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Abstract

Curvature is an important geometric property in computer graphics that provides in-
formation about the object surfaces. The exact curvature can only be calculated for a
limited set of surface descriptions. Most of the time, we deal with triangles, point sets
or some other discrete representation of the surface and for those, curvature can only be
estimated.

Curvature and other shape characteristics computed from it can be used for various
purposes starting from geometry based problems to rendering. Most of the time, we
use shape characteristics for object description and a creation of feature vectors that
condense main information about the geometry. The feature vectors are usually further
used for object recognition, registration, rendering, etc. Curvature is often used as a
starting point. A combination with other characteristics improves the quality of the final
description.

In this thesis, we focus on the efficient computation and suitable use of curvature-
based shape characteristics. We present a technique for high quality curvature estimation
at a price of reduced performance. On the other hand, for interactive use the curvature
needs to be estimated fast at a price of quality. A solution for this task is presented as well.
Curvature for geometry processing is presented on the models of human heads. We utilize
curvature and related characteristics to find key-points on these models. During the data
aquisition (eg. from a scanning device), we need to align the scanned, overlapping parts.
The problem with symmetrical scans is presented and a possible solution proposed.
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Abstrakt

Křivost hraje v počítačové grafice důležitou úlohu. Poskytuje informace o površích ob-
jektů. Přesné hodnoty křivosti lze vypočítat pouze pro omezenou množinu dat. Většinu
času pracujeme s trojúhelníky, mračny bodů nebo jinou diskrétní reprezentací povrchu.
Pro tato data lze křivost pouze odhadnout a přesné hodnoty nejsou k dispozici.

Křivost spolu s dalšími vlastnostmi lze využít pro různé problémy, od geometrických
po vizualizační. Většinou používáme tvarové charakteristiky pro popis objektů a tvorbu
příznačných vektorů, které obsahují hlavní a nejdůležitější informace o dané geometrii.
Příznačné vektory se obvykle dále používají pro rozpoznávání objektů, registraci, vykres-
lování atd. V mnoha případech se jako výchozí charakteristika používá právě křivost. Její
kombinace s dalšími charakteristikami pak zlepšuje kvalitu výsledného popisu geometrie.

V této práci se zaměřujeme především na efektivní výpočet a vhodné využití tvaro-
vých charakteristik založených na křivosti. Je prezentován algoritmus pro vysoce kvalitní
odhad křivosti za cenu nižší rychlosti algoritmu. Na druhou stranu, často je potřeba mít
k dispozici křivost v reálném čase za cenu nižší kvality jejího odhadu. Řešení tohoto
problému je v práci také navrženo. Využití křivosti pro zpracování geometrie je prezen-
továno na modelech lidských hlav. Křivost a související charakteristiky jsou tu využity k
nalezení klíčových bodů. Při získávání dat (např. ze skenovacího zařízení) potřebujeme
zarovnat naskenované, překrývající se části. Je prezentován problém symetrických skenů
a navrženo vhodné řešení.
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Chapter 1

Introduction

There are many ways how to characterize an object. We can describe an object by its
weight, color, material, shape etc. The shape of object is probably the most important
property and to describe it is an important research goal in computer graphics. One
possible way is to use shape characteristics 1 to better understand objects. We can
imagine this in the following way: if we take a “black-box” and “feed” it with an object,
it will return a shape characteristic, usually in a form of a vector or a single number.
It is a simplified representation that tries to carry most of the important information,
while being easier to handle, to store and to compare than the shape itself directly. This
characterization can be local (created from a neighborhood or a region of a certain size)
or global (created from the entire object).

Shape characteristics must meet certain requirements such as: invariance to geometric
changes (rotation, translation, sometimes scaling), robustness to noise, robustness to
sampling errors etc. The more of these we fulfill the better characteristic we have. To
meet these requirements, a solution for a “black-box” have to be proposed.

One of the most important shape characteristics is curvature. This topic is well-
known over hundred years. Over the years, there were many different algorithms with a
different quality and performance. However, the exact curvature cannot be computed for
discrete data. This problem cannot be solved, since we only have a subset of information
and in the remaining parts the data can be of any kind. We can only improve the quality
to be as closest as possible to the exact values. This can only be tested and compared
if we have discrete data together with their original smooth representation. In the end,
the quality of the final estimation depends on several factors. The most important are
the data itself. More triangles or more points, it all leads to a better estimation of the
original model and thus to more exact curvature estimation. Another important factor
is the speed of the estimation process. The more exact curvature estimation can be done
but the calculation becomes slower. However, to fully describe model or a local region,
the curvature itself is not always enough and other characteristics have to be utilized.
They can be based on: angles between triangles, distances of points, topology of models,
volume, area etc.

1An alternative term for the shape characteristics is a shape descriptor. From our point of view, a
characteristic of an object provides its description; hence we use the terms characteristic and descriptor
interchangeably in this report.
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CHAPTER 1. INTRODUCTION

Once the curvature and possible other characteristics of the object are obtained, there
are many ways how to use them. They can show important parts, such as: edges, sharp
features, regions of interest etc. Other very common use cases are object matching and
recognition. Based on a set of descriptors from one model, a similarity with another
model can be expressed. The user can build a database of descriptors and try to match
an object by descriptors to the ones that are already in the database to find a similarity.
Shape characteristics can also be used for visualization purposes. Based on the surface
properties, certain effects can be achieved or even computed faster. For example, curva-
ture can be used in lighting to create lighter convex and darker concave areas. Another
use can be to show to the user some regions of interest that can be highlighted (by color,
different rendering style etc.). There is almost an unlimited number of other use-case
scenarios.

In computer graphics, the basic representation of objects are usually triangle meshes
or point clouds. However, they both represent only an approximation of the original
model and the same dataset can be obtained for different models. Based on that, these
representations cause problems, since we are not able to restore the original model but
only its approximation. This must be taken into consideration if we work with shape
characteristics.

1.1 Problem definition

This thesis aims to the problematic of shape characteristics and their use in computer
graphics. Since one of the most important shape characteristic is curvature, the first main
objective is therefore curvature estimation that is either fast or very accurate. To meet
both criteria together is almost impossible for general cases. Many existing solutions
were created to be a trade-off between the performance and the quality. However, only
very few of them are easy-to-implement and real-time. To create such a solution is one
of our goals. In some cases, the available data are of high quality (almost noise-free,
exactly calculated normal vectors etc.). There is no curvature estimation algorithm that
is primary targeted to this kind of data. Such an algorithm can benefit from the data
quality. In our research, we sometimes deal with this kind of data and therefore an
algorithm with the best possible quality is desired.

The second objective is to use the estimated curvature in a combination with other
shape characteristics to create a shape description. In this case, the main area of interest
are scanned or manually created data of human heads. We aimed our research to this
kind of models because of a joint research with our colleagues. The human head models
can be used e.g. in computer games for personalization of a user avatar, for a 3D facial
composite used by the police etc. The location of anchor points and robust description is
crucial since it influences the quality of data modification. In this case, anchor points can
be located manually, which is not very convenient, or by an algorithm. The algorithms
differ in type of located points and one algorithm cannot be often easily bent to find
different points. Another important field is acquiring of human head models. One way is
to create them manually in a modeling software, however, this is a time consuming task.
An automated solution with the scanning device is preferred. The scanned data need
to be registered and we have focused on problems caused by this automatic approach,
mainly in the area of data symmetry.

18
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1.2 Summary of contributions

The first contribution [PVK16] is a curvature estimation algorithm designed for a better
performance. The method is based on an existing and easy to implement solution from
[Rus04]. In our contribution, the curvature is estimated in the screen space in real time.
This solution can be used as a first, fast estimation that can be later made more precise
with non-real time performance. The algorithm can also be used for lighting (shading)
purposes as presented in our second contribution [PVK17].

The third contribution [PV18] presents another curvature estimation algorithm. How-
ever, unlike our first contribution, this one is related to the estimation of curvature with
respect to the quality of the result. This research is based on our overview of curvature
estimation algorithms [Váš+16] where none of them benefits from high-quality input
data. Our new curvature estimation algorithm is based on a simple and a well-known
idea of surface fitting. However, the fitting process is improved to use a variation of
Radial Basis Function interpolation. An advantage of the algorithm is also its possibility
to improve the quality of already estimated normal vectors.

The fourth contribution [Pra+17] describes a use of curvature and curvature-based
shape characteristics for a detection of feature points on the models of human heads.
Once the feature points are found, they are used as anchor points for deformations of
a human head model. Apart from the deformations, the feature points can be used
to obtain feature regions associated with them (eyes, nose, mouth, ears areas). These
regions can further be utilized in different applications (modeling, registration, rendering
etc.).

The fifth contribution [PVK19] is a method for alignment of two partially overlapping
scans of symmetrical models with main focus on human heads that were used in our
previous research [Pra+17; Sko+17]. The method is based on an existing algorithm
[RBB09] that is improved by additional symmetry information. This information is
based on local coordinate system in a given vertex and a curvature estimated from its
neighborhood.

Our proposed methods are based mainly on triangle meshes. However, some of the
proposed solutions (mainly [PV18]) can be directly used or modified to work with point
clouds as well. All proposed methods have been implemented and published. Apart from
our contributions, the results were also used in other research activities of our collegues.

1.3 Structure of the thesis

The thesis begins with a description of basic terms (Chapter 2) that are used through
all sections. Description of some interpolation techniques that we have used for our re-
search is provided in Chapter 3. Basic theory behind curvature is covered in Chapter 4.
Description of selected state-of-the-art methods in curvature estimation is presented in
Chapter 5. Shape characteristics, mostly curvature-based, are described in Chapter 6.
However, other characteristics are discussed as well (Normal vectors, Fourier transforma-
tion, Voxelization, Euclidean distances etc.).

Our contributions are presented in the second part of the thesis. This section is based
mainly on our publications from [PVK16; PV18; Pra+17].
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The screen space version of curvature estimation algorithm for fast estimation is
described in Chapter 7. This solution is targeted to an interactive curvature estimation
in the screen space on a GPU. The algorithm for high-quality curvature estimation based
on Hermite Radial Basis Functions (HRBF) is presented in Chapter 8. Further use of
curvatures for finding feature points on human heads is described in Chapter 9. To deal
with a problem of incorrect registration of symmetrical parts of human head, symmetry-
aware registration algorithm is presented in Chapter 10.

The final Chapter 11 concludes the thesis.
The used notation is as follows: bolditalic symbols represent vectors (column order),

symbol “·” denotes the dot product, “×” denotes the cross product, |x| is the vector length
and det(X) is the determinant of a matrix X.

The color gradient used for all visualizations goes from the blue for negative values
to the red color for positive values. The green color in the middle represents zero. See
Figure 1.1.

Figure 1.1: The color gradient used in all presented visualizations

20



Chapter 2

Basic terms

First, we will briefly introduce some of the basic terms needed for this thesis. In this
work, we concentrate primarily on geometrical objects represented by triangle meshes.
For this representation, we need to define basic terms regarding triangles and triangulated
geometry. The basic notation used in this text is as follows, see also Figure 2.1.

Figure 2.1: Triangle labeling

The geometry is represented as a set of points P = {Pi}i=1,2...M , where M is a total
number of points. For point clouds, the cloud is represented by this set of points.

In case of triangle meshes, each triangle consists of three points denoted as vertices Vi,
where i = 1, 2, 3. In the used equations, notation i+1 is actually (imodulo3)+1 because
of circular indexing of triangle vertices. However, we used the shortened notation to
keep equations more readable. We expect that the vertices Vi are located on the original
surface from which the triangulated version is created.

Vectors ei are triangle edges computed as ei = Vi+1 − Vi. Vector n is the triangle

21
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normal vector and vectors nVi are normal vectors at particular triangle vertices.
We also need to establish the term neighborhood. For triangulated geometry, the

neighborhood of a vertex is consisting of all vertices that are distant up to some threshold.
This threshold distance can be expressed either by the number of edges k (this is referred
as k-ring) or as an Euclidean distance.

In case of point clouds, the neighborhood of a point consist of all points that are
withing the Euclidean distance from this point. There is no equivalent for k-ring.

2.1 Normal vectors

We often work with a discrete representation of the original model and we are usually not
able to retrieve the original (and therefore exact) normal vectors. We can compute only
an estimation. The quality of this estimation is crucial for many geometry processing al-
gorithms such as curvature calculation, surface reconstruction, matching and recognition
of shapes etc.

For a triangulated geometry, we can talk about two types of normal vectors - normals
of triangle faces and normals at triangles vertices.

Normal vector n of a triangle face can be computed exactly by the direct approach
using the cross product. The normal n for a triangle is computed as

n = ei × ei+1
|ei × ei+1|

, (2.1)

where ei are edges of the triangle, i ∈ {1, 2, 3}.
A problem is with normal vectors at the vertices. The simplest solution to obtain a

single vertex normal nVj at a vertex Vj is by averaging normal vectors nk from neigh-
boring triangles

nVj = 1
N

N∑
k=1

nk, (2.2)

where N is a number of triangles sharing the vertex Pj (a triangle fan with a center at
Pj).

This approach is fast, but the resulting quality can be often low, because all adjacent
triangles have the same weight regardless their area. This can be sufficient for the pur-
poses of rendering where accuracy problems can be hidden (e.g. due to the movement
of the camera). However, for further computations, normal vectors with a higher qual-
ity are preferred. Today, Max [Max99] is considered a basic algorithm used in various
applications. The algorithm computes the vertex normal nVj as

nVj =
N∑
k=1

eki
× eki+1

|eki
|2|eki+1 |2

, (2.3)

where eki
is the i-th edge vector of k-th triangle and N is a number of triangles sharing

the vertex Pj . This solution offers a good trade-off between quality and performance. It
takes account of triangle areas, while the computation is quite simple.
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Other algorithms have been presented by various authors. Main difference between
the algorithms is usually in using different weighting scheme of triangle normals during
summation. The weight can be the area of the triangle, the angle between triangles etc.
The comparison of various approaches has been done by Jin et al. [Jin+05].

A similar problem as for a triangle mesh is with normal vectors for point clouds. How-
ever, the estimation is more challenging task, since there is no connectivity information
and we are not aware of the surface itself. Using only the neighborhood of a point is not
enough, since the points from the opposite sides of the surface can be presented in the
neighborhood. A possible solution is to first create the triangulation of the point cloud
and estimate the normals from the triangle mesh. However, this solution is not ideal,
since it increases computational cost and shifts the problem with the neighborhood to
the triangulation part of the algorithm.

A basic solution is to use a local surface fitting and estimate the normal vectors as
derivatives of the surface in desired points. Overview and comparison of some other,
more robust, techniques can be found in [Kla+09].

2.2 Tangent space

A tangent space (sometimes also called local space) is a coordinate system defined by a
triangle normal vector n, tangent T u and bitangent T v. The origin can be any point in
the space, but one of the triangle vertices is usually used. The main idea is to express
every triangle in its own coordinate space based on the tangent plane of the triangle. It
reduces the dimensionality from 3D to 2D, because the tangent space triangle is located
in a tangent plane. The transformed triangle is labeled with vertices VL1, VL2, VL3 and
normals nL1,nL2,nL3 (see Figure 2.2).

Tv

Tu

n

X

Y

Z

V1

V3

V2

VL1

VL2

VL3

Global space

Local space

nL1

nL3

nL2

Figure 2.2: Transformation of triangle from Global (world) space to Tangent (local)
space.
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To obtain the tangent space, we need a normal vector n = (nx, ny, nz), tangent
T u = (Tux, Tuy, Tuz) and bitangent T v = (Tvx, Tvy, Tvz) at each vertex of the triangle.
These vectors are obtained using Equations (2.4):

T u = V2−V1
|V2−V1| ,

n = Tu×(V3−V1)
|Tu×(V3−V1)| ,

T v = Tu×n
|Tu×n| .

(2.4)

Tangent and bitangent are both orthogonal to the normal vector. These three vectors
create a transformation matrix τ (see Equation (2.5)) to map every point from a global
space to a local space. Note that this matrix is different for every triangle.

τ =

 Tux Tuy Tuz
Tvx Tvy Tvz
nx ny nz

 (2.5)

The original triangle is expressed in the tangent space, resulting in vertices VL1, VL2, VL3
and normals nL1,nL2,nL3. For example, a conversion of V2 from the global to the local
system is calculated as:

VL2 = τ(V2 − V1) . (2.6)

Normal vectors should be converted using the inverse transposed matrix of τ . Due
to the orthonormality of the system we do not need to compute this, since inversion of
the orthonormal matrix is equal to the matrix transposition.

Tangent space is often used for lighting effects. For example, normal mapping and its
variants are calculated using this space (see [AMHH08]). A lot of curvature algorithms
([Rus04; Gri+12; BW07] etc.) exploit directly or indirectly this space as well.

2.3 Registration

Registration is a process of alignment of two or more overlapping parts of geometry. The
entire process of registration consists of several steps and the basic pipeline is visualized
in Figure 2.3.
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Figure 2.3: Registration pipeline from [RC11]

Based on Figure 2.3, the description of the main steps is as follows. The source of data
(data acquisition) is usually a scanning device outputting a point cloud or an already
preprocessed triangle mesh.

Once the data are obtained, keypoints and feature descriptors are calculated from
them. The keypoints are usually unambigous points with some specific property, such as
a high curvature. The feature descriptors are created in keypoins and are used to find
correspondences among the input data. The corresponding feature vectors are usually
close to each other in the Euclidean space. However, a lot of false correspondences is
found which must be eliminated using different rejection methods. Based on the used
algorithms, one or several of them are used.

From the resulting correspondences, a transformation is estimated. This transforma-
tion is sometimes further improved with ICP (Iterative Closest Point) algorithm [BM92].
This is a well-known method to solve the registration problem numerically. However, if
this method is used without almost registered geometry, it often suffers from the local
minima leading to an incorrect registration. On the other hand, if the method is used
for almost registered geometry, it may further improve the already found transformation
that is used to align input data.

Looking at Figure 2.3, the Chapters 9 and 10 are focused on the parts “Keypoint
estimation” and “Feature descriptors estimation”. For the final alignment, we have used
the existing solutions presented in state-of-the-art publications.
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2.4 Other terms

• Screen space - during rendering, all triangles are converted from a 3D global (world)
space to the 2D screen space by using world - view (camera) - projection matrix.
Screen space is therefore the coordinate space of the resulting 2D projection. We
can imagine this as a resulting rendered 2D image seen on our monitor. The screen
space is often used for post-processing effects, see [Mel+13; Mit07; BSD08].

• Local reference frame (LRF) - it is a local, usually orthogonal, coordinate system.
It is often used for creating shape descriptors [Guo+13; TSS10; Sha+13].
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Interpolations

We often require some kind of interpolation to create smooth surfaces from our input
data, which can be point clouds or triangle meshes. In some cases, we can make use of
normal vectors to improve interpolation results. If the normal vectors are not present in
the input data, in some cases they can be estimated from the data.

The advantage of interpolation is the possibility to express value at an arbitrary
point, which was not a part of the input data, directly. We can directly calculate normal
vectors, curvatures, intersections etc. However, based on used functions, the complexity
of solution can vary. In some cases (e.g. noisy data, incorrect normal vectors), an ap-
proximation may be more suitable than an interpolation. However, the approximation is
more complicated to set up correctly. In most of our research we use mainly interpolation
techniques.

There are many techniques for this task and we describe only those which are further
used in our research,

3.1 Bézier surfaces

Bézier surfaces (or patches) are a type of mathematical splines. They are given as the
Cartesian product of the blending functions of two orthogonal Bézier curves. A general
Bézier patch is defined as:

F (u, v) =
N∑
i=0

N∑
j=0

PijB
N
i (u)BN

j (v); u, v ∈ 〈0, 1〉 , (3.1)

BN
i (u) = N !

i!(N − i)!u
i(1− u)N−i, (3.2)

where N is the patch degree and Pij are patch control points. The function BN
i (u) is

called the Bernstein polynomial.
Bézier patches can also been computed for triangles. In this case, we often use the

cubic form of the patch (N = 3) and every triangle in the mesh can be replaced with a
Bézier patch defined as:

F (u, v, w) =
∑

i+j+k=3
PijkB

3
ijk(u, v, w), (3.3)

27



CHAPTER 3. INTERPOLATIONS

B3
ijk(u, v, w) = 3!

i!j!k!u
ivjwk, 0 ≤ u, v, w ≤ 1, (3.4)

u+ v + w = 1; i+ j + k = 3, (3.5)

where the patch degree is 3 and Pijk are control points. Every triangle is defined by
three corner points (P003, P030, P300) and normal vectors in them. Triangle points and
normals are used to obtain remaining control points Pijk (see Figure 3.1) for the patch.

Figure 3.1: Control points of Bézier patch for a single triangle (top view)

The control points Pijk need to be selected. Vlachos et al. in [Vla+01] computed
missing control points on edges using a projection. Each edge of the triangle is divided
into three equally long parts which leads to control points (P012, P021, P120, P102...). They
are further projected on the plane created by the nearest vertex and its normal vector.
Figure 3.2 shows this for one edge of the triangle. Each of the two endpoints (P003, P030)
has its own normal (n003,n030) (green). The combination of a point and a normal
determines a plane. We take the two control points (P012, P021) and project them to the
plane of the nearest vertex (see green arrows at Figure 3.2). The center control point
P111 is calculated from all other control points as defined in [Vla+01].

P

n
n

003
P
030

003

030

P P
012 021

Figure 3.2: Calculation of control points on the edge of the triangle (side view)
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3.1.1 Blended Bézier surfaces with G1 continuity

The problem with the classic Bézier patch is its continuity. There is no G1 continuity
between neighboring surfaces, which means that surfaces are not sharing a common
tangent direction at the join points between them. Therefore, on the edges there could
be a sharp turn leading to a steep change in the derivation. Fünfzig et al. in [Fün+08]
proposed a solution called PNG1 to overcome the problem. See Figure 3.3 for difference
between PNG1 and a classic Bézier patch. PNG1 patch is created by blending standard
Bézier patches from neighboring triangles, see Figure 3.4. The final patch (gray color)
is created from a higher number of normal vectors then in the case of a classic Bézier
surface.

