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ABSTRACT 
In this paper, the concepts of differential geometry traditionally applied to the segmentation of range maps is 

revisited in the context of implicit surface representation of unorganized point clouds. The paper shows that it is 

possible to combine covariance-based differential geometry and implicit surface representation methods to 

perform the segmentation of an unorganized point cloud (and not just a range map) into seven surface types. The 

acquisition of the point cloud data is achieved with handheld scanners used in metrology applications. The 

advantages of combining covariance-based differential geometry and implicit surface representation are that the 

segmentation does not require surface fitting nor does it require that all points be processed, thus reducing 

computational complexity. The segmentation approach is validated on synthetic data as well as point clouds 

borrowed from common datasets. Scans obtained from commercial metrologic handheld 3D sensors are also used 

for validation. The paper first presents the workflow commonly used for 3D scanning using handheld 3D scanners 

in the context of metrology. This is followed by a discussion on the different methods that are used for surface 

representation including the vector field, the implicit representation method exploited in this paper. Basic concepts 

of classical differential geometry for surface segmentation are presented. This is followed by the presentation of 

covariance-based differential geometry. The concepts of handheld 3D scanning, covariance-based differential 

geometry and implicit surface representation are then combined to achieve efficient segmentation of a point cloud 

into seven different surface types. Experimental results obtained on synthetic 3D data as well as real data 

demonstrate the segmentation approach. 
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1. INTRODUCTION 
Applied metrology consists in the application of 

measurements in different fields such as quality 

control, inspection, product design and reverse 

engineering. If accuracy and precision are two 

important components of metrology, the time needed 

to achieve the measurements is a relevant issue, 

especially in the context of quality control in an 

industrial context for which a large number of parts 

have to be processed. The ease with which the scan 

can be obtained by users is also important when such 

users are domain specialists but not necessarily 

experts in 3D scanning. 

Over the years, 3D sensors have become very popular 

because they are cheaper and easier to use than 

classical Coordinate Measuring Machines (CMM) 

while still achieving metrologic accuracy. In addition, 

3D sensors can capture dense point clouds that convey 

the geometry of the object in real-time. 

Comparatively, capturing dense 3D point clouds with 

a CMM can be a very tedious and time consuming 

process. Capturing the geometry of parts is not only 

important in metrology but is also useful in many 

fields such as reverse engineering, design intent 

assessment and graphics rendering. 

Among 3D sensors, handheld 3D sensors are of great 

interest because they allow the capture of 3D data on 

the specimens to be inspected in a very natural way 

which, in many aspects, resembles spray painting. As 

shown in Fig.1, scanning an object with a handheld 3D 

sensor consists in moving the sensor around the 

surface of the object of interest while the 3D 

coordinates of points at the surface are collected. 

Most 3D handheld sensors are active sensors that 

project some sort of light pattern (laser point, laser 

stripes, laser crosses, white light patterns, Moiré 

fringes, etc., see [DANE2018] for an overview of 

different 3D sensing technologies) on the object to 

ease the image analysis process leading to the 

measurement of 3D coordinates. The 3D coordinates 

of points acquired from a pose (i.e. position and 

orientation) of the sensor are expressed in this local 
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reference frame. The estimation of the rigid 

transformation (rotation and translation) between each 

pose of the sensor and a “global” reference frame is 

needed if the 3D points are to be expressed in a 

common reference frame. This global reference frame 

can be the initial pose of the sensor when the scanning 

process starts. The estimation of the rigid 

transformations is made easier if a real-time self-

positioning strategy is used to compute the position 

and orientation of the sensor with respect to the object. 

One way of implementing self-positioning is to install 

markers (often retroreflective markers) at the surface 

of the object and to estimate the pose of the sensor with 

respect to these markers. The rigid transformation 

between different poses of the sensor is then readily 

available by exploiting registration algorithms such as 

the well-known Iterative Closest Point (ICP) approach 

[RUSI2001]. 

