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ABSTRACT 
The precise orientation-estimation of humans relative to the pose of a monocular camera system is a challenging 

task due to the general aspects of camera calibration and the deformable nature of a human body in motion. Thus, 

novel approaches of Deep Learning for precise object pose-estimation in robotics are hard to adapt to human body 

analysis. In this work, a hybrid approach for the accurate estimation of a human body rotation relative to a camera 

system is presented, thereby significantly improving results derived from poseNet by applying analysis of optical 

flow in a frame to frame comparison. The human body in-place rotating in T-pose is thereby aligned in the center, 

applying object tracking methods to compensate for translations of the body movement. After 2D skeleton 

extraction, the optical flow is calculated for a region of interest (ROI) area aligned relative to the vertical skeleton 

joint representing the spine and compared frame by frame. To evaluate the eligibility of the clothing as a fundament 

for good feature, the local pixel homogeneity is taken into consideration to restrict the optical flow to 

heterogeneous regions with distinctive features like imprint patterns, buttons or buckles besides local illumination 

changes. Based on the mean optical flow with a coarse approximation of the axial body shape as ellipsis, an 

accuracy between 0.1° and 2.0° by a target rotation of 10° for orientation-estimation is achieved on a frame-to-

frame comparison evaluated and validated on both, Computer Generated Imagery (CGI) renderings and real-world 

videos of people wearing clothing of varying feature appropriateness.  

Keywords 
Object Tracking, Orientation-Estimation, Optical Flow, Image Alignment, Human Skeleton Extraction, Human 

Pose Estimation, Pixel Homogeneity 

1. INTRODUCTION 
Accurate knowledge of the orientation of a human 

from a monocular video is besides skeleton analysis of 

highest importance to allow for 3D reconstruction of 

the body, e.g., for subsequent analysis of the size of a 

garment. Furthermore, in the field of collaborative 

human-computer interaction with respect to industry 

4.0 or general person tracking in the surveillance field, 

the analysis of human pose and orientation is of high 

interest. Using only one static monocular camera 

system without any knowledge of extrinsic camera 

parameters, the human as the target object needs to be 

recorded from several views, e.g., by in-place rotating 

in T-pose. With a static camera system and rotating jet 

centric aligned objects, it is inevitable to gain accurate 

knowledge of the exact orientation relative to the 

camera system to allow for subsequent analysis and 

post-processing such as the 3D reconstruction of the 

individual body shape. The deformable and non-rigid 

nature of a human body in motion with all intrinsic and 

decoupled movements of hips, head and ankles harden 

the task of defining exact orientation relative to a 

camera system. Furthermore, a human body with its 

rotational-symmetric and homogeneous shape will 

project to very similar silhouettes in the 2D video 

recordings if only marginally varying the rotation 
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angle making it hard to derive specific, unambiguous 

estimations. 

2. Related Work 

2.1 Action Recognition 
The field of action recognition and pose classification 

can be seen as a predecessor of nowadays joint-based 

human pose estimation. For most of these approaches, 

it is generally assumed that human detection, i.e., 

removing the background, already has been achieved 

somehow [Ger10a], and thus the silhouette contour is 

available for processing. While simple local features 

such as the shape modeled as the histogram of oriented 

gradients (HOG) can be exploited to deduce the 

human activity, incorporation of motion as the 

histogram of optical flow (HOF) [Lap08a] for spatio-

temporal context introduces additional robustness in 

video processing. Besides shape, also spatio-temporal 

texture features can be utilized by applying local 

binary patterns (LBP) [Kell08a]. Body shape as 

silhouette derived after background removal can be 

directly used as a feature vector for clustering in the 

vector space [Singh08a]. State of the art feature 

detectors such as Speed-Up Robust Features (SURF) 

allows deriving robust markers as input for action 

recognition [Ben14a]. Nowadays, action recognition 

is achieved using neural networks or even Deep 

Learning architectures [Ron16a]. 