Figure 3.3: Comparison of the PNG1 [Fün+08] (left) and Bézier patch (right). Sharp
change of the surface can be observed for a classic Bézier patch.

Figure 3.4: PNG1 patch (gray) and neighboring triangles used for blending in [Fün+08].

The newly created patch is not a Bézier one. It was only created as a blend from
several Bézier patches and the result does not meet conditions for a general Bézier patch
and its definition. However, the description of this blended PNG1 patch is analytical.
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3.2 Radial basis functions

Radial basis functions (RBF) interpolation can be computed for any D-dimensional scat-
tered point cloud of M points Pi. For the surface reconstruction from scattered data, it
produces an implicit function representing the surface. In comparison with other surface
fitting algorithms, RBF is more robust and more universal solution.

We want the resulting interpolant to be equal to zero everywhere the surface lies. For
off-surface points, there are two choices of their location with respect to the model. For
inside points we usually consider function values of interpolant to be negative and for
outside points positive.

The quality of the result can be considerably affected by the selection of the appro-
priate basis function. Some basis functions have an additional shape parameter ε (in
some literature also known as the scale parameter) that affects the shape of the function.
Commonly used types of radial basis functions are summarized in Table 3.1.

Gaussian exp(−(εr)2)

Multiquadric
√

1 + (εr)2

Inverse quadratic 1
1+(εr)2

Inverse multiquadric 1√
1+(εr)2

Polyharmonic spline rk, where k = 1, 3, 5...

Polyharmonic spline rkln(r), where k = 2, 4, 6...

Wendland functions (1− r)3(3r + 1)

(for more, see [Wen95])

Table 3.1: Commonly used types of radial basis functions

Using basis functions with the additional shape parameter ε is problematic. Small val-
ues of ε can lead to a better interpolation, but also decrease numerical stability. Finding
the optimal parameter is a non-trivial task. Polyharmonic splines or Wendland functions
are free of an additional parameter and are usually preferred. From polyharmonic splines,
a lower order has a higher numerical robustness.

To reconstruct a surface and create its functional representation, there are two main
approaches - a standard RBF and a Hermite variant.
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3.2.1 Standard RBF interpolation

The standard RBF interpolation for D-dimensional data can be used in the format

f(x) =
M∑
i=1

αiφ(ri), (3.6)

where M is the number of input points Pi, x ∈ RD, ri = ||x − Pi||, φ(ri) is a basis
function (see Table 3.1) and αi ∈ R are the weights.

To solve the interpolation, we need to find weights αi. As an example for D = 2, this
can be achieved by solving the system in a form:

 φ1,1 · · · φ1,M
... . . . ...

φM,1 · · · φM,M


 α1

...
αM

 =

 f(P1)
...

f(PM )

 , (3.7)

where φi,j are the values of basis function obtained from all combinations of input points
Pi (eg.: P0 − P0, P0 − P1... PM − PM ). On the diagonal of the matrix φ, the values
of basis function are computed from distances between the same points, which leads to
ri = 0.

To find the weights for our representation of the surface, we have a system in the
form

f(Pi) = 0, ∀i (3.8)
for all on-surface points. However, this leads to a trivial solution αi = 0,∀i. To obtain a
non-trivial solution, normal vectors ni scaled by a constant c at the points Pi are used
to offset the surface in the positive (f(Pi + cn) = 1) and/or negative (f(Pi − cn) = −1)
direction. However, not all points have to be offseted. A few sample points (P0... P8)
are presented in Figure 3.5. Original surface points are green, while the new offset points
are blue.

Figure 3.5: Adding off-surface points to obtain a non-trivial solution for RBF surface
interpolation
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With the newly added off-surface points, a non-trivial solution can be found for
Equation 3.6. This approach was described in [Car+01]. However, using this solution
can be problematic because of the difficulty of choosing the c parameter, since it has to
be set in a way that avoids self-intersections.

3.2.2 Hermite RBF interpolation

A more stable approach without the need for off-surface points uses a Hermite version
of the RBF called Hermite RBF interpolation (HRBF) (see [MGV09] and [MGV11]).
This solution is applicable only if the input data are Hermite, i.e. equipped with a
normal vector at each point. The improved interpolation scheme for D-dimensional data
is defined as:

f(x) =
M∑
i=1

αiφ(ri) + βi ·∇[φ(ri)]. (3.9)

where M is the number of points, x ∈ RD, ri = ||x − Pi||, φ(ri) is a basis function (see
Table 3.1), αi ∈ R are weights for points and βi ∈ RD are vectors of the weights for
normal vectors. Weights need to be solved using a solution similar to the one used for a
classic RBF, but in this case, no trivial solution is found.

Let the gradient ∇ be defined as

∇ =
(
∂

∂x1
,
∂

∂x2
,
∂

∂x3
, ....,

∂

∂xN

)
. (3.10)

Every on-surface point x meets these two criteria:

• f(x) = 0 (this is the same as in the standard RBF interpolation)

• ∇f(x) = n (an additional condition for a normal vector)

The system to be solved for finding weights is therefore in the form of a block matrix:

[
f(Pi)

∇f(Pi)

]
=
[

0
ni

]
, ∀i (3.11)

where the control points Pi, located on the surface, and their respective normals ni,
are used to create the interpolation. Each block has the dimension (d + 1) × (d + 1),
where 1 corresponds to scalar part and d corresponds to a gradient part. A full and clear
derivation of final equations can be found in [Vai13].
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Curvature

Curvature itself plays an important role in computer graphics. We can use curvature
as our “black-box” in shape characteristic, since it is a local characteristic and describes
how bent a curve is at a particular point on the curve. In other words, it tells us how
much the curve deviates from a straight line at this point.

4.1 2D space

If the curve is defined parametrically in Cartesian coordinates as x = x(t) and y = y(t),
the curvature κ at the point P (with a normal vector n and a tangent vector T ) is
computed as:

κ = dω

dS
, (4.1)

where dω is the rate of change of the tangential angle with respect to the arc length dS.
The infinitesimal neighborhood of P can be replaced by the osculating circle. It is

a circle that approximates the curve in a neighborhood of a point P . It is defined as
the circle with a radius r passing through P and a pair of additional points on the curve
infinitesimally close to P . The center of the circle is located on a half-line passing through
P in the direction of the normal vector at the point P . The osculating circle has also
a tangent vector T equal to the tangent vector at the point P . To better understand
Equation (4.1) and the osculating circle, see Figure 4.1 and [Rob01].

From Equation 4.1 we can obtain ([Kre91]) the equation

κ = x′y′′ − y′x′′

(x′2 + y′2) 3
2
. (4.2)

If the curve is defined explicitly in a form y = f(x), Equation (4.2) can be rewritten as

κ =
d2y
dx2(

1 +
(
dy
dx

)2
)

3
2

. (4.3)
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Figure 4.1: Definition of curvature using tangential angle dω and arc length dS. [Rob01]

For more detailed explanations and derivations of Equations (4.1) - (4.3), see [Kre91].
From a geometrical point of view, curvature in a point P is defined by an osculating

circle. The sign of curvature is defined by the curve parametrization. See two osculating
circles, curvature sign and a curve in Figure 4.2.

P

n

T
r

κ < 0

(a) Negative curvature

n

T

κ > 0
P

r

(b) Positive curvature

Figure 4.2: Plane curve with two osculating circle at points P and curvature sign given
by curve parametrization

The osculating circle radius r, which equals to the distance of the circle center from
the point P , is called the radius of curvature. The curvature κ of a curve at point P is
derived from Equation (4.1) using polar coordinates (see [Kre91]). The final equation is
defined as

κ = 1
r
. (4.4)

The smaller the radius of curvature r is, the more bent the curve is and, therefore,
the larger curvature we have. The limiting case is a straight line. The osculating circle
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that describes it would have an infinite radius and the curvature κ = 1
∞ converges to

zero.
The sign of the curvature depends on the orientation of the normal vector in the point

P (see Figure 4.2).

4.2 3D space

So far we have been talking about curvature in a 2D space. In 3D space, however, we
have to distinguish between curves and surfaces. The curvature for 3D space curves can
be calculated similarly to 2D curves. However, since the 3D curves are not used in our
research, we are not going further in their description.

Solution for surfaces is more complicated. The curvature itself is still related to the
curves and is therefore not calculated for the surface directly. The curvature is calculated
for a curve in a particular plane defined by a slice of the surface. There are different types
of curvature for surfaces - normal (kn), mean (KH), Gaussian (KG), dip (kd), strike (ks)
etc. We will cover the first three named curvatures in more detail, the other can be seen,
e.g., in [Rob01].

4.2.1 Normal curvature

If we cut the surface at a point P with a normal plane (plane containing the normal
vector n), we have a 2D slice (see Figure 4.3). There is a 2D curve within this slice and
we are looking for its curvature at a point P .

Figure 4.3: Normal curvature kn within a normal place

The problem is that there is an infinite number of normal planes at a point P ,
because they can have various rotations around the normal vector n. From all of these
possible rotations, two of them lead to the maximal (Kmax, K1) and minimal (Kmin,
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K2) curvature. These two curvatures are known as principal curvatures. The normal
curvature is connected with principal curvatures by the following formula

kn = K1cos
2α+K2sin

2α, (4.5)

where α is the angle between the plane of K1 and the plane for kn (see Figure 4.4).

Figure 4.4: Angle between planes K1 and kn. [Unk17]

The principal curvatures are the most important for research. They can be used
to identify the type of the surface. Based on the sign, we can subdivide surfaces into
different categories - see Table 4.1.

K1 < 0 K1 = 0 K1 > 0

K2 < 0 concave ellipsoid concave cylinder hyperboloid surface

K2 = 0 concave cylinder plane convex cylinder

K2 > 0 hyperboloid surface convex cylinder convex ellipsoid

Table 4.1: Surface Shape Classes as defined in [Fis89]

For every plane orientation, we also have its tangent vector. For principal curvatures,
these two tangent vectors are called principal directions (K1,2). They are always orthog-
onal to each other. However, their direction is ambiguous, since they can differ in sign
and still represent the correct principal direction.
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4.2.2 Mean and Gaussian curvature

We can derive other curvatures with a different meaning from principal curvatures. The
best known ones are the mean (KH) and Gaussian (KG) curvature.

Mean curvature is defined as an average of any two orthogonal normal curvatures as

KH = K1 +K2
2 . (4.6)

Gaussian curvature is defined as

KG = K1K2. (4.7)

The mean and Gaussian curvature can be used to obtain principal curvatures from
equation

K1,2 = KH ±
√
K2
H −KG. (4.8)

4.3 Curvature computation

The curvature computation can be divided into two main approaches - direct and dis-
cretized computations. The direct computations give us exact results but can be used
only if we have function description of the surface. Discretized computations, on the
other hand, are useful if we have only discrete geometry. Both solutions are described in
the following subsections.

4.3.1 Implicit surface

The direct computation of curvature for implicit surfaces is a straightforward solution.
We can use the approach from [Gol05] directly. To compute the principal curvatures
(K1,2) at a certain point P , its gradient ∇F , Hessian matrix H and adjoint of Hessian
matrix H∗are used. Principal curvatures are not computed directly but from Gaussian
(KG) and mean (KH) curvature. The required steps are as follows:

H∗ =

 H11H33 −H23H32 H23H31 −H21H33 H21H32 −H22H31
H13H32 −H12H33 H11H33 −H13H31 H12H32 −H11H32
H12H23 −H13H22 H21H13 −H11H23 H11H22 −H12H21

 , (4.9)

KG = ∇F H∗∇F T

|∇F |4 , (4.10)

KH = ∇F H ∇F T − |∇F |2trace(H)
2|∇F |3 , (4.11)

K1,2 = KH ±
√
K2
H −KG, (4.12)

where trace(H) is a sum of elements on the main diagonal of the square matrix H. To
see full derivations of the above equations, see [Gol05].
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4.3.2 Explicit surface

For explicit surfaces, we have to use a different approach based on fundamental forms.
The first fundamental form (I) is constructed from the first order derivatives at a surface
point, which give us two tangent vectors (T u,T v), see Figure 4.5.

P

n

Tv

Tu

Surface

Figure 4.5: Tangent vectors of surface at point P

Vectors T u,T v are in general not orthogonal. They are, however, orthogonal to the
normal vector n to the surface at the given point. Elements of the matrix I are computed
as

I=
[
E F
F G

]
,

E = T u · T u, F = T u · T v, G = T v · T v.

(4.13)

The second fundamental form (II) is calculated from the second partial derivatives
(T uu,T vv,T uv) and the normal vector (n). The elements of the matrix II are computed
as

II =
[
L M
M N

]
,

n = Tu×T v
|Tu×T v | ,

L = T uu · n, M = T uv · n, N = T vv · n.

(4.14)

Combining the fundamental forms gives the shape operator W (also known as the Wein-
garten operator). For every point of the surface it tells us the change of the normalized
normal vector in the direction of the tangent vector at this point. W is a 2×2 symmetric
matrix that can be obtained from the first (I) and second (II) fundamental forms:

W = I−1II. (4.15)

The matrixW has two real eigenvalues that correspond to the first (K1) and second (K2)
principal curvatures. The eigenvectors of the matrix W correspond to the directions of
the principal curvature within the tangent plane.
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4.3.3 Monge patch

For a regular height field, curvature can be calculated directly using the Monge Patch
[Gra97]. This is a patch in a form

x(u, v) = (u, v, h(u, v)), (4.16)

which is basically a 2.5D heightfield with a height defined as h(u, v). For this, we need
to obtain derivatives of the function h(u, v). Final curvatures are calculated as follows:

KH = huuhvv − h2
uv

(1 + h2
u + h2

v)2 , (4.17)

KG = (1 + h2
v)huu − 2huhvhuv + (1 + h2

u)hvv
2(1 + h2

u + h2
v)

3
2

, (4.18)

where hu, hv, huu, hvv and huv are derivatives of the function h(u, v). Based on Equation
4.8, we can obtain principal curvatures.
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Existing methods for curvature
computation

We often deal with a discretized representation of the geometry that can have various
forms - triangles, volumetric data sets, height fields, point clouds etc. All of them cause
a problem with curvature in vertices, since we are not able to compute exact values but
only an estimation. Usually, with a more detailed discretization, this estimation offers
better results, but the calculation itself is usually tied with a loss of performance.

Curvature estimation can be divided into two main categories of approaches - discrete
and surface fitting. The discrete methods calculate curvature directly from the data, while
the surface fitting construct a local approximation of the surface and then calculates the
curvature of this approximation directly. Usually, discrete methods are faster but less
accurate. There is also a “third” category that includes algorithms combining discrete
and surface fitting approaches.

In this chapter, we introduce some of the existing methods for curvature estimation.
A more detailed description is provided for the solutions relevant to our current and
future research. We have directly tested these methods, either by using implementation
from original research articles or by re-implementation from description of the algorithm.

5.1 Discrete methods

We start with a description of several discrete-based algorithms. These algorithms are
more often used in a combination with triangulated geometry, since they utilize the
known connectivity and the neighborhoods.

5.1.1 Monge patch

For a simple representation of 2.5D heightfield, we can use directly Monge patch (see sub-
section 4.3.3). Required derivatives can be estimated with a discrete finite difference.
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5.1.2 Tangent space methods

The discrete method proposed by Rusinkiewicz [Rus04] uses the second fundamental form
matrix II. Every triangle in the mesh is converted to the tangent space and has a unique
II matrix. The elements of this matrix are unknown and need to be computed. For a
single triangle V1V2V3 with a normal vector n and edges e1, e2, e3 this leads to a system
of equations:

II
[
e1 · T u
e1 · T v

]
=
[

(nV3 − nV2) · T u
(nV3 − nV2) · T v

]
,

II
[
e2 · T u
e2 · T v

]
=
[

(nV1 − nV3) · T u
(nV1 − nV3) · T v

]
,

II
[
e3 · T u
e3 · T v

]
=
[

(nV2 − nV1) · T u
(nV2 − nV1) · T v

]
.

(5.1)

From the above presented Equations (5.1), a solution of 2 × 2 matrix II is found
using the least squares method. Principal curvatures are calculated as eigenvalues of
II. However, this gives us the curvature of the triangle face, while we are looking for
curvature in vertices. To estimate curvatures in vertices, curvatures from all neighboring
faces are used. Since every triangle was expressed in the tangent space, the fundamental
forms must be unified by expressing the fundamental form in the tangent space of the
vertices.

The final curvature is weighted in a way similar to Meyer et al. [Mey+03]. They use
Voronoi areas to give a greater influence to curvatures from larger areas. This step is
also sometimes used for normal vector calculation in triangle vertices, where a weighting
of normals from adjacent triangle faces is used.

Rusinkiewicz’s approach [Rus04] is quite popular because of its simplicity and quite
accurate results. Many other authors use the same basic idea. Theisel et al. [The+04]
calculate curvature for every triangle based on triangle vertices positions and unnormal-
ized normals. These normal vectors are created from the cross product of triangle edges
and because they are not normalized, they describe the area of the triangle. By a linear
interpolation, a single point and a normal is calculated for each triangle. All these values
are used for curvature estimation. The estimated curvature weight depends on the length
and quality of the normals. Batagelo et al. [BW07] use the basic idea from Rusinkiewicz
[Rus04] and transfer the solution to the GPU. They also improve numerical robustness.

5.1.3 Statistics-based methods

A statistics-based approach was presented by Kalogerakis et al. [Kal+07]. The algorithm
is based on curvature tensor fitting using the finite normal differences in the way similar
to Rusinkiewicz [Rus04]. For this, normal vectors are needed. However, the presented
solution does not require normal at its input. If normal vectors are not present, they cal-
culate their own using Max algorithm [Max99]. Input normals are not used directly. They
are further re-estimated in several iterations. Kalogerakis et al. use this re-estimation
approach to increase the robustness of the algorithm based on the assumption that input
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normals are usually incorrect. Of course, if we have exact normals at the input, this
would not be an improvement.

The algorithm computes several curvature estimations with a different neighborhood
sizes. Based on statistic approach and iterative curvature re-estimation, several versions
of curvatures are estimated. The final one is selected based on weights that are con-
structed with respect to boundaries and feature lines of geometry. This leads to a correct
estimation on neighborhoods with feature boundaries. After initial weighting, curvature
is incorrectly spread across the entire neighborhood due to the weights. After several
steps, the final weights are obtained and curvature is cut off at the boundary edge, as
can be seen in Figure 5.1.

Weighting is also used to suppress effects of the noise and to find the most smooth
result. As a result, this method performs reasonably well for noisy data. This, on the
other hand, can be a problem as well, since the algorithm can also smooth out the fine
details that are not noise and we want to keep them in data.

Figure 5.1: Re-estimation of curvature after initial estimation. Re-estimated curvature
is correctly cut on the feature boundary (see detailed subimage). [Kal+07]

5.2 Surface fitting methods

The second large group of methods for curvature estimation are surface fitting methods.
These algorithms try to find a surface that is fitted to the neighborhood of a point of
interest. The final curvature is directly computed from the functional representation of
the fitted surface. Due to the nature of these methods, they are often used not only for
triangle meshes but also for point clouds and volumetric models.

5.2.1 Polynomial fitting

A common class of methods, used in many geometric modeling applications, is based on
polynomial fitting. Fitting polynomials to sample points of a smooth surface yields an
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approximation of the curvature at a point of the smooth surface. For faster computations,
lower order polynomials are used, usually quadratic or cubic surface approximations.

Taubin [Tau95] presented this as one of the first in 1995. A well-known method
is from Goldfeather and Interrante [GI04]. They use a cubic surface approximation.
However, the third-order fit of the surface greatly increases both time and space required
for computation. Their fitting scheme is not done only by interpolating through points
but normal vectors from 1-ring neighborhood of vertex are used as well. The problem is
with the neighborhood that has many vertices or an oscillating shape. In this case, the
approximation is not accurate and the resulting error can be quite high.

A Bézier patch representation (see Section 3.1) is quite popular due to its simplicity.
Several authors used them for curvature estimation, see the following subsections.

Biquadratic patch

Bézier patch of degree two (N = 2) is called biquadratic. This solution was used by
Razdan et al. in [RB05]. To construct the patch, they use points from the k-ring
neighborhood of a vertex (authors recommend to use k = 2). The standard least squares
method is used to obtain the set of control points from the neighborhood. Sometimes,
smoothing can be added if the original mesh contains noise. This is done by adding
weights to the control points. The final curvature is computed at a single vertex directly
from the patch itself.

The computational cost is very low, but if the selected neighborhood occupies a small
area, the results can be incorrect.

Bézier patches as triangle replacements

Based on the subdivision scheme by Vlachos et al. ([Vla+01]), a curvature estimation
solution was proposed by Zhihong et al. in [Zhi+11]. Derivatives needed for curvature
estimation are directly calculated from Bézier patch using Equation (3.3). The final
curvature is computed as an average value from center vertices from adjacent triangles.
The average can be simply an arithmetic mean or a weighted average using Voronoi area
as described in [Mey+03].

PNG1 surfaces

As mentioned in Subsection 3.1.1, the problem with a classic Bézier patch is its continuity.
The curvature is not directly defined on edges. In practice, curvature is calculated as
an average from triangles that share the edge. However, there could be a sharp turn
leading to a steep change in the curvature. Solution from Fünfzig et al. [Fün+08] can be
altered and used for curvature estimation. Fünfzig et al. in [Bos+12] proposed that the
curvature can be directly calculated using an analytic solution based on PNG1 surface
description. A drawback of this method is that the second derivatives are much more
complex than for a simple Bézier patch and therefore takes longer time to compute.

44



CHAPTER 5. EXISTING METHODS FOR CURVATURE COMPUTATION

5.2.2 Point clouds

Algorithms for point clouds can be used also for triangulated geometry. We just simply
omit triangles and use only their vertices as a point cloud representation. A curvature
estimation algorithm for point clouds was presented by Yang et al. in [YQ07]. This
method approximates the surface by the least squares technique. Normal vectors are
required for input points. If they are not present in the input datasets, they can be
calculated. This can be done using a statistical analysis of the neighboring samples
leading to a covariance matrix. Normal vectors are obtained from eigenvectors of this
matrix.

