seconds are considered as steady.

By increasing the steadiness, the topic-change detection becomes more smooth and safe,
but also more delayed behind the real changes of topics. This delay can be partially
counterweighted by a retro-recognition, but only few seconds of retro-recognition is

possible to recompute in real-time applications.

After selecting steady topics, the existence of a single-topic LMs is assured by checking
the list of available LMs and if there is no topic left, it means that right now, there
is no steady topic in the speech the system can be adapted to, and the algorithm ends

the loop here.

Remaining steady topics are compared with current topics in adapted LM. If they are
equal, the topics in the speech still correspond with the adapted LM in the decoder and
there is no need for any change. However, if they differ, new topics in the speech have
just been detected and adaptation is triggered by sending new topics to a LM Mizer
block.

5.6 LM Mixer

The aim of a LM Mizer is to prepare a mixture of LMs suitable for LM adaptation based
on detected topics in the speech. The detailed flowchart implemented in our solution
along with all parameters is depicted in figure and unfolded miz LM block later in
figure The LM Mizer can work in 3 modes: online, offline and prepared. Based on
selected working mode, LMs are prepared differently.

Since preparation of LMs is computationally intensive process and topics are likely to
re-occur in the speech, each adapted LM is cached (stored on disk) for future usage. The
amount of lastly-used LMs stored in the cache is controlled by cache size parameter.

The Update cache block maintains the list of lastly-used LMs in the speech and removes
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FIGURE 5.6: The detailed scheme of LM mixer.

the old ones which have not been seen for a long time in order to limit the disk usage.
The only exception is prepared mode, in which caching is not necessary as all LMs are

supposed to be already prepared (cached) on the disk.

5.6.1 Prepared Mode

The simplest and fastest working mode is prepared mode. It assumes all adapted LMs
have been prepared offline and are stored on the disk to be used, therefore real-time
recognition with almost no adaptation delay can be achieved using this mode. However,
it can be used only when a reasonable number of distinct LMs is to be used during the

recognition.

For example, if we have 20 topics and we know there will never be a combination of
more than 3 topics at the same time in the speech, there are (230) + (220) + (210) = 1350
distinct combinations of topics. For each one, we want to train an adapted LM with size
about 500 MBP| then we would need 675 GB of disk space. That is possible, but now

imagine 1000 topics (which is nothing unusual in the real world applications): we would

A typical size of LMs used in our ASR system



Chapter 5. Proposed Solution and Implementation 50

have to save (10300) + (10200) + (10100) ~ 167 million LMs on a storage with 83 PB free
disk space available. And of course, this is the simple uniform combination not taking
various weights of topics into consideration. It is obvious, that with increasing number
of topics and possible topic-combinations, the required disk space very quickly exceeds
the capacity of any affordable storage. That is why prepared mode can be used only in

tasks, where the number of distinct adapted LMs is reasonably small.

5.6.2 Online Mode

The online mode is designed for online applications, where the real-time ASR runs
continuously and there is no way all possible adapted LMs can be stored on the disk.
Let’s denote newly discovered set of N topics in the speech as T' = {t1,...,txy}. Each
T gets a LM-status variable St holding information about the preparation progress.
The mixing of adapted LM itself runs as a background process in parallel with the
recognition. First, Sy is set to "IN_PROGRESS”, and as soon as the mixed LM is
prepared, St is set to "READY”.

When LM Mizer enters the online mode, it first checks whether any computing is
necessary. If the desired LM has been recently used, the cached LM is used. If
St = "READY”, it has been prepared recently and is ready to be used. If Sp =
"IN_PROGRESS”, the request to prepare this LM is already in progress and the algo-
rithm can not use it right now. If all these 3 decisions are negative, a new background
process is triggered and the LM Mizer ends here waiting for the future topics identifi-
cations while the new mixed LM is being prepared silently in the background and the
ASR continues with no changes. In this way, many various LMs can be preparing at the
same time in parallel and whenever one of them is ready, it can be immediately used in

the decoder, if the corresponding topics are present in the speech.

5.6.3 Offline Mode

The offline mode is designed for offline applications where the real-time operation is not
required, e.g. to recognize an audio record. In such case, with each new set of topics in
the speech, the ASR is paused, the desired LM is prepared (whatever time it takes) and
after that, the ASR is resumed with the new LM ready to be used.

This mode can also simulate how an online application would work if the conditions
were ideal, i.e. if all LMs can be prepared in advance and stored on disk or if the LM

preparation takes no time at all.
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5.6.4 Mix LM block

The Miz LM block is the main core of LM Mizer in both online and offline modes.
It executes the most computationally intensive parts as its subprocesses and waits for

completion of the mixed LM. The scheme of this very important block is in figure
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F1GURE 5.7: The detailed scheme of mix LM block. The round block with ”+" symbol

denotes linear interpolation of static n-gram LMs.

In N-gram Mixer block, single-topic LMs, i.e. LMs trained from documents related

to only one topic, are selected from a set of pretrained single-topic LMs (technically a

mapping from topics to LM paths) based on topics identified in the speech. Then, a

command to mix them together is assembled and run as a subprocess. The result of this

process is a multi-topic LM, which is a LM interpolated from one or more single-topic

LMs.

For any sequence of words W, let us denote multi-topic LM as Py+(WW), number of

identified topics in the speech as N, single-topic LM for i-th identified topic as P;(W)

and its mixture weight as \;. Assuming that le\il A; = 1, the multi-topic LM can be

written as linear interpolation

N

Pr(W) = Z N B(W).

=1

(5.6)

It might seem reasonably to set A1, ..., Ay based on scores obtained from the soft predic-

tor and thus, reflect the various importance of detected topics in the speech. However,
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unlike binary predictions, topics scores obtained from the soft predictor (usually float
numbers) can be highly changeable and it is not very likely that the exactly same scores
will be seen more than once during the recognition. The effort to prepare an adapted
LM reflecting exactly identified topics and predicted scores can lead to: (1) new LM
adaptation at each single time step (in the offfine mode) or (2) no LM adaptation at

all, because any prepared LM will never match predicted scores again (in online mode).

To avoid problems (1) and (2), I decided to use always uniform weights for all single-topic
LMs, i.e.
i=1,..,N. (5.7)

When using uniform weights, once prepared adapted LM can be used even in situations,

when the topic identifier predicts the same topics, but with different scores.

Based on my experiments, it is usually better to add also a general topic-independent
LM into each mixture, because it guarantees the complete vocabulary and general n-
grams of the language to be present in the adapted LM. Therefore, after mixing the
multi-topic LM, it is interpolated with general LM, Pg(W'). The path to the general
LM and its mixture weight A\g € (0,1) are optional parameters. The default value is
Ag = 0.5. If A\g = 0, the general LM is not added into the mixture. The result of this
interpolation is the desired adapted LM, P4(W):

Py(W) = (1 = Ag) Pt (W) + AaPe(W). (5.8)

When put equations and [5.8] together, we can write a formula to interpolate all

LMs in one single step:

1- )¢

Pa(W) = N

N
" PW) + AcPe(IV). (5.9)
=1

This single-step interpolation is implemented in our system to minimize the mixing time.
However, in experiment schemes in this thesis, usually 2-step interpolation (i.e. compute
first eq. and then eq. is depicted in order to preserve the concept of single- and
multi-topic LMs, which is in my opinion more intuitive. It is just for the sake of visual

clearness in figures, resulted LMs are the same for both single- and 2-step interpolations.

To apply static linear interpolationin our system, SRILM toolkit (Stolcke et al., [2002)
is used, specifically ngram program. The output from n-gram mizer is the adapted LM
in a binary ARPA backoff n-gram formatﬂ

Shttp://www.speech.sri.com/projects/srilm/manpages/ngram-format.5.html
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Finally, in the LM Imager block, the LM is combined with a recognition network and
saved as a LM image, which is a special data structure suitable for fast loading into the
decoder in ASR system. This image can efficiently replace current adapted LM in the
decoder on the fly.

5.6.5 Speed of LM Mixer

It has been already mentioned that the most computationally intensive part of the whole
adaptation process is LM Mixer, specifically N-gram Mizer and LM Imager blocks. It

is worth a short analysis of processing time these blocks are consuming.

We took a sample 3-gram LM containing 1.2 million words, 27 million bigrams and
20 million trigrams (1.2 GB on disk), performed several experiments and measured con-

sumed CPU time of LM mixer running on 1 core of Intel Core i5-3470 machine.

70 A ;
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FIGURE 5.8: Processing time of LM mixer with increasing size of vocabulary. The total
time consists of mixing together two identical n-gram LMs and converting the mix into
a LM image suitable for the decoder in ASR system.

Figure 5.8 shows how the LM mixer scales with enlarging LM. For each particular run,
we created a new LM with limited vocabulary, where only first NV words (alphabetically)
were included and all other words were replaced with unk token in all n-grams. The
request to mix this reduced LM with itself was sent to LM mixer and the consumed time
of particular blocks was measured. As can be seen, small LMs are mixed together very
fast, but from the vocabulary size of about 600 thousand words, the consumed time
starts to be impractical, especially for online mode. The main portion of processing

time is consumed by N-gram Mizer, i.e. by the SRILM toolkit.

Figure [5.9 shows how the LM mizer scales with increasing number of mixed LMs. We
took LM restricted to the first 500 thousand words from the previous experiment and

sent a request to mix N identical LMs together. As can be seen, processing time of
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F1GURE 5.9: Processing time of LM mixer with increasing number of mixed LMs.

The total time consists of mixing together N identical n-gram LMs (in this case LMs

with vocabulary size of 500 thousand words) and converting the mix into a LM image
suitable for the decoder in ASR system.

LM Imager is constant and the time consumed by N-gram Mixer scales roughly linearly

with increasing V.

5.6.6 Type of Storage

In most cases, LMs are rather large data structures and it is not possible to store all
adapted LMs in the RAM. Instead, we must store LMs on a hard drive. Therefore, the
reading speed of the storage in use must be reasonable according to the size of LMs. A
typical reading speed of current hard disk drives is about 200 MB/s (HDD) or 3 GB/s
(SSD).

For example, when the size of a LM is 500 MB and the hosting machine is using HDD to
store the data, the time delay caused by loading each adapted LM from the disk would
be about 2.5seconds. If we use larger LM, say 3 GB, the system would have to wait
15 seconds just to read the adapted LM from the disk, which can be unbearable delay in
some tasks. However, the same LM would be loaded from the SSD disk in only 1 second.
Apparently, when using large LMs, switching to SSD disk may lead to a significant speed
up of LM adaptation.



Chapter 6

Experiments on TV News

Domain

TV news is an extremely challenging domain for automatic speech recognition for two
reasons: (1) each few-minutes-long report can be from a completely different domain
and inside each report, speech styles are highly changeable (for example, the report
starts with short introduction from the news studio, continues in some noisy exterior
introducing different speakers and ends back in the studio making a live phone call
with another speaker); (2) reports can contain very specific and rare content-bearing
proper nouns crucial for understanding the content of the speech, which are usually
missing in the vocabulary (e.g. places where some accident recently happened, names of

so-far-publicly-unknown people and organizations etc.).

In this chapter, we applied topic-based LM adaptation algorithms on broadcast TV
news and evaluated improvements in terms of WER. We also evaluated transcription

of proper nouns, which is very important aspect of this domain.