Figure 1. The 3D scanning process using a 

handheld scanner  

 

Surface Representation 

Once the cloud of unorganized 3D points covering the 

entire surface of the object has been captured, a model 

of the surface must be built if metrologic 

measurements are to be performed on the object. This 

model can also be used to analyze the geometry of the 

object. Two main representations can be exploited to 

build this model: explicit representations and implicit 

representations. The former representation makes the 

geometry supported by the point cloud explicit, for 

instance by building a triangular mesh [CHEN2012]. 

Such a mesh contains the connectivity between points 

in the cloud and is a compact representation of the 

geometry of the surface. This connectivity can take the 

form of a vertex-triangle list and a triangle-vertex list 

and can also include the information on the normal to 

the surface at each vertex. The latter representation 

rather encodes the geometric information contained in 

the point cloud implicitly into a volumetric structure 

composed of voxels. Two main types of voxel-based 

implicit representations have been proposed: the 

distance field [CURL2996] and the vector field 

[TUBI2002]. The volumetric structure must be 

processed a posteriori to produce a mesh representing 

the geometry explicitly. The Marching Cubes 

algorithm is often used for this task [LORE1987]. 

When handheld 3D sensors are used for real-time 

modelling (i.e. the model of the surface is built as the 

3D points are measured), three tasks must be achieved: 

i) view registration, ii) view integration and iii) model 

visualization. View registration consists in the 

estimation of the rigid transformation between points 

of view from which the 3D data is collected. View 

integration aims at merging redundant 3D data 

common to two or more views. Finally, model 

visualization is the task of rendering the 3D model as 

it is being built so the user can observe the progression 

of the scan and plan the scanning strategy as points are 

being collected.  

The advantage offered by an explicit representation is 

that a low-level model is readily available. However, 

it is not adapted to real-time modelling. The main 

reason for this is that the registration and integration 

steps rely on finding nearest neighbours and that the 

search for nearest neighbours to a point becomes too 

computationally expensive when the number of points 

increases. Updating a mesh as new 3D points are being 

collected is also impossible to achieve in real time. 

The advantage of using implicit representations is that 

some, such as the vector field, have demonstrated the 

ability to support the three modelling steps in real-time 

that cannot be achieved by other methods 

[KHAK2019]. As described next, a major advantage 

of the vector field representation is that it encodes the 

surface normal as well as information on the nearest 

neighbors in each voxel, thus enabling nearest 

neighbor search in linear time complexity. However, 

if an accurate model needs to be built, the voxel size 

must be small which may lead to huge memory 

requirements. 

The rest of the paper is organized as follows. Related 

work is detailed in Section 2. The proposed method is 

explained in Section 3. Section 4 presents the 

experimental results which demonstrate the 

performance of the method. Section 5 concludes and 

proposes future work. 

2. RELATED WORK 

A Review of the Vector Field Implicit 

Representation for Real-time Modelling 

[TUBIC2002] 

As shown in Fig.2, the vector field is composed of a 

regular grid made of cubic voxels with side length L. 

Each voxel in the grid is addressed by the coordinates 

of its center vijk in a reference frame Wr. Let us assume 

that 3D points with coordinates pm on the surface S are 

collected by the sensor in frame Wr. The covariance 

matrix Ci,j,k of the points falling in voxel ijk is defined 

as in Eq. (1): 
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where p is the mean vector as defined in Eq. (2). 
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Figure 2. The Vector Field implicit representation 

(Adapted from [TUBI2002])) 

 

If the voxel size L is small enough, it is assumed that 

the object surface in the voxel can be approximated by 

the plane T tangent to the surface. The normal vector 

to tangent plane T is the eigenvector corresponding 

to the smallest eigenvalue min of Ci,j,k. F(Vi,j,k), cv and 

Ci,j,k are stored in each voxel. In the voxel, point cv on 

the tangent plane that is closest to vi,j,k is given by Eq. 

(3). 