The final curvature is calculated directly from approximated functions that describe
the point set in a local neighborhood of the selected point. In this case, mean and
Gaussian curvature are calculated and from them, principal curvatures can be derived.

5.3 Other methods

The last section is used for algorithms that cannot be directly assigned to previously
mentioned groups. They use combinations of approaches and often take knowledge of
both worlds - discrete and surface fitting.

5.3.1 Tensor-based method

Curvature can be computed from the eigenvalues of a tensor average over a small area of
the polygonal mesh as done by Cohen-Steiner and Morvan in [CSM03]. This algorithm
was also used for remeshing in [All+03]. A triangle mesh is a piecewise-linear surface
and curvature tensors cannot be expressed directly, they are estimated at vertices of each
triangle. To obtain a continuous tensor field, tensors from triangle vertices are linearly
interpolated over triangles. However, to define tensors directly at the vertices is not very
natural. A better way is to define tensors on the edges of triangle. Each edge e contains
an infinite number of tensors, leading to a computation of an integral. To simplify this, a
discretization is used and the integral is expressed via summing over an arbitrary region
R surrounding given vertex. The regions are usually discs with a radius that can be
selected by the user. A simple equation is used to create a 3× 3 matrix:

S = 1
|R|

∑
∀e
β(e) |e ∩R| ē ēT , (5.2)

where |R| is a surface area of the region R, β(e) is an angle between the normals of two
oriented triangles incident to the edge e and ē is the unit vector in the direction of e.
From the matrix S, three eigenvectors and their corresponding eigenvalues are calculated.
The eigenvectors associated with the minimal-magnitude eigenvalue is a normal vector,
the remaining two eigenvalues and eigenvectors represent principal curvatures K1,2 and
their swapped principal directions K1,2.

The quality of the resulting curvature depends on the size of the selected area. If the
size of the area is too large, fine details in curvature are lost. If the neighborhood is too
small, it can, on the other hand, lead to a noisy result with incorrect curvatures.
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5.3.2 Generalized shape operator

An approach based on a generalized version of the shape operator (see Equation (4.15))
has been proposed by Hildebrandt and Pohltier in [HP11]. The algorithm uses triangles
within neighborhood of a vertex. The neighborhood is not a k-ring, but a disc with a
certain radius is used (Euclidean neighborhood). If the triangle of the mesh is fully in the
neighborhood, the whole face is used. If only a part is in the neighborhood, the triangle
is split and only relevant parts are used. The splitting scheme can create two triangles
T1 and T2 (Figure 5.2a) or only one triangle T3 (Figure 5.2b).

(a) Two triangles (b) One triangle

Figure 5.2: Two possible splitting schemes of triangle with neighborhood intersection

Once the neighborhood of the vertex is created, a surface integral is computed. Since
triangles are used, the integral is discretized and the areas of faces are summed together
resulting in a generalized version of the shape operator (expressed using a 3 × 3 matrix
while the classic shape operator is described by a 2× 2 matrix). The three eigenvalues of
generalized shape operator matrix represent two principal curvatures and negative mean
curvature. The mathematics behind computation is quite complex and out of the scope
of this chapter. The reader can find more in-depth details with proofs in the original
research publication [HP11].

5.3.3 Integral invariants

An integral-invariant-based method was presented by Pottmann et al. in [Pot+07] and
[Pot+09]. The basic idea of this algorithm is to estimate curvature on a voxelized version
of the triangle mesh. Therefore, this algorithm can also be used for volumetric data (see
an example with mean curvature in Figure 5.3). The modification of this algorithm by
Levallois et al. is a part of DGtal library [Lev15].
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Figure 5.3: Mean curvature calculated on volume data. [Lev15]

A sphere is circumscribed around each point and an integral of the delimited area
is computed. This is done using a voxelization (rasterization), where the integral is
discretized. A 2D example can be seen in Figure 5.4. The rasterized part of the sphere
Br(P ) with a radius r and a center P represents the target volume Vr(P ) that is used
to estimate curvature. The finer the rasterization is, the more detailed curvature we can
get.

Figure 5.4: Example of rasterization between sphere and curve intersection in 2D.
[Gel+05]

This process is, however, quite slow and memory-heavy. To speed up the process and
save memory, an octree is constructed. It has the highest precision near the faces of the
triangles and inside the model, a lower precision is used.
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5.4 Dynamic curvature estimation

The so far presented solutions were primarily designed for the static geometry. They
can be also used for the dynamic geometry (deformations, animations etc.), however, it
will lead to a curvature re-estimation for the entire model after every change (e.g. a
frame of an animation). If we have a high-detailed model representation, it can cause a
non-interactive or slow response of a modeling software if the geometry is changed. Of
course, in some cases the recomputations can be limited to a certain local part of a model
and then the performance of classic solutions may be sufficient. However, we cannot rely
on this and it is better to have an algorithm designed directly for the dynamic geometry.

The simplest solution to this problem is to run the computation of curvature estima-
tion in parallel. This approach has been presented by Griffin et al. [Gri+12]. They have
created a parallel version of the Rusinkiewicz algorithm [Rus04]. The paralellization is
done directly on the GPU. The algorithm uses vertex neighborhood and this information
must be available for each vertex. In every frame, normal vectors and Voronoi areas are
recomputed from 1-ring neighborhood of the vertex. Results are stored for every vertex
in a single texture. The curvature is estimated the same way as Rusinkiewicz’s solution
described in Section 5.1.2. In the final step of the original Rusinkiewicz algorithm, con-
tributions from the vertex neighborhood are weighted and summed for the vertex. In this
step, there is a need for a synchronization of threads, since the summation is over neigh-
boring vertices and each vertex is computed in its own thread. Synchronization slows
down computations, however, the main speed-up of the algorithm is in the curvature
solving for a single vertex via the least square method and computing transformations
from the object to the tangent space and vice versa.

Another approach designed directly for the dynamic geometry has been presented
by Kalogerakis et. al. [Kal+09]. They used this algorithm for line drawing based on
curvature.

The curvature estimation is based on a mapping function between a shape repre-
sentation and the curvature with other attributes (value and directions). The shape is
represented by a state vector, whose values can be joint angles, blending weights etc.
These parts are dependent on the model we are describing and what information is avail-
able to us. The shape vector is expressed in a reduced dimension, this vector is 2D for a
3D model.

The solution for curvature estimation consists of two steps - preprocessing and main
rendering. In the preprocessing step, the mapping function is obtained using the learn-
ing process. Curvature values for a given mesh are estimated by one of the existing
algorithms (the authors, like many others, use the Rusinkiewicz’s solution). The cur-
vature estimations are mapped to the state vector. Training is done using regression
(back-propagation training). In the rendering step, each frame or geometry update has
its own unique state vector. This vector is used together with the mapping function and
the curvature is reconstructed without the need of recomputing an entire model directly.
The difference between the curvature computed directly and from the mapping function
can be seen in Figure 5.5. The visual quality of both results is quite similar, but the
solution by Kalogerakis runs 1.7 ms, while Rusinkiewicz took 91 ms.
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Figure 5.5: Comparison of principal curvatures produced by the method of Rusinkiewicz
[Rus04] and the dynamic Kalogerakis [Kal+09]

5.4.1 Screen space

For dynamic computations the screen space can also be used, mainly for visualization
purposes. We are not able to assign the screen space curvature estimations back to the
geometry vertices. The curvature computations in the screen space are not very common.
The only algorithm dealing with this problem known to us is by Mellado et al. presented
in [Mel+13]. They propose the screen space curvature calculation by a sphere fitting. A
point cloud is created from the screen space pixels and for each pixel, the best fitting
sphere is searched.

For every pixel p on the screen, its neighboring pixels within a limited radius are
collected. Pixels, whose depth differences against the p are greater than a threshold
value, are rejected. They can be from the background or from another model. The
final set of points (a local point cloud) is converted from the screen space to the view
space (or world space). These converted values are fitted by the sphere. Final curvature is
calculated from the sphere radius. With this approach, however, only the mean curvature
is calculated. The Gaussian curvature cannot be computed this way and, therefore,
principal curvatures cannot be calculated either.

The result of the method can be seen in Figure 5.6. Another limitation of the screen
space version is a loss of details if the objects are further away from the camera. This
effect can be seen in the upper right part of Figure 5.6, where the fine details of the hair
are lost.
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Figure 5.6: Comparison between mean curvature estimated directly from mesh (left) and
its screen-space version (right). [Mel+13]
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Chapter 6

Other shape characteristics

We have already covered curvature itself as a basic shape characteristic. However, cur-
vature is seldom used in its raw form directly. Each object can have various additional
characteristics based on normal vectors, positions, local objects volumes etc. We can
also combine several characteristics together and create a different descriptor, but we
should look for its important properties. Based on [Guo+16], each descriptor should
have several properties. The most important one is mapping of a local geometry to a
vector in Euclidean space RD which supports efficient nearest-neighbor searches. Based
on that, two feature vectors that describe similar neighborhood should be close to each
other in the nearest-neighbor space. The size of vector should be compact with a small
dimensionality D. Another important property is the robustness to the artifacts (noise,
missing parts etc.) that are often found in data.

To select an appropriate descriptor is not a trivial task. There are many factors
influencing the quality and precision. Usually, if a descriptor works well for one type of
a problem it does not mean it will work well as an universal solution for every input.
Several descriptors are implemented in the well-known PCL library [RC11]. It is a cross-
platform library created from several smaller parts. Each part can be used separately.
An advantage in a form of similar interfaces offers an easy way to change one descriptor
to another and perform tests again. Apart from the descriptors, the library containts
implementations of variety of other algorithms related to processing of point clouds in
general.

Comparisons

In literature, there are many comparisons of different descriptors. An article comparing
several algorithms to local descriptors have been presented by Heider et al. [Hei+11].
Their survey work is mainly focused on local descriptors but some information regarding
global ones is also provided. Performance-based comparison of several normal-based
descriptors have been conducted by Mateo et al. [MGT14]. Some of the interesting local
descriptors from these surveys are explained in more detail in the following paragraphs.

A comparison of descriptors implemented in PCL is provided by Holz et al. [Hol+15].
They compare various algorithms and also show the source code snippets presenting the
usage of them.
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A comprehensive comparison of feature vectors was done by Guo et. al in [Guo+14]
and [Guo+16]. Authors compare several properties of feature vectors, like their size,
descriptiveness, noise robustness etc. Their goal is to determine which descriptor is
suitable for which type of data.

Subdivision of shape descriptors into categories can be found in a survey by Tangelder
et al. [TV08]. They divided descriptors into three main categories and each of them
contains subcategories, see Table 6.1. Feature based descriptors are based on important
parts of the model, usually feature lines or feature areas. Graph based descriptors use
graph theory to describe object. They represent triangle mesh as a graph, where vertices
are nodes and triangle edges are graph edges. Geometry based descriptors use geometry
information, such as volume, normal vectors etc.

Feature -based Graph-based Geometry-based
Global features Model graph View based
Spatial map Skeleton Volumetric
Local features Reeb graph Deformation based

Table 6.1: Descriptors division from [TV08]

6.1 Curvature-based charactetistics

In Chapter 4, the basic background regarding curvature was described. The principal
curvatures K1,2 themselves, however, are not used as descriptors too often. They are
represented by two values (K1, K2) where each of them hold one part of the information.
A better way is to have a single value that holds a certain information alone, rather than
two values, each with a partial information. Many authors create their own descriptors
for certain purposes. Their common ground is the use of principal curvatures.

6.1.1 Detection of points of interest

These descriptors are often used for the detection of points of interest - points on faces,
such as the nose, eyes, the mouth etc. These descriptors are derived from principal
curvatures as follows.

• Mean curvature (KH)
KH = K1 +K2

2

• Gaussian curvature (KG)
KG = K1K2

• Shape index (SI)
SI = 2

π
atan

(
K1 +K2
K1 −K2

)
52



CHAPTER 6. OTHER SHAPE CHARACTERISTICS

The shape index has been introduced by [KD92]. It describes a local topology of
the shape independently on the scale, e.g., a cup has always the same index value,
no matter what its size is. The shape index value is always in the range 〈−1, 1〉
with −1 being a cup, 0 a saddle and +1 a cap. See Figure 6.1.

Figure 6.1: Shape Index SI

• Curvedness (C)

C =

√
K2

1 +K2
2

2
The curvedness has been introduced together with the shape index by [KD92]. It
describes the magnitude of the curvature at a point, which is a measure of the
extent to which a region deviates from flatness.

• Willmore energy (WE)

WE = (K1 −K2)2

4
Willmore energy ([KS12]) is a quantitative measure describing the amount of devi-
ation of the surface from a round sphere. A round sphere has a minimal Willmore
energy, which is zero. Any other surface has always greater value, in other words,
Willmore energy is never negative.

Application in human head models processing

The above mentioned descriptors are frequently seen in many publications regarding
registration or description of human heads models. For human faces, it is often important
to detect the tip of the nose. Szeptycki et al. in [SAC12] detect tip of the nose candidates
based on evaluation of curvature based descriptors. For those points, support vector
machine (SVM) classification from trained data is used to detect the correct nose tip.
Their solution is, however, targeted only for heightfield-based data (sometimes referred
as 2.5D) obtained from a direct scan.

Nose tip and inner corners of eyes are detected with solution from Nair et al. [NC09].
Curvedness and shape index together with thresholds are used to detect nose and eyes.
They use detected points for 3D face registration via Point Distribution Model (PDM).
However, their solution is not fully automated and requires manual point selection within
a training set.
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Colbry et al. [CSJ05] use shape index to find feature points on human face. Based
on shape index value and thresholding, they detect and recognize different points. They
have created two versions of the algorithm - one for faces oriented towards camera and
one for rotated ones. Faces oriented towards camera can benefit from this orientation
and for example nose is detected as a point closest to the camera. A small deviation in
forward orientation in about ±15° is, however, possible.

Zhang et al. [ZW07] also use shape index. Based on this descriptor, they have
created several regions. To select points from those regions, a graph is constructed and
measurements of distances and angles are used to identify different points using fitness
function.

6.1.2 Saliency

Lee et al. [LVJ05] do not use curvatures directly because curvatures capture fine details
(see Figures 6.2a and 6.2b) that are usually not very interesting in the first phase of
object description. They use a method called mesh saliency. Loosely speaking, a salient
geometric feature is a region of the surface which has a nontrivial shape. It is computed
from the mean curvature by the Gaussian-weighted average. This leads to the effect where
fine details are smoothed out and more important parts of the models are highlighted (see
Figure 6.2c). Another solution using saliency was presented in [GCO06]. Both of these
solutions resemble a smooth version of curvature estimators, such as [CSM03; All+03;
Kal+07].

(a) Original part of the mesh (b) Curvature (c) Saliency

Figure 6.2: Comparison of curvature and saliency. [LVJ05]

6.1.3 Curvature maps

A method based on the use of curvature was presented by Gatzke et al. [Gat+05]. Since
curvature is a local point metric, it cannot be used directly for a description of points
neighborhood. In the presented solution, a descriptor named Curvature map is created
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from a neighborhood of a point. Curvature map accumulates curvatures (calculated by
[Mey+03], but any other algorithm can be used) from a k-ring or geodesic neighborhood
of a point. The Curvature map can be represented by two 1D, 2D or 3D vectors (one
vector for mean and one for Gaussian curvature). A 1D version contains just curvature
and leads to artifacts. It is not used and higher dimension maps are utilized instead.
The dimensionality comparison of curvature map can be seen in Figure 6.3. The “Ear
Tip Vertex” is selected as a reference point. Similarity of this point to other points on
the model is color-coded from the least to the most similar points. As can be seen, for
1D vector, a lot of points within the model are identified as “Ear Tip Vertex”. A 2D
version is better, but not still quite correct. For a 3D version, only points within ears are
correctly identified to be similar.

Figure 6.3: Curvature map and similarity measure relative to a selected vertex (ear tip).
[Gat+05]

In 2D solution the distances to the points are stored in vectors together with curva-
ture. In the end, curves are generated using each element created vectors. To generate a
curve from the curvature map, a set of piecewise linear functions is used (a list of them
can be found in article [Gat+05] ). An example of one such curve with a distance can
be seen in Figure 6.4. Curvature (mean or Gaussian) is expressed as a function of the
distance from the point, for which the curvature map was created. The curves are further
used to compare different points and if the curves are similar, the points are similar as
well. The comparison metrics are described in [Gat+05].
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Figure 6.4: Example of curve generated from curvature map for a single point. [Gat+05]

A 3D version is similar to 2D. Apart from curvatures and distances, directions are
stored as well. From a point, several directions are randomly chosen. In every direction,
a 2D map is created as mentioned previously.

6.1.4 Scale independence

A scale-independent local descriptor has been presented by Cipriano et al. [CJG09].
They use a vertex neighborhood with a given radius. Vertices inside this neighborhood
are weighted with the area of their nearest triangle. Also, vertices closer to the edge of
the surface are given lower weights. Vertices are represented as a heightfield on a surface
tangent plane around the central vertex. This is done to simplify further calculations.
The final heightfield is described by local descriptors. As the shape of the heightfield
can be quite complex, it is simplified by quadratic fitting. For very small areas, this
approach will end up with a value of curvature at the center point (basically, it will be
the algorithm for curvature estimation). For larger areas, however, this solution will
create a surface descriptor averaged from several curvatures and their directions.

Another scale-independent solution was presented by Akagündüz et al. [AU09]. They
used mean (H) and Gaussian (K) curvatures to detect points of interest on parameterized
3D surfaces.

6.1.5 Integral-based

Solution based on integral descriptors was presented by Gelfand et al. [Gel+05]. They
use curvature computed from the geometry in a way similar to integral invariants from
[Pot+09] (a voxelization-like algorithm). The computed curvature, after normalization,
is used to obtain descriptors on the model surface (see Figure 6.5).
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Figure 6.5: Normalized curvature computed with two different radius spheres (left, mid-
dle) and the resulting descriptors (right). [Gel+05]

Interesting parts of the models are found using a curvature histogram. The most
important parts of the model are the ones, where frequency of the curvature is the lowest
(e.g., this curvature value is the fewest in the model). The problem is to select only one
point inside a certain neighborhood. For this, distances within a sphere are used. After
the first point is selected, the sphere is created around it. If another point should be
inside this sphere, this new point is rejected.

A problem with curvature is its scale-dependence. The solution to this problem is
to use a different size of the sphere during the voxelization, as can be seen in Figure
6.5. Values of curvature are different, but its characteristics (convex/concave shape)
are preserved and that is the important part for the presented solution of the shape
descriptor.

6.1.6 Other

Specialized descriptors for certain purposes can be created. An example is a curvature-
based descriptor for a face recognition presented by Salazar et al. [SCP10]. They use
a statistics-based Fisher coefficients for surface feature description. Fisher´s analysis,
instead of principal component analysis (PCA), allows us to find features with the most
relevant information.

Relation of Gaussian curvature with Heat Kernel Signature proposed by Sun et al.
[SOG09] was discussed in [Bro11]. Heat Kernel Signature is based on the concept of heat
diffusion over a surface. Given an initial heat distribution over the surface, the heat
kernel ht(x, y) relates the amount of heat transferred from one point (x) to another (y)
after some time t. Using the transfer between two points directly will lead to a high
complexity of computations. The computations are therefore restricted to just using
ht(x, x), which means that they transfer a heat from a point to itself over a time. This
descriptor is isometry-invariant, captures local geometric information at multiple scales,
is insensitive to noise. A disadvantage is its dependence on the global scale of the shape.

The relation between the heat diffusion and Gaussian curvatureKG for small timesteps
t according to [Bro11] can be expressed as:

ht(x, x) = 1
4πt + KG(x)

12π . (6.1)
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6.2 Normal-based

Having a normal vector does not mean that we have the curvature. We can compute it,
but it may slow things down and we may want to use just normal vectors. However, even
if we do not directly require curvature the results of calculations are often of a similar
nature as curvature and express the same information in a different way.

A method for point clouds originating from a 2D algorithm was proposed by Tombari
et al. [TSS10]. They created a solution based on local histograms. They use a 2D image
descriptor SIFT [Low04] as a reference and based on this, they have created a 3D mod-
ification called SHOT. Their algorithm uses normal vectors of points to construct local
histograms. Based on a constructed Local Reference Frame (LRF, recall Section 2.4), the
spherical neighborhood is divided into several bins (8 divisions along the azimuth, 2 along
the elevation, and 2 along the radius - see Figure 6.6). Each bin has its own histogram
created from angles between normal vectors of points and a normal at the center point.
In the end, the normalization of the descriptor is required to improve robustness.

Figure 6.6: Support structure to compute SHOT. For clarity, only 4 azimuth divisions
are indicated. One of these azimuth divisions is highlighted in green. The division in
radius and elevation results in inner sphere. [TSS10]

One of the older descriptors is based on a shape context. 3DSC was proposed in
2004 by Frome et al. [Fro+04] and later improved by Tombari et al. [TSDS10] (USC ).
The original version 3DSC uses spherical neighborhood. The sphere is centered in a
way that its “north pole” is in a direction of a normal vector. The sphere is divided
to several bins. In azimuth and elevation, the spacing is regular, the division along the
radius is spaced logarithmically (smaller bins closer to the center point). For each bin,
weight from its corresponding points is calculated. This weight depends on bin size and
number of points inside the bin. However, the rotation of sphere is not determined.
It can be rotated around the normal vector in an infinite number of ways. Original
article solves this by trying different sphere orientations. However, solution using local
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reference system improves the stability and quality of the descriptor. This improvement
was proposed in USC. A different algorithm originating in shape context was proposed
by Kokkinos et al. [Kok+12]. Their solution is invariant to isometric deformations.

Marton et al. [Mar+10] proposed Radius-Based Surface Descriptor (RSD). This
descriptor uses radial relationships of the point and its neighbors. Euclidean distances
and normal vector differences between central point and other points in the neighborhood
are calculated. For each pair of points a sphere is found using the points and their normal
vectors. From all the spheres created from the neighborhood, the ones with minimal and
maximal radii are used for the descriptor. The idea of this solution is similar to a
descriptor based on a curvature of the neighborhood.