2.2 Deep Learning for Human Pose 

Estimation 
With the evolution of Deep Learning frameworks and 

methodologies, accurate human pose estimation is 

now feasible with 2D joint skeletons derived from 

input video frames, e.g., with DeepPose introduced by 

Toshev [Tos14a]. To derive the joint skeleton in 3D, 

it can either be derived from a single planar RGB 

image utilizing Deep Learning [Li14a] or from 

predicting the 3D skeleton by projecting assumed 3D 

positions back to 2D for evaluating the best match 

[Che16a]. A 3D skeleton can easily be derived if 

incorporating multiple views with particular 3D 

approximation to combine the results with a simple 

neural network [Rho18a]. If the relative orientation of 

the human within the frames is known, the topic of this 

paper, plain 2D skeletons and epipolar geometry are 

sufficient for an approximation of 3D skeleton joint 

positions [Yan98a].   

2.3 Human Orientation Estimation 
For the domain of human orientation-estimation, 

specific deep learning models can be trained [Cho16a] 

at validation accuracy slightly above 80%. Given the 

3D skeleton joint positions, the human orientation can 

further be directly estimated by e.g. calculating the 

orthogonal vector from a plane between neck and 

left/right leg [Cho16a] or by assessing the hip-rotation 

with a plane between chest and left/right hip [Wei19a]. 

Likewise, the human face orientation can be 

approximated from relative landmark positions such 

as nose, mouth, eyes from 2D [Sug05a] [Gou04a] or 

from 3D marker positions for full pose recovery 

[Der17a]. 

While the estimation of the human body as an elastic 

and deformable multi-joint kinetic skeleton is hard to 

determine and unambiguous, for solid bodies in case 

of a priori known 3D shape Deep Learning has 

recently led to significant improvements in 3D 

orientation and pose estimation [Xia18a].  

A similar approach using pixel motions to evaluate the 

rotational changes is presented in [Pra20a]. There we 

describe a method to determine the rotation in the 

context of head-mounted augmented reality (AR) 

devices. In contrast to the presented paper, we are 

using the method for inside-out orientation 

determination for AR devices, while this paper 

introduces an outside-in approach. 

3. Hybrid Approach for Human 

Orientation-Estimation  

3.1 Overview of our approach 
Image data utilized in this research work is acquired 

with a particular camera setup. One monocular static 

camera system is used to record a person rotating in T-

pose on a spot facilitating simplified camera 

calibration. The body skeleton is tracked in 2D by 

utilizing OpenPose pose estimation [Cao17a]. To 

compensate for body movement, the 2D frames are 

scaled and aligned according to the spline-joint of the 

tracked skeletons.  

A rough orientation estimation is directly derived from 

the body skeleton evaluating the shoulder to hip plane, 

while significant refinement is achieved by evaluating 

the optical flow. Preconditioned nearly homogeneous 

object position and distance from the camera, the 

person elliptic axial cross-section is estimated from 0° 

and 90° views. Utilizing the modeled person cross-

section and the quantitative phase shift of optical flow 

when comparing two frames, the relative rotation can 

be calculated based on the derived translation. The 

pixel homogeneity, via a co-occurrence matrix, allows 

excluding of homogeneous areas from optical flow 

analysis, resulting in a more stable and precise result.  

3.2 MATERIAL 
With a very broad field of application in terms of the 

used camera system, this paper differentiates between 

tests using Computer Generated Imagery (CGI) data 

and those using real-world data to address a wide 

range of scenarios. The first of the two used materials 

is shown in Figure 1 and uses the game engine Unity 

to render a virtual environment containing a model of 

a person, which rotates around its spine.  
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(a) (b) 

  

(c) (d) 

Figure 2: Sample images of a real-world person standing 

on the degree circle shown in Figure 3 with a rotation of 

(a) 0°, (b) 10°, (c) 20° and (d) 90°. 