6.1 Awudio Data

To test topic-based LM adaptation in the news domain, we chose TV show Uddlosti,
which is the main daily broadcast TV news show in Czech Republic. Each show was
about 48 minutes long and contained about 23 individual reports related to many various
topics. At each boundary of two consecutive reports, topics were usually changing, which

makes these data suitable to test automatic topic-based LM adaptation.

To cover longer time period and various news themes, we selected one whole week

from November 2013 (7 records) and 6 records from consecutive Mondays from March

55
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and April 2014. The format of all audio records was a standard PCM (Pulse-Code
Modulation), 16 bits per sample, 1 channel and sampling rate 16 000 Hz.

All tested records were transcribed by human annotators and report-breaks were marked
manually along with underlying topics for individual reports. In sum, our testing data
consisted of 13 records, 10.3 hours of audio and 303 individual reports. Details about

selected records and corresponding transcripts are summarized in table

Date Duration Reports Words Proper Nouns

13.11.2013 0:47:35 17 6481 501
14.11.2013 0:48:19 23 6729 429
15.11.2013 0:47:45 26 6 348 338
16.11.2013 0:43:54 22 6211 375
17.11.2013 0:43:18 19 5816 389
18.11.2013 0:48:30 23 6615 352
19.11.2013 0:47:59 21 6 887 363
10.03.2014 0:48:34 24 6804 367
17.03.2014 0:47:29 21 6343 386
24.03.2014 0:48:06 26 6492 361
31.03.2014 0:47:41 27 6810 368
07.04.2014 0:47:55 29 6437 318
14.04.2014 0:48:24 25 6376 352
total 10:15:31 303 84349 4899

TABLE 6.1: Test audio records from TV show ”Udélosti” along with duration and
numbers of reports, words and proper nouns in transcript.

6.2 Text Data

The target domain was TV news, therefore we had to collect and prepare large amount
of suitable text data close enough to this domain to train high-quality and robust LMs.
On our department, we had developed a framework solution for mining, processing and
storing large amounts of electronic texts for language modeling purposes (Svec et al.,
2014)). About six years ago, this system started to periodically import and process news
articles from many Czech news servers. We had also supplemented the corpus with
additional transcripts of selected TV and radio shows and a large amount of newspaper
articles bought from a news agency. In sum, we had accumulated corpus with Czech
news-related documents amounting to almost 1.3 billion tokens in 3.7 million articles

and these numbers are still growing.
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In this framework, we had implemented a sequence of tools that processed each document
appropriately for language modeling purposes, namely text cleaning, tokenization, nor-
malization, true-casing and vocabulary-based text replacements to unify distinct forms
of the same words and multi-word expressions. After applying all these tools, we ended

up with 8.6 GB of processed news-related Czech text prepared for language modeling.

To avoid misspelled words and other eccentricities to be recognized in the speech, we
checked all tokens in our text database against a list of known and correctly-spelled
words, and we marked all out-of-list tokens as unknown words, which reduced the vo-

cabulary size from 4.4 to 1.2 million words.

6.2.1 LMs

Since we trained LMs from a lot of text data and we needed them to fit into the memory;,
all LMs in this chapter (if not stated otherwise) were trigram models with the minimal

count of bigrams in text limited to 3 and the minimal count of trigrams limited to 6.

A general (topic-independent) LM trained from all available texts contained 1.2 million
unigrams, 27 million bigrams and 20 million trigrams. The size of this LM (in ARPA
format) on the disk was 1.3 GB. The size of adapted LMs was variable depending on

particular topics clusters.
To clear the terminology, we are using following terms to address different LMs:
e general LM — large topic-independent LM trained from all available text docu-
ments; this LM can be prepared offline,

e single-topic LMs — LMs trained from documents related to only one topic; these

LMs can be also prepared offline,

o multi-topic LMs — LMs interpolated from one or more single-topic LMs; these

LMs are mixed on demand based on topics detected online in the speech,

e adapted LMs — LMs interpolated from multi-topic LM and general LM; these
LMs are used to online adapt the LM in the decoder.

6.2.2 Topics

In order to do topic-based LM adaptation, we had to cluster our text data into some
topics covering various areas from which news are reported. That means we had to

identify the topics each piece of text belonged to. Some topic-related experiments with
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this dataset have been also published by the author of this thesis in (Lehecka and Svec,
2015|) and (Skorkovska et al., 2011)).

Some news servers provide a set of labels (or tags) along with each article. Based on
presence or absence of such labels in the data, there are two basic approaches to topic
identification: supervised text classification in which provided labels are fully exploited,
and unsupervised topic models in which the model finds topic clusters itself without the

need of any label. I was experimenting with both approaches in sections (supervised)

and (unsupervised).

6.3 Performance Measures

In all experiments in this chapter, a standard word error rate (W ER) was evaluated.
However, W ER perceives all word errors with equal importance. We believe there is a
significant difference between minor deviations from the reference text, which the viewer
would be able to consume without loss of meaning, and complete misrecognition of a

word crucial to understanding the content of the speech.

In the case of news domain, we are not able to list all words which are crucial to un-
derstanding the content of the speech. However, we can approximate this list with all
proper nounsﬂ in the transcript. Indeed, personal names, geographic locations, compa-
nies etc. are much more important to be recognized correctly than some common words,

which the viewer can often deduce from the context if misrecognized.

Hence, we are introducing additional performance measure more informative about er-
rors in the news domain, called Proper Noun Error Rate, PNER for short. Let
the reference transcript be preprocessed by some true-casing too]ﬂ and aligned with a

recognized word sequence. Proper noun error rate can then be computed as

Spny + Dpn + Ipn
Npn

PNER = -100 %, (6.1)

where Spy is number of reference proper-nouns substitutions, Dpy is number of refer-
ence proper-nouns deletions, Ipy is number of reference proper-nouns insertions, and
Npp is the total number of proper nouns in the reference word sequence. In other words,

PNER is WER evaluated only for proper nouns in the reference transcripts.

1For simplicity, we considered all words starting with a capital letter as proper nouns.
2True-casing must include also decapitalization of sentence beginnings, otherwise all first words of
sentences would be considered as proper nouns.
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6.4 Baseline Performance

As a baseline system, we used online ASR system described in the section We used
only the general-LM decoder without any topic-based LM adaptation during the recog-

nition, so the whole test data was transcribed using only one static general LM described
in section The measured performance was WER = 16.95% and PNER = 17.41%.

6.5 Supervised Text Classification

Supervised approach to identify topics is a standard classification task requiring sufficient
amount of annotated data to train a classifier. In our case, annotations were topic labels

manually assigned to each article by journalists.

Since each news server uses different label-set and manual labeling suffers from so-called
inter-indexer inconsistency phenomenonf} these labels were not consistent across whole

multi-source text database.

To avoid topic inconsistency, we decided to choose labeled data from only one server
which we believe to be labeled thoroughly and consistently, train a topic identifier on
top of these data and automatically assign labels for the rest of (differently labeled or
unlabeled) sources. After that, all articles in our database should be labeled consistently.
The amounts of our labeled and unlabeled data is summarized in table [6.2] Here, we

considered all differently labeled sources as unlabeled data.

Tokens Articles Size
(in millions) (in thousands) (in MB)

labeled data 84 270 579
unlabeled data 1203 3391 8034

TABLE 6.2: The amount of labeled and unlabeled text data.

6.5.1 Topic Tree

In our labeled data, there were 23.5 thousand distinct topics. We manually mapped the
most frequent topics into a standardized IPTC news topic treeﬂ To avoid mistyped and
low-frequent topics with only a little training data, we ignored topics assigned to less

than 10 articles.

3Two human experts may relatively often disagree on how to label a text document.
“http://cv.iptc.org/newscodes/mediatopic
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Our final topic tree consists of 577 nodes (labels) covering various news areas starting
from very general top-level "root” nodes and ending with very specific ”leaf” nodes. To
get a picture about frequencies of particular topics in our labeled data, we generated a
topic cloud into the figure As can be seen, the most frequent topics in our labeled
data are USA and sport-related topics.
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FIGURE 6.1: Topic cloud generated from labeled data (in Czech). The larger font a
topic has, the more frequent it is in the data.

To get a picture about the hierarchical structure of our topic tree, an example of one

fully expanded top-level topic (economy, business and finance) is depicted in figure

Since assigning topics for unlabeled data is a non-trivial problem, especially in the
multi-label case, we designed an experiment described in the section [6.5.2] in which we
investigated how to correctly assign labels for unlabeled data with respect to a topic-

based LM adaptation task.

6.5.2 Topic Clustering of Unlabeled Data

Correct distribution of text data into topic clusters from which single-topic LMs are

trained, is very important subproblem in LM adaptation task. With increasing number
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of articles misclassified into wrong topics, the difference between topic-specific n-grams
becomes less and less noticeable, single-topic LMs become more and more alike and
the topic-based LM adaptation gets less and less useful. In this subsection, we were
investigating how to correctly assign labels for unlabeled data with respect to a topic-

based LM adaptation task.

TIs Preparation

From all labeled data, we trained various soft predictors and in combination with various
thresholding strategies, we identified topics for unlabeled data, separated all (labeled
and unlabeled) data into topic clusters, trained single-topic LMs, and used them in
ASR experiments. We experimented with two topic granularities: (1) whole topic tree

consisting of 577 topics and (2) only the top level of the topic tree consisting of 20 "root”
topics (see figure [6.3).

EU sport
_hospodafstvi, podnikani a finance /svét”
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_nestésti a nehoda ¥/ véda a technika 3
_nabozenstvi a vira | " ‘zdravi
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_socialni otazky | \

FIGURE 6.3: 20 top-level nodes in our topic tree (in Czech).

LMs Preparation

We followed the scheme depicted in figure to process data and create adapted LMs
suitable for underlying speech. We started with selecting all labeled data from our
database, trained a topic identifier (TI) from them (we were experimenting with various
TIs described in section and used this TT to assign topics for unlabeled data. After
that, we arranged the corpus into topic clusters by putting each article into one or more
topic clusters based on the identifications from TI, or based on manually assigned labels
in the case of labeled data. For each topic, we trained a single-topic LM from all texts
belonging to the corresponding topic cluster. Also, we trained a gemeral LM from all
available text data. All these steps were done offline before the recognition experiments

started.

With data prepared in this way, whenever topics in the recognized speech are changed,

we can use these LMs and quickly build suitable multi-topic LM or, if there is only one
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FIGURE 6.4: Scheme of topic-based data clustering in the news domain.

topic in the speech, single-topic LM can be used directly. The final adapted LM is then
mixed together from general LM and multi-topic LM.

If single-topic LMs are trained with the same n-gram counts limits as general LM, each
single-topic LM contains only a subset of general-LM n-grams. Therefore, both adapted
and general LMs share the same vocabulary and set of n-grams, but with different

probability distributions.

Experiments

To make this experiment simple and the results clear and comparable, we did not identify
topics during recognition using the recognized data. Instead, we fixed all topic changes to
predefined scenario designed for each record by human annotator. In this way, language
models were adapting always in the same audio time to the same topics, therefore all
changes in the ASR performance were caused solely by different clustering of unlabeled
data into topics. The mixing weight of general LM in adapted LM was fixed to Ag = 0.5,

i.e. both component LMs (multi-topic and general) were equally important.