 
, , , j,k( )v i j k ic F V V   

(3) 

As new points are collected by the sensor, Ci,j,k, min, 

F(Vi,j,k) and cv can be updated in real-time. Now, let us 

assume that the closest point ct to the surface 

approximated by T has to be found for a point b 

falling in voxel i,j,k. The coordinates of ct can be 

computed from the content of the vector field with Eq. 

(4) where , represents the scalar product and is 

the norm of a vector. 
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As shown in Fig.2, the closest point ct estimated by 

Eq. (4) is a very good approximation of the true closest 

point on the surface cb. In addition, for a single unit of 

data b, the computational complexity of finding its 

closest point on the surface is constant O(1) and is of 

order O(n) for n units of data (i.e. n points for which 

the closest points on the surface needs to be 

computed). This is more efficient than classical 

nearest neighbor finding approaches which show 

O(n2) or O(n log(n)) computational complexity. The 

vector field representation thus allows the view 

registration and view integration steps to execute in 

real-time. As mentioned above, with the vector field 

representation, the price to pay for computational 

efficiency is the amount of memory that is needed to 

store the voxel grid at a resolution for which the planar 

approximation is valid. 

High-Level Surface Segmentation Using 

Differential Geometry  

An explicit representation such as a triangular mesh is 

a low-level model of a surface that provides the 

connectivity between points and that is good for 

visualization in computer graphics and for performing 

some metrologic measurements. However, it does not 

convey high-level information on the geometry of the 

surface in the neighborhood of a point. Differential 

geometry is a popular approach for describing a 

surface. In differential geometry, the coefficients of 

the first and second fundamental forms of a surface 

patch (u,v) on a surface S in a differential 

neighborhood of a point P completely describe its 

intrinsic and extrinsic properties and, ultimately, its 

shape [DOCA1976]. As shown in Fig.3, given a 

parameterization (u,v), a differential surface patch 

(u,v) at a point P has a surface normal Ns that is 

orthogonal to the tangent plane t at P. A tangent 

vector v in t can be expressed as a linear combination 

of u and v. Defining the linear maps  du v   

and  dv v  , we obtain Eq. (5). 

 
u vv     (5) 

Applying the inner product  to vector v and using 

Eq. (5) yields Eq. (6). 

 2 2, , 2 , ,u u u v v vv v             (6) 

Writing 
2 2
, ,u u v vE F and G      and 

using the maps  du v and  dv v above, the 

expression for ,v v  writes as Eq. (7). 

 2 2, 2v v Edu Fdu dv Gdv    (7) 

Eq. (7) is referred to as the First Fundamental Form  
of the surface. In an infinitesimal neighborhood of P, 

 describes the measurement of a length on the surface. 

Although E, F, G, u and v depend on the 

parameterization of the surface, the first fundamental 

form  depends only on S and P. It is an intrinsic 

property of the surface since it is independent of how 

the surface is embedded in 3D space. This can be 

better understood by visualizing the distance between 

two points on a flat sheet of paper. When the sheet is 

bent (without being folded), the distance between the 
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points remains the same. It is thus an invariant 

property of S and is not affected by rotations and 

translations. 

 

Figure 3. A small patch near a point P on surface 

(u,v) and the tangent plane t  

The Second Fundamental Form  of S describes the 

extrinsic properties of the surface around a point and 

is linked to the curvature of this surface, i.e. the way 

the surface pulls away from the tangent plane t at P. 

Considering again Fig.3, it can be seen that the surface 

at point Pi pulls away from the tangent plane at P by a 

distance given in Eq. (8). 

     , , , su u v v u v N     
(8) 

Approximating     , ,u u v v u v       by 

its Taylor expansion and neglecting the high order 

terms, one obtains Eq. (9). 