 

 

 

Figure 3: Degree circle underlay used as a ground  

truth for the real-world tests. 

 

Figure 4: Shows the required overall workflow steps 

of the rotation calculation. 

 

That allows us to verify the approach in a perfect 

setting with a precisely known rotation as the ground 

truth and without additional distortions related to the 

used camera or, e.g., movements of the camera. 

However, it also allows us to evaluate the effect of 

such influences, which can be configured/simulated in 

such a virtual environment. 

In the second scenario, videos are captured form a 

person who is rotating in place around their spine, 

shown in Figure 2. The usage of real camera footage 

is associated with, among other things, the problems 

mentioned above, but allows us to evaluate our 

approach in a real-world scenario, in which it finally 

should find application. In this test environment, we 

also distinguish between two camera settings – a 

positional static and a dynamic one. In the first setup, 

we are using a fixed camera on a tripod, and in the 

second one, the camera is held by a second person. 

This additional differentiation allows comparing the 

synthetic scenario tests with the static camera. First, to 

evaluate the influence of different camera-related 

impacts, and secondly, the influence of real-world 

conditions that contain additional sources of errors, 

such as (minimal) movements of the camera. As the 

ground truth in the real-world scenarios, we use a 

motorized turntable that can be rotated degree-wise 

and is mounted on a printed degree circle, shown in 

Figure 3. 

In both, the synthetic scenario as well as the real-world 

scenario, we evaluate the rotation of the person at 0°, 

10°, 20°, and 90° each based on a single image frame 

with 24-bit color depth. The approach is tested with 

images of size 1920x1080px. For this, the synthetic 

scenario scene is exported with this resolution at the 

corresponding rotations. The real-world images are 

taken with a Logitech C920 that is mounted on a tripod 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 1: Sample images of a virtual person model with 

a rotation of (a) 0°, (b) 10°, (c) 20° and (d) 90°. 
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in the static scenario and in the dynamic one with an 

iPhoneXR.  

3.3 METHODOLOGY 
Identifying the rotation of an object with a monocular 

camera requires various aspects to be checked and 

corrected. First of all, three frames are necessary, as 

described in section 3.2, one as origin, one as the 

target, and one with a 90° view. Handheld cameras 

usually introduce movement between consecutive 

images. The target image therefore has to be aligned 

to prevent such an error first. This alignment has to be 

a translation only and there must not be any Euclidian, 

affine, or homography transformation. This 

transformation allows us to align the background and 

to preserve the motion between the frames. Figure 4 

shows the overall abstract workflow. It highlights the 

required steps for this approach to calculate the 

rotation of an object within images. 

Following the alignment correction, the optical flow 

gets calculated for the entire image but evaluated only 

within a small region of the rotating object. Since the 

flow in the direction of the vertical axis is not relevant, 

the subsequent process steps ignore it. Within the 

resulting features (a two-dimensional array), the 

direction of the flow is essential. The main rotation 

direction is determined by checking for one direction 

that has more than 75% of all flow values in its 

direction. If this is not guaranteed, it is impossible to 

calculate the rotation from the given samples. That 

leads to dropping all values in the wrong direction and 

are therefore classified as noise by the optical flow 

calculation. After those steps, another check further 

cleans the remaining values. Within the small region 

of interest, the homogeneity is vital to decide for 

further cleaning tasks or to calculate the rotation 

directly. Via the co-occurrence matrix based on the 

grayscale values in the horizontal direction, reliable 

homogeneity information can be acquired. Combined 

with the statistical variance within the horizontal flow, 

it is possible to decide for further cleaning or not.  