Results are summarized in figure We evaluated total WER and PNER. We
used abbreviations, classifiers and thresholding strategies listed in the description of the
system in sections [5.4.2] and [5.4.3] Thresholds in strategies FizedCut and RelCut were
optimized on held-out dataﬂ As for the RCut(k) strategy, we experimented with k& =1

(i.e. each article belongs to exactly one topic) and k& = 3 which is the label cardinalityﬂ
of our labeled dataset. We can see from the graphs that different clustering of unlabeled

data into topics and different topic granularity affects the performance of ASR system.

First, let’s compare results for two different topic granularities: 577 topics (full topic
tree) and only top-level 20 topics, i.e. put the right half of graphs against the left half.
Experiments with 577 topics scored slightly better in 9 (out of 15) cases in terms of

SRandomly selected 5% of labeled data not used during the training of TT.
S Average number of labels of each document in the corpus.
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FIGURE 6.5: Results with different topic clustering of unlabeled data in the news
domain. For 2 different topic granularities, 3 different classifiers and 5 thresholding
strategies, WER and PN ER (Proper Noun Error Rate) was evaluated.

WER (0.23% relative W ER reduction in average), however significantly better in terms
of PNER. In all 15 cases, more proper nouns were recognized correctly when using
577 topics, scoring in average 0.52% absolute and 3.1% relative reduction of PNER
compared to experiments with 20 topics. We believe it is because smaller and more
specific single-topic LMs can put more probability mass specifically to words (proper

nouns) highly related to underlying topics.

When comparing topic classifiers SVM, CalibSVM and LSTM, we can see very similar
results for experiments with 20 topics. However, in experiments with 577 topics, a
small superiority of CalibSVM and a significant inferiority of LSTM classifier can be
observed. We attribute poor results of LSTM classifier to the fact, that this classifier is
looking only at the first 500 words of each article in order to identify topics, which is
a consequence of re-arranging data into mini-batches to speed-up the training, whereas
SVMs can see all words in the bag-of-words representation. Another big advantage of
SVMs is the fast training. It took less than half an hour of CPU-time to train SVM and
1 day of GPU-time to train LSTM.

And finally, let us compare different thresholding strategies. One obvious result is, that
strategy RCut(1) (which puts each text into exactly one topic cluster), is not suitable for

clustering data in the news domain. We attribute it to a multi-topic character of news
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articles. However, we do not see any superior strategy from the results. Each tested

strategy can be suitable for a different classifier.

We can sum these results into following observations:

1. Clustering texts into more branched topic tree is better, especially for proper nouns

recognition.
2. Clustering with LSTM classifier is (sometimes surprisingly) worse than with SVMs.

3. It is worth to calibrate SVM’s output to form a probability distribution, especially

when using higher number of topics.

4. There is not one best thresholding strategy. We must select one with respect to

the classifier in use.

The best W ER was achieved when clustering data into 577 topics using CalibSVM with
RelCut (16.61%) and the best PN ER was achieved using SVM with RCut(3) (16.27%).
For further experiments in this section, we decided to use topic clusters emerged from
CalibSVM classifier with RelCut thresholding strategy trained to distinguish
between 577 topics. In the experiments in this section, LM adaptation using these
topic clusters performed best in terms of W E'R and reasonably well in terms of PN ER.
When compared to the baseline (no adaptation), we achieved 1.9% relative reduction of

WER and 6.2% relative reduction of PN ER using these topic clusters.

However, it must be pointed out that these results are not real-word results, because they
were affected by external knowledge, which had been put into the recognition process in
order to fix the topic changes and thus focus only on differences caused by various topic
clusters. That is why these results are better than those achieved in following sections

and therefore they will not be shown in the summary results in section

6.5.3 Online Topic Identification

Correct online topic identification of the current speech is a very important part of online
topic-based LM adaptation task, because by analyzing the trend in the recent sequence
of identified topics, the decision about a topic change (followed by LM adaptation) is

made.

In the previous subsection, we were experimenting with several topic identifiers to clus-
ter our (mostly-unlabeled) text corpus in order to train robust adapted LMs for news

domain. In this subsection, we were experimenting with the same topic identifiers, but
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this time, we were using them during online recognition in order to dynamically identify
current topics in the speech. This information was then used to adapt the LM on the

fly.

6.5.3.1 Classifier and Thresholding Strategy

First, we used the same classifiers and thresholding strategies as in section [6.5.2] to iden-
tify topics online from the recently recognized words while keeping all other parameters

on default values.
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FIGURE 6.6: Results with different online topic identifiers in the news domain. For 3
different classifiers and 5 thresholding strategies, WER, PNER (Proper Noun Error
Rate) and the total number of LM changes applied during the recognition was evaluated.

Results are summarized in figure Along with WER and PNER, we evaluated

also the total number of LM changes, i.e. how many times the LM was adapted during
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the recognitionﬂ From the graphs, we can see that the best W ER was achieved using
LSTM classifier with MCut and RCut(1) thresholding strategy. We attribute the good
performance of LSTMs to the fact, that the system is focusing only on a short recently-
recognized text, and since LSTM contains max-pooling layer over time, a strong reaction
of one single neuron when seeing a topic-related keyword can result in accurate predic-
tions even if the text is very short. SVMs, on the other hand, were trained to identify
the topics from full articles encoded into tf-idf, and thus the prediction may rely on more

complex term statistics which are missing in very short text samples.

From the bottom subfigure, we can see that predictions from RCut(1) and in case of
SVMs also RelCut, are rather smooth during the recognition, i.e. they identify the same
topics for longer time period and thus, less number of adaptations is needed. Predictions
from other strategies are highly changeable during the recognition, therefore more LM
changes is needed. One may expect that more LM changes would lead to more accu-
rate recognition, but our results indicate opposite: too many LM adaptations leads to
deterioration of the performance. For example, very poor results were achieved using
RCut(3), which identifies always 3 topics even if they are not present in the speech,

causing too many LM adaptations to off-topic domains.

Number of LM changes is also important from the computational perspective. Each
LM change means the adapted LM had to be mixed during the recognition, causing
significant delay in the offline mode or intensive computations in a parallel background
process in the case of online mode. If we know we will need only reasonable number of
distinct LMs, we can prepare these LMs offline (before the experiment starts) and there
would be no need for mixing LMs online during the recognition. However, the number
of possible topic combinations grows exponentially with the number of identified topics.
For strategies FirzedCut, MCut and RelCut, the number of possible adapted LMs is
immense, since any number of topics can be identified at any time. To prepare offline all
topic mixtures for strategy RCut(3), there would be (557) ~ 32 million distinct adapted
LMs, which is still hard to store. The only thresholding strategy where preparing LMs

offline makes sense, is RCut(1), where only 577 LMs must be prepared.
We can sum these results into following observations:
1. It is not true that the more adaptations of LM is applied, the better performance
is achieved.

2. LSTM classifiers are more suitable for identifying topics from shorter texts.

"For example, 1000 LM changes means the topics (and the LM) had been changing in average every
37 seconds during the recognition (see data statistics in table [6.1). The total number of topic changes
marked by annotators (used for experiments in section [6.5.2]) was 303.
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3. The very simple thresholding strategy RCut(1) evinced good results and moreover,
it has one great advantage: the number of possible distinct adapted LMs is equal
to the number of topics and thus all LMs can be prepared offline, leading to a fast

online recognition without any delay caused by mixing LMs.

For further experiments in this section, we decided to use LSTM with RCut(1) to
identify topics online, because it achieved the best PN ER, second best WER and all

LMs can be prepared offline to speed up the recognition.

By using thresholding strategy RCut(1), we assume there is only one topic in the speech
at each time, i.e. we are performing single-topic LM adaptation while excluding any
possibility of adapt the LM to a combination of more topics. This assumption may seem

too rigorous, but our results give us strong evidence that it is the best we can do.

6.5.3.2 Cropping of Hypotheses

So far, all parameters influencing the cropping of hypotheses before predicting the topics
scores were kept on default values, i.e. at each time step, we took the one-best partially
recognized hypothesis (sequence of words), threw last 2 words away as there is usually
high uncertainty about them from the recognizer, and sent last 50 recognized words
from the rest into the TI to predict the topics scores. In our audio data, there was
2.28 words per second in average, so 50 words means we are analyzing about 22-seconds-
long window. In this subsection, we were investigating how changes in this setting

influence the online LM adaptation.
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FIGURE 6.7: Results with different cropping of hypotheses in the news domain. For
two unit types and variable value of keep Ny most recent units (left subfigure) and drop
Ny last units (right subfigure), W ER was evaluated.

Results are plotted in the figure Results for words and seconds are roughly reflecting
the previously mentioned ratio in our data: 2.28 words per second in average, so the

graphs for seconds are ”squeezed” proportionally.
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From the right subfigure, we can see that it is a good practice to throw away the last two
words or the last second of recognized hypothesis. We believe it is because of the lack
of context at the very end of a partial hypothesis and also because the hypothesis can
be reported at the moment, when only a part of some longer word has been processed

so far.

In the left subfigure, we do not see any smooth trend. There are more local minima,
but we can conclude, that good values for parameter keep N most recent units are
between 60 and 120 words or between 25 and 60 seconds alternatively. We observed
the best result when identifying topics from hypotheses cropped to the last 25 seconds
while throwing the last one second away (WER = 16.717%). We used this setting in

the following experiments.

Since the differences in W ER in figure are rather modest, we can state that fine-
tuning of the cropping parameters has only a minor influence on topic-based LM adap-

tation.

6.5.3.3 Weighting of Recently Recognized History

In the next experiment, we were testing various weighting functions listed in section
From results plotted in the figure we can conclude, that giving higher weights
to more recent words did not bring any improvement. We attribute these results to the
fact, that by weighting recent words, the norm of corresponding word vectors is being
scaled, and thus the LSTM classifier must identify topics from modified vectors never

seen during the training.

16.80

16.78 A
< 16.76 A
16.74 A
16,72 . l
16.70 -!

constant linear sigmoid logarithmic  exponential
Weighting window function

WER [%

FIGURE 6.8: Results with different weighting functions of recognized words in the news
domain.
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Based on this experiment, we kept the default value in the system, which is constant
weighting, i.e. no weighting at all, so all words in the cropped hypothesis are equally

important.

6.5.3.4 From Words to Lattices

We tried also to move from 1-best hypothesis to a lattice, specifically to a word confusion
network (known as a ”sausage”). One may expect that since there are many alternative
hypotheses encapsulated in the lattice, the identified topics should be more accurate.
However, the best result we were able to achieve using lattices was WER = 16.761%,
which is slightly worse than the result with the same setting using 1-best hypothesis
(WER =16.717T%).

An explanation for this result can be that the LSTM classifier was trained to process
fine-tuned invariable word vectors and when it gets modified word vectors (e.g. averaged

or scaled) on the input, the topic-related neurons might not get activated.

6.5.4 Topic-change Detection

In the next experiment, we were testing various values of steadiness in the topic-change
detector (see section [5.5)). Steadiness defines, how many seconds into the history any
topic must have been continuously identified to be marked as a steady topic in the

speech. Only steady topics are concerned when adapting the LM.