    2 21
2

2
u v uu uv vvu v u u v v               (9) 

Since u and v are tangent to the surface and are thus 

perpendicular to Ns, Eq. (9) becomes Eq. (10) 

 
    2 21

2
2

L u M u v N v       (10) 

with , ,uu uv vvL M N     . For small u 

and v, Eq. (10) can be written as Eq. (11) (if ½ is 

dropped) 

 2 2Ldu M du dv Ndv     (11) 

Eq. (11) is called the Second Fundamental Form II of 

the surface at P. 

The Shape Operator, also called the Weingarten Map, 

S in Eq. (12) can be defined at a point using the 

coefficients of the first and second fundamental forms 

[DOCA1976].  

 
 

1
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LG MF MG NF
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   
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  
 (12) 

 

The eigenvectors of S determine the directions in 

which the surface bends at each point and the 

eigenvalues 1 and 2 are the principal curvatures (i.e. 

the maximum and minimum normal curvatures at the 

point). It is possible to compute two very important 

invariant surface properties of a surface at a point: the 

Mean curvature H and the Gaussian curvature K. H 

and K are defined in Eq. (13) and (14) respectively. 

 
1 2

2
H

 
  

(13) 

 
1 2K    (14) 

Although Eq. (13) and (14) are useful, it is more 

convenient to use the coefficients of I and II to 

compute H and K. The Gaussian curvature K is given 

by Eq. (15) while the Mean curvature H is given by 

Eq. (16) [PRES2010]. 
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(15) 
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(16) 

 

Looking at Eq. (15) and (16), K and H can be obtained 

from differentials. Using the signs of K and H, it is 

also possible to characterize the type of surface to 

which a 3D point on a surface belongs to [BESL1988]. 

As shown in Table 1, seven types of surface can be 

described by the combination of the signs of K and H. 

The usual approach that was proposed for finding the 

type of surface at a given point consisted in fitting a 

quadratic surface model in the N x N neighborhood of 

each point in a smoothed range map and then in 

computing the partial derivatives needed to extract K 

and H [BESL1988]. A range map is a 3D image 

defined as in Eq. (17) for which the surface 

parameterization is such that there is a depth value z 

corresponding to a coordinate pair (x,y) in a plane. The 

connectivity between 3D points in a range map is thus 

known compared to a point cloud for which the 

connectivity between points is unknown. 

       ( , ) ( , )z x y f x y  (17) 

 

Although this fitting approach can achieve good 

results, computing the derivatives on the raw depth 

map (i.e. without fitting) is unpractical because of 

sensor noise. For large depth maps or, in a more 

general case for large point clouds, the fitting step is 

very time consuming. In addition, a different fit is 

implemented at each point even when points lie in the 

same neighborhood and may belong to the same 

surface type. However, as pointed out in [BESL1988], 

correcting this may require a priori assumptions on the 

surface type. Making such assumptions is very 

restrictive and does not allow generalization of the 
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approach. When each point has been labelled with a 

given surface type, it is possible to group connected 

points sharing the same label and to fit a high-order 

polynomial (or spline model) to the region in order to 

obtain a high-level model. 

  K 

  + 0 - 

 

H 

- Peak 

 

Ridge 

 

Saddle 
Ridge 

 

0 none Flat 

 

Minimal 
surface 

 

+ Pit 

 

Valley 

 

Saddle 
Valley 

 

Table 1. Types of surface as a function of the signs 

of the Gaussian and Mean Curvatures 

Covariance-Based Differential Geometry 
A different approach to exploit differential geometry 

for finding the surface type at each point of a range 

map consists in using covariance-based differential 

geometry [BECK1994]. Returning to Fig.3, one can 

compute a local covariance matrix CI at point P of a 

range map as Eq. (18). 