To determine the homogeneity of the texture in the 

ROI, a gray value co-occurrence matrix M is 

calculated for 𝑟𝑎𝑛𝑔𝑒 = 64 as number of bins for 8bit 

unsigned input image 𝐼 leading to range factor 𝑟𝐹 =
𝑟𝑎𝑛𝑔𝑒

256
 with 

𝑀(〈𝑇𝑖〉, 𝑘, 𝑙) =
1

𝑤𝑖𝑑𝑡ℎ ∗ ℎ𝑒𝑖𝑔ℎ𝑡 ∗ |〈𝑇𝑖〉|
 

∑ ∑ ∑ {
1

𝑖𝑓 𝑓𝑙𝑜𝑜𝑟(
𝐼(𝑥+Δ𝑥𝑖)

𝑟𝐹
) = 𝑘 

∧ 𝑓𝑙𝑜𝑜𝑟(
𝐼(𝑦+Δ𝑦𝑖)

𝑟𝐹
) = 𝑙

0 𝑒𝑙𝑠𝑒

ℎ𝑒𝑖𝑔ℎ𝑡
𝑦

𝑤𝑖𝑑𝑡ℎ
𝑥

|〈𝑇𝑖〉|

𝑖 (1) 

applying the translation vector 𝑇1(1,0) and 𝑇2(0,1)  
provided as a parameter set 〈𝑇𝑖〉 with translation 𝑇𝑖  as 

pair (Δ𝑥𝑖 , Δ𝑦𝑖). Based on co-occurrence matrix M, 

homogeneity is calculated as  

ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦(𝑀) = ∑ ∑
𝑀(𝑘,𝑙)

1+|𝑘+𝑙|

𝑟𝑎𝑛𝑔𝑒
𝑙

𝑟𝑎𝑛𝑔𝑒
𝑘  .           (2) 

The following cleaning steps intend to remove 

unbalance within the remaining optical flow values. If 

the image has many homogenous areas, then the 

optical flow contains peaks within the histogram of the 

residual values. In order to determine if such peaks 

exist, the histogram is split into ten equal-width slices. 

Values in a slice are dropped if the slice contains more 

than the 85 quantiles of the number of values. That 

cleaning results in a more uniform distribution of all 

flow values. This step is valid under the assumption 

that the image contains many homogenous areas were 

no real optical flow can be calculated and would bias 

the further calculation steps. This allows to 

boost/reinforce the remaining values in their 

contribution to the rotation calculation. 

Finally, after pre-processing, the core rotation 

calculation requires some additional information 

besides the optical flow data. It involves the width of 

the cross-section of the rotating object. Therefore, it is 

mandatory to know a priori where the rotating object 

and its outline resides. If the object is a can, then the 

cross-section is always equal, but in the case of a 

person, a 90° rotated view is required to extract the 

cross-section width. This information is used as the 

diameter in pixels. Reducing this value by a factor of 

two results in a first approximation of the radius and 

is further used as an adjacent leg. Flowing that is the 

mean value of the remaining optical flow values used 

as the opposite side value as shown in Figure 5 as x 

Flow. The optical flow values are further corrected by 

calculating a scale factor with the arccosine, dividing 

 

 

Figure 5: Rotation calculation via arctangent 

calculation with the flow values as opposite and the 

radius cross-section as the adjacent leg. 

ISSN 2464-4617 (print) 
ISSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3001

WSCG2020  Proceedings 

42



the values by that factor and recalculating the opposite 

side value. The arctangent of the fixed values 

represents the final rotation value. 

4. IMPLEMENTATION 
Our rotation estimation requires image processing 

steps and statistical calculations. Respective steps are 

described in section 3. For those tasks, we chose 

Python (v.3.7) as our environment to test our 

approach. For image processing, we rely on OpenCV 

(v.4.1.2.30) with the Python-Wrapper available via 

PyPI. Since there is no co-occurrence matrix 

calculation implemented in OpenCV, we additionally 

use Scikit-image (v.0.16.2) for calculating the matrix 

and deriving the homogeneity within the image from 

it. OpenCV additionally requires the NumPy library 

when used within the Python environment. NumPy 

(v.1.17.4) further provides the possibility for 

calculating quantiles and histograms. For the 

geometric calculation, we rely on the math 

implementation of the Python environment. We use 

the following OpenCV functions throughout the 

implementation: findTransformECC, warpAffine, 

calcOpticalFlowFarneback. 