16.90 A

16.85 A

16.80 A

16.75 A

Error Rates [%]

16.70 A
—&— WER

16.65 1 —®— PNER

0 3 6 9 12 15 18 21
steadiness [s]

FIGURE 6.9: Results with different steadiness of the topic-change detector in the news
domain. For varying values of steadiness, W ER and PN ER (Proper Noun Error Rate)
was evaluated.

Results are shown in the figure As for WER, we can observe rough U-shape trend
with a minimum at 7 seconds of steadiness (W ER = 16.7%). As for recognition of proper

nouns (PN ER), the best values were achieved at 11 and 12 seconds of steadiness.
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Higher steadiness has positive influence on PN E R, because the system is adapting the
LM only if it is very certain the topics have changed. However, increasing steadiness
delays the LM adaptation behind the real topic change resulting in recognizing the be-
ginning of the speech with LM adapted to the previous topics and thus to a deterioration

of overall W ER. For the following experiments, we fixed the steadiness to 7.

6.5.5 General LM weights

In the next experiment, we were investigating the influence of the general LM weight on
the online topic-based LM adaptation. We tried varying values of the general LM weight,
including both extremes: Ag = 0 (i.e. the adapted LM consists only from multi-topic
LM) and Ag =1 (i.e. the adapted LM consists only from general LM).

20.0
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18.0 A

Error Rates [%]

17.5 A
17.0

16.5

0.0 0.2 0.4 0.6 0.8 1.0
general LM weight

FIGURE 6.10: Results with different weight of general LM in the news domain.

From results plotted in the figure [6.10] we can see, that WER and PNER are in high
correlation achieving the best result at A\g = 0.6 (W ER = 16.668%), which stresses the
positive contribution of both multi-topic and general LM. Note that the rightmost point
(Ag = 1) corresponds to the baseline performance as adaptation with pure general LM
is effectively no topic adaptation at all. Another interesting point is, that very poor
results were achieved for A¢ = 0 which is clearly a consequence of higher OOV-rate and

the lack of general-language statistics in a pure multi-topic LM.

These results are in strong agreement with our preliminary experiment in (Leheckay,

2016)). For the following experiments, we fixed the general LM weight to Ag = 0.6.

6.5.6 Adding New Topic-related N-grams

In this last experiment concerning news domain with supervised topic identification,

we relaxed the constraints from section for minimal counts of n-grams in the text
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corpus when training LMs from a text. Let Ng = (Ng1, Ng2, Ng3) be the minimal
counts of unigrams, bigrams and trigrams in the text corpus when training a general LM,
and similarly, let Ny = (Np1, N7a, Nr3) be the minimal counts of unigrams, bigrams
and trigrams included in a single-topic LM. So far, all LMs were trained with Ng =
Nr = (1,3,6). In this experiment, we trained the general LM additionally with Ng =
(1,2,3) and Ng = (1,1,2), and single-topic LMs with Ny = (1,2,3), Ny = (1,1,2) and
Nr = (1,1,1). Details about LMs with different N7 and N are listed in table

1-grams 2-grams 3-grams sum n-grams size [MB]

average single-topic LMs:

Nr =(1,3,6) 87511 164 357 50765 302633 7
Np =(1,2,3) 87511 313815 162521 563 847 14
Nr=(1,1,2) 87511 1400700 410532 1908 743 48
Nr=(1,1,1) 87511 1400700 3126964 4615175 141
general LMs:

Ng=(1,3,6) 1198175 26995001 20208434 48401610 1335
Ng =1(1,2,3) 1198175 46132589 55007125 102 337889 2954
Ng =(1,1,2) 1198175 148974703 117139957 267312835 7831

TABLE 6.3: Details about LMs with different minimal n-gram counts in the news

domain. For different single-topic LMs (4 different limits of Np) and different general

LMs (3 different limits of Ng), we show numbers of 1-grams, 2-grams, 3-grams, all

n-grams (sum of 1-, 2- and 3-grams), and the size of the LM on the disk (in ARPA

format). Since single-topic LMs are different for each topic, we show the average values
over all topics.

Since the adapted LM is a mixture of general LM and single-topic LMs and each single-
topic LM was trained from a subset of the whole text corpus (used to train the general

LM), the limits of n-gram counts can influence the adaptation in following two ways:

1. If Np,, < Ngn, n € {1,2,3}, the adaptation can fetch also new topic-related n-
grams into the recognizer, which are not present in the general LM due to a low

overall count in the text corpus.

2. On the other hand, if Ny, > Ngn, n € {1,2,3}, the adaptation does not bring
any new n-gram into the recognizer, but it assigns more probability mass to the

topic-related n-grams and thus accentuate the topics in the adapted LM.

Results of the experiment are shown in the figure Clearly, enlarging the general
LM (i.e. lowering the limits in N¢) as well as adding more topic-related n-grams during
LM adaptation (i.e. lowering the limits in Np) has a positive impact on W ER. However,

we do not see the same trend in terms of PN FER. Comparing with the baseline, there
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FIGURE 6.11: Results with different n-grams count limitations in the news domain.

For 3 different minimal counts of n-grams in the general LM (Ng) and 4 different

minimal counts of n-grams in single-topic LMs (N7), WER, PNER and the real time

ratio on Intel Core i7-7800X machine was evaluated. For the purpose of comparing, the

values for the baseline system with all three settings of N are shown as well (the no
adaptation bars).

is a significant improvement in PN ER when using the smallest tested single-topic LMs
(N7 = (1,3,6)) for topic-based LM adaptation, but adding more topic-related n-grams
brings only a minor further improvements in terms of PNFER. An explanation for
this result can be that the dominant portion of n-grams containing topic-related proper
nouns has high counts in the text corpus and among less-frequent topic-related n-grams,
there is only a modest amount of proper nouns. In other words, the dominant portion of

less-frequent topic-related n-grams contains rather common words than proper nouns.

Since enlarging LMs in real-time decoding is limited by computing power and memory of
a hosting machine, we investigated also the real-time ratio (RT'R) of all tested settings
(the bottom graph in the figure |6.11)). RT R defines the ratio between processing time
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needed to recognize the speech and the duration of audio signal. Experiments with
RTR < 1 were faster than real time on the tested machine (Intel Core i7-7800X, used
all 6 cores), which means they could be used for online speech recognition. Experiments

with RTR > 1 were too slow to be used online.

From the bottom graph in the figure we can see that RT'R of the baseline system
without any LM adaptation (the blue bars) scales very well with the size of the general
LM. It is because in our system, the size of the vocabulary has the main influence on
the speed of the recognition, and the size of the vocabulary (i.e. the number of 1-grams)
stays the same for all settings of Ng. The number of involved bigrams and trigrams does
not influence the speed so much. Lower number of bigrams and trigrams causes slightly
faster decoding but at the same time, it increases the uncertainty in the decoder, which

again slows the computation down.

The RTR of systems with LM adaptation is higher, because there are two parallel
decoders running at the same time and because the topic identifier is monitoring the
recognized partial results on the fly. However, the large differences in RT R between
systems with Ng = (1,2,3) and Ng = (1,1,2) were caused mainly by slow loading of
LMs into the decoder. Adapted LMs mixed from general LM with Ng = (1,1,2) were
much larger (see the table . One interesting result here is that the RT R stays almost
the same when lowering the limits in Np, i.e. when adding more topic-related n-grams,
which again confirms that the number of involved n-grams does not influence the speed

too much.

We can conclude, that including more (ideally all) topic-related n-grams into the single-
topic LM is primarily beneficial. In our experiments, it caused a significant improvements
in terms of W E R and a minor improvements in terms of PN E R with only a subtle slow-
down of the recognition speed. The best result we achieved was WER = 15.797%, but
with RT'R = 1.46. The best result with RTR < 1 was WER = 16.069% (RTR = 0.85).
However, to avoid slow data loading and large LM mixing in the real-world applications
and also to keep some spare computational power of the computer to withstand peak
loads, we would most likely use rather system with Ng = (1, 3,6), where we achieved
WER = 16.356% (3.5% relative improvement when compared with the non-adaptable
system) at the speed of RTR = 0.74.

6.6 Unsupervised Topic Models

Apart from supervised text classifiers used in this chapter so far, we experimented also

with unsupervised topic models, namely with LDA (see section [3.2.4)). In order to use
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such model, we had to forget all labels (both manually and automatically assigned) in
our text database, and let the model find suitable topic clusters itself from the scratch

(i.e. from the plain text).

In opposite to supervised learning, where each topic has a clear human-readable label,
topics emerged from training the LDA model are represented only by a probability
distribution over the vocabulary. Usually, LDA topics are presented to users as lists of

N words with the highest probability.

Although automatic evaluation and comparison of LDA models can be arguable (Lau
et al., 2014)), we can evaluate the whole online ASR system when different LDA models
are used inside, and compare W E'R of recognized texts. In this way, we can efficiently
compare different LDA models with respect to topic-based LM adaptation task without

explicitly measuring topics coherences or some other metrics.

Since the prediction from the LDA model is a probability distribution (i.e. a soft predic-
tion), we can use the same thresholding strategies as in the case of supervised classifiers
in the section[6.5.3.1] Specifically, we used strategies FizedCut(0.5), MCut, RCut(1) and
RelCut(0.5) for both text data clustering and topic identification during the recognition.

For details about used thresholding strategies, see section [5.4.3

6.6.1 Adapted LMs Preparation

We followed the scheme depicted in figure to process data and create adapted LMs
suitable for underlying speech. It is very similar scheme to the one used for supervised
classifiers in the section but instead of using labeled data to train the classifier, we
trained the model in fully unsupervised way in this scheme. We used LDA model trained
from all available text data we had with the vocabulary limited to 1.2 million words as

described in the section [6.2]
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6.6.2 Number of Topics

The key parameter when designing an LDA model is the number of topics the model
can distinguish among. Figure shows results of experiments with varying number
of LDA topics. In each experiment, we used the same LDA model for both LDA-based
text data clustering (and thus to prepare adapted LMs) and LDA-based topics scores
prediction during the recognition. All other system parameters were fixed on default

values.
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FIGURE 6.13: Results with different number of topics in the LDA model. For 4 different
thresholding strategies and varying number of LDA topics, WER and PNER was
evaluated.

As can be seen from figure results with thresholding strategies FizedCut(0.5) and
RCut(1) are almost the same. It is because in most of soft predictions from the LDA
model, there was always one topic with the probability higher than 0.5, therefore con-
sidering only topics with probability p > 0.5 and considering only 1-best topic resulted

in the same hard prediction.

The best WER was achieved with 10 latent topics and RCut(1) strategy (WER =
16.736%), while the best PNER with 30 latent topics and MCut strategy (WER =
16.901%). Further increasing the number of LDA topics didn’t lead to any improvement.
Comparing with the baseline, the system with 10 LDA topics scored 1.23% relative
reduction in terms of W ER and 1.4% relative reduction in terms of PN ER.
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To have a picture of how the LDA model covers important news categories, we draw
a word cloud for each topic. All 10 word clouds are shown in the figure Clearly,
we can see that the LDA model learned how to distinguish among the major categories
appearing in the news domain. There are obvious topics about: history and culture
(#2), children and schools (#3), money and companies (#4), police and justice (#5),
foreign affairs (#6), politics and political parties (#8), traffic and weather (#9) and
sports (#10). The topic #1 seems to cover documents containing a lot of numbers
(e.g. sport summaries, time harmonograms, various tables etc.). All documents out of
previously mentioned topics fall into the topic #7, where we cannot see any dominant

topic-related keyword.