  
  
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1 N
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i

C P P P P
N 

    (18) 

Pm is defined as in Eq. (19) where Pi is a point in the 

neighborhood of P on the range map. It is assumed that 

N points are selected in the neighborhood of P.  
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As described in [BECK1994], the eigenvectors of CI 

are three orthogonal vectors, two of which, t1 and t2, 

lie on the tangent plane to the surface at P (plane t in 

Fig.3) and the third one, corresponding to the smallest 

eigenvalue of CI, is the normal Ns to the tangent plane 

(and the surface) as suggested in [LIAN1990]. In 

[BECK1994], the two-dimensional covariance matrix 

in Eq. (20) is defined. In Eq. (20), Wi is a two-

dimensional vector defined as in Eq. (21) with si being 

defined as in Eq. (22). 
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  
t

i i ss P P N   
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As shown in Fig.4, vector Wi is thus the difference 

between a point Pi in the neighborhood of P projected 

on the vectors in the tangent plane weighted by the 

distance si between Pi and the tangent plane t at P. 

 

Figure 4. Geometry for the vectors in Equations 

(16), (17) and (18)  

 

Beckman et al. define the quadratic form in Eq. (23) 

as a “covariance-based Weingarten map” for a vector 

v in the tangent plane. 

 t

C IIII v C v  (23) 

Beckman et al. claim that the eigenvectors of CII are 

the principal directions on the surface, i.e. the 

directions of minimum and maximum normal 

curvature. They also define a covariance-based 

approach analogous to the Gauss map at a point P of 

the range map as in Eq. (24) with vector i defined as 

in Eq. (25). 
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The 2 x 2 matrix CP in Eq. (24) is the covariance 

matrix of the projections of the normal vector ni at 

points Pi in the neighborhood of P, m being the 

average vector of the projections. The eigenvectors of 

CP are the principal directions. The eigenvalues of CP 

provide information on the way the surface normal in 

the neighborhood of P projects onto the tangent plane. 

For instance, if the surface in the neighborhood of P is 

a plane, the normal vectors all map into a single point, 
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point P itself. When one eigenvalue is large and the 

other is small, the projection of the surface normal 

vectors map on a straight line and the underlying 

surface is a developable parabolic surface. Finally, 

when both eigenvalues are large, the surface is locally 

curved near P. Beckman et al. have applied the above 

covariance-based approach to segment points in a 

range map. In comparison with pure differential 

geometry approaches such as the one presented in 

[BESL1988], Beckman’s covariance-based approach 

can only identify three different types of surface: 

planar, parabolic and curved. A planar surface is 

identical to the “flat” surface type (with K = H = 0) in 

Table 1. A parabolic surface covers the cases of ridge 

(K=0, H<0) and valley (K=0, H>0) in Table 1 while a 

curved surface covers the other in Table 1. 

Consequently, the segmentation obtained by 

covariance-based differential geometry is less rich 

than the one obtained with classical differential 

geometry for the reason that, as demonstrated in 

[DIGN2014], even though the eigenvectors of CP 

correspond to the principal directions, the eigenvalues 

of CP are not equal to the principal curvatures 1 and 

2 but are rather functions of their squared value as 

expressed in Eq. (26) and Eq. (27) (where r is the 

radius of the ball centered at P). 
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Because of this, it is not possible to find the sign of H 

and, consequently, to differentiate between ridge or 

valley or peak / pit in Table 1. 

The following sections explain how these limitations 

can be circumvented and how the 3D data can be 

segmented into the seven surface types in table 1(here, 

minimal surface is considered as a saddle). 

3. PROPOSED APPROACH 
As mentioned previously, the sign ambiguity of the 

eigenvalues obtained by 𝐶𝐼𝐼 prevents us from 

distinguishing some surface types. We propose a new 

technique that combines covariance-based differential 

geometry and the vector field implicit surface 

representation to segment the 3D data. Instead of 

working with each point and the neighborhood around 

that point, we rather work with the voxels in the 

volumetric grid containing the vector field and its 26 

possible neighbors in the grid.  