Another descriptor for point clouds is Point Feature Histograms (PFH ) descriptor
[Rus+08] created by Rusu et al. They use multi-dimensional histogram created around
the point. PFH is based on the relationships between the points in the spherical area
and their estimated surface normals. The quality of the final descriptor is influenced
by the quality of normal vectors. If we have a pair of two points (Ps, Pt) with normal
vectors (ns, nt) and local coordinate systems in them (u, v, w), they can be described
via a quadruple q = 〈α, φ, θ, d〉 (see Figure 6.7), where

α = v · nt
φ = (u · (Pt − Ps))/||Pt − Ps||
θ = arctan(w · nt,u · nt)
d = ||Pt − Ps||

. (6.2)

Instead of 12 values (two times - 3 values per position, 3 per normal) we have only 4
values that are also rotationally and transitionally invariant.

v = (Pt - Ps ) × u

w = u × v

ns = u

Ps
Pt

Pt - Ps

v

w

nt

u

Φ

α

θd = 

Figure 6.7: Angles from quadruple between two points (Ps,Pt) in PFH. [Rus16]

Created tuples are treated as 4D vectors. In some cases, the fourth component
(distance) can even be omitted because points can be sampled in some view-dependent
manner. From the vectors, 16-bin histogram is created as

bin =
i≤4∑
i=0

2i−1step(si, qi), (6.3)

where i is a quadruple index element, si is the center of value interval (0 for α, φ, θ and
d/2 for distance d) and step is a function that gives 0 if q < s and 1 otherwise. In the
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end, each bin contains points based on the neighborhood with a radius d/2.
A problem is the complexity of the method, since it computes relations between every

two points, leading to complexity O(nk2), where n is the number of points Pi and k is
the number of neighbors for each point Pi.

A solution for the slow performance of the PFH method was proposed by Rusu et
al. as Fast Point Feature Histograms (FPFH ) descriptor [RBB09]. This version reduces
the time complexity to O(nk), while retaining most of the PFH power. The number
of points in the neighborhood with a threshold radial distance is limited and weighting
is used for a final histogram creation. The simplicity, low number of elements in the
final feature vector and a high performance make very often FPFH a basic choice when
selecting a descriptor. After a modification, the feature vector can also be used for a
global description of entire model (see [Rus+10]). This solution is based on the direction
of viewpoint vector from camera that is scanning the model.

In many cases, solely normal vector-based solutions have disadvantages because their
quality often depends on the quality of normal vectors. Local feature descriptor LFSH
was proposed by Yang et al. [JZQ16]. They use not only normal vectors, but also the
density of points in the neighborhood and local depths.

A sphere with a radius r (based on the neighborhood size) is created around the
center point Pi. A sphere tangent plane L is created with a help of local reference axis
that goes through point Pi. Points from neighborhood are projected into this plane which
leads to local depths d. The entire process can be seen in Figure 6.8a. The points in
tangents plane are also used for density calculation based on several layers, as depicted
in Figure 6.8b.

In the last step, deviation angles between normal vectors from neighborhood are
calculated (Figure 6.8c).
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(a) Creation of local depths (b) Point distribution in tangent
plane

(c) Calculation of deviation angles between normals.

Figure 6.8: Steps of LFSH feature vector computation from [JZQ16]

Results from all three steps are used to create an overall histogram. The histogram
is used as a feature vector.

6.3 Other

Even though our primal region of interest are curvatures, we have researched other algo-
rithms as well to extend our knowledge and possible combine the different approaches.
There are many more ways how to describe geometrical object for further processing.
Some of them use a variation of 2D descriptors known from image processing. Skeleton-
based methods describe a model with its underlying skeleton. These methods are mainly
for global characteristics, but can be used for a part of the model (e.g. a hand with
fingers).

Older, but due to its simplicity still used descriptor is SPIN image [JH99]. SPIN
image is created from a projection plane that is being rotated (spinned) around one
axis of LRF. For a descriptor, a keypoint is chosen and points in its neighborhood,
given by radius, are projected onto the rotated plane. In the plane, points are used to
calculate various statistics and their histograms are used as feature vector. However, this
descriptor is limited by a data resolution and uniformity of points distribution. If two
datasets have different points distributions, the statistics for the same parts are often
incorrect. The original version has also a problem with different scales. However, a scale
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invariant method extending classic SPIN image has been recently proposed by [Lin+17].
The descriptor named TriSi based on axes of LRF (recall Section 2.4) has been

presented by Guo et al. [Guo+13]. A set of local descriptors is generated based on
a triangle mesh surface. For a point on the surface, its radial neighborhood is used.
From neighboring points, a matrix is created using continuous PCA algorithm and three
eigenvectors (v1, v2, v3) of this matrix are computed. They form the LRF system.
However, the signs of eigenvectors are ambiguous and a sign disambiguation technique is
used. The newly created “eigenvectors” (ṽ1, ṽ2, ṽ3) are used as the description of LRF.

TriSi descriptor is in 3D created from three spin sheets (each of them is considered
as a single SPIN image [JH99]). Every spin sheet is a plane corresponding to one axis
defined by a sign-corrected eigenvector. An example of a spin sheet aligned in the plane
given by ṽ1 and ṽ3 can be seen in Figure 6.9. Points from the model are projected into
these planes in a way similar to SPIN image.

Figure 6.9: Generating a spin sheet for TriSi, α and β are distances of origin from
projected point q after its perpendicular projection onto axes ṽ1 and ṽ3. [Guo+13]

For every projected point, values of α and β are accumulated into a 2D histogram
of certain size. To overcome problems caused by noise, histograms can be bilinearly
interpolated. The histogram can be quite large (depends on the chosen size). To decrease
its size, PCA is used again. From a selected set of training descriptors, a matrix M is
calculated as

M =
L∑
i=1

(f i − f̄)(f i − f̄)T , (6.4)

where L is the number of training descriptors, f i is the selected training descriptor
and f̄ is the mean vector created from all training descriptors. Using the eigenvalue
decomposition, eigenvectors of M are calculated. The final compressed descriptor is
created by an approach partially similar to a singular value decomposition (SVD) used
for image compression. The resulting TriSi descriptor is robust to noise and a mesh
resolution.
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Algorithm 3D-Div was proposed by Shah et al. [Sha+13]. They detect 3D keypoints
on the surface of the mesh. For each keypoint, a local surface patch is created using a
sphere of the given radius. In the next step, the LRF is constructed for each keypoint the
same way as described in previous paragraphs for the TriSi method. For every keypoint,
its LRF vectors, and local surface patch, the trilinear interpolation is performed to get
uniformly sampled points. The normalized 3D vector field is computed from the local
surface patch and aligned with the LRF. A gradient is computed for this reoriented field.
For a keypoint, Euclidean distances to its neighbors within the local surface patch are
calculated. Gradient combined with distances of neighboring points is used as the final
descriptor.

The quality and robustness of descriptors is often limited by the construction of LRF.
The BSC (Binary Shape Context) descriptor with a more robust LRF was proposed
by Dong et al. [Don+17]. For LRF construction, covariance matrix is first created
and eigenvectors are used as basis vectors. However, the eigenvectors have ambiguous
directions. There are two choices for each axis, leaving us with four possible LRF. To
solve this issue, they work with all four variants. Once the LRF is constructed, the local
neighborhood is projected onto the coordinate planes created by the axes of LRF. The
planes are divided into bins and for each bin, density and distance are determined. To
improve robustness (noise, point density), the results are weighted using Gaussian kernel.
The effect of this solution can be seen in Figure 6.10. The final descriptor consist of LRF
vectors, and binarized densities and distances in each plane. The binarization is done by
the scheme proposed in [Don+17].

Figure 6.10: One projection plane of BSC and two different point densities of neighbor-
hood (a) and (c) and their corresponding weighted histograms (b) and (d) as suggested
by [Don+17]
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6.3.1 Euclidean distances

Solution presented by Maximo et al. [Max+11] uses local heightmaps with stored Eu-
clidean distances. The tangent plane is created at a vertex from its position and a normal
vector. The distance-map (sampled as a grid 16 × 16) in the tangent plane is aligned
with the principal curvature directions at the vertex. Each grid cell has associated one
ray perpendicular to the tangent plane. Distances are computed from the plane to the
intersection of the mesh surface with the ray. See an example of one such tangent plane
for a single vertex in Figure 6.11. This approach is simple, but robust to holes, non-
manifoldness etc. since it only computes ray - triangle intersections and store distances.

Figure 6.11: A surface descriptor example for a single vertex (red). The descriptor
is a distance-map in a tangent plane. Distances are visualized as color-coded values.
[Max+11]

We can directly compare meshes from the constructed distance-map at each vertex.
However, this solution is not robust in general. This is caused by principal curvature
directions, because they are not always correctly aligned with the tangent plane. The
solution could be to compute differences for every possible rotation and select the minimal
value as the similarity. This brute-force solution is, however, very slow. Authors use
Zernike polynomial functions instead. The Zernike polynomials are a set of functions
orthogonal over the unit circle. They compare Zernike polynomial coefficients instead of
pixels from the distance-map. The theory behind this is quite complex and out-of-scope
of this report.

The basic solution uses a descriptor defined at a single vertex. This may cause
some problems in ignoring objects features. In the proposed solution, Maximo et al.
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use the vertex neighborhood. For each vertex, Gaussian weights are applied to Zernike
coefficients. Final coefficients are combined as an average from nearby vertices (within a
neighborhood radius).

6.3.2 Voxelization

The solution based on local voxelization has been presented by Knopp et al. [Kno+10].
Their solution is a 3D variant of 2D feature descriptor SURF [Bay+08]. The geometry
is voxelized into the cube using the intersection of mesh faces with the grid-bins. The
saliency measure is computed of each grid-bin and is defined as the absolute value of the
determinant of the Hessian matrix that is computed from box filters on the rasterized
volume. This is similar to 2D convolution for 2D image. The 3D SURF descriptor is
computed at the maxima of the voxelized grid. Another voxel based solution was created
by Song [Son15].

6.3.3 Fourier transform

A descriptor based on Fourier coefficients has been proposed by Foulds et al. [HF11].
To overcome the problem with rotation and translation, the objects are first processed
using PCA. The centroid of the object is set based on the results of PCA. In the next
step, distances of triangle faces from the centroid are stored in a matrix C. The matrix
is indexed with angles in polar coordinates. The distances are stored in the matrix at the
positions [θ, ϕ], where θ ∈ 〈0, π〉 and ϕ ∈ 〈0, 2π〉. The angles are used with an increment
step, the authors suggest to use the increments of size 1, 4, 9 or 18 degree. The larger
the increment is, the smaller matrix and thus the lower precision we have.

From the C matrix, the Fourier transform is calculated, from which a (2N + 1) ×
(2N + 1) feature matrix centered on the lowest frequency coefficient is created (N is
the number of Fourier coefficients selected by the user). For each element of the feature
matrix, its distance to the centroid is calculated. Based on this distance, the elements of
the feature matrix are rearranged and sorted into a 1D array. This creates the feature
vector (descriptor). Later on, the feature vectors are used to compare the similarity of
models. The matching process can be found in [HF11].

Solution based on a 3D curve and its description by Fourier series have been proposed
by Elmustapha et al. [Elm+10]. They again use PCA to align models to the initial
positions. From the model in its initial position, a closed 3D curve is built. They use a
Helix curve (see Figure 6.12) constructed on the unit sphere given by:

x(t) = cos(qt)sin(t)
y(t) = sin(qt)sin(t)
z(t) = cos(t)

, (6.5)

where q is a parameter of curve quality (the bigger value, the more points the curve has)
and t is a curve parameter, t ∈< 0, π >.
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Figure 6.12: A spherical Helix curve

For the descriptor curve extraction, ray-casting is used. The unit sphere with a
helix curve is placed in the center of the mass. Rays go from the object’s center of
mass through the points on the helix curve (points are given by Equation 6.5). The
furthest intersections of the ray with the faces of the surface triangles create points of
the descriptor curve. To close the curve the first and the last point are set to be the
same.

The created curve must be re-parameterized in order to compute the feature vector.
The authors have selected the natural parametrization (the arc length parametrization).
Fourier series are applied to this parameterized curve. The feature vector is created from
the magnitudes of complex quantities. It is a good decision to take the first coefficients,
because the later represents high frequencies with noise. The feature vectors are used
for objects comparison and searching in large databases, for more details see the article
[Elm+10].

6.3.4 Neural Networks

Nowadays, solutions based on neural networks gain interest. Neural networks are able
to find relations that may be hidden to other algorithms. The main difference with
previous methods is the process of finding the final transformation that will register the
parts together. Neural networks are used mainly in this part of the algorithm. The core
part of the registration, the description of the neighborhood, can in some cases be a
standard solution as described in the previous sections.

The overall problem with these types of solutions are their inputs. Neural networks
often require training sets from which they can learn and improve their weights. If the
user does not have the input training data, some universal predefined values given by
authors of publications can be used. However, in these cases, the quality of registration
can be affected.

Zeng et al. [Zen+16] use convolution neural network. As an input, they use volume
data created from truncated distance functions from the point neighborhood. Khoury
et al. [KZK17] create solution that can be used as a direct replacement of FPFH. They
use parametrization of model via spherical histograms centered at each point. These
histograms describe local neighborhoods of points. Neural network is used to map his-
tograms to a lower-dimensional Euclidean space and thus speed up nearest-neighbor
searches.

Ai et al. [Ai+17] select a set of points of interest on the surface of both parts. They
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first downsample inputs and for every point, covariance matrix is created. Based on its
eigenvalues, the best points for description are selected. Points in their neighborhood are
gathered into clusters around already selected best points. The centers of the clusters
are used as keypoints. The clusters and the obtained keypoints are often different for
each model, because of noise and other inconsistencies in input data. To find the cor-
responding points on input parts, a convolutional neural network (CNN) is used. The
input keypoints are not used directly. Instead of them, a weighted adjacency matrix
is computed. Euclidean distances between keypoints are used as weights. From the
corresponding points, the transformation matrix is created and in the final step of the
algorithm, ICP [BM92] is used to improve the quality.

From now on, the following chapters present our contributions. Their overview can be
found in section 1.2. We start with our contributions in curvature estimation algorithms
and continue with the use of curvature and shape descriptors.

67





Chapter 7

Screen space curvature

Curvature estimation can be computationally expensive for geometry objects with a high
number of triangles. The existing algorithms are usually not suitable for a real-time
curvature estimation if object is changing for example during interactive sculpting.

To partially mitigate this problem, the curvature is not estimated directly from the
mesh, but rather from the final rendered image in screen space. In screen space, only
data that are currently visible and interesting for the viewer are processed. Calculations
are independent of triangle count of the original object, the only limitation is the screen
resolution. There is also an advantage that the curvature can be calculated from any
possible model representation with the same algorithm. There is no limitation to triangle
meshes, the final scene can contain volumetric models, implicit surfaces, procedurally
generated geometry and other screen space generated effects, such as a water surface.

Our proposed algorithm, published in [PVK16] and [PVK17], works in the screen
space and is therefore independent of the data representation. We are interested only in
the final rendered image. The core of the algorithm is similar to the one used in [Rus04]
and uses fundamental forms as well.

The screen space techniques have a major advantage to existing rendering software -
they can be easily added as post-process methods or replace an existing rendering output.
Nowadays, these methods are quite popular due to their simplicity and performance for
many problems, such as water rendering, lighting, ambient occlusion (shading technique
used to calculate the exposition of a point to an ambient light) and reflections. In screen
space, however, some problems may occur, usually on the object edges, where pixel
flickering may occur. Another disadvantage comes directly from the screen space itself,
where the geometry outside the visible area cannot contribute to the results.

In this section, we present the proposed algorithm for screen space curvature calcula-
tion and briefly its ambient occlusion modification. First, a description of the proposed
algorithm for a triangle mesh is presented. The screen space modification is discussed
next. As last, ambient occlusion modification is mentioned.

69



CHAPTER 7. SCREEN SPACE CURVATURE

7.1 Object space version

7.1.1 Basic algorithm

The main idea is to describe every triangle independently by the shape operator W ,
recall Equation (4.15). Elements of the shape operator must be calculated in order to
find eigenvalues of the matrix and calculate the final curvatures.

The proposed method uses an orthonormal basis. In such a case, the first fundamental
form (I) is the identity matrix which means that the second fundamental form (II) is
equivalent to the shape operator, i.e. W = II.

To eliminate one dimension, every triangle is transformed to a local coordinate system,
also known as the tangent space (see Section 2.2). Once the triangle is in the local space,
one of the dimensions is constant and represents the plane of the triangle. In the following
calculations, this dimension is not used and the problem is reduced from 3D to 2D.

7.1.2 The curvature calculation

The triangle in the local space is used to build the shape operator, as can be seen in
Equation (4.14), where variables L,M,N are unknown.

The shape operator describes the change of the normal over the edge of the triangle.
The triangle is in the local space and one of the coordinates is constant. This coordinate
is left out, which leads to 2D vectors instead of 3D. The edges of the triangle are expressed
as 2D vectors

(ui, vi)T = VLi − VL(i+1), (7.1)

and changes of the triangle normals are again as 2D vectors

(dNui, dNvi)T = nLi − nL(i+1), (7.2)

where i = 1, 2, 3. Index i denotes the triangle edge index.
Changes of normals along the edges of the triangle are known. These changes together

with edge vectors are used to create a system of equations to find the unknown variables
L,M,N . For one edge of the triangle, we get the underdetermined system

[
L M
M N

] [
u1
v1

]
=
[
dNu1
dNv1

]
. (7.3)

However, by constructing the same system for every edge of the local space triangle, an
overdetermined system is obtained. The system is in the form Ax = b, the least squares
method is used to obtain unknown variables:

x = (ATA)−1AT b . (7.4)

In this particular case, the matrix A is built from the triangle edge vectors (ui, vi)T , i =
1, 2, 3 and b is the vector of changes of the triangle normals (dNui, dNvi)T , i = 1, 2, 3.
Index i denotes the triangle edge index. Final matrices are as follows:
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A =



u1 v1 0
0 u1 v1
u2 v2 0
0 u2 v2
u3 v3 0
0 u3 v3


, b =



dNu1
dNv1
dNu2
dNv2
dNu3
dNv3


,x =

 L
M
N

 . (7.5)

calculate. Some optimizations can be done to decrease the total number of numerical
operations. Substitution B = ATA is introduced. The matrix B is symmetric and its
elements can be represented by variables p, q, r:

B = ATA =

 p q 0
q p+ r q
0 q r

 ,
p = u2

1 + u2
2 + u2

3,

q = u1v1 + u2v2 + u3v3,

r = v2
1 + v2

2 + v2
3.

(7.6)

The inverse of the matrix B can be computed using Equation (7.7). Since B is symmetric,
the computation is fast and easy.

B−1 = det(B)

 p(r + p)− q2 −qr q2

−qr pr −pq
q2 −pq p(r + p)− q2

 (7.7)

The final step is to calculate values for the unknown vector x. A part of this step can
be simplified, because the inverse of the matrix B is symmetric (see the symmetry pattern
in Equation (7.8)) and the matrix A has many zero elements. A simplified multiplication
can be seen in Equation (7.9).

B−1 = det(B)

 b1 b2 b3
b2 b4 b5
b3 b5 b6

 , (7.8)

B−1AT = det(B)∗ u1b1 u1b2 u2b1 u2b2 u3b1 u3b2
u1b2 u1b4 u2b2 u2b4 u3b2 u3b4
u1b3 u1b5 u2b3 u2b5 u3b3 u3b5

+

 v1b2 v1b3 v2b2 v2b3 v3b2 v3b3
v1b4 v1b5 v2b4 v2b5 v3b4 v3b5
v1b5 v1b6 v2b5 v2b6 v3b5 v3b6


(7.9)

Having obtained the final vector x, we can construct the desired shape operator.
From this matrix, the eigenvalues λ1, λ2 are computed by solving the characteristic poly-
nomial. These values correspond to the principal curvature estimated to the triangle.
The principal curvatures can be used to evaluate the mean and Gaussian curvature (see
Equations (4.6) and (4.7)).
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The presented algorithm computes the curvature for each triangle. To obtain the
curvature at the vertices, we have to use all adjacent triangles at the given point. The
final curvature can be estimated as a simple average from all adjacent triangles or the
curvature can be further weighted by the triangle area.

In the above calculations, an overdetermined system was constructed from all three
edges of the triangle. To solve the system, only two edges are sufficient (values for i = 3
will be zero). Differences in both approaches are shown in Section 7.3.

7.2 Screen space variation

The screen space version of the proposed algorithm was designed to fit directly into an
existing deferred rendering pipeline. Only the normal and the depth (from which the
position is reconstructed) are required for every pixel. There could be probably some
quality improvements, if additional information (id of the triangle to which the current
pixel belongs, the triangle size in the screen space etc.) was available, but this is not the
current target.

The screen space depth buffer can be interpreted as a 2.5D function with an underlying
regular grid and function values of the depth. In the screen space, there is a constant
step size between neighboring pixels. Those pixels are triangulated and each pixel center
is taken as a triangle vertex. One possible subdivision can be seen in Figure 7.1. This
screen space triangulation is converted to the world or camera space by reconstruction of
the position and the normal for each pixel. This creates a simple triangulated mesh and
the curvature is estimated on this mesh using the technique described in Section 7.1.1.

Figure 7.1: The local triangulation of neighborhood pixels. The center pixel is currently
calculated, one-ring neighborhood forms triangulation.

The algorithm from Section 7.1.1 can be used directly in the screen space. It can
run entirely on the GPU, using a pixel shader. As shown in Section 7.1.1 (see Equation
(7.7)), the inverse matrix can be computed very fast and only six values have to be stored
due to the matrix symmetry.
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There is only one difference in the final calculation step of the vector x. If all three
edges of each triangle are used, there is a limitation caused by shaders, where maximal
dimension of the native data type can be four, but 3 × 6 matrix and 6 × 1 vector are
needed. However, if the simplified matrices from Equation (7.9) are used, the calculation
can be split into two parts. Each of these parts has a halved dimension (Equation (7.10))
of the original matrix.