6.6.3 Fine-Tuning of Parameters

For the next experiment, we took the best-scoring model from the previous section
(LDA with 10 latent topics and RCut(1) thresholding strategy) and ran a grid search
over system parameters analogous with the fine-tuning of parameters in the system with
supervised topic identification (sections — . Since the behavior of parameters
was very similar to the experiments with supervised TI, we are only summarizing the

results in this short section without plotting detailed graphs.

We achieved the best result when cropping each partial hypothesis to the last 25 seconds
excluding the last one second, no weighting of the recognized words, steadiness set to
8 seconds and the weight of general LM set to Ag = 0.4. Using this setting, the system
achieved WER = 16.683% (1.55% relative reduction over the baseline system).

We also experimented with enlarging the amount of topic-related n-grams used to adapt
the LM analogous to the section When keeping the general LM on the default
size (Ng = (1,3,6)) and adding all topic-related n-grams into the single-topic LMs
(i.e. Nr = (1,1,1)), we achieved WER = 16.368% (3.41% relative reduction over the
baseline system). The speed of the system was RTR = 0.7.

6.7 Results Summary

The most important results achieved in this chapter concerning topic-based LM adap-
tation in the news domain are summarized in table We are showing the baseline
results, in which no LM adaptation was incorporated, and two versions of topic-based

LM adaptation:
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FIGURE 6.14: Word clouds for individual topics in trained LDA model (in Czech). The
larger font a word has, the higher probability it has in the particular latent topic.

e LM adaptation with Ny = (1,3, 6) uses fixed set of the most frequent n-grams dur-
ing whole recognition of the speech. The principle of this LM adaptation is based
on dynamic increasing the probabilities of topic-related n-grams at the expense of

out-of-topic n-grams.

e LM adaptation with Ny = (1,1, 1) uses all topic-related n-grams we have in data,
therefore the size of LM is changeable and depends on the amount of topic-related

data. The principle of this LM adaptation is based on dynamic increasing the
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probabilities of topic-related n-grams existing in the general LM and moreover,

adding also less-frequent topic-related n-grams into the adapted LM.

For each version of LM adaptation, we are showing the best results achieved with both
unsupervised and supervised topic identification methods. Also, we are showing relative

reduction of error rates over the baseline system and real-time ratios.

TI WER [%] PNER [%] RTR
general LM (baseline) - 16.95 17.41 0.50
adapted LM, Ny = (1,3,6) U 16.68 (—1.55%) 17.02 (—2.23%) 0.66
S 16.67 (—1.63%) 16.68 (—4.22%) 0.72
adapted LM, Ny = (1,1,1) U 16.37 (-3.41%) 16.88 (—3.05%) 0.70
S 16.36 (—3.48%) 16.66 (—4.34%) 0.74

TABLE 6.4: Results summary for the news domain. For two versions of LM adaptation

and two topic identification (TI) methods: unsupervised (U) and supervised (S), we

are showing the best W ER and PN ER we achieved and corresponding real-time ratios
(RTR) on the tested machine (Intel Core i7-7800X, used all 6 cores).

From the table we can see that using supervised T1I leads to better results than
when using unsupervised T1, especially for the recognition of topic-related proper nouns
(PNER). We can also see that using all available topic-related n-grams during LM
adaptation (i.e. Ny = (1,1,1)) leads to significantly better W ER with only a minor

slow down of the system.






Chapter 7

Experiments on TV Sports

Domain

TV sports is another example of an extremely challenging domain for automatic speech
recognition. If the TV show is transmitted from a single-sport event (e.g. live broad-
cast of a football match), the key problem for ASR is to recognize names of featuring
sportsmen correctly. Usually, the major portion of the actual roster are OOV words
missing in the training data, therefore they must be added into the language model
from some external source, and in the case of inflected languages, all inflected forms
must be added too. Also, correct phonetic transcription of all inflected forms of names
must be defined in the lexicon (in the case of regular pronunciation, it can be generated
automatically). Single-sport TV shows can be transcribed using one static language
model trained specifically for the target sport and extended with actual roster. This ap-
proach has been used e.g. for real-time closed captioning of TV ice-hockey commentaries
(Hoidekr et al., |2006).

Much more complicated situation occurs when the TV show is a summary of a more
complex multi-sport event like Olympic Games. In such shows, previously mentioned
problems are especially significant, because the roster is very large (thousands of names)
and there are sportsmen[] from all countries in the world with sometimes very exotic

pronunciation of their names.

Moreover, the sport and thus the style of the speech and used vocabulary are highly
changeable within each episode. For example, the episode starts live from the Olympic

studio summing up results from an archery tournament, then it continues with a recorded

'To clear the terminology, we will use the term sportsmen to address all men and women participating
in any sport at the event, and the term athletes to address all men and women participating only in the
athletics disciplines.

81
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footage of the winner’s shots followed by simultaneously translated interview, medal
ceremony and then back to the studio, where the speech switches to another report about
completely different sport, e.g. judo. Usually, sportsmen are highly related to only one
sport and there is only a little chance that their names will occur when speaking about
different sport (e.g. the probability that some judoka’s name will occur when talking

about archery is very low).

All issues mentioned above make live TV sports summaries suitable domain to employ

online topic-based language model adaptation.

7.1 Audio Data

To test topic-based LM adaptation in the sports domain, we chose TV show Velky
prehled, which is a daily-based summary from Olympic Games broadcast by Czech Tele-
vision during Olympic Games. The language of the show is Czech. As for the venue, we

chose Summer Olympic Games held from 8 to 24 August 2008 in Beijing, China.

Date Duration Reports Words Names

11.8.2008 0:44:58 14 5442 308
13.8.2008 0:57:10 14 6 886 350
14.8.2008 0:53:33 24 6685 387
15.8.2008 0:59:56 20 7138 482
16.8.2008 0:42:53 7 5618 406
17.8.2008 1:18:08 21 9231 499
18.8.2008 1:03:11 21 7849 373
19.8.2008 1:32:18 25 11630 733
20.8.2008 0:51:41 10 6517 296
21.8.2008 1:11:05 15 8817 526
22.8.2008 0:57:47 16 7477 426
23.8.2008 0:58:30 16 7189 464
24.8.2008 0:23:50 10 2119 74
total 12:34:59 213 92598 5324

TABLE 7.1: Test audio records from sports summary TV shows along with duration
and numbers of reports, words and sportsmen names in transcript.

We obtained audio records from almost every day the show had been broadcast. All
records were transcribed and manually annotated by human annotators. Details about
our test audio data are summarized in the table [7.1] along with numbers of words,

names of sportsmen and individual reports. In sum, our audio data consists of more
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than 12.5 hours and in the reference transcripts, there are 92.6 thousand words, from
which 5.3 thousand words are names of sportsmen featuring at the Olympics. Into this
names-count, we included only sportsmen present in the official roster from Summer
Olympic Games in Beijing 2008, all other personal names were considered as common

words.

We denote a continuous speech about exactly one sport as one report in the table
Whenever the sport was changed in the speech, the annotator labeled the position as a
report-break (i.e. the change of a topic). An ASR system with an optimal topic-based

LM adaptation should change language models exactly at these positions.

Since the background noise in the sports domain is especially interfering, we let a shadow
speakelﬂ to re-speak all tested audio records, which is a standard technique to suppress
all negative acoustic events during the real-time closed captioning. For comparison,
we had also evaluated the system when recognizing the original audio (i.e. the signal
broadcast to TV viewers) in the section Of course, these results are much worse

due to a varying style of speech and a lot of background noise in the signal.

The format of all audio records is a standard PCM (Pulse-Code Modulation), 16 bits
per sample, 1 channel and sampling rate 16 000 Hz in the case of original audio and
22050 Hz in the case of the shadow speaker.

For acoustic modeling we used three-state HMMs with output probabilities modeled by
a Deep Neural Network (DNN). We used a general-purpose acoustic model to recognize
original audio and for the shadow speaker, we used a special AM trained specifically for

particular speaker.

Although we are experimenting with audio signals recorded in the past, we will simulate
the conditions of a real-time recognition in all our experiments, therefore the results will

be the same as if the audio was processed online just in time it was broadcast.

7.2 Topics

At the 2008 Summer Olympic Games, there were sportsmen competing in 28 sports,
41 disciplines and 302 events. Based on a similar vocabulary usage in some disciplines
and sport clusters used in our own data, we defined our topics by grouping one or more

Olympic disciplines as depicted in figure

2A skilled and specifically trained employee who listens to the audio stream and re-speaks it as
intelligibly as possible in the real time.
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FiGUurE 7.1: Mapping from summer Olympic disciplines to topic clusters. The set
of disciplines and pictograms were adopted from https://en.wikipedia.org/wiki/
2008_Summer_0Olympics.

In sum, we have 21 topics covering all Olympic disciplines. As can be seen, we let most

of the disciplines as one topic with following exceptions:
e all aquatic sports taking place outside of swimming pools (i.e. sailing, canoeing
and rowing) were grouped into a topic Aquatic sports,
e softball was included into the Baseball topic,

e all fighting sports (i.e. boxing, fencing, tackwondo, wrestling and judo) were grouped

into one topic Fighting sports,

e all aquatic sports taking place inside swimming pools (i.e. swimming, synchronized

swimming, diving and water polo) were grouped into a topic Swimming.

7.3 Roster

It has been already mentioned that usually the main portion of featuring sportsmen
are missing in the language model training data. Therefore, an actual roster must be

supplemented into the language model from some external source before the ASR starts.

We have downloaded the full Olympic rosteIE] from a web page providing an extensive
collection of sports dataﬂ In sum, we downloaded roster with 10.9 thousand sportsmen
from 204 countries. Each sportsman in the roster has following metadata assigned:

e personal (full) name,

e country, for which the sportsman participate,

3Here, by the term roster, we mean a full list of all sportsmen from all countries participating at the
Olympic Games.
“https://www.sports-reference.com/olympics/summer/2008/


https://en.wikipedia.org/wiki/2008_Summer_Olympics
https://en.wikipedia.org/wiki/2008_Summer_Olympics
https://www.sports-reference.com/olympics/summer/2008/
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e sport, in which the sportsman participate,
e age (of that time),
e gender (male/female),

e gold, silver and bronze medals (to simulate the conditions before the Olympics, we

will not use this information).

For our work, the mapping from names to sports and vice versa is the most important
information. We will use it to teach topic identifier a strong relationship between names
and identified topics (sports) and also to group all sport-related names for the LM

adaptation purposes.

Very important information can be also the gender, especially for languages that are
somehow modifying male or female names. For example in Czech, female surnames
are usually derived from male surnames by adding a suffix ”-ovd”, and it is a custom
to modify also foreign female surnames similarly (e.g. the name of pole vaulter Yelena
Isinbayeva should be renamed to Yelena Isinbayevovd). Using several grammatical rules,
we modified all female surnames by adding an appropriate suffix. We expect their names

to be pronounced in these forms during the sports summary shows.

7.3.1 Derived Forms of Names

Since the Czech language is highly inflected, we had to derive all related words in order to
have a complete list of all possible forms of names which can occur in the speech. Based
on Czech grammatical rules, from each name, several possessive forms were derived. For
example, for the name Bolt, English has one possessive form Bolt’s, however Czech has
five forms depending on the gender and grammatical number of the subject: Boltiuv,

Boltova, Boltovy, Boltovi and Boltovo.