As mentioned above, handheld scanners for 

metrologic applications use retroreflective markers or 

natural features to estimate the pose of the sensor with 

respect to a reference frame chosen as the “world” 

reference frame. Secondly, using the vector field 

implicit surface representation, view registration, view 

integration and the estimation of the normal to the 

surface in each voxel of the field can be performed in 

real time as the 3D data is collected by the handheld 

sensor. The vector field is also built in the world 

reference frame. Since the pose of the sensor in the 

world reference frame is estimated in real-time, it is 

also possible to know on which side of the surface the 

sensor is when 3D data is collected and integrated in a 

voxel of the vector field. Knowing on which side of 

the surface the sensor is located when the data is 

collected and the surface normal in the voxel allows 

the orientation of this normal to be defined with 

respect to the direction of the optical axis of the sensor. 

This also allows the differentiation between peak/pit 

or ridge/valley and eliminates the limitations of 

covariance-based differential geometry (expressed by 

Eq. (26) and Eq. (27)) for surface segmentation. Based 

on the above, the strategy that is proposed for surface 

segmentation is to apply covariance-based geometry 

on the vector field implicit surface representation 

instead of on individual points, thus reducing the 

computational load considerably since hundreds of 

points if not thousands fall in a single voxel. 

In the context of the differential geometry, when the 

orientation of the normal vector is given, then it is 

possible to observe that if 

 The distance between the tangent plane and all of 

the points of a certain region around the particular 

point are positive, then the point is a peak surface. 

 The distance between the tangent plane and all of 

the points of a certain region around the particular 

point are negative, then the point is a pit surface. 

 The distance between the tangent plane and all of 

the points of a certain region around the particular 

point is both positive and negative, then the point 

is a saddle surface. 

 

 The distance between the tangent plane and all of 

the points of a certain region around the particular 

point is both positive and zero, then the point is a 

ridge surface. 

 The distance between the tangent plane and all of  

the points of a certain region around the particular 

point is both negative and zero, then the point is a 

valley surface 

 The distance between the tangent plane and all of 
the points of a certain region around the particular 
point is all zero, then the point is a plane. 

      We extend this concept into the vector field 
framework. Therefore, instead of using points we 
rather use a voxel and the neighbours around the 
voxel.  With the additional knowledge of the direction 
of the surface normal (available in each voxel of the 
field), it is possible to exploit Eq. (22) on the 
neighborhood of a voxel to identify to which type of 
surface the points in this voxel belong to.  
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Implementation  
Since the covariance matrix of the points falling inside 

a voxel is computed in real time, computation of the 

normal vector is also achieved in real time and is the 

eigenvector of the covariance matrix corresponding to 

the smallest eigenvalue. By implementing the vector 

field framework, the normal vector, the closest point 

to the surface (Eq. (3)), the sensor position and the 

voxel center are all stored in a voxel of the 3D grid. 

Therefore, all of the values needed to compute the 

orthogonal distance from the tangent plane of a 

particular voxel to the neighboring voxels are 

provided.  For each voxel in the 3D volumetric grid, 

there are 26 possible neighbors. We have to consider 

the neighboring voxels which contain much more than 

3 points inside in order to have a reliable covariance 

matrix. This is not a problem since modern scanners 

can capture 250,000 points per second. We define the 

orthogonal distance form as  

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑗 = (𝑐𝑣(𝑗) − 𝑐𝑣(0))𝑇 . 𝑛         (28) 

where j = 1 to 26 is the number of the neighbouring 

voxels around the voxel  𝑣0 . 𝑐𝑣(𝑗) is the point on the 

plane approximating the surface in the jth  neighboring 

voxel (point  𝑐𝑣 in Figure 2),  𝑐𝑣(0) is the point on the 

plane approximating the surface in the voxel of 

interest, n is the normal vector obtained from the 

covariance matrix in the voxel of interest of the vector 

field framework. 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑗 , is a  𝑗 × 1  vector stored 

in each voxel of the vector field framework. An 

illustration in 2D to simplify visualization is given in 

Fig. 5. 

Figure 5. An illustration of 𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆𝒋 stored in a 

voxel of interest. 

The information of this matrix allows us to recognize 

the surface type in a given voxel as follow: 

 If all of the values of the 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑗 are positive, 

then the surface in the particular voxel is a peak 
surface. 