B1 =

 u1b1 + v1b2 u1b2 + v1b3 u2b1 + v2b2
u1b2 + v1b4 u1b4 + v1b5 u2b2 + v2b4
u1b3 + v1b5 u1b5 + v1b6 u2g + v2b5

 ,

B2 =

 u2b2 + v2b3 u3b1 + v3b2 u3b2 + v3b3
u2b4 + v2b5 u3b2 + v3b4 u3b4 + v3b5
u2b5 + v2b6 u3b3 + v3b5 u3b5 + v3b6



x = det(B)

B1

 dNu1
dNv1
dNu2

+B2

 dNv2
dNu3
dNv3


, (7.10)

If only two edges are used, calculations can be computed even more efficiently on the
GPU:

x = det(B)

 u1b1 + v1b2 u1b2 + v1b3 u2b1 + v2b2 u2b2 + v2b3
u1b2 + v1b4 u1b4 + v1b5 u2b2 + v2b4 u2b4 + v2b5
u1b3 + v1b5 u1b5 + v1b6 u2g + v2b5 u2b5 + v2b6



dNu1
dNv1
dNu2
dNv2

 . (7.11)

All calculations are based on triangles that need to be reconstructed in the screen space.
They are obtained directly from the currently rendered pixel and its neighbors. See
again Figure 7.1, where possible subdivision and the triangle reconstruction are shown.
However, if the neighborhood width is only one pixel (as the case in Figure 7.1), all of
those triangles are not needed to compute the curvature estimation and based on our
testing, the use of only one of them is sufficient.

7.2.1 Level of detail

In the screen space, visible details often depend on the camera distance from the scene
object. Small triangles in the world space can occupy almost all the pixels of the rendered
image if the camera is very close to the surface. On the other hand, if the camera is
far away, the same triangle can take only one pixel of the final image. Taking this into
consideration, the level of detail can be used to improve the visual quality of the estimated
curvature.

If the neighborhood with one pixel width is used, triangles of the original mesh can be
seen in the estimated curvature (see Figure 7.2a). The estimated curvature within every
triangle is the same. GPU interpolates normals and positions during rendering, leading
to a smooth Phong shading, but the proposed method uses differences in the positions
and normals. These differences are constant (except for the numerical errors) for a flat
geometry, leading to the same curvature at every inner point of each triangle.

To solve this problem, level of detail (LOD) sampling can be used. For points closer
to the camera, triangles are constructed from a wider neighborhood. Our solution is
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based on a power function and the final equation is:

size = sizemax

( 1
f2

)d
+ 1, (7.12)

where sizemax is the maximal size of the neighborhood, f is the distance of the camera
far clip plane (in our tests, this value was always set to be f ≥ 100, smaller values were
clamped to this interval) and d is a current pixel depth in interval 〈0, 1〉 where 0 is for
the closest points to the camera. The computed size represents the step between pixels
that should be converted to integer by omitting the fractional part. However, this could
lead to size = 0. For this reason, there is the +1 term in Equation (7.12). The value of
sizemax can be achieved only for d = 0, but this value is very rare in the depth buffer.

Using this approach, the final curvature should be computed from more than one
triangle. According to our observations, a maximal number of four triangles for one pixel,
creating a triangle fan, is sufficient. The final curvature is calculated as an average value
from all triangles. The result with LOD for the same model can be seen in Figure 7.2.
There are used two different samplings. In Figures 7.2a and 7.2b, sampling is accurate
with exact normals computed directly from the function equation. In Figures 7.2c and
7.2d, the sampling contains noise and normals are computed from mesh geometry using
the algorithm from [Max99].

(a) Without LOD (b) With LOD

(c) Without LOD - data with noise (d) With LOD - data with noise

Figure 7.2: Screen space curvature

The problem with LOD are discontinuities between neighboring pixels. If the neigh-
borhood has the size of one pixel, they are not very visible and are often not recognizable
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during movement. However, with an increased step size, the problem is more serious.
We have used the simplest solution with the condition

|d− dneighbor| >
1
f
, (7.13)

where d is the depth of the current pixel, dneighbor is the depth of the neighbor with the
step size (see Equation (7.12)) and f is the camera far clip plane. If the condition is
met, e.g., there is a depth discontinuity, the LOD for the current neighbor is disabled
and step is set to size = 1.

7.3 Experiments and results

To test the proposed method, a PC with the following configuration was used: Intel Core
i7 CPU running at 4GHz, 32GB of RAM memory, NVidia Geforce 960GTX graphics
card with 2GB of video memory. The algorithm was implemented in C++ and OpenGL
4.4 with GLSL shaders.

The implementation of the algorithm by [Mel+13], based on [Mel15], has been done
using GLSL instead of CUDA used in the original paper.

7.3.1 Curvature error

In this section, comparison of the proposed method for triangle meshes, as defined in
Section 7.1.1, and exactly computed curvature from analytic surfaces are provided. Every
test uses exact unit-length normals computed from the function itself. In the comparisons,
two and three edges were used to create overdetermined system.

The proposed method on the triangle mesh has been also tested against the Bézier
triangles algorithm from [Zhi+11].

First, a sphere was tested. A sphere has a constant mean and Gaussian curvature,
dependent on the sphere radius r. Curvatures on the sphere can be calculated asKH = 1

r2

and KG = −1
r . As a discrete representation of the sphere, a subdivided (with a step 6)

icosahedron sphere with an exact normal and radius 6 was used. The proposed method
in both variations has a constant mean square error (MSE) with the value 8.2 × 10−16

for Gaussian and 7.8× 10−17 for mean curvature. For different radii, MSE has a similar
behavior.

Next, two analytic functions were tested (see Figure 7.3). The function f1 has convex
and concave parts, a high peak at its center, and it is undefined at the point [0, 0] (at
this point, division by zero occurs). Function f2 has a saddle shape with minor bumps.
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Figure 7.3: Tested functions f1 = 10 sin(
√
x2+y2)√

x2+y2)
, (x 6= 0), (y 6= 0), f2 = sin(x)cos(y) +

0.1(x2 − y2), x, y ∈< −10; 10 >

To test the proposed algorithm, the functions have been tessellated with Delaunay
triangulation in theXY plane using different random point clouds in the interval [−10, 10]
in both directions. MSE value gives the error of the proposed method on the triangle
mesh in comparison with the analytically computed curvature from the input function.
See Figure 7.4 for the result of the curvature for the function f2.

(a) Mean curvature (b) Gaussian curvature

Figure 7.4: Curvatures of the function f2 calculated from the triangle mesh

Result of the comparison is in Figure 7.5. Small peaks in the graph are caused by
random distribution of vertices in the underlying triangulation. This is more visible for
f1 due to its peak around the point [0, 0]. For more dense tessellation, there is a very
small difference in using two or three edges of the triangle to solve the system. In some
cases, two edges offer better results, while in other scenarios, three edges are marginally
better.
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Figure 7.5: MSE of the method for the triangle mesh compared to the analytically
computed curvature evaluated directly from the implicit function

Another comparison of the proposed method was done against the algorithm [Zhi+11]
using Bézier triangles. This algorithm was chosen according to the promising results in
tests and experiments published in the original paper. However, the algorithm has worse
quality on the triangle meshes created from the random points (the same random grid
has been used for both tests). The result can be seen in Figure 7.6. MSE values for
individual triangles were varying from 0.5 to almost 40. For most of the triangles, the
calculated curvature gives us the error comparable with our proposed method. However,
there were large error values present in results from [Zhi+11], caused by small or sliver
triangles. This is because the Bézier triangles in [Zhi+11], constructed from those small
or sliver triangles, are too arched. This problem is not present in the proposed method.
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(a) Bézier curvature [Zhi+11] (b) Proposed method

Figure 7.6: The comparison of the curvature of f1, compared on a tessellation created
from the random point cloud.

7.3.2 Screen space comparison

The comparison of the screen space method with and without the LOD active is done
against the curvature calculated by the proposed method directly on the triangle mesh.
Curvatures inside triangles are linearly interpolated from curvatures at triangle vertices.
The proposed algorithm was also compared with [Mel+13], the only other screen space
technique known to us.

The tested models are shown in Table 7.1. In the screen space, the quality of the
computed curvature depends on the camera distance from the model. If we compute
the curvature for the triangle mesh and render the result, with the camera moving away
from the model, the triangles become smaller and more triangles can be rendered in the
same pixel. This can cause an incorrect curvature to be visualized. In the proposed
screen space method the problem associated with rasterization cannot happen because
only visible parts are used to calculate the result and only one value is used for the final
pixel. In every test, the model was tested as fully visible on the screen and the camera
was moving away from the model. The dependency of MSE on the distance between the
viewer and the model is shown in the following graphs in Figures 7.7 and 7.8.

Vertex count

Stanford Dragon 300 000
MaxPlanck 152 403
Function f1 15 000

Torus 1 000

Table 7.1: Tested models
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From the graphs in Figure 7.7 it can be seen that the quality of both screen space
algorithms is comparable for the mean curvature. For the dragon model, using LOD has
a little or no effect at all. The original model has a dense tessellation and LOD can skip
fine details. On the other hand, for the model of the function, the proposed method with
LOD achieves better quality.

(a) Stanford Dragon

(b) Function f1

Figure 7.7: Comparison of the screen space MSE for the mean curvature calculated
directly from the triangle mesh. The proposed method with and without LOD and
algorithm from [Mel+13] (Mellado) were tested.

The Gaussian curvature comparison was done only with and without LOD, since
there is no other screen space method known to us that calculates the Gaussian curva-
ture. See results in Figure 7.8. The behavior is similar to Figure 7.7, with a roughly
doubled amount of the MSE error. This is caused by the curvature calculation, where
the mean curvature is only a sum of the principal ones, while the Gaussian is computed
by multiplying principal curvatures. In that case, the errors of both values are multiplied
as well.
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(a) Stanford Dragon

(b) Function f1

Figure 7.8: Comparison of the proposed screen space MSE for the Gauss curvature
calculated directly from the triangle mesh.

The visual comparison of the proposed method with [Mel+13] can be seen in Figure
7.9. Both algorithms have a comparable visual quality. The proposed method results
look sharper, [Mel+13] is more blurry.
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(a) Proposed method (b) Algorithm from [Mel+13]

Figure 7.9: Comparison of the mean curvature. Because [Mel+13] has no LOD, the
presented comparison also uses none to create comparable images.

No LOD is used to show real differences based on the camera distance. For the camera
at a greater distance (full model), there is almost no visible difference. With the camera
closer to the surface (detailed parts of the image), the triangles of the mesh begin to
appear in the screen space curvature.

For visual comparison of the quality of the proposed method in the screen space
against the same method in the object space see Figures 7.11 and 7.10.
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Figure 7.10: Summary comparison of mean and Gaussian curvature computed in the
screen space with our solution and ground truth data

(a) Object space (b) Screen space without LOD

Figure 7.11: Comparison of the mean curvature for the MaxPlanck model.

The effect of the used LOD can be seen in Figures 7.12 - 7.14. If the camera is
moving away from the mesh, there is a distance, from which further there is a small or
no difference between using and not using LOD. In some cases, using LOD can bring
worse results as it smooths out fine details (see Figure 7.12). On the other hand, in
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the example of the Gaussian curvature in Figure 7.13, the use of LOD improved the
result considerably. Another comparison can be seen in the closeup in Figure 7.14. If
the camera moves very close to the surface, LOD is required to obtain a smooth result.
Without LOD, the computed curvature appears as random colors. In some cases, e.g.,
in wireframe view, this visualization can be sometimes enough to see the shape. To set
a suitable distance for LOD is, however, difficult - the same value does not work for all
models.

(a) Object space (b) Screen space without LOD (c) Screen space with LOD

Figure 7.12: Comparison of the mean curvature.

(a) Object space (b) Screen space without LOD (c) Screen space with LOD

Figure 7.13: Comparison of Gaussian curvature using function f1.

(a) Object space (b) Screen space without LOD (c) Screen space with LOD

Figure 7.14: Detail of the mean curvature

The advantage of curvature estimated directly in the screen space is the possibility to
reduce geometry and use normal mapping to add missing details. Our proposed algorithm
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can be used together with this approach. We have used a plane with details added from
a normal map. Since we used fine details, LOD should be disabled in this case. The
results can be seen in Figures 7.15b and 7.15c. They are screenshots of a flat plane as
seen from above. The view from sides would result only in a plane with no geometry.

We have used a standard normal mapping test texture that contains a torus, a sphere,
a cone and a pyramid. The original test scene with geometry can be seen in Figure 7.15a.
The mean curvature (Figure 7.15b) has a lower noise and therefore a higher quality than
the Gaussian curvature (Figure 7.15c). This corresponds to the visual quality of tests
in Figures 7.12 and 7.13. The resulting curvatures correspond to the curvatures of real
objects even if there is no position (we have a flat plane), only a normal vector obtained
from a normal map. We have also tested the version with an additional displacement
(bump) map, but the results were almost identical.

(a) Test scene (b) Mean curvature (c) Gaussian curvature

Figure 7.15: Mean and Gaussian curvature for normal mapped plane. Black borders are
caused by a high curvature that is outside the used mapping function.

7.3.3 Performance Evaluation

The proposed method runs at interactive frame rates. Due to the independence of the
geometry, all tested models brought nearly the same results. In the tests, the method
was computed for pixel coverage of 2− 100 percent of the screen. The depth value of the
remaining pixels was set to infinity to discard these pixels. The comparison was done
against the screen space method from [Mel+13].

The resulting performance can be seen in Figure 7.16. In all tests, a decrease of
performance is partially caused by LOD computation but mostly by the need of branches
in the pixel shader to decide if the triangle can be used or will be rejected as described in
Section 7.2.1. With a comparable visual quality as [Mel+13] (no LOD used), the proposed
algorithm is much faster. The noisy peaks around 80−100 percent of the screen coverage
in Figure 7.16a are caused by camera movements and some possible context switching
during measurements due to the graphics driver because the frame time is very low.
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(a) Proposed solution

Figure 7.16: Frame time based on screen pixel coverage. The proposed algorithm in
versions with only two edges (with and without LOD) against [Mel+13] (Mellado) was
tested.

7.3.4 Limitations

Similarly to other screen space techniques, the proposed algorithm has its disadvantages.
When two neighboring pixels do not come from the same part of the surface, there
appears a surface discontinuity between those pixels and an artifact in the computed
curvature may appear. We have proposed one possible solution in Section 7.2.1, but it
is not guaranteed to work in every situation. If the depth difference is small and pixels
belong to different surfaces, the problem will persist.

Another problem is related to LOD. The estimated curvature depends on the distance
of the mesh from the camera, where small details are smoothed if the camera is far away
from the surface. The setting of the correct LOD can improve the curvature estimation
quality.

In the proposed solution, the LOD comes with a performance lost. Usually, LOD is
included to increase the performance by using less samples or to simplify computations.
In the proposed solution, the LOD version is less efficient due to the need of sampling
more pixels than for a simple neighborhood of size 1.

7.4 Ambient occlusion

Since we already calculated curvature in the screen space, we can use the results for
different effects. One of them can be an estimation of ambient occlusion. Ambient
occlusion is a shading technique used to calculate the exposition of a point to an ambient
light. It is a global method, unlike the well-known local Phong shading, and must be
computed as a function of the geometry of the entire scene. Using curvature for ambient
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occlusion is not very common and have a disadvantage in missing occlusions from non-
connected geometry. However, if curvature of objects is already estimated, it can be used
as the first estimation of an ambient occlusion and later, if necessary, the quality can be
improved with a traditional approach.

Using curvature for ambient occlusion was already proposed by [Gri+12; HKM11;
HKM12]. However, there is a problem with both existing solutions. Neither of them
consider convex and concave areas. In both solutions, the sign of curvature is mostly
suppressed by the use of quadratic power. This leads to ignoring convexity and concavity,
where convex areas should be dark, while concave areas are usually fully lit by light. They
use a sphere around a single point to calculate occlusion, but the selection of the radius
is difficult to set.

We have modified our screen space curvature algorithm and added the possibility to
estimate ambient occlusion as well. This research was presented in [PVK17]. We propose
a new function to map curvature to the Ambient occlusion. In the proposed solution,
the mean curvature is used. The curvature has to be mapped to the symmetrical interval
〈−1, 1〉, where 0 is zero curvature. For this, we need the curvature extreme for the
mapping. However, this is similar to the need of scaling factor in [Gri+12]. We know
that convex areas are usually darker than concave. We have created a statistics-based
function that maps the mean curvature to the occlusion based on a threshold. This
function consists of two separate parts. One for convex and one for concave areas.

For values below zero (convex areas), we use the Gaussian function

AO = a · exp
(
−(m− µ)2

2δ2

)
, (7.14)

where m is the negative part of the normalized mean curvature from the interval 〈−1, 1〉.
µ is the expected value and δ2 is the variance. We have set those two parameters to
µ = 0 and δ2 = 0.2 to get a normalized function centered around zero. The parameter a
sets the maximal occlusion value. We use a = 0.9.

Values above zero (concave areas) should be lit with a maximal amount of light and
therefore AO = 1 can be used. However, in some cases, we want a slight occlusion even
in these areas to create a smoother transition. For that reason, we use a linear mapping
of the interval 〈0, 1〉 (positive part of the normalized mean curvature) to the final interval
〈a, 1〉.

7.4.1 Results

The proposed algorithm can be used to estimate the ambient occlusion in combination
with existing techniques from Hattori et al. [HKM11] and Griffin et al. [Gri+12]. Both
algorithms can be used with a precomputed curvature, but in the proposed solution, the
curvature is estimated directly in the screen space. The comparison of the two methods
against occlusion calculated using ray-casting can be seen in Figure 7.17. Both results
were computed without LOD because the underlying mesh is of a high quality.

Hattori et al. [HKM11] use the sphere of radius 0.25. We have tested different radii,
but the results were too dark or too bright and the occlusion effect was hard to perceive.
Solution from Griffin at al. [Gri+12] offers a better visual quality. The curvatures are
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scaled up with factor of 5. Different scales result again in a darker or lighter effect, which
is similar to Hattori’s solution. The problem with the Griffin algorithm are non-white
areas with zero occlusion.

In our proposed solution (see Figure 7.17d), the result is not as dark as [Gri+12]
and looks more like ray-casted result. On the other hand, solution from [HKM11] keeps
correct white areas, but the rest of the model is too dark. We are using the threshold a
from Equation 7.14 set to a = 0.9. If we set this threshold to a = 1, we can obtain white
areas as well, however, some details are lost. From our point of view, the configuration
we have used offers the best visual appearance.

(a) Ray-casted occlusion (b) Hattori et al. [HKM11]

(c) Griffin et al. [Gri+12] (d) Proposed

Figure 7.17: Ambient occlusion estimated using the proposed curvature algorithm

7.4.2 Limitations

Most of the limitations is shared with screen space curvature from subsection 7.3.4.
The main limitation for ambient occlusion is the same as for other curvature based

solutions - the inability to calculate occlusion from non-connected parts of the geometry.
See Figure 7.18. If we calculate occlusion directly, using ray-casting (rays r1, r2, r3...)

87



CHAPTER 7. SCREEN SPACE CURVATURE

within a half-sphere, there should be an occlusion from ray r3. However, the curvature
at the point P is zero and, therefore, no occlusion will be calculated.

Figure 7.18: Curvature based ambient occlusion limitation
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Chapter 8

Estimation of differential
quantities using Hermite RBF
interpolation

The curvature estimated by algorithm proposed in the previous Chapter 7 is intended
only as a fast estimation for the price of a lower estimation quality. However, many
times we need precise estimation results close to the exact values. However, the exact
curvature can only be calculated for a limited set of surface descriptions. Most of the
time, we deal with triangles, point sets or some other discrete representation of the
surface. For those, curvature can only be estimated. Luckily, surfaces can be fitted by
some kind of interpolation function and from it, curvature can be calculated directly.

To find an ideal algorithm, which produces the best possible results, is a challenging
task. In our research [Váš+16], we have reviewed several curvature algorithms. Our main
goal was to improve quality of estimation by combining algorithms together because some
of them are better for certain scenarios or certain data configurations. Based on statistics
of the neighborhood, an algorithm that offers the best result for this kind of setup was
used for this neighborhood.

During the research, we have gathered several large datasets of artificially created
data (mostly CAD models). These datasets were in a form of triangle meshes or point
clouds equipped with normal vectors in both cases, but with no additional information.
There is no algorithm directly targeted for this kind of data. We have tested the existing
ones, but the results were not satisfying with respect to the data.

Our proposed solution [PV18] is a method for curvature estimation and normal vector
re-estimation based on surface fitting using Hermite Radial Basis Function interpolation
(HRBF). Hermite variation uses not only control points, but normal vectors at those
points as well. This leads to a better and more robust interpolation than if only control
points are used. Once the interpolant is obtained, the curvature and other possible
properties can be directly computed using known approaches. Unlike our Screen-space-
based algorithm from Chapter 7, this solution is designed for precision and high-quality
of results instead of speed.

The proposed algorithm can be used for point clouds and triangle meshes as well. It
was tested on several explicit and implicit functions and it outperforms current state-of-
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the-art methods if exact normals are available. For normals calculated directly from a
geometry, the proposed algorithm works on par with existing state-of-the-art methods.

8.1 Basic algorithm

The proposed algorithm uses HRBF (see Section 3.2.2) to construct local interpolants
that represent the shape in the vicinity of each single point. These interpolants are
then used for the curvature estimation at each point. The algorithm can run in parallel
without the need for synchronization primitives, since each point is processed individually.
Consequently the computation time depends linearly on the number of points, since no
global computation is performed.

For a given point P the neighboring points have to be found. Based on the geometry
representation, they can be obtained from Euclidean neighborhood of the point P or from
the k-ring neighborhood in case of triangle meshes. The obtained neighboring points,
together with the normal vectors are used as input values for the HRBF interpolation
(recall Equations (3.9) and (3.11)).

8.1.1 Basis function selection

In the proposed algorithm, two functions have been selected based on the performed
tests:

• The polyharmonic spline r3 (also known as tri-harmonic spline) is usually preferred.
This basis function is utilized in many RBF interpolation schemes. It is globally
supported with C2 smoothness, leads to a dense symmetric linear system and also
works for a highly irregular sampling. Another advantage is its scale independence.