Each base form and possessive form was then declined into seven cases of singular. We
expect names to appear only in singular, although theoretically, also plural forms can

occur when, for example, two brothers of the same surname would participate together.

Moreover, we store each form of each name in two variants: one as a multz’wordﬂ con-
taining all parts of the personal name and one consisting only from the surname. Both

forms are very frequent in transcripts.

Theoretically, each sportsman can have almost a hundred derived forms (and thus vo-

cabulary entries) of his name that can be used in the Czech language. However, in

5More words joined in the text by underscore symbol. Multiwords are considered as one token during
the ASR.
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practice, many derived forms are the same. After deriving all forms from all 10.9 thou-
sand names, we ended up with a list of 118.5 thousand name-forms. All forms were

derived automatically based on Czech grammatical rules.

7.3.2 Phonetic Transcriptions of Names

To get a phonetic transcription for each name and all derived forms, we used WFST-
based G2P model trained from our existing lexicons. We used Phonetisaurus softwarelﬂ

to train the model and generate 1-best phonetic transcription.

Our training lexicons contained both Czech names and foreign names with manually
assigned transcriptions. We trained one model only for given namesﬂ and one model
only for surnames. The trained models accept only Latin letters, so we mapped all

non-Latin letters in names to the closest graphemes from the Latin alphabet.

We are aware that the transcription obtained from G2P model is not always absolutely
correct, especially for exotic names. However, the manual transcription would be ex-
pensive and it would take long time. Since there is usually not much time between the
announcement of the roster and the start of the sports event, and in order to keep the
whole process fully automatic, we decided to use automatic G2P transcription regardless
some minor errors. When annotating the audio records, we noticed that since sports
commentators are not experts on pronunciation of foreign names, they often make simi-
lar errors in pronunciation as the trained model does, which slightly reduces the negative

impact of G2P errors.

7.4 Text Data

For experiments in this chapter, we used three main sources of text data:

e Czech news articles — the same data as described in section [6.2

e Czech sports transcripts — a collection of transcripts from various sports events

(described later in this section),

e the roster — a list of all sportsmen as described in section

In each adapted LM, we’d like to have some combination of all these text sources, because

each source brings different vocabulary and n-grams into the adapted LM. The roster

Shttps://github.com/AdolfVonKleist/Phonetisaurus
"Here, by the term given names, we mean all parts of the personal name except for the surname.


https://github.com/AdolfVonKleist/Phonetisaurus

Chapter 7. Ezperiments on TV Sport Domain 87

contains all relevant names, sports transcripts cover all relevant n-grams for each sport

and news articles supports the LM with a common language used by sports journalists.

The news articles corpus is described in the section We used the whole corpus
to train a general topic-independent LM in order to cover common journalist language
and also for sporadic cases when the speech steps out from the sports event (e.g. to visit
some winner-related place like a native village, favorite pub etc.). To simulate the worst
case, in which we do not have any participating sportsman in our data, we had replaced
all names from the roster by unk tokenf¥ i.e. the same conditions as if all names from the
roster were OOV words missing in the corpus. The corpus was collected automatically

from web, so we did not have any annotations and no sport-labels in the data.

The sports transcripts corpus was collected at our department for live closed caption-
ing of single-sport events broadcast by TV. The corpus contains (taking into account
only summer Olympic disciplines) 21 sports and 7.5 million tokens. Transcripts are
grouped into text files based on the underlying sports. To unify distinct forms of the

same words, we used the same text preprocessing as in the news articles corpus.

All texts in the sports transcripts corpus were manually transcribed and annotated.
The name of each player or competitor was manually labeled and supplemented by a
number representing one of six grammatical casesﬂ The names that did not relate to
the transcribed match or competition were not labeled, because the commentators may
use them freely (e.g. legendary sportsmen such as ”Michael Jordan”, ”Carl Lewis”, or
”"Muhammad Ali”). Considering the above-mentioned labels instead of the individual
words, these data are suitable to train a class-based LMs discussed later in section [7.6

For details about this corpus, see (Psutka et al., [2014).

7.5 Performance Measures

Analogously to additional performance measure defined in section we are defin-
ing additional measure which will be used together with standard W ER to evaluate
experiments in this chapter. In the sports domain, the essential words, which should
be recognized correctly, are mainly personal names of sportsmen. For example, when
comparing two made-up hypotheses ”Phelps win” and ”helps wins” with a correct tran-
scription ”Phelps wins”, both hypotheses would score the same W ER (one word correct,
one substitution, so WER = 50%), however the former hypothesis is in our opinion much

more informative for the viewer.

8 A special token representing unknown words in the text.
9 Actually, Czech has 7 grammatical cases, but the 5th case, vocative, used to directly addressing a
person during conversation, is very rare in sports transcripts.
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Hence, we are introducing additional performance measure more informative about er-
rors in the sports domain, called Name Error Rate, NER for short. By names, we
mean all personal names listed in the official roster including all derived name-forms.
All other personal names in the reference transcript were not taken into account. Let
the reference transcript be aligned with a recognized word sequence. Name error rate

can then be computed as

Sy + Dy + In

NER =
Ny

-100 %, (7.1)

where Sy is number of reference names substitutions, Dy is number of reference names
deletions, Iy is number of reference names insertions, and Ny is the total number of
names in the reference word sequence. In other words, NER is W ER evaluated only

for names of sportsmen in the reference transcripts.

7.6 Adapted LMs Preparation

We employed so called class-based LMs to join annotated corpus (sports transcripts) and
the roster into one LM. The idea behind class-based LMs is that similar words appear
in similar contexts. If we group similar words into one class, we can find all observed
contexts of that class and assign them for all class-members (so-called class ezpansion).
We can do it even if the member have not appeared in the corpus before. In this way,
we can "inject” new class members into the LM and assign them relevant contexts as if

we have observed them in our data.

Let us demonstrate the principle of class-based LMs on a very simplified example. Imag-
ine, we have in our corpus bigram ”Bolt wins” and we know ”Bolt” is a name of a runner
(someone has annotated our corpus). Then, we replace all occurrences of word ”Bolt” by
a class token "CLASS_NAME”. Now let’s assume we have got a roster before a new run
and there are many names never observed before (let’s call them runnerl, runner2, ...).
So we train a class-based LM from our corpus (we should have a bigram " CLASS_NAME
wins” there), assign all names from the roster into the class CLASS_NAME and do the
expansion of LM. After that, we should see bigrams ”runnerl wins”, "runner2 wins”
and all other combinations of class names and contexts in the language model with ap-
propriate probabilities. This simplified example could work in a non-inflected language.

In Czech, however, we must define one special class per each grammatical category.

Since there are only 21 sport clusters in our data and the chance that the recognized

speech will be about more than one sport in the same time is very low, we decided to
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prepare all LMs offline, save them and use the ASR system in the prepared mode (see

section [5.6.1).

CE
. <
News articles > Sy
non-sport
" Sports
ranscripts Roster
sport anotated classes
non-
3 (/17 ces &
L Y o> 7, &
£ &
4,
\
¢ CE CE s e CE
/11 ]-)L] A] 7—){7 /1, ]_)LI
Athletics Badminton Weightlifting
ol »’"v = “o q‘p
T T _ _ 2N\ _ _
~<|~ single-topic LM, single-topic LM, single-topic LM
General
LM )Lcl 1 Ad 1A Aol 1A

Athletics Badminton Weightlifting
~re o o

e o o m

A

adapted LM adapted LM adapted LM

FIGURE 7.2: Scheme of adapted LMs preparation in the sports domain. The three

upper rounded rectangles are text corpora, blocks with pictograms are language models,

block ”CE” stands for class expansion operation and colors are coding individual sports
(topics).

The scheme of offline LM preparation is depicted in figure We started with 3 text
corpora: news articles, sports transcripts and the roster. The later two corpora can
be easily separated into 21 single-sport subcorpora (differentiated by different colors in
the figure). The news articles corpus was divided into single-sport subcorpora based
on a topic identifier trained from sports transcripts (see section for details about
trained TT). The small amount of originally labeled data in the news articles corpus (see
section was used to find an optimal T1I threshold to separate ”non-sport” subcorpus

containing documents irrelevant to any sport.

To get a single-topic language model, we trained a class-based LM from sports transcripts
subcorpus, expanded classes with names from the roster and mixed it with news articles

subcorpus. To get an adapted LM, we mixed single-topic and general LM. We will
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demonstrate the whole process (i.e. from text sources to the adapted LM for each sport)
on the following badminton example (coded by blue color in the scheme). LMs for other

sports were created analogously.

1. All badminton-related texts were selected from sports transcripts corpus. Let’s

denote this subcorpus T (the blue section of the sports transcripts block).

2. A trigram class-based LM, LM¢(Tp), was trained from Tp. All unigrams, bigrams

and trigrams from the data were included into LMo (Tp).

3. All badminton-related names Rp were selected from the roster (the blue section
of the roster block) to define all class members. Each grammatical category rep-

resented one class. Within each class, all members were distributed uniformly.

4. Defined classes members were used to expand LM¢(Tg) (blue block CE, short for
”Class Expansion”). Since the number of class members was sometimes very high
and fully expanded LMs would be extremely large, we did the full expansion only
for 20 most frequent class n-grams for each grammatical category. Let’s denote
the expanded LM as LM (Ts + Rp).

5. All badminton-related texts Np from news articles corpus were selected (the
blue section of the news articles block) and a standard word-based trigram LM,
LM(Np), was trained. All unigrams, all bigrams and trigrams occurring at least

twice in the subcorpus were included into LM (Np).

6. LM (Np) was mixed together with LM (T + Rp) using linear interpolation. The
weight of the former LM (A;) is a variable to be experimented with. The resulted
mixed LM, LM gT, is a single-topic LM trained from all badminton-related data
where all names and name-forms of all badmintonists from the roster are included

in expanded n-grams with appropriate probabilities.

7. A general LM, LM©, was created similarly to single-topic LMs, but this time with
all available data at once. First, LM trained from whole sports transcripts corpus
was expanded with the full roster. Since classes containing all sportsmen were
extremely large, we limited the class expansion only to unigrams, resulting in a
LM, where all names and name-forms are included, but without any context, only
as unigramﬂ Then, expanded LM was mixed with a trigram LM trained from
whole news articles corpus (same LM as described in the section . We fixed
the interpolation weight to 0.5 as it yielded the best performance on the test data.

0Expanding higher order of n-grams actually does not make much sense in the case of full roster,
because it would populate the expanded LM with a huge amount of cross-sport n-grams very unlikely
to occur, e.g. ”Bolt swims” or ”Phelps shoots”.
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8. LM ET was mixed together with LM using linear interpolation. The weight of
the later LM (Ag) is a variable to be experimented with. The resulted mixed
LM, LMp, is the final model adapted to the speech about badminton. It contains
all names and name-forms of all badmintonists, badminton-specific words and
n-grams and, through LM%, also common-speech n-grams and all other-sports-

specific names and n-grams (with lower probabilities).