 

  

(a) Reference image with 0° rotation (b) Target image with 5° rotation 

 

(c) Target image with 5° rotation and alignment to the reference image, where no alignment is required 

due to the static mounted camera 

Figure 6: Test sample with statically mounted monocular camera and no alignment required 

 

   

(a) Reference image with 0° 

rotation 

(b) Target image with 10° 

rotation 

(c) Target image with 10° 

rotation and alignment to the 

reference image 

Figure 7: Test sample with handheld monocular camera and alignment required, visible as black rectangles (c) due 

to the alignment 
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(a)  (b)  (c)  

Figure 8: (a) CGI rendering sample, (b) ROI within the rendering and the corresponding optical flow values with 

a rotation to the right from camera view point, (c) density of all optical flow values and the remaining densities 

after the cleaning 

 

5. RESULTS 
Although the person is expected to rotate in T-pose, 

the follow test cases cover different kinds of poses to 

prove the applicability of the optical-flow based 

orientation estimation.  

5.1 Alignment Texture Normalization 
Figure 6 contains a test sample with alignment. This 

case shows that alignment is not required because the 

recording happened with a statically mounted 

monocular camera.  

The scene in Figure 7 shows, that the alignment is 

required in the case of cameras handheld by a second 

person. The aligned target image is therefore moved to 

the left and a bit up, visible as black rectangles in the 

Figure 7 (c) The movement of the hand has been 

corrected to calculate the flow information from the 

same region of interest (ROI). Otherwise, two non-

aligned areas could be compared with no significant 

overlap of information in the ROI. 

Alignment via Enhanced Correlation Coefficient 

(ECC) estimates the required transformation based on 

maximizing the correlation coefficients between the 

reference and target image. The best fitting alignment 

in our case is with translation transformation because 

it does not distort the content of the target image. 

5.2 Tests on CGI Renderings 
Figure 8 (a) shows the initial CGI scene. The ROI in 

the scene contains several features and has, therefore, 

a low homogeneity value of 0.267. The Figure 8 (b) 

contains the ROI clip out and a visualization of the 

optical flow. Figure 8 (c) contains the histogram of the 

optical flow values. It highlights a small density of 

noise in the range of 0 to 15. The mean is 27.97, and 

the median at 28.79. The calculated radius for this 

scene is 110. The calculation result is 14.73° with 

mean and 15.14° as the median value, after the 

correction. The expected target rotation for this 

sample was 15° and is consequently below the ±2° 

bound of the target rotation. The quantile-based 

cleaning, as the histogram shows in Figure 8 (c) 

worsens the result to a rotation value of 12.72°. 

All synthetic scenario scenes results are shown in 

Figure 10. There are eight cases for 5°, four cases for 

10° and one case for 15°. The 5° rotation are between 

(0°, 5°) and (5°, 10°). The 10° rotation are always 

between (0°, 10°). Further tests with less rotation in 

the range of 0° to 10° were tested with equal accurate 

results as the 5° target. 

5.3 Tests on Real-World Recordings 
The real-world recordings achieved similar results as 

with CGI renderings. Figure 9 shows an example from 

a real recording done with a handheld camera. The 

homogeneity in the ROI states a value of 0.487, which 

concludes to apply all preprocessing cleaning steps. 