• A non-standard exp(−εr3) is used in some experiments as well. Based on our tests,
in some cases this function leads to more precise curvature estimation and it is also
more suitable for noisy data or inaccurate normals. The only problem is the shape
parameter ε. A constant value can lead to inaccurate results and the loss of the
scale independence. In the proposed solution, a dynamic solution based on edge
lengths in the neighborhood of a center vertex V is used. The shape parameter is
calculated as

ε = l/max3,

where l is an average edge length within the neighborhood and max is the maximal
size of the axis-aligned bounding box (AABB). AABB is fast to compute, but
this solution is not rotation invariant. The user can manually change the object
orientation to be axis-aligned before computing AABB. However, to overcome the
need of user input, one can use an approximation of object-oriented bounding box
(OBB), for details see [BHP01]. The cubic power for max is used because of the
same power in parameter r3. The difference of the constant vs. dynamic selection
of the shape parameter can be seen in Figure 8.1.
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(a) Exact curvature (b) Static ε = 0.001 (c) Dynamic ε

Figure 8.1: Comparison of shape parameters

These two basis functions are the most universal and provide reasonable results with-
out any further data knowledge.

8.1.2 The curvature calculation

The principal curvatures are calculated from Equations in Section (4.3.1). For this task,
we need to obtain gradient of function ∇F (first-order derivative) and components of
Hessian matrix H (second-order partial derivatives of scalar field) from HRBF implicit
function f(x).

The first-order derivative (gradient) of f(x), where x = (x1, x2...xD), x ∈ RD is
evaluated as

∇f(x) = ∑N
i=1 αi [φ′(ri)∇ri] + βi 1

ri
[φ′(ri)] +

[βi · (x− Pi)] (x− Pi) 1
r2

i

[
φ′′(ri)− φ′(ri)

ri

]
,

(8.1)

where N is the size of neighborhood of the evaluated point, ri = ||x− Pi||, φ′(ri) is the
first- and φ′′(ri) is second-order derivative of basis function φ, αi ∈ R are the weights for
points and βi ∈ RD are the weights for normal vector.

The second-order partial derivative of a scalar field f(x) is the Hessian matrix

H =



∂2f
∂x2

1

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xN

∂2f
∂x2∂x1

∂2f
∂x2

2
. . . ∂2f

∂x2∂xN

...
... . . . ...

∂2f
∂xN∂x1

∂2f
∂xN∂x2

· · · ∂2f
∂x2

N

 . (8.2)

Computing this matrix using HRBF, each line can be evaluated similarly to the
gradient. For example,
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∂2f

∂x1∂x3
=

N∑
i=1

(
∂2f

∂x1∂x3

)
i

. (8.3)

For one particular value of the index i = 1, the computation is as follows :

(
∂2f

∂x1∂x3

)
1

= α1
[
φ′′(r1) ∂r1

∂x3
∂r1
∂x1

+ φ′(r1) ∂2r1
∂x1∂x3

]
+

β1
1
r2

1

[
φ′′(r1) ∂r1

∂x3
r1 − φ′(r1) ∂r1

∂x3

]
+

(
β1 · ∂d∂x3

)
A+ (β1 · d)A′

(8.4)

where

d = x− P1,

∂d

∂z
= (0, 0, 1),

A = d

r2
1
C,

A′ = 1
r4

1

[
∂d

∂x3
Cr2

1 + dC ′r2
1 − dC

∂r2
1

∂x3

]
and

C =
[
φ′′(r1)− φ′(r1)

r1

]
,

C ′ = φ′′′(r1) ∂r1
∂x3
− 1
r2

1

[
φ′′(r1) ∂r1

∂x3
r1 − φ′(r1) ∂r1

∂x3

]
.

To express the other terms of the Hessian matrix H (Equation (8.2)), the computa-
tions are similar, only with different partial derivatives.

8.1.3 Data quality

To compute HRBF, we need positions and normal vectors at them. There can be two
types of data at the input of our algorithm.

Exact data

In this case, the input data are noise-free and equipped with exact normals. For this
ideal scenario, the curvature estimation is obtained directly from the derivatives at the
center point P . They are calculated from the HRBF interpolation using Equations (8.1)
and (8.2).
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Approximated normals and noise

In the more common case of imprecise normals, that are estimated from input discrete
data, the curvature calculated directly at the center point P offers poor results, since
the HRBF interpolant reflects the imperfections of the input data. Every input value
is located on the surface and normal vectors at these points match those of the input.
Around these points, the surface is strongly influenced by the noise.

To overcome this problem, we take several samples from the interpolant around the
center point and average them. We have tested uniformly distributed random points
and points generated by Poisson disc sampling (using algorithm of [Bri07]). It produces
points that are tightly-packed, but never closer one to another than a specified minimum
distance (see Figure 8.2). Based on our experiments, the Poisson disc sampling offers
better results than the uniform distribution.

Figure 8.2: Example of Poisson disc sampling

A set of points Ci is randomly generated using a unit disc. This same distribution
is used for every point. The minimal distance between samples influences the total
number of points in the disc. This distance can be selected from the interval 〈0, 1〉. The
experiments with different distances can be seen in Figure 8.3. The good choice which
we have used is 0.3 (this corresponds to approximately 30 points). Larger minimum
distances produce worse results, while the number of generated points is smaller and
thus the estimation runs faster.
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Figure 8.3: Poisson disc sampling and absolute curvature error. Tested with exact,
uniform and Max [Max99] normals for explicit and implicit input data. The recommended
selection of distance is highlighted.

The radius of the disc is scaled to be equal to the average edge length of the entire
geometry. The sampling points Ci are created in a plane which is then mapped onto the
tangent plane of each point P , creating mapped points Cip, at which the curvature is
computed. Note that these points are generally not located on the HRBF surface, i.e.
in fact the curvature of a different isosurface of the implicit function is evaluated. To fix
this problem, the points can be pushed onto the actual interpolating surface using binary
partitioning. The improvement in curvature estimation using this fix is below 1%, while
the computation time grows drastically. Based on this observation, we keep the points
in the tangent plane.

The final computation of principal curvatures K̂1,2 in the center point P is:

K̂1,2 = 1
M

M∑
i=1

K1,2(Cip),

where M is the number of the mapped sampling points Cip and K1,2(Cip) is a function
to compute principal curvatures K1,2 at the point Cip (see Equation (4.12)).

One disadvantage of the presented approach is the need of multiple calculations of
Equation (4.12), which can be slow. Instead of averaging curvatures one can compute
the average of the gradient ∇F and the Hessian H as:

∇F = 1
M

M∑
i=1

∇F (Cip), (8.5)

H = 1
M

M∑
i=1

H(Cip), (8.6)

where ∇F is the average gradient, H is the average Hessian and M is the number of
projected sampling points Cip. The resulting values are used directly in Equations (4.9)
- (4.12) to obtain the final curvature estimation.
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8.1.4 Time complexity

The time complexity of the proposed algorithm is dictated by the solution of HRBF
interpolation.We expect that the solution exists and thus the HRBF matrix is invertible.
The system of linear equations is solved by LU decomposition with a partial pivoting.
Without any further requirements, this can be solved in times close to O(n3). The
HRBF is not solved globally for all points. For each point P , we need only a limited
neighborhood with a number of points equal to m (including central point P ). For each
point, HRBF interpolation involves solving a system of n = 4m equations (see Equation
(3.11) in Section (3.2.2)). The total method complexity is O(N(4m)3), where N is the
total number of points in geometry, i.e. the computation time scales linearly with N .
The N part of calculation is also easy to parallelize, since every point can be processed
separately. The average size of m varies with the size of used neighborhood.

In case of closed triangle manifold mesh with k-ring neighborhood, average values of
m are calculated as:

m = 1 +
k∑

ki=1
6ki.

In the proposed solution, we use triangle meshes with k-ring of sizes 2 and 4, which gives
us 19 and 61 points respectively. For one vertex, the 4-ring version of the algorithm
should be 33 times slower for a solver with O(n3). In the proposed solution, we use
Eigen library [GJ+10]. Based on our experiments, their solver runs with a complexity of
roughly O(n2.8). However, this only holds for large matrices, particularly with sizes over
500× 500. For smaller matrices, which are used in the proposed algorithm, the solution
complexity seems to be dominated by linear and quadratic terms, yielding results closer in
complexity to O(n2). We have measured that a solution of a 244× 244 system is roughly
13.3× slower than a solution of a 76× 76 system. As a result, the whole algorithm is is
approximately 10.1× slower for the 4-ring neighborhood than for the 2-neighborhood.

8.1.5 Limitations

The accuracy of the proposed curvature estimation depends on the quality of the vertex
normals. The proposed method is therefore not directly suitable for noisy data. Such
data is interpolated in the course of the algorithm, which leads to an incorrect surface
reconstruction. Our experiments with regularization of the system matrix did not bring
any significant improvement. The quality of the resulting curvature depends strongly on
the selected basis function. Selecting a proper basis function is not trivial for ordinary
RBF, and for Hermite variant it is even more complicated. There are no universal guide-
lines how to select the basis function that will work for every input dataset. However,
the presented φ = r3 and φ = exp(−εr3) are usually the best overall choice based on our
experiments. A possible limitation is the speed of the proposed solution. Based on the
size of the vertex neighborhood, the number of control points for HRBF can influence the
speed of the surface fitting. This is especially noticeable when using neighborhoods of
size over 4. The total algorithm speed can be significantly improved by a parallelization
of computations, since every vertex can be processed independently.
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8.2 Experiments and results

A comparison of the proposed method on the triangle mesh and the exactly computed
curvature from analytic surfaces is provided. We have not used point clouds directly
because of more problematic neighborhood definition via its size instead of a simpler
k-ring.

The proposed method requires normal vectors as input. The exact unit-length nor-
mals computed from the function itself and normals calculated from the triangle mesh
are compared in tests. For the normal vectors calculated from the triangle mesh, the
average normal (Avg) from all adjacent triangles and the method of [Max99] (Max) were
used. The algorithm was implemented in C++ using the Eigen library [GJ+10]. The
basic implementation of HRBF was adapted from [Vai13]. Mean squared errors (MSE)
of curvature values estimated by the proposed method and other methods are compared
in the following subsections. The results are summarized in tables with the highlighted
best result for every tested function.

8.2.1 Experiments settings

All experiments were primarily done with basis functions φ = r3 and a non-standard
φ = exp(−εr3). As it turns out, φ = r3 is more general, while φ = exp(−εr3) provides
better results for certain data and has tendency to smooth result. We have tested also
other basis functions. For explicit functions and exact normals, an improvement of the
results was achieved with φ = rt for t > 3, where t is odd. However, results using
φ = r3 were more consistent across all tests. The error of the estimation is expressed
as a sum of MSE of K̂1 and K̂2. This corresponds to the error of the mean curvature,
i.e. 0.5(K̂1 + K̂2). However, the Gaussian curvature K̂1K̂2 cannot be expressed by only
taking the error of principal curvatures. The total error of Gaussian and Mean curvature
are therefore generally different. Based on our experiments, however, the MSE results
for both types of curvature show similar behavior. Therefore all included tests are based
on the mean curvature only, computed as a sum of MSE of K̂1 and K̂2. The presented
values are rounded to three decimal places. In the tests, Poisson disc sampling is used.

8.2.2 Curvature estimators

The proposed method has been tested mainly with two types of k-ring neighborhood:
k = 2 (HRBF 2 ) and k = 4 (HRBF 4 ). We have tested Euclidean neighborhood as well.
The size of the neighborhood was selected as a multiple of mesh average edge length.
The results were consistent with k-ring neighborhood for a similar number of points.
Based on this observation, we have included only the results for k-ring neighborhood,
since they are faster to compute and also easier to compare with other state-of-the-art
methods that use k-rings.

The proposed algorithm has been tested against several state-of-the-art methods.
The algorithm from [Rus04] (Rus) was used due to its simplicity, popularity and quite
accurate results. From surface fitting methods, [GI04] (GI ) was used. Input to this
algorithm is similar to our proposed solution. It also requires normal vectors as input
and its results are affected by the accuracy of those normal vectors. For the independence
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on the normal vectors, [Kal+07] (Kal) and a hybrid algorithm [HP11] (HP) have been
tested.

We have also tested [CSM03] (CSM ) and a reference implementation of [CP05] in-
cluded in the CGAL library [PC16]. However, the results of these algorithms were often
much worse than those of other approaches. Therefore we have decided not to include
these results in the tables. A sample of the visual quality of mean curvature estimation
by the proposed solution (with k = 2 and φ = exp(−εr3) and [CP05] is shown in Figure
(8.4). The visual quality of the CGAL solution is rather low.

Some algorithms require additional input settings from the user. Algorithms GI and
HP require the size of the used k-ring neighborhood. In the tests, ranges from k = 1 to
k = 4 were tested and the best result was used for comparison with the proposed method.

(a) Exact (b) HRBF 2 (c) CGAL

Figure 8.4: Comparison of exact, proposed and CGAL mean curvature

8.2.3 Test data

The proposed method has been tested with explicit functions (see Table 8.1) and implicit
functions (see Table 8.2). Apart from exact inputs, we have also tested data with addi-
tional artificial noise: uniform and Gaussian. In order to align the results from meshes of
different size/tessellation, we choose the standard deviation for noise to be the average
edge length. In the experiments with noise, normal vectors were estimated directly from
the noisy data using the Max method. We have not used Avg for noisy data, because
the best possible quality of normal vectors is required.
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Function Interval

f1e = 10 sin(
√
x2+y2)√

x2+y2)
, (x 6= 0), (y 6= 0) x, y ∈ 〈−10; 10〉

f2e = sin(x)cos(y) + 0.1 ∗ (x2 − y2) x, y ∈ 〈−10; 10〉

f3e = 0.1(
√

1 + 100x2 +
√

1 + 100y2) x, y ∈ 〈−1; 1〉

f4e = 0.05(sin(25x) + sin(25y)) x, y ∈ 〈−1; 1〉

Table 8.1: Tested explicit functions

Function Interval

f1i = x4 + y4 + z4 − (x2 + y2 + z2) + 0.4 x, y, z ∈ 〈−3; 3〉

f2i = x2 + y2 + z2 + 10sin(x)− 17 x, y, z ∈ 〈−3; 3〉

f3i = 2sin(x) + sin(y)− x− z2 x, y, z ∈ 〈−3; 3〉

f4i = x4 + y4 + z4 − 1 x, y, z ∈ 〈−3; 3〉

f5i = sin(10x) + sin(10y) + sin(10z) x, y, z ∈ 〈−1; 1〉

Table 8.2: Tested implicit functions

8.2.4 Explicit functions

The surfaces created from explicit functions have been tessellated using Delaunay trian-
gulation in the XY plane. We have tested a tessellation with 10000 points in a rectangle
area of size and position based on the input function (see Tables 8.1 and 8.2). The points
were distributed either on a uniform grid or randomly (using uniform distribution). We
have run the experiments several times using a varying random seed and averaging the
results from all runs.

The results from the uniform grid were similar to the ones with random points. The
only difference for the proposed method was in the size of used neighborhood. For the
regular grids, the results for neighborhood k = 2 were very similar to those obtained
with k = 4. Based on this observation, only random vertex positions were used in the
presented results.

The MSE values represent the error of the proposed method on the triangle mesh in
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comparison with the analytically computed curvature of the input function at the same
point.

Noiseless data

The basis function used in the proposed method is φ = rt. The first test compares the
proposed method using exact normals. In this test, curvature is estimated directly at
each vertex. We can use recommended value of t = 3. However, based on our tests, the
results can be further improved with t > 3, where t is odd. The choice of t depends on
the size of used neighborhood - for k-ring, we have used t = 2k + 1. The results can be
seen in Table 8.3. The second test uses normals calculated with Max. Results can be
seen in Table 8.4. The third test uses normals calculated from vertex positions using the
Avg approach. Results can be seen in Table 8.5.

HRBF 2 HRBF 4 Rus GI Kal HP

f1e 0.007 0.0001 0.054 0.039 0.070 0.136
f2e 0.004 0.0003 0.046 0.022 0.062 0.090
f3e 0.009 0.0001 0.093 0.071 0.121 0.288
f4e 0.346 0.063 4.453 2.773 5.962 9.620

Table 8.3: MSE for explicit data with φ = rt, where t = 2k + 1 exact normals

HRBF 2 HRBF 4 Rus GI Kal HP

f1e 0.059 0.043 0.091 0.057 0.070 0.136
f2e 0.037 0.027 0.067 0.035 0.062 0.090
f3e 0.079 0.064 0.148 0.105 0.121 0.288
f4e 3.160 3.195 5.472 3.237 5.962 9.620

Table 8.4: MSE for explicit data with φ = r3 and Max normals

HRBF 2 HRBF 4 Rus GI Kal HP

f1e 0.079 0.066 0.159 0.087 0.070 0.136
f2e 0.063 0.054 0.125 0.062 0.062 0.440
f3e 0.168 0.164 0.362 0.176 0.121 0.288
f4e 3.590 3.704 6.089 4.476 5.962 9.620

Table 8.5: MSE for explicit data with φ = r3 and Avg normals

We present one sample of the Gaussian curvature estimation MSE in Table 8.6. We
only show results for normals estimated with Max. The distribution of MSE is similar to
the values for mean curvature in Table 8.3.
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HRBF 2 HRBF 4 Rus GI Kal HP

f1e 0.017 0.007 0.019 0.012 0.011 0.016
f2e 0.009 0.006 0.014 0.010 0.012 0.021
f3e 0.117 0.095 0.176 0.109 0.104 0.221
f4e 31.796 32.184 56.721 32.305 60.104 86.823

Table 8.6: MSE of Gaussian curvature for explicit data with φ = r3 and Max normals

The results of the proposed algorithm depend on the size of the selected neighborhood.
As can be seen from the tests, the difference between the k-ring neighborhoods of sizes
k = 2 and k = 4 can be substantial in some cases. However, using a smaller neighborhood
is preferred because of the computational cost. For inaccurate normals, the proposed
algorithm performs worse than for exact normals, but it is still one of the best algorithms.

The selection of basis function can improve quality of results for data equipped with
exact normals. In Table 8.7 we present MSE for curvature estimation based on different
basis functions. All results are created for 4-ring neighborhood. For Max normals, there
is small or no improvement at all and the basis function φ = r3 offers better results.
Based on this, we have not included the results for this test scenario.

φ f1e f2e f3e f4e

r3 0.006 0.003 0.010 0.838
r5 0.0005 0.0003 0.0004 0.154
r7 0.0002 0.0002 0.0002 0.071
r9 0.0001 0.0003 0.0001 0.063

r4ln(r) 0.002 0.001 0.002 0.288
1√

1+(εr)2 0.577 0.501 1.141 21.650

1√
1+(εr)3 0.011 0.007 0.018 1.347

Table 8.7: MSE of curvature for explicit data with exact normals. Tested different basis
function on 4-ring neighborhood.

Noisy data

Our proposed method is designed primarily for noiseless data, however, we have also
tested how the proposed solution works for data with noise. The used basis function is
φ = r3.

Overall, in over half of the tests, the proposed solution outperformed the next best
solution by more than 14. For Gaussian noise with small standard deviation (≤ 0.01 of
the body diagonal length), the proposed method was the best in almost all cases. In
other scenarios the results vary.

100



CHAPTER 8. ESTIMATION OF DIFFERENTIAL QUANTITIES USING
HERMITE RBF INTERPOLATION

8.2.5 Implicit functions

Implicit functions have been tessellated using Marching Cubes [LC87]. We have selected
this algorithm because of its simplicity, which makes it a common first step before im-
plementing more advanced methods. At the same time, Marching Cubes are known for
generating meshes of rather problematic character, with elongated triangles etc., which
makes the curvature estimation all the more difficult. We have used grids of 128×128×128
samples.

We have also tested our implementation with Dual Contouring [Ju+02]. It is an
algorithm similar to Marching Cubes. In this case, the tesselattion points are not located
on the cell edges but inside of the cells. Cell corners are values of voxelized grid. For a
simplified 2D version see Figure 8.5.

Figure 8.5: Comparison of 2D version of Marching Cubes (left) and Dual Controuring
(right). In Marching Cubes, the generated vertices are on the cell edges, while for Dual
Contouring they are inside the cells.

The results for Dual Controuring were similar to those obtained with Marching Cubes.
Therefore we have chosen to include only the results from the Marching Cubes.

Because Marching cubes linearly interpolates the sample values along the regular grid
edges, the resulting mesh vertices generally do not lie on the original implicit surface,
although they are usually very close. In this section, two variants are tested. First,
this non exact version (called original), and second, a modification, where the grid edge
intersections are calculated exactly by binary search using the original implicit function.
The stopping condition is set for function values to be under 10−7.We denote this version
exact.

There is a problem with the direct curvature comparison for the original version. The
curvatures evaluated at sampled vertices are not exactly those of the smooth implicit
surface, although the difference is usually small. Taking this into consideration, we
have used the same approach as for the exact scenario, where estimated curvatures are
compared with curvatures of the input implicit function at the vertex locations. Similarly
to the previous section, we have tested different basis functions. However, the results
were not improved and therefore we have not included these results.
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Original Marching cubes

In this first experiment, the original version of the Marching Cubes algorithm was tested.
The input can be interpreted as slightly noisy, because the extracted isosurface vertices
are not generally located on the actual surface of the implicit function.

We have tested this scenario with interpolant evaluation directly in a point, as well
as with the Poisson disc sampling, because of the noisy character of input tessellation.
Results can be found in Tables 8.8 - 8.10.