 If all the values of the 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑗  are negative, then 

the surface in the particular voxel is a pit surface. 

 If all of the values of the 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑗 are both 

positive and negative, then the surface in the 

particular voxel is a saddle surface. 

 If all of the values of the 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑗 are both 

positive and negative, and the eigenvalues 

obtained by Eq.(26), Eq. (27) are equal then the 

surface in the particular voxel is a minimal surface. 

Which, in this paper are considered as belonging 

to the same category as the saddle surfaces. 

 If all of the values of the 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑗 is both positive 

and zero, then the surface in the particular voxel is 

a ridge surface. 

 If all of the values of the 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑗 is both negative 

and zero, then the surface in the particular voxel is 

a valley surface. 

 If all of the values of the 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑗 are zero, then 

the surface in the particular voxel is planar. 

No filtering or fitting operation are performed on 

the data. 

4. EXPERIMENTAL RESULTS 
In this section, the experimental results are presented 

to demonstrate the performance of our approach. The 

method is applied to 3D synthetic data: Plane, Sphere 

(peak, pit), Cylinder (Valley, Ridge) and Saddle 

surface, as well as 3D data which was obtained from a 

real scanner (Stanford repository) and a HandyScan 

3D Laser Scanner by Creaform. The following 

experiments validate our method. The color map for 

different surface types is shown in Table 2. 

Table2. Color map corresponding to different 

surface types 

Fig.6 to Fig.14 show the result of the voxels 

segmented into different surface types. The color in 

the voxels is coherent with the surface types in each 

voxel. The results on synthetic spherical surfaces 

(peak in blue and pit in yellow) and the results on 

synthetic cylindrical surfaces, which are valley (black) 

and ridge (green) surface are shown in Fig.6 and Fig.7 

respectively. 

Surface Type Colour list 

Pit surface Yellow 

Ridge surface Green 

Valley surface Black 

Saddle and Minimal 

surface 

Cyan 

Peak surface Blue 

Plane surface Red 
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Figure 6. The result of the proposed covariance 

differential geometry segmentation on a synthetic 

sphere. (a) Shows peak in blue. (b) Shows peak in 

blue and pit in yellow color 

 

 

Figure 7. The result of the proposed covariance 

differential geometry segmentation on a synthetic 

cylinder. (a) Shows the ridge surface in green (b) 

Shows the ridge surface in green and the valley 

surface in black color. 

Fig.8 shows the result of our approach on synthetic 

saddle and minimal surface, in this paper we classify 

minimal surfaces in the same category as the saddle 

surfaces because they are a special case of saddle for 

which the |𝑘1| = |𝑘2|. So both are shown in the same 

color. 

 

Figure 8. The result of the proposed covariance 

differential geometry segmentation on a synthetic 

saddle surface. (a) Shows the minimal surface (in 

this paper considered as saddle) in cyan (b) Shows 

the saddle surface in cyan color 

 

Fig.9 is an example of segmentation of a planar 

surface. 

 

 

Figure 9. Result of the covariance differential 

geometry segmentation on a synthetic planar 

surface  

Fig.10 shows the segmented regions in a bunny’s 

head. One can observe on the model data the regions 

around the muzzle and cheek are pit and the regions 

around the ears are mostly cylindrical (valley and 

ridge). So as expected, Figure 9 (b) shows the region 

around muzzle and cheek in blue and voxels around 

the ear in green and black which prove the efficiency 

of our approach. 

 

 

 

Figure 10. The result of the proposed covariance 

differential geometry segmentation on a 3D point 

provided by the Stanford repository. (a) Object 

mesh data (b) The segmented regions on 3D points 

of bunny’s head 

 

 

 

Figure 11. The result of the covariance differential 

geometry segmentation on a 3D point provided by 

Stanford repository. (a) Object mesh data. (b) The 

result of the segmentation on the 3D points 

(a) (b) 

(a) (b) 

(b) 

(a) 
(b) 

(a) (b) 
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By referring to Fig.11 (a), it can be observed that the 

upper side of the bunny’s belly is peak surface and 

under the belly is more ridge and the regions around 

the claws of the bunny are mostly pit and valley. 