For each experiment, after preparing all LMs according to the scheme the only thing
that needed to be done online during the experiment, was to switch between prepared
LMs based on actual sport detected in the speech. This very simple switching scheme is
depicted in figure[7.3] Aside from LMs prepared for single sports, we allowed the system

to switch also back to the general LM whenever the underlying topic was unknown or

ambiguous.
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FIGURE 7.3: Scheme of online LM adaptation in the sports domain.

7.7 Online Sport Identification

Since the sports transcripts corpus is annotated and each transcript is assigned to some
sport, we can consider this corpus as a labeled training dataset and train a sport identi-
fier. For this purpose, all class occurrences in the transcripts were ignored, i.e. replaced

with an unk token.

As some transcripts in the corpus were very long, and we used the topic identifier to
identify sports from a very short context (usually tens of words), we split the corpus into
sentences and considered each sentence as one short "document” with a corresponding
sport label. To allow the model to learn also relations between sports and sportsmen, we
supported each single-sport subcorpus with a list of all names and name-forms relevant

to the sport (each name-form as one short "document”) based on the roster.
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We used trained topic identifier to cluster documents from the news articles corpus into
individual sports. Since a small part of news articles was labeled from journalists, we
used these data to find an optimal probability threshold to separate non-sport portion
of the corpus. After that, we mixed all adapted LMs as described in the previous section

[(.0l

To have a picture of which topic identifier to use, we tried different models, recognized
all test records (with default system parameters and A\; = Ag = 0.5) and compared the
results. As a soft predictor, we trained all three supervised models listed in section [5.4.2]
(SVM, CalibSVM, LSTM). As for a hard prediction, we are expecting exactly one sport
at a time in the speech, so we fixed the thresholding strategy to RCut(1) (i.e. only the
one most probable sport is identified at each time). For details about hard predictors,
see section

News clustering Online predictions WER [%] NER [%]

SVM SVM 4.333 17.524
CalibSVM 4.346 17.863
LSTM 4.345 17.787
CalibSVM SVM 4.322 16.886
CalibSVM 4.354 17.431
LSTM 4.346 17.111
LSTM SVM 4.323 17.036
CalibSVM 4.359 17.524
LSTM 4.333 17.280

TABLE 7.2: Comparison of different sport identifiers. We experimented with three
models (SVM, CalibSVM, LSTM) trained from transcripts and roster. Each model
was used in two different subtasks: clustering of news articles (documents from News
articles corpus) into individual sports while throwing away all non-sport articles (news
clustering column) and the second subtask was online sport identification during the
recognition. For each combination, we evaluated W ER and NER on the test dataset.

Results are shown in table We achieved the best results (WER = 4.32%, NER =
16.89%) when using CalibSVM model to cluster unlabeled news data and SVM model to
identify sports from partial hypotheses during the recognition. We will use this setting

in following experiments.

To explain obtained results, we assume that when using CalibSVM, we were able to
find more accurate threshold to separate non-sport articles in the news corpus and thus,
the resulted topic clusters were more compact. On the other hand, CalibSVM was
assembled from more sub-models using cross-validation, and thus each sub-model had

observed only a part of the training dataset. Since each name of sportsman was present
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in the training dataset exactly once, the assembly of sub-models could get confused
during online prediction when seeing a sport-related name in the recognized hypothesis.
Similarly, we attribute worse results of LSTM classifier to the fact, that it was impossible
to train reliable word vectors for names observed just once without any context, and so

LSTM classifier was failing to identify a correct sport when seeing a sport-related name.

In this section, we were not experimenting with unsupervised models like LDA, because
the set of sports (topics) was clear, and we had explicit linkage from transcripts and
names to topics in the datasets (except for news articles corpus). If we trained an LDA
model, we would have to infer again which sportsman and which transcript belongs to
which latent topic, and thus we would throw away a lot of useful information we have

in the dataset.

7.8 Weights of LMs

In the section we have defined two interpolation weights as variables to be exper-
imented with (A\; and Ag). Both variables are also apparent in the figure In this
section, we ran experiments to find out optimal values of A\; and Ag with respect to

online topic-based LM adaptation.

Parameter \; represents a proportion of news articles corpus in the single-topic LM. In
other words, it defines the balance between sport-specific news LM and sport-specific
transcripts LM (including the roster) when mixing together. Figure shows the impact
of Ay on WER and NER with Ag fixed to 0.5.
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FIGURE 7.4: Results with different weight of news LM in single-topic LM in the sports
domain. For varying values of A\; and all other parameters fixed on default values,
WER and NFER was evaluated.
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The leftmost point in the figure (A1 = 0) corresponds to a situation, when the single-
topic LM was trained using only transcripts corpus with expanded names from the
roster. The rightmost point (A; = 1), on the other hand, was an experiment, when only
data from the news domain corpus was used to train single-topic LM (i.e. no transcripts
and no names). As we expected, the higher A\; was, the lower number of names was
recognized correctly. However, the trajectory of W ER indicates, that a balanced mix
of both LMs is needed to reach an optimal word error rate. We scored the best WER
with A\; = 0.5, i.e. equally balanced mix of both LMs.

Parameter Ag represents a proportion of general LM in the adapted LM. Figure
shows the impact of A on W ER and NER with A\ fixed to 0.5. As can be seen, there
is a significant fall in performance for A = 0. It clearly demonstrates that the general
LM should not be completely omitted in the adapted LM, but it should be involved
to support adapted LM with general statistics about common-language n-grams and
names from other sports. One may expect that when using only topic-specific data in
the adapted LM, NER should not be deteriorated, however sometimes the sport was
not identified correctly, and in these situations, without general LM, all relevant names

were completely missing in the adapted LM, and hence the NER was significantly

deteriorated.
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FIGURE 7.5: Results with different weight of general LM in the sports domain. For
varying values of Ag and all other parameters fixed on default values, WER and NER
was evaluated.

The trend of the rest of the figure is similar to Ay (fig. [7.4): the higher A\¢ was, the lower
number of names was recognized correctly, as expected. The best W ER was achieved

when mixing general LM with single-topic LMs in 50:50 ratio.

In sum, we scored the best result with Ay = Aq = 0.5 (WER = 4.32%, NER = 16.89%).

By manipulating lambdas to lower values, we achieved better recognition of names, but
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only at the expense of a deterioration in W ER. By manipulating lambdas to higher
values, both WER and NER were deteriorated.

The result obtained with A\¢ =1 (WER = 4.51%, NER = 19.68%) would be the same
for all setting of A1, because adapted LMs do not depend on single-topic LMs in this
case. Actually, adapting to a LM consisting fully of a general LM is effectively no LM

adaptation at all. Therefore, this result equals to a baseline performance of the system.

7.9 Fine-Tuning of Parameters

To find optimal system settings, we ran a grid search over system parameters analogous
with the fine-tuning of parameters in the news domain (sections [6.5.3.2f-[6.5.5)). Since
the behavior of many parameters was very similar, we are summarizing the results in

this short section while discussing only few interesting points.

We achieved the best results when cropping each partial hypothesis to the last 50 words
excluding the last three words. As for the weighting function of the cropped word
sequence, we observed slightly better result using linear function than default constant

weight, however the differences were very modest (see figure [7.6]).

constant linear sigmoid logarithmic  exponential
Weighting window function

FIGURE 7.6: Results with different weighting functions for recognized words in the
sports domain. For varying weighting functions and all other parameters fixed on
default values, W ER was evaluated.

As for the hypotheses merger, we obtained the best results when setting parameter

merge-trim to 1 second and merge-offset to 3 seconds.

Surprisingly, we observed interesting results when trying different values of steadiness.
We plotted these results in the figure [7.7 It can be seen that WER and NER were
highly correlated reaching the best results with steadiness set to zero seconds. It means
that the best result was achieved when the system considered all identified topics always
as steady and immediately adapted the LM to whatever sport the TI had identified.

That implies the performance of the sport identifier was very accurate without much
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noise in predictions. Further increasing the value of steadiness led only to deterioration

of both WER and NER.
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FIGURE 7.7: Results with different steadiness of the topic-change detector in the sports
domain. For varying values of steadiness and all other parameters fixed on default
values, WER and NER was evaluated.

The best result, we achieved with steadiness set to zero seconds and other parameters
set as mentioned above, was WER = 4.255% and NER = 16.566%. Compared to the
baseline system (with no LM adaptation), we achieved 5.74% relative reduction of WER
and 15.84% relative reduction of NER.

The main results achieved so far along with results for the baseline system are summa-

rized in table [T.3

WER [%] NER [%]

general LM (baseline) 4.51 19.68
adapted LM, default params 4.32 16.89
adapted LM, fine-tuned params 4.26 16.57

TABLE 7.3: Results summary for experiments with shadow speaker in the sports do-
main. For the baseline system and two different LM adaptations, we are showing the
best WER and NER we achieved.

7.10 Using Original Audio

To have an idea of how experiments in the sports domain would end without the support

of the shadow speaker, we ran similar experiments, but this time we used original audio
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records as inputs to our system, i.e. the exact same signal that was broadcast to TV
viewers. Note, that different acoustic model had to be used when recognizing original
audio. Instead of fine-tuned AM trained specifically for particular shadow speaker, a

general-purpose AM was used in this case. The main results are summarized in table

4

WER [%] NER [%]

general LM (baseline) 25.30 41.46
adapted LM, default params 24.56 37.85
adapted LM, fine-tuned params 24.43 36.72

TABLE 7.4: Results summary for experiments without shadow speaker in the sports
domain. For the baseline system and two different LM adaptations, we are showing the
best WER and NER we achieved.

As can be seen, without the re-speaking of the commentary by the shadow speaker,
W ER of the baseline system was more than 25%, which means there was an error in
every fourth word in average. NER of the system was more than 40% meaning only
six out of ten names were recognized correctly. Topic-based LM adaptation slightly
improved the baseline system, especially in terms of NER, however, the error rates of

recognized hypotheses are still too high to be used to generate understandable captions.

Original audio in the sports domain suffers a lot from a loud background noise and
frequent changes in the style of the speech, that is why results for this audio signal
were so poor. The re-spoken audio, on the other hand, contained only one skilled and
specifically trained speaker with background noise reduced to minimum. In the case of
original audio signal, we had to use general speaker-independent acoustic model, but
in the case of re-spoken audio, we were using fine-tuned speaker-specific AM achieving

more accurate results.

Clearly, the original audio stream was too noisy to be used for accurate real-time recog-
nition with a state-of-the-art speech recognition system. Based on these results, we are
stating, that the usage of shadow speaker is essential for closed captioning of TV sports

sumimaries.

7.11 Results Summary

The most important results achieved in this chapter concerning topic-based LM adap-
tation in the sports domain are summarized in table We are showing results for two

different audio signals:
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e original audio — the exact same signal that was streamed to TV viewers during

the Olympic summary shows,

e re-spoken audio — audio produced by a shadow speaker who was listening to the

original audio and re-speaking it in the real time.

Audio signal ASR system WER [%)] NER [%]
original general LM (baseline) 25.30 41.46

adapted LM 24.43 (—3.45%) 36.72 (—11.42%)
re-spoken general LM (baseline) 4.51 19.68

adapted LM 4.26 (—5.74%)  16.57 (—15.84%)

TABLE 7.5: Results summary for the sports domain. For two audio signals, we are
showing the best WER and NER (Name Error Rate) we achieved and corresponding
relative improvements over non-adaptable baseline systems.