HRBF 2 HRBF 4 Rus GI Kal HP

f1i 0.170 0.066 0.199 0.299 0.326 0.290
f2i 0.021 0.005 0.021 0.024 0.035 0.033
f3i 0.031 0.010 0.018 0.041 0.048 0.053
f4i 0.079 0.016 0.043 0.186 0.134 0.077
f5i 0.448 0.165 0.317 0.492 0.691 0.508

Table 8.8: MSE for original marching cubes with φ = exp(−εr3) and "exact" normals

HRBF 2 HRBF 4 Rus GI Kal HP

f1i 0.426 0.387 0.799 0.375 0.326 0.290
f2i 0.061 0.055 0.119 0.037 0.035 0.033
f3i 0.082 0.073 0.152 0.059 0.048 0.053
f4i 0.201 0.158 0.342 0.199 0.134 0.077
f5i 0.889 0.957 1.631 0.737 0.691 0.508

Table 8.9: MSE for original marching cubes with φ = exp(−εr3) and Max normal

HRBF 2 HRBF 4 Rus GI Kal HP

f1i 0.499 0.465 1.113 0.382 0.326 0.290
f2i 0.052 0.049 0.136 0.036 0.035 0.033
f3i 0.068 0.063 0.167 0.055 0.048 0.053
f4i 0.253 0.216 0.515 0.223 0.134 0.077
f5i 0.863 0.818 1.444 0.655 0.691 0.508

Table 8.10: MSE for original marching cubes with φ = exp(−εr3) and Avg normals

For "exact" normals, Poisson disc sampling offered a slightly better estimation. How-
ever, to be consistent with the previous chapter, these results are not included. The
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size of the neighborhood is important for estimation with "exact" normals. The bigger
neighborhood offers almost three times better results. However, for estimated normals,
the improvement is often marginal and the smaller neighborhood is sufficient if we con-
sider its faster computation. Overall, the algorithm for estimated normals for original
marching cubes performs poorly. This is expected, since the data are noisy. Nevertheless,
the proposed solution offers better results than the popular Rus algorithm.

Exact Marching cubes

The results can be found in Tables 8.11 - 8.13. For exact normals, the algorithm out-
performs other methods in a way similar to orignal Marching Cubes version from the
previous subsection. Estimated normals from exact Marching cubes provide generally
more precise results than the orignal Marching cubes version. The results of the pro-
posed method are comparable with the results of GI. Unlike orignal Marching cubes, the
size of the used neighborhood does not affect the results significantly.

HRBF 2 HRBF 4 Rus GI Kal HP

f1i 0.154 0.041 0.195 0.102 0.218 0.301
f2i 0.020 0.004 0.021 0.007 0.019 0.033
f3i 0.029 0.007 0.018 0.019 0.019 0.053
f4i 0.078 0.015 0.041 0.028 0.049 0.070
f5i 0.433 0.160 0.324 0.326 0.341 0.521

Table 8.11: MSE for exact marching cubes with φ = exp(−εr3) and "exact" normals

HRBF 2 HRBF 4 Rus GI Kal HP

f1i 0.131 0.111 0.293 0.154 0.218 0.301
f2i 0.021 0.017 0.058 0.019 0.019 0.033
f3i 0.028 0.022 0.064 0.021 0.019 0.053
f4i 0.114 0.023 0.075 0.044 0.049 0.070
f5i 0.403 0.330 0.688 0.495 0.341 0.521

Table 8.12: MSE for exact marching cubes with φ = r3 and Max normal
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HRBF 2 HRBF 4 Rus GI Kal HP

f1i 0.341 0.320 0.727 0.290 0.218 0.301
f2i 0.046 0.047 0.137 0.30 0.019 0.033
f3i 0.049 0.049 0.146 0.045 0.019 0.053
f4i 0.170 0.112 0.289 0.096 0.049 0.070
f5i 0.605 0.587 1.405 0.600 0.341 0.521

Table 8.13: MSE for exact marching cubes with φ = r3 and Avg normals

Noisy Exact Marching Cubes

We have tested noise with exact version of Marching cubes, since the original version
contains some additional noise by design and we want to have only noise of a certain
type. The used basis function is, again, φ = r3.

The results are not as good as for explicit data. Our proposed solution was in almost
every test outperformed by solutions that do not take the normals into account (HP,
Kal).

Meshes

Apart from numerical comparisons, it is also important to know how the method stands
in visual comparison. For these tests, triangle meshes with unknown exact curvature
were used. Normals of the model were estimated from the triangle mesh using Max.

Curvatures estimated by all methods were mapped to the same interval. This interval
was manually selected. An automatic interval selection could be used with one of the
estimators as a source; however, a manual selection of the interval overcomes problems
associated with outliers. We have tested multiple models from [Sta]. The overall visual
results were similar for all models. Therefore only one illustrative sample is presented -
the Stanford Dragon (300 000 vertices), where the curvature is mapped to the interval
〈−10; 10〉.

For the algorithms with more setup options, the best visual quality result was se-
lected based on our observations. Usually, the results with the best visual quality, which
emphasize the fine details of the mesh, used 1-ring neighborhood. These details were
smoothed out with a bigger neighborhood. The resulting mean curvature estimations
are shown in Figure 8.6.
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(a) HRBF 2 (b) HRBF 4 (c) Rus

(d) Kal (e) GI (f) HP

Figure 8.6: Mean curvature comparison

Comparison of the different basis functions for the proposed algorithm can be seen in
Figure 8.7. The used neighborhood in this case has size k = 2. The selected size did not
affect the results and the final visual impression was nearly identical.

(a) φ = r3 (b) φ = exp(−εr3)

Figure 8.7: Effect of basis function (mean curvature)

With the basis function r3, the final curvature seems more detailed. The second
basis function exp(−εr3) smoothed out some of the fine details. The selection of the
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appropriate basis function is a user decision that can be based on the presence of fine
details in the model.

Summary

From the above tests it can be observed that with exact normals, HRBF greatly outper-
forms the other algorithms. With larger neighborhood, the results can be more accurate
(this is mainly in case of implicit functions), but the computation is slower.

With normals calculated directly from the triangle mesh, the situation is more com-
plex. The proposed solution for noise-free data (explicit functions and exact Marching
Cubes) using Max outperforms other state-of-the-art solutions. For other scenarios, al-
gorithms that do not require normal vectors as input (like Kal or HP) offer better results.

However, for a fair comparison, the proposed solution requires normal vectors and
should be directly compared with appropriate algorithms. The most similar to our so-
lution is GI. The proposed algorithm is slower, but unlike GI, it has stable results with
the bigger neighborhood. With the increased size of the neighborhood, the results are
improved. In the case of GI, a smaller neighborhood can sometimes offer a significantly
better result and the effect of the neighborhood size is quite unpredictable. This is not
the case of the proposed solution.

For noisy data, the proposed solution performs worse. HRBF interpolant created
from noisy inputs interpolates the input noise. However, by using Poisson disc sampling,
an average value from several samples is calculated, which partially smooths the noise.
Still, the proposed algorithm is usually outperformed by the algorithms that do not use
normal vectors, such as Kal or HP. However, among the algorithms that take the normal
vectors into account, our proposed solution ranks among the best and the results are
considerably better than GI.

8.3 Normal vector re-estimation

The curvature estimation algorithms that do not use normal vectors at its input can be
used to improve normal vectors. However, only presented solution known to us describing
this approach, is the algorithm of Kalogerakis et al. ([Kal+07]) - Kal.

Our proposed algorithm can be used to improve the normal vector estimation even
though it requires normal vectors at its input. If we have geometry with estimated
normals, they can be used to create HRBF interpolation and curvature estimation (see
Section 8.1.3). However, an approach similar to curvature estimation can be used to
re-estimate normal vector at a vertex.

For the HRBF input, we use normals estimated with [Max99] (any other normal-
estimation algorithm can be used as well). The HRBF interpolation and Poisson disc
sampling is computed as described in Section 8.1.3. The newly approximated normal
vector n is computed as

∇F =
M∑
i=1

∇F (Cip), (8.7)
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n = ∇F
||∇F ||

, (8.8)

where ∇F is the gradient, ∇F is the average gradient (see Equation 8.5), Cip are the
mapped sampling points (see Section 8.1.3) and n is the new normal vector.

8.3.1 Results

We use Kal approach for a direct comparison with our proposed solution (HRBF2 and
HRBF4 ). We also compare our solution with Avg and Max normals. The basis function
in the proposed method is φ = r3. The test data and settings are the same as for
curvature estimation tests described in Section 8.2.

In the first test, quality of the normal vector is compared against the exact normal
vector calculated directly from the function itself. We have used explicit functions and
implicit functions tessellated with exact version of Marching Cubes algorithm, since we
are able to compare estimated normal vector against the exact normal. For the compar-
ison, average error value ε is computed as:

ε = 1− 1
N

N∑
i=0

(ni · niest) , (8.9)

where N is the number of points, ni is the exact normal and niest is the estimated normal.
Results of ε× 10−4 are summarized in Table 8.14. There is no visible difference between
Max and Kal in table due to rounding of values. However, the real values are not the
same, the difference is approximately at the 10th decimal place. This small difference
is caused by the nature of Kal that can improve normals only for noisy data, while the
input data are noise-free. Partially, this effect can be seen for Marching Cubes algorithm
that adds some small noise even if we have used exact version.

HRBF 2 HRBF 4 Avg Max Kal

f1e 0.979 0.898 5.530 1.533 1.533
f2e 0.736 0.671 3.369 0.813 0.813
f3e 0.104 0.097 0.578 0.132 0.132
f1i 0.130 0.123 4.888 0.895 0.894
f2i 0.022 0.022 1.675 1.996 1.995
f3i 0.038 0.036 1.217 1.362 1.361

Table 8.14: Average normal error ε× 10−4

The second test uses re-estimated normal vector from our proposed solution for cur-
vature estimation. In this test, only estimators that require normal vectors at its input
are tested (Rus and GI ). The used functions and their tessellations are the same as in the
previous test from Table 8.14. Resulting MSE of mean curvature can be seen in Tables
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8.15 (for Rus) and 8.16 (for GI ). One can see that the proposed re-estimated normal vec-
tors significantly improve the curvature estimated with existing state-of-the-art methods
that require normal vectors at their input.

Original HRBF 2 HRBF 4 Avg Max Kal

f1e Rus 0.054 0.072 0.068 0.159 0.090 0.082

f2e Rus 0.046 0.057 0.055 0.125 0.067 0.074

f3e Rus 0.093 0.124 0.121 0.362 0.148 0.148

f1i Rus 0.195 0.219 0.216 0.727 0.293 0.297

f2i Rus 0.021 0.024 0.024 0.137 0.058 0.052

f3i Rus 0.018 0.025 0.024 0.146 0.064 0.054

Table 8.15: MSE of mean curvature estimated with Max for different normal vector
estimation algorithms. Columns represent normal estimation algorithm. Original normal
vector is calculated directly from the input data equation.

Original HRBF 2 HRBF 4 Avg Max Kal

f1e GI 0.039 0.056 0.054 0.087 0.057 0.056

f2e GI 0.022 0.035 0.034 0.062 0.035 0.045

f3e GI 0.071 0.097 0.096 0.176 0.105 0.110

f1e GI 0.102 0.110 0.109 0.290 0.154 0.160

f2i GI 0.007 0.009 0.009 0.030 0.019 0.018

f3i GI 0.019 0.024 0.024 0.045 0.024 0.031

Table 8.16: MSE of mean curvature estimated with GI for different normal vector es-
timation algorithms. Columns represent normal estimation algorithm. Original normal
vector is calculated directly from the input data equation.

The normal vector re-estimation part of the algorithm improves normal vectors and
outperforms other algorithms. In addition, this solution can also be used for point clouds,
while the other algorithms work only for triangulated geometry. In case of triangulated
geometry, there is only a small difference between 2 and 4-ring neighborhoods, therefore
the smaller neighborhood is preferred. Similar observation can be applied to point clouds
as well.
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Chapter 9

Curvature-Based Feature
Detection for Human Head
Modeling

In the field of 3D head modeling and animation, the models are often required to be
enhanced by a set of labels or parameters. Feature points are often needed to mark
important regions of the face. This additional information can be used to animate or
deform the input model.

We have focused on 3D models of faces. They have been widely used in many areas
of computer graphics, e.g., animation, virtual reality, computer games, etc. The models
can be created manually in a modeling software or obtained by 3D scanners. However,
these models are static and need to be equipped with additional properties if they are to
be modified or animated.

A common approach for face modeling is based on feature detection. The features
of the model are areas or points with interesting topological or geometric properties.
Once detected, these areas or points can be used to control the deformation of the model
to achieve the desired output. For human beings, the task to detect features is quite
simple and straightforward. However, to detect the features automatically can be a
challenging task. Algorithms are sensitive to noise and do not have the ability to exclude
less important areas without human interaction or a complex learning process.

In our research, published in [Pra+17], we have found a solution suitable for the
automatic feature detection on triangulated models of human head. The algorithm is
expected to detect not only the main feature regions such as eyes, nose or mouth, but
also the important points within these regions. These points can be selected manually,
but it can be time-consuming, especially if a large database of input models needs to
be processed. An automated solution is required in such a case. The detected features
are further used in deformation-based modeling that was presented by Martínek and
Kolingerová in [MK14].
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9.1 Algorithm

The feature points to detect are selected not based on their anthropology meanings,
but their positions with respect to the further processing of the mesh. The automatic
detection has to be able to find points lying approximately in the given region, but the
detection does not need to be exact, as the deformation method ([MK14]) uses multiple
points at once and works on a Gaussian neighborhood.

9.1.1 Preprocessing

As a preprocessing step, principal curvatures at every vertex of the model have to be
estimated. Any algorithm for curvature estimation can be used. In our solution, we have
tested our Hermite-based solution (see Chapter 8) and Russinkiewicz method [Rus04].

Once the curvatures are obtained, other shape descriptors are then calculated from
the estimated curvature values. The proposed algorithm uses shape index, curvedness,
mean curvature and Willmore energy. Apart from shape index, all the descriptors are
scale-related. To overcome this, the values of the descriptors are linearly mapped to
the interval 〈0, 1〉. To reduce the influence of possible noise in the input data, all de-
scriptors are averaged within an Euclidean neighborhood of size 0.01. This setup have
outperformed other scenarios (including average edge length) for the tested models with
varying resolution.

The presented solution uses a notation with the nose pointing in a positive direction
of the z-axis and the top of the head pointing in a positive direction of the y-axis. The
positive x-axis direction is referred to as the right, while the negative as the left side of
the head. The entire head is also scaled to fit into the box with dimensions 1 × 1 × 1,
without the deformation of the shape. All distances and sizes in the following text are
scaled accordingly. All the values and distance used in the text are obtained via a cross-
validation from several head models.

A prerequisite of the proposed solution is an axis-aligned 3D model of a human head.
However, in many cases, these models are not available. To overcome this, we can create
an axis-aligning ourselves. In the first step, symmetry axis of the head is computed using
Sipiran et al. [SGS14]. Their solution is based on Gaussian curvature which is available to
us. The resulting symmetry plane is not enough to align the head. With only the plane,
we are able to obtain alignment in Y Z plane, but the nose tip is incorrectly positioned
(not pointing in a positive direction of the z-axis). To detect the nose tip (Pnose), we
use solution from Yang et al. [Yan+09]. They can have some false-positive results, but
we are able to reject them based on the detected symmetry plane. The nose tip must
be located on the plane (or very close to it). This assumption will reject false nose tips
candidates that were detected in areas of ears or eyes.

9.1.2 Detection of main anchor points

Three main anchor points have to be detected. Those are: the top of the head Ptop, the
tip of the nose Pnose and the chin Pchin (see Figure 9.1). These points are later used as
anchors for the detection of other points.
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Ptop

Pnose

Pchin

Figure 9.1: Anchor points on a head model.

If we have used axis-aligning, we already have a detected nose tip. Otherwise, for the
axis-aligned input model, the nose tip can be detected using extremal values in a certain
axis. The nose tip Pnose is detected as the point with the maximal z-coordinate.

Next, we need to locate the top of the head Ptop. This point has the maximal y-
coordinate.

The center of the chin Pchin cannot be detected using only extrema. This point is
expected to be one of the points within a cone that is centered at the nose tip and facing
in the direction of the negative y-axis. From all the points that satisfy this condition,
the chin center is located in a close neighborhood of the point with the maximal distance
from the nose tip. A spherical neighborhood with radius 0.6 is used. The center of the
chin is a point from within this neighborhood that has the biggest z-coordinate.

Once the anchor points are detected, they can be used to facilitate the search of the
feature regions.

9.1.3 Detection of other points and regions

The detection of the features can be divided into two parts. The first part detects
important areas of the head – nose, mouth, eyes and ears. For pair organs, it is capable
of detecting separate regions for the left and right organ. The order in which the regions
are detected is mandatory, as the already detected parts are used to improve the detection
of the next ones. This part of the algorithm can be used independently if only the feature
regions have to be detected.

The second part of the algorithm can detect specific feature points inside the areas
found in the first step. From the specific points in the areas, we have selected feature
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points that are further used in [MK14].
To speed up the algorithm, not all points belonging to the feature regions are detected.

A detection radius similar to Poisson disc sampling is used in the proposed solution. If
a newly detected point lies within the radius of an already detected point, the new one
is not added to the feature region.

Eyes

At first, the eye regions and the corresponding feature points have to be detected. These
points are later used to detect other important parts of the head.

The eye regions are detected based on their shape and their relative position to the
already detected anchor points. The eyes are located above the nose, so the vertices with
the y-coordinate below the nose can be automatically rejected. A better approximation of
the position of the eye regions can be achieved by limiting the estimation of the position
to the region between the nose tip and the forehead.

The estimation of the forehead has been set to be 60 percent of the Euclidean distance
between the nose tip Pnose and the top of the head Ptop. From the vertices that satisfy
this condition, eye areas are selected based on the shape of the mesh. Eye areas have
a spherical shape, so their Willmore energy should be minimal. For all vertices Vi that
satisfy the previous conditions, the measure of resemblance to eyes mEi is calculated as
follows:

mEi = Wi|Pnose − Vi|. (9.1)
whereWi is Willmore energy at the vertex Vi and Pnose is the tip of the nose. The first N
points with the biggest value of mEi belong to the eye regions. The value of N is selected
by the user with respect to the tessellation of the model around the eyes. The left and
right eye region can be easily distinguished based on the value of the x-coordinate (in
our setup, the points with x < Pnosex belong to the left region). Once the eye regions
are detected, the required feature points can be extracted (see Figure 9.2). Eye corners
E1 and E2 are found as the points with extremal values in the x-axis.

E1 E2

E4

E6E5

E3

A1 A2

Figure 9.2: Eye feature points.

Once the eye corners are obtained, other eye points can be detected based on the
position of the eye corners. In the proposed solution, two points on the upper and lower
eyelid are searched for. To find these points, two auxiliary points A1 and A2 are inserted
in equidistant positions to the line segment connecting E1 and E2. Eyelid points E3 to
E6 are then selected as the points with the minimal difference in the x-coordinate from
the points A1 and A2 respectively.
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Nose

Nose region detection is simplified by the fact that the tip of the nose Pnose has already
been detected during the detection of the anchor points. The feature region of the nose
is represented by a strip of points located above the nose tip with a certain width in the
x-axis. In the proposed solution, this value is set to be 0.1. To discard the points that
should not belong to the nose region, all the vertices Vi within the strip are assigned the
measure of resemblance to nose mNi :

mNi = SiCi. (9.2)

where Si stands for the shape index at the vertex Vi and Ci is the curvedness at the
vertex Vi. The first M points with the smallest value of mNi belong to the nose region.
The value of M is selected by the user with respect to the tessellation of the nose.

After the nose region is detected, feature points of the nose can be extracted (points
N1 to N8 in Figure 9.3).

N1

N2

N5
N3

N6 N8

N7

N4

Figure 9.3: Nose feature points.

The point N2 coincides with the tip of the nose Pnose that has already been located
in the first step of the algorithm (see Subsection 9.1.2). Another important point to
demarcate is the nose root (point N4 in Figure 9.3). The root of the nose is located ap-
proximately between the eyes, so the position can be predicted as a center point between
the two inner eye corners that have already been detected using the approach described
in the previous section. To detect the root of the nose more precisely, the measure of
resemblance to nose root mNRi is calculated for each vertex Vi from the nose feature
region:

mNRi = SiCi|Ppred − Vi|. (9.3)
where Ppred is the predicted position, Si stands for the shape index at the vertex Vi and
Ci is the curvedness at the vertex Vi. The distance from the predicted position is used to
prevent finding points that are located too far away. The point with the minimal value
of mNRi is marked as the nose root N4.

Similarly, the nose center (point N3 in Figure 9.3) is found using the predicted posi-
tion. The prediction is calculated as the average of the nose tip N2 and the root N4. The
actual center is then the point with the minimal distance from the predicted position.
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The point N1 has to be located under the nose tip N2, so the region that is searched
can be limited to points with lower y-coordinate. Also, the point lies approximately
under the tip of the nose and so only a thin strip of points has to be searched. In the
presented solution, a strip of width 0.004 in the x-coordinate is used. To find the correct
position of the point N1, the measure of resemblance to nose base mNBi is calculated for
each vertex Vi from the predefined strip of points:

mNBi = KHi

di
, (9.4)

where KHi is mean curvature at the vertex Vi and di is the distance between the vertex
Vi and the tip of the nose Pnose in the z-coordinate. The point with the maximal value
of mNBi is the desired point N1.

The points on the side of the nose (points N5 to N8 in Figure 9.3) are localized using
mean curvature and the distance from the points N3 or N4. The measure of resemblance
to the side point msidei

is calculated for each vertex Vi as:

msidei
= KHi

di
(9.5)

where KHi is mean curvature at the vertex Vi and di is the distance between the vertex
Vi and the corresponding feature point (point N3 for the detection of points N5 and N7;
point N4 for points N6 and N8).

For each of the feature points N3 and N4, two points with the maximal value of
msidei

are the desired points. To prevent finding points on the same side of the nose, the
x-coordinate of the detected points is compared to the x-coordinate of the corresponding
feature point.

Mouth

Detection of the mouth and its feature points is very important for the model deformation,
as they are crucial for the changes of expression of the modeled face. In the proposed
approach, four points necessary for basic mouth control are located.

The mouth area is detected in a different manner than the other feature regions. The
region of the mouth is found using four feature points (Figure 9.4) - the corners of the
mouth M1 and M2 and the centers of the upper and lower lip M3 and M4, respectively.

M1 M2

M3

M4

Figure 9.4: Mouth feature points.