Clearly the regions betweens the belly and claws are 

saddle, and Fig.11 (b) provide a qualitative validation 

of our approach on the 3D points of the bunny. 

 

 

 

Figure 12. The result of the covariance differential 

geometry segmentation on a teapot. (a) Object 

mesh data. (b) The result of the segmentation on 

3D points  

 

It is apparent that for the teapot the main body is 

basically cylindrical. And it is also clear that the knob 

in the teapot is peak and the spout is a saddle surface. 

Fig. 12 and Fig.13 show the main body in green color 

which is a ridge surface and the knob in blue colour 

which demonstrate that the region is peak as expected. 

The spout in cyan color is also coherent with saddle 

surfaces. 

 

 

 

Figure 13. The result of the covariance differential 

geometry segmentation on a teapot. (a) Object 

mesh data. (b) The result of the segmentation on 

3D points 

 

The object shown in Fig.14 was scanned by a 

HandyScan scanner by Creaform. As labeled in Fig.14 

(a) the red arrow shows the region that are curved and 

is a mixture of peak and ridge surfaces. The region 

shown by purple arrow is ridge. The blue arrow 

corresponds to a saddle surface. The regions on the 

object shown by the yellow arrow are peak.  We obtain 

corresponding segmentation in Fig.14 (b) as expected. 

 

 

 

 

Figure 14. The result of the covariance differential 

geometry segmentation on a 3D point collected by 

HandyScan (Creaform) scanner. (a) Object mesh 

data. (b) The result of the segmentation on the 3D 

points 

Performance Evaluation 

To evaluate the performance of the proposed method, 

a comparison between quadratic fitting at each point 

of the point cloud and the proposed method using the 

vector field has been done. In this section, the details 

of estimating the performance timing in MATLAB 

(R2016a) installed on the  system  with CPU 

(Intel(R)Core(TM) i7-5820K CPU @ 3.30 GHz 3.30 

GHz) and memory (RAM 48.0 GB) for the “teapot” 

object is presented.  The total number of 3D points for 

the “teapot” object is 41472 points. To evaluate the 

performance time, we sample 20 points in the 

neighborhood of a point of the teapot. After sampling, 

a quadratic equation was fitted on the sampled points. 

The execution time was “37.3792” seconds for the 20-

point neighborhood.  For a total number of points of 

40000 points, the estimated time to perform the 

quadratic fitting would be around 74000 seconds. On 

the other hand, the time required to run the proposed 

method on the vector field representation using 

covariance-based differential geometry is 1027.6 

seconds, which is much shorter than the performance 

time for quadratic fitting on the points. This 

performance is achieved for a vector field grid 

composed of 35991 voxels with 23661 non-empty 

voxels. Only the non-empty voxels are processed.  

5. CONCLUSION and FUTURE WORK 
In this paper, we revisit the concepts of differential 

geometry used for the segmentation of range maps into 

different surface types in the more recent context of 

implicit surface representation and demonstrate that 

differential geometry can be used efficiently for 

surface segmentation without the need of surface 

fitting or the estimation of derivatives. 

(a) (b) 

(b) (a) 

(a) (b) 
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   The paper also extends the concepts used for range 

maps to unorganized point clouds. There is a 

significant advantage of combining covariance-based 

differential geometry approaches and the vector field 

framework since the segmentation does not require 

surface fitting. The key point in our approach is that 

instead of working with points, we are working with 

voxels and their neighbors, which reduces the 

computational complexity. The future work of our 

approach is choosing a higher-level reconstruction 

method for the surface in the segmented regions, then 

investigating the continuity between the segmented 

voxels and their neighbors which do not require high 

order surface representation. 
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