Since we had only restricted amount of relevant texts for each sport in our text sources,
both general LM and adapted LMs were about the same size, thus the real-time ratio
was not an issue in this chapter. In all experiments, baseline systems were recognized
with the real-time ratio about 0.3 on the tested machine (Intel Core i7-7800X, used all
6 cores) and systems with adapted LM about 0.4. That is why we are not evaluating

differences in real-time ratio in table [7.5l



Chapter 8

Experimental Results Summary

In this chapter, we are summing up the most important results we achieved in this thesis.
We have extended state-of-the-art speech recognition system with an online topic-based
LM adaptation as described in the chapter We used this system to automatically
transcribe a speech in two multi-topic domains: live TV news (for details, see chapter
@ and live TV sports summaries (for details, see chapter @ The most significant
results from both domains along with the relative improvements over non-adaptable
baseline systems (i.e. systems using a general topic-independent language model) are
shown in table In the case of TV news domain, we are showing for comparison
results obtained with a topic model trained in fully unsupervised way from a collection
of plain text documents (unsup.) and with a supervised topic identifier trained from

manually labeled dataset (sup.).

Domain Audio ASR system WER [%] PNER/NER [%]

TV news  original general LM (baseline) 16.95 17.41
adapted LM (unsup.) 16.37(—3.41%) 16.88(—3.05%)
adapted LM (sup.) 16.36 (—3.48%) 16.66 (—4.34%)

TV sports original general LM (baseline) 25.30 41.46
adapted LM 24.43 (—-3.45%) 36.72 (—11.42%)

re-spoken  general LM (baseline) — 4.51 19.68
adapted LM 4.26 (—5.74%) 16.57 (—15.84%)

TABLE 8.1: The main results of the thesis. For both TV news and TV sports domain,

we are showing the best results we achieved in this thesis and corresponding relative

improvements over non-adaptable baseline systems. Experiments were evaluated in

terms of WER and PNER (Proper Noun Error Rate) in the case of news domain or
NER (Name Error Rate) in the case of sports domain.
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8.1 Test of Significance

To verify that improvements in the table are statistically significant, we ran a signifi-
cance tests. We chose Matched Pairs Sentence-Segment Word Error (MAPSSWE) test,
which is a very powerful test often used for the analysis of benchmark speech recognition
systems (Gillick and Coxl, [1989). We used Speech Recognition Scoring Toolkit (SCTK)
implemented in National Institute of Standards and Technology (NIST) (Pallett et al.,
1990). For each system with adapted LM in table we tested following null hypoth-
esis: the number of unique utterance errors are equal for both baseline and proposed

systems.

All tests confirmed a significant difference between recognized utterances of baseline and
proposed systems at the level of p = 0.001. Therefore, we can reject the null hypothesis
at the 99% confidence level, and state that all improvements listed in the table are

statistically significant.



Chapter 9

Discussion

Experiments in this thesis showed that proposed ASR system with online topic-based
LM adaptation performs significantly better than a system without LM adaptation in

real-time multi-topic tasks.

In the news domain (chapter @, the proposed adaptable system scored 3.48 % relative
reduction of WER and 4.34 % relative reduction of proper noun error rate over the
baseline system. One interesting result is that unsupervised topic models (specifically
LDA) performed almost as well as supervised text classifiers, which were trained from a
large collection of manually labeled data. This result emphasizes, that proposed topic-
based LM adaptation can be successfully employed even in problems, where the text

corpus is not annotated and manual topic-labeling of documents would be unfeasible.

Experiments in section showed another interesting result: even though news
reports tend to be multi-topic by their nature (in our data, there are three topics per
news article in average), a similar, and sometimes even lower, error rates can be achieved
when performing only a single-topic LM adaptation, i.e. when the system is adapting
only to one most probable topic at each time. For example, when a news report is about
heavy snow and traffic jams, a system, which switches the adapted LM between these
two topics, performs similarly (sometimes even better) than a system, which adapts
to a mixture of both topics. This result is interesting, because using single-topic LM
adaptation is very beneficial in proposed system, since the number of possible adapted
LMs equals to the number of topics, and thus, all adapted LMs can be prepared in

advance and stored in cache leading to LM adaptation with very low latency.

Real-time transcription of TV sports summaries is another multi-topic problem, where
topic-based LM adaptation can help a lot, because individual sports have markedly

different word sequence statistics and sportsmen are always highly related to only one

101



Chapter 9. Discussion 102

sport. In experiments in chapter (7} the system was adapting to one of 21 sports (topics)
at each time. The improvements scored by the proposed system over the baseline system
are very significant, especially in the terms of name error rates: 11.42 % relative reduction
of NER when recognizing original audio and 15.84 % when recognizing audio re-spoken

by a shadow speaker.

Results in section clearly demonstrate the necessity of re-speaking the original audio
by a shadow speaker in closed captioning of TV sports summaries task. Re-speaking
reduces the effect of a loud background noise and frequent changes in the style of the
speech. For example, the WER scored by a baseline system with and without a shadow
speaker was 4.51 % and 25.30 %, respectively.

On the other hand, there are some limitations of proposed solution. It is not suitable
for offline problems (e.g. to transcribe a multi-topic audio record), because it is designed
to work online only with limited partial hypotheses. For offline problems, where the
system can look at the whole record at once, it is usually better to use a standard two-
pass approach to segment the record into topics. Also, too large LMs cannot be used
for online LM adaptation in proposed system, because there would be too long delays
caused by loading huge files into the decoder (see for example bottom graph in the figure
. The size of LMs must be reasonable with respect to the reading speed of a storage
in use. Another limitation is that because of the architecture of existing ASR system,
all LMs must be static n-gram models in ARPA format, excluding all dynamic features
inside LMs.



Chapter 10

Conclusion

The research area of this thesis was online topic-based language model (LM) adaptation.
In present days, it is a very important problem, especially in multi-topic tasks, where a
real-time speech recognition is required, but a general LM cannot model varying word

sequence statistics in particular topics appropriately.

This thesis surveys the state of the art of the problem including also detailed theoretical
background of used methods and models. Published works which are most relevant to
this thesis are described in more details and the main differences from solution proposed

in this thesis are pointed out.

Chapter 5| describes the core of this thesis: an innovative solution to extend existing
real-time ASR system by online topic-based LM adaptation. The originality of proposed
solution lies in minimizing latency of the topic-based adaptation by using two parallel
decoders (instead of commonly used two-pass approaches) and online merging their
outcomes. Another contribution of this work is the way how the change of the speech

topics is online detected from a stream of partial hypotheses.

The proposed adaptable system was implemented and tested in two multi-topic real-
time ASR problems: live transcription of TV news and live transcription of TV sports
summaries. For both problems, experiments in this thesis showed that proposed system
performs significantly better than a system without LM adaptation, and that topic-
based LM adaptation can reduce error rates of live closed captions, especially by better
recognizing topic-specific content-bearing proper nouns crucial for deaf and hard-of-
hearing audiences to understand the content of the speech. It can also ease the work
of shadow speakers by dynamically and automatically enriching the ASR system with

topic-specific words and n-grams whenever the topic occurs in the speech.

103



Chapter 10. Conclusion 104

As for the future work, it would be interesting to add a support of dynamic LMs directly
into the decoding process. It would avoid mixing of static LMs in the background
processes and high data traffic when saving and loading large LMs. However, with
current architecture of our ASR system, we found such support to be very hard to
implement while keeping the system optimized for low-latency real-time recognition.
Also, it will be interesting to monitor the research of end-to-end ASR systems based on
deep recurrent neural networks, where we can observe a lot of effort in present days,
because such models could learn various topic-related features from training data and

implicitly perform online LM adaptation by their nature.

My future work in this field consists mainly in extending the usage of the system by
preparing more topic-specific LMs covering additional important domains with specific
word sequence statistics, such as geographical regions, various professions etc. We plan to
include these topic-specific LMs into our ASR system in order to produce more accurate
closed captions for various live TV shows and also to enhance our existing dictating

system.

By writing this thesis, I believe I have presented an innovative and working solution
to improve automatic speech recognition in online multi-topic tasks while fulfilling all

objectives defined in chapter



Appendix A

Default Configuration File

of Proposed System

[onlineASR]
ASR_set

1lib_name

licence
activation
1ProcessorNumber

1ProgressPeriod

1ResultPeriod

1ResultMinFrameNumber
1ResultMinWordNumber
uintInputDevicelID
uintOutputDeviceID
bGPUUsing

bRealtimeProcessing

[LMAdapt]
adapt_LMW
adapt_WIP

retro_rec

[RecognitionParam]
fn_type
lattice_slf
lattice_json

return_json

"ASR.SET" # path to compiled LVCSR set (AM+LM+NET)
"1ibLVCSR_mkl.so" # path to LVCSR 1lib

1
100

100

o O O o

True

True

13

None
None

False

#

H O H O H OH OH H

licence ID

activation key

number of CPUs

how often a progress is reported, in number
of frames

how often a partial result is generated,

in number of frames

use GPU if available

# language model weight of adapted LMs

# word insertion penalty of adapted LMs

H O H

retro-recognition, in seconds

0..wav, 1..htk
prefix of periodically saved SLF lattices
prefix of periodically saved JSON lattices

results are JSON lattices
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return_mesh = False # results are word confusion networks

mesh_threshold = 0.01 # pruning threshold for word confusion networks

parallel_recognition = True # enable two parallel decoders

vol_norm = False # volume normalization

[Audio]

convert_input = True # convert the audio/video before ASR

audio_tool = "ffmpeg" # ffmpeg, avconv or similar

target_n_channels =1

target_frequency = 16000

[HypothesesMerger]

merge_online = True # generate merged hypotheses online

merge_trim =2 # how many seconds to trim (drop) from both
# ends of the adapted-LM hypothesis

merge_offset =3 # the width of the interval at both ends of
# remaining adapted-LM hypothesis, where the
# best cut is searched for; in seconds

[TopicIdentifier]

0TI = True # do online topic identification

unit_type = "word" # "word" | "sec"

drop_N_last_units =2 # how many last units are thrown away

keep_N_most_recent_units = 50 # how many last units are selected from

# remaining result

trained_encoder = "TFIDF.pkl" # pickled data encoder
units_weighting = "constant" # "constant" | "linear" | "sigmoid" |
# "logarithmic" | "exponential"

trained_topic_predictor = "SVM.pkl" # pickled topic predictor
IIRCu-tII

thresholding_strategy
thresholding_strategy_kwargs = {"k": 1}

[TopicChangeDetector]
steadiness =5 # how many seconds into the history any topic
# must have been continuously identified to be

# marked as a steady topic in the speech

[LMMixer]

0TA = True # do online topic adaptation of LM

mode = "prepared" # "prepared" | "offline" | "online"

topic2LM = "map.txtOutf-8" # path to a mapping topic -> LM
cache_size = 25 # how many recent adapted LMs to keep in cache
general LM = "LM.arpa" # path to general LM

general LM_w = 0.5 # weight of general LM
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imglM_bin = "ImagelLM.exe" # path to LM Imager
ASR_net = "ASR.NET" # path to compiled recognition network
srilm_param = "-unk" # additional params for SRILM’s ngram program

no_topic_LM = LM used when no steady topic is identified,

empty string for keeping the last LM

1
w

no_topic_LM_patience how many seconds to wait before change LM to

H O H H

no_topic_LM
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