Figure 9 (c) highlights the steps of the cleaning 

process. First, the side cleaning and finally the 

quantile cleaning. The target rotation in this sample is 

10°, starting at 0°. Without cleaning, a rotation of 6° 

can directly be calculated. After both cleaning steps 

and correction, the final rotation results in 10.05°, 

which represents a very accurate result. The median 

flow value is, therefore, 30.71, the median value 

26.92, and the radius 176. The rotation based on the 

median value only achieves 8.8°. 
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(a)  (b)  (c)  

Figure 9: (a) real-world recording with printed degrees below, (b) ROI within the recoding and the corresponding 

optical flow values with a rotation to the left from camera viewpoint, (c) density of all optical flow values and the 

remaining density 

 

 

 

 

Figure 10: All synthetic scenario results with the 

cleaning steps and the resulting rotation by mean and 

median value from the optical flow. 

 

Figure 11: All real-world results with the cleaning 

steps and the resulting rotation by mean and median 

value from the optical flow. 
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Figure 12: Homogeneity values between CGI 

rendering samples and real-world samples showing a 

significantly higher value. 

All real-world results are summarized in Figure 11. 

The target rotation cases range from 5° to 20° with 

nine for 5°, 21 for 10°, three for 15° and seven for 20°. 

It is clear to see that with a rotation > 10° as target, the 

results get more incorrect. The samples itself inflict 

that because no feature information cannot be 

compensated like a too homogeneous ROI. 

5.3 Homogeneity between CGI Rendering 

and Real-World Recordings 
As expected, the homogeneity is utterly different 

between the CGI renderings and the real-world 

recordings, as visible in Figure 12. The CGI scenes 

usually have more features based on the perfect 

texture. The homogeneity values are significantly 

lower and centered at 0.167 and the real-world values 

at 0.396. In real-world recordings, it depends on the 

sharpness of the image, such as the focus, for example.  

6. DISCUSSION AND CONCLUSION 
The results show that the approach is working from 

controlled scenarios such as CGI rendering but also 

for real-world recordings. In all cases, it is visible that 

the rotation cannot be calculated as perfect as wanted 

in every scenario. Since the approach is relying on 

optical flow information, it is not possible to calculate 

a rotation higher than 45°. On the other side, the 

rotation calculation between contiguous frames from 

a video allows tracking of the rotation in a range lower 

than 10°. In this range, as stated, it is possible to 

extract the information at a high confidence.  

We also tested scenarios with people wearing T-shirts 

with only horizontal textures. For those cases, the 

homogeneity is high, and by ignoring this information, 

the resulting rotation is far away from the desired 

target. That further concludes that reliable optical flow 

information is required. Without that, all pre and in-

between cleaning steps do not automatically repair the 

calculated features. Therefore, it works not in every 

case, but with the described checks, it is possible to 

decide if the result is reliable or not. 

Our simplified model of a person with a circle has 

some limitations. Naturally a person does not have a 

shape like this, but a more ellipse-like one instead, 

which has to be improved. Further, the rotation is 

typically not around the center of such a model. It is 

more likely around an asymmetric point between the 

center of our model and the backside. The first tests 

conclude that the resulting rotation can be more 

accurate by moving the center nearer to this desired 

arbitrary point. 

7. OUTLOOK 
Future tests will focus on the applicability of the 

presented orientation estimation for human shape 

reconstruction with real-world data. Due to the 

skeleton-based alignment, the presented accuracy 

should be sufficient with ±2° to allow for 3D human 

body reconstruction from a single static monocular 

video feed.  

As the static monocular video acquires frames from 

one entire rotation of 360°, some potential for 

improvement as post-processing similar to VSLAM 

loop closure exists. If, e.g., the orientation evaluated 

from the neighboring frame pairs (𝑛0, 𝑛1), (𝑛1, 𝑛2), 

…., (𝑛𝑚, 𝑛0) sums up to 360 + 𝑒𝑟𝑟, then all frame-to-

frame estimations can get scaled with 𝑠 =
360

360+𝑒𝑟𝑟
. 

Furthermore, the input video can be processed at 

various sampling rates, e.g., ten frames, 20 frames, 

and so on combining the particular results by applying 

maximum likelihood estimation for higher robustness.  
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