Mouth corners are considered to be spherical regions, therefore Willmore energy can
be used to detect them. To avoid the detection of points belonging to other feature
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regions (i.e., eyes, mouth), points must be under the nose tip and above the chin in the
y-coordinate. To detect if a corner is left or right, comparison of the x-coordinate against
the nose tip is used.

The points on the upper and lower lip are detected using a predicted position. The
prediction is defined as an average of the mouth corners M1 and M2. The predicted
point lies between the lips. To obtain the correct points on the lips, maximal position
in the z-coordinate is used. The points that are closest to the predicted position and
have extremal value of the z-coordinate are the centers of the lips. The upper M3 and
lower M4 lip points are distinguished based on the comparison of the y-coordinate and
the predicted center.

Once the four feature points are detected, an axis-aligned bounding box (AABB) is
created around them. Mouth corners have minimal, while lip points maximal depth, so
the whole mouth can be enclosed within the created AABB.

During the detection of the mouth area, four feature points have been found. More
points can be located in a way similar to the location of eyelids, as described in Eyes
Section, by using predicted anchor points.

Ears

The detection of the ears is usually less important than the detection of other regions,
as the ears can often be hidden under hair or some kind of headwear. However, in
deformation-based face modeling, the detection of ears may be important to allow the
modification of the position of the ears.

An ear is detected based on its helix that has the maximal curvedness. To eliminate
other possible points with large curvedness, such as the points on the front part of the
face, distance in the x-axis from eye corners is used. Ears are the most distant points
with the maximal curvedness. For the left ear, the right eye inner corner is used (and
vice versa for the right ear). The final weight mRi is calculated for each vertex Vi as:

mRi = Ci|Vix − Ex|, (9.6)

where Ex is the x-coordinate of the corresponding eye corner, Ci is the curvedness at
the vertex Vi, and Vix is the x-coordinate of the vertex Vi. The first N points with the
maximal value of mRi belong to the ear region. The N is selected by the user with
respect to the tessellation of the ear.

To detect the feature points of the ear (see Figure 9.5), an axis-aligned bounding box
(AABB) enclosing the ear feature region is used. The points R1 to R4 are detected as
the closest points to the corresponding corners of the outer side of the AABB. The point
inside the ear (point R5) is estimated as the point with the minimal distance from the
average of the points R1 to R4.
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R4

R3

R2 R1

R5

Figure 9.5: Ear feature points.

9.2 Experiments and results

In this section, the results of the proposed method will be shown. For the tests, head
models created using a 3D modeling software are used. This is due to the further use of
the points detected by the proposed solution for deformations, that can be utilized for
example in computer games.

The comparison with an existing state-of-the-art methods cannot be directly con-
ducted. Existing methods are mostly designed to detect different feature points. Our
feature points are based on the need of further deformations. Many existing method
detect points based on anatomical properties or they detect only certain points. Solution
suitable for our needs could be one of the algorithms based on training data (such as
[GSM15]). However, we were not able to train the algorithm because of the small set of
training data. We are not in possession of hundred of heads, that have manually selected
feature points required for the training process.

The presented results compare automatically detected points with manually selected
ones that were designed to fit the needs for further use in deformations. The deformations
with the detected points are presented as well.

Similar to [CSJ05], the proposed method is capable of handling a small deviation
from the axis-aligned state (approx. 10◦). Based on our tests, this is sufficient if the
input model is not aligned and alignment must be computed as proposed. The required
maximal deviation is in the limit of error produced by the proposed align method.

9.2.1 Regions

The detected regions are based on the vertices that belong to them. We use a Poisson
disc sampling to influence the number of points in each region; different sampling radii
are used for different regions. Smaller radii are used for the ears and the eyes, greater
for the nose and the mouth. This is due to the tessellation of the mesh in the given
region. The ears and eyes usually have a very detailed geometry to record eyelids and
large curvatures of ears, while the mouth and the nose consist of relatively simple regions.

The results of the region detection are shown in Figure 9.6 and Figure 9.7. It can be
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seen that the detected regions correctly capture the position of the desired features of a
human head.

Figure 9.6: Detected feature regions (front view).

Figure 9.7: Detected feature regions (side view).

9.2.2 Feature points

To verify the results of the proposed solution, we compare the results of the proposed
algorithm with the points manually placed by an expert user. The results are captured
in Figure 9.8 .

117



CHAPTER 9. CURVATURE-BASED FEATURE DETECTION FOR HUMAN
HEAD MODELING

Figure 9.8: Manually inserted (left) and automatically detected (right) feature points.

It can be seen that the positions of the detected and the manually inserted points
slightly differ. However, as the intended use of the detected points is for the use in the
deformation-based modeling, the accuracy of the detection is sufficient.

9.2.3 Deformations

The purpose of the feature points extraction using the proposed method is to facilitate
the initialization of the model for the use in deformation-based head modeling [MK14].
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To validate our results, we compare the results of the mesh deformation using the de-
tected feature points to the models deformed via feature points defined manually by an
expert. Figure 9.9 shows several examples of a deformation of the mouth, using both the
detected and the manually defined feature points. Similarly, Figure 9.10 shows examples
of deformations of nose, chin and ears. Each of the transformed models was created using
a single deformation of the same magnitude for both sets of feature points.

Figure 9.9: Head model deformation using feature points. Models created using manually
inserted (top row) and automatically detected points (bottom row). Face expression
(from left to right): original model, happy face, sad face, wide mouth.
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Figure 9.10: Head model deformation using feature points. Models created using man-
ually inserted (top row) and automatically detected points (bottom row). Head defor-
mation (from left to right): original model, prolonged ear lobe, prolonged chin, enlarged
nose.

Figure 9.11 shows an example of a complex mesh deformation using multiple defor-
mations of multiple face parts. The same sequence of transformations was applied to the
model using manually defined points and to the model using the automatically detected
points. The results of the deformations are presented in Figure 9.11. As can be seen in
Figure 9.11, the results are very similar, although not exactly the same (e.g., note the
length of the nose). This comes from the fact that the positions of some of the feature
points are not strictly defined, but are just an approximation of an important region. To
define a position of such points (e.g., the points on the side of the nose N5 to N8) can be
a challenging task even for an expert placing the points manually.

Figure 9.11: Example of a transformed head model. Original model (left), model de-
formed using manually inserted points (middle) and model deformed using automatically
detected feature points (right).
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Chapter 10

Symmetry-aware registration of
human faces

Global registration of partially overlapping parts of the same model is a well-known
problem in the field of computer graphics and geometry processing. An object is scanned
from several viewpoints, which leads to several partially overlapping data sets. The goal
is to find transformations that align these data sets and obtain a complete model which
can be further edited or directly printed. To register data sets, overlapping areas have to
be found. This task may be simple for a human being, because our brain connects the
parts based on previous knowledge of the shapes and types of objects we are registering.
However, to automate this process is not straightforward, and many algorithms were
proposed for this task.

A commonly used approach consists of two main steps - first, a simplified description
of local neighborhoods is created, and then it is used to find a transformation that aligns
the parts. The creation of simplified description is essential for the speed of algorithms.
Usually, we do not calculate the description for every point, but only for a subset of points.
This description is often called a feature vector (or descriptor). It is a vector with a fixed
number of elements, which depends on the used algorithm. The feature vector essentially
holds condensed information about the neighborhood. For example, the vector can be
created using information from local angles, curvatures, normal vectors, distances, colors
etc.

In the second step, the created feature vectors are used to find similar parts, based
on the difference of the corresponding feature vectors (euclidean distance or dot product
of normalized feature vectors can be used for this purpose). Identified similar parts are
then used to find a transformation that aligns them. The alignment is often not accurate,
and may be further improved by a local registration algorithm, such as Iterative Closest
Point (ICP) [BM92].

We have presented several state-of-the-art solutions for a registration of partially
overlapping parts in Chapter 6. However, for symmetrical models, such as human heads,
these solutions yield the same feature vector for the symmetric, yet not identical parts
of the same object, leading to an incorrect registration - see Figure 10.1. We have came
across this problem while working on our research presented in Chapter 9. To overcome
this problem, we have proposed a solution based on a symmetry-aware feature vector.
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Our solution was presented in [PVK19].

(a) (b) (c)

Figure 10.1: a) Original data of a human head; b) Left and right part of the human head;
c) An incorrect registration of the two parts.

10.1 Proposed solution

Based on our observations, we propose an algorithm to distinguishing left and right parts
in models involving symmetries. The proposed algorithm is based on the current state-
of-the-art method Fast Global Registration by Zhou et al. [ZPK16]. This approach
uses the FPFH descriptor [RBB09], which is widely used and easy to implement. We
have improved this feature vector by adding the symmetry information. The following
registration process of finding the transformation itself is adopted from [ZPK16]. The
proposed feature vector modification can be used with other registration algorithms as
well, not only FPFH within FGR. Our proposed solution fits directly into other existing
pipelines, since only the feature vector is changed and the rest of the registration process
remains unaffected.

In our proposed solution, we have created two different approaches for differentiation
of symmetry. The first approach is based on interaction of the local shape with a strongly
orientation-dependent vector field. The second approach is based on curvature estimation
and a local coordinate system created in the directions of the normal vectors and the
extremal curvatures. Both versions lead to a signed value that represents direction of
flux (a volume that goes through a surface in a certain direction) or a signed volume.
Based on the sign, we can distinguish symmetric geometry parts.

10.1.1 Vector field

Our first approach is based on analyzing the local shape using a symmetry-aware vector
field. Having a surface and a vector field that goes through it, we can calculate the flux.
It describes the quantity which passes through a surface and based on the direction of
the vector field and orientation of the surface, it has either positive or negative sign. We
can utilize this knowledge to distinguish orientation of the local surface. Symmetric parts
will have opposite signs and this can be used for the feature vector modification.

The initial derivation is based on a triangle mesh, however, this approach can be used
for point clouds as well. First, we describe the solution based on a triangle mesh and
later explain its modification for a point cloud.
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Triangle mesh

We want to calculate the feature vector at a vertex P (equipped with the normal vector
nP ) of an input triangle mesh. We define a vector field as a vector function

v(X) = (P −X)× nP (10.1)

The entire setup with a few points Xi can be seen in Figure 10.2.

nP

v(X1)

v(X2)

v(X3)

v(X4)

v(X5)

X1

P

X2

X3

X4

X5

Figure 10.2: A local neighborhood with a few sample points Xi and vector field values
at them.

Our goal is to integrate the dot product of this field with triangle normals over all
neighboring triangles. For i-th triangle, we compute the following integral:

Fi =
�

4i

v(X) · nid4i (10.2)

where ni is the normal of the i-th triangle. Finally, we sum these values over all triangles
in a local neighborhood as

Fs =
∑
i

Fi (10.3)

Points X in a triangle can be parameterized by scalars r and s as:

X = Ai + r(Bi −Ai) + s(Ci −Ai) (10.4)

where Ai,Bi and Ci are vertices of the triangle that contains X, r ∈ R and s ∈ R are
parameters fulfilling the conditions r + s = 1 and r, s ≥ 0.

To calculate the integral (10.2), we have to change the bounds of the integral. From
the integral over the area of triangle 4i, we get the integral based on the previously
defined parametric function in Equation (10.4) with parameters r and s:
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Fi =
1�

r=0

1−r�

s=0

v(Ai + r(Bi −Ai) + s(Ci −Ai)) · niJi dsdr (10.5)

where Ji is the Jacobian associated with the change of the integral bounds and it is equal
to Ji = ||(Bi−Ai)× (Ci−Ai)||. The integral from Equation 10.5 can be rewritten using
Equations 10.1 and 10.4 to:

Fi = Ji

1�

r=0

1−r�

s=0

(P × nP · ni −Ai × nP · ni

−r(Bi −Ai)× nP · ni
−s(Ci −Ai)× nP · ni)dsdr.

(10.6)

To simplify Equation 10.6, we use a substitution:

αi = (P −Ai)× nP · ni,
βi = −(Bi −Ai)× nP · ni,
γi = −(Ci −Ai)× nP · ni,

(10.7)

which leads to

Fi = Ji

1�

r=0

1−r�

s=0

(αi + βir + γis)dsdr (10.8)

that is rewritten as:
Fi = 1

6Ji(3αi + βi + γi). (10.9)

After the removal of substitution from Equation 10.9, we end up with a solution

Fi = 1
2Ji(P − Ti)× nP · ni, (10.10)

where Ti is a centroid of a triangle AiBiCi, i.e. calculated as Ti = 1
3(Ai +Bi + Ci).

If we compute the triangle normal ti as (Bi − Ai) × (Ci − Ai), then Equation 10.10
can be further simplified to

Fi = 1
2(P − TAiBiCi)× nP · [(Bi −Ai)× (Ci −Ai)]. (10.11)

Point cloud modification

Application to point clouds without connectivity is possible if we interpret the data as a
dual representation. We can think of the input points as centroids of virtual triangles,
while the actual vertices are unknown. The idea is visualized in Figure 10.3: Figure 10.3a
shows the standard way, where points Pi (blue color) of the cloud are taken as vertices
of triangles and centroids (green color) are calculated from them, Figure 10.3b shows the
dual interpretation, where the points Pi (blue color) are used as centroids directly.

124



CHAPTER 10. SYMMETRY-AWARE REGISTRATION OF HUMAN FACES

(a) (b)

Figure 10.3: a) Point cloud Pi (blue points) as triangulation with green centroids of
triangles; b) Points Pi of cloud (blue points) are used as centroids of “virtual” triangles.
The yellow points are just for illustration of one possible “virtual” triangulation of the
neighborhood.

For the point cloud modification, the overall triangulation is not required. We use
only points Pi with their normal vectors that are used as normal vectors of the “virtual”
triangles. The result can be improved if we have available non-normalized normal vectors
that hold the information about the area of virtual triangle. This is similar to the
Jacobian in the triangle mesh solution. If unit-length normal vectors are used, the virtual
triangles are considered to have equal area. Based on this, we can directly use the
Equation 10.11 and get the final solution for a point cloud as:

Fi = 1
2(P − Pi)× nP · ni. (10.12)

The result is influenced by the size of the neighborhood. A comparison of different
neighborhood sizes is shown in Figure 10.4, which shows the point cloud modification.
Near similar results were acquired using a triangle mesh, and therefore they are not
included.

It can be seen that with the increasing neighborhood size, the separation of parts
is more visible. The sign of the obtained values does not unambiguously identify the
right/left side even for large neighborhoods. However, this is actually not our goal. More
importantly, parts differing only by symmetry have a different sign and can therefore be
distinguished.

Figure 10.4: Comparison of different neighborhood sizes for vector field flux. Blue color
indicates negative flux, red is used for positive values. Neighborhood sizes are taken in
percents of bounding box size. From left to right: 7%, 14%, 21%, 28% and 42%
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10.1.2 Curvature

The second proposed approach is based on curvature estimation. It can be used for
a triangle mesh or a point cloud. Curvature is used to identify “interesting” points
(minimal or maximal curvature). These points are used to create triplet of vectors (a
local coordinate system) that defines a parallelepiped. Sign of its volume is used to
identify symmetrical parts.

There are many algorithms for a curvature estimation of sampled surfaces (for a recent
survey, see [Váš+16]) and the selection of one depends on estimation circumstances, such
as type of input data, quality of the input, required performance and others.

Given the points of an input point cloud, where we want to calculate a feature vector,
for every point P (equipped with the normal vector n) we find its neighborhood. The
size of the neighborhood can be selected. In our proposed solution, we have used the
same size as for the feature vector calculation algorithm (for example [RBB09]).

Points with the maximal (Pmax) and minimal (Pmin) value of mean or Gaussian
curvature are found within the neighborhood. These points are used to create a triplet of
vectors: n,u = Pmax − P ,v = Pmin − P . The triplet can be used to calculate the signed
volume Vsmean/Gauss

of a parallelepiped, see Figure 10.5, as :

Vsmean/Gauss
= n · (u× v), (10.13)

where the mean or Gauss index is used to distinguish the type of extrema used for
calculation of u and v.

Figure 10.5: The triplet of vectors n, u and v and indicated signed volume of a paral-
lelepiped

The sign of the volume is swapped for reflected parts, because the points Pmin and
Pmax are reflected as well. However, due to the differences in the neighborhoods for
left and right part, the positions of extrema are not guaranteed to be the same. which
can lead to incorrect results. To overcome this problem, a possible solution is to divide
the space into bins, find the bins with the extremal averages of curvature and use the
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centroids of the bins to construct the vector triplet. We have created bins from the
volumetric sphere centered around the point P . A simplified 2D scenario can be seen in
Figure 10.6.

Figure 10.6: Bins around the center point P . Two bins with the extremal average
curvatures are highlighted

The curvature based solution for distinguishing left and right part behaves differently
from the vector field based approach. The comparison of detected left/right parts for
different neighborhood sizes can be seen in Figure 10.7. We have used the same sizes
as for vector field comparison in Figure 10.7 and both figures can be compared to each
other. In case of the curvature-based solution with the increasing neighborhood size, the
quality of the result is lower. For sizes above 25%, the results are generally incorrect and
not usefull for symmetry-aware registration. This incorrectness is caused by the large
smooth areas with few details where small numerical error can change the vector triplet
and results in incorrectly signed area.

Figure 10.7: Comparison of different neighborhood sizes for signed volume. Blue color
indicates negative volume, red is used for positive values. Neighborhood sizes are taken
in percents of bounding box size. From left to right: 7%, 14%, 21%, 28% and 42%

10.1.3 Symmetry-aware feature vector

Once we have calculated the signed representation of the neighborhood, as presented in
subsections 10.1.1 and 10.1.2, we can use it to modify the feature vector. For the simplest
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modification, we can use only a sign of the calculated value, because we only need the
sign to distinguish shape orientation. However, in our experiments, this approach was
not very accurate. For detailed symmetric parts of a head, such as the ears, one side
can contain both positive and negative values. This is often influenced by the size of the
neighborhood used to calculate the signed representation. However, the same parts on
the left and right part of the head have opposite signs.

There are many ways how to modify the feature vector. We have tested several pos-
sibilities that either combine together the two representations (presented in subsections
10.1.1 and 10.1.2) or use them separately. Attaching the value to the end (or beginning)
of the feature vector offered only a small amount of new information and did not improve
the results. Therefore we have also considered multiplying the feature vector to include
the sign together with the value. In some cases, further attaching other calculated value
to the end of already multiplied feature vector further improved the results.

From all the tests, we have selected the ones that provide the best overall quality.
In every modification, we compute the FPFH [RBB09]) feature vector and use either Fs
from the Vector Field (subsection 10.1.1), Vsmean from mean curvature or VsGauss from
Gaussian curvature (subsection 10.1.2) to modify the vector as:

1. multiply FPFH by Fs and append Fs to the end

2. multiply FPFH by Fs and append Vsmean to the end

3. multiply FPFH by Fs and append Fs, Vsmean and VsGauss to the end

4. multiply FPFH by Fs and append Vsmean and VsGauss to the end

10.2 Experiments and results

We have used one of the current state-of-the-art methods [ZPK16] as a baseline. This
method uses FPFH feature vector to obtain the final transformation and in some cases, it
leads to an incorrect alignment of two parts if they contain symmetric parts. For example,
if we try to register two overlapping parts of the human head, the ears are detected in
both parts with similar feature vectors, which affects the final transformation. See again
Figure 10.1 for such an example.

10.2.1 Test data

We need an automatic evaluation of registration quality. For this purpose, the correct
registration has to be known. Therefore, instead of using scanned data, we have recreated
partially overlapping parts from complete models. In our tests. We have used point clouds
as well as their triangulations.

To create overlapping parts from a complete model and simulate a scanning device,
we use the following steps.

• The plane of symmetry is found.

• The plane is randomly rotated around the coordinate system axes in the interval
< −30°, 30° >.
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• The plane is shifted in the positive or negative direction of its normal vector. Shift
distance depends on the model size and the size of the overlap we want to achieve.

• Vertices in one half-space of the plane are discarded.

However, in this scenario, data can be matched 1:1 - e.g. there are points in both halves
that can be exactly matched. To overcome this, we have added noise to the data. For
triangle meshes, Loop [Loo87] subdivision scheme followed by a mesh simplification with
added Gaussian noise was used. For point clouds, we have only added Gaussian noise.

If used data were a point cloud, only points within the tested radius were used for
calculations. For triangle meshes, the radius usually intersects triangles. In this case, we
have split the triangles and used only the triangle parts fully included in the neighborhood
radius.

10.2.2 Comparison metric

To compare the registration results, we have used a metric based on [Pot+06]. From the
two parts that are used for the registration, one (called a model P ) is at a fixed position
and the other (called model Q) is transformed with a random translation and rotation.
Inverse of this transformation will put the model to a position Q1 in which it is correctly
registered with the model P .

We have obtained the registration matrix from the registration algorithm ([ZPK16]
in our case) and transformed the model Q with this matrix which led to the position
Q2. For a perfect registration, Q1 and Q2 are the same. To measure the deviation from
a perfect registration, we compute distances between the corresponding vertices of Q1
and Q2. The lower the distance, the better the alignment of Q2 with respect to its true
position Q1 is. The sum of distances is divided by the number of vertices and normalized
by the data radius, making the sum scale-independent, although not necessarily in the
< 0, 1 > interval.

Based on our observations, the resulting values can be interpreted as follows: values
under 0.1 can be considered a correct registration result, values between 0.1 and 0.6 are
registered very roughly but the overall shape can be recognized and, finally, values above
0.6 indicate an incorrect registration and the result is on par with a random matrix.

10.2.3 Tests

The core of the tests is based on the FPFH descriptor. We have used several radii that are
based on the average number of points that fall within. We have started with 10 points
and ended with a neighborhood of the size 160 points, using a step of 10 points. From
the number of points, we have calculated the average radius size of the geometry and this
radius was used for FPFH. The radius was different for each tested model, depending on
the model scale and sampling density.

In our experiments, we have used the same radius for both FPFH calculation and
for the calculation of neighborhoods for the proposed methods from subsections 10.1.1
and 10.1.2. We have tested different sizes of neighborhoods as well. However, for smaller
neighborhoods the results were often similar to a flat surface. There were certain precision

129



CHAPTER 10. SYMMETRY-AWARE REGISTRATION OF HUMAN FACES

improvements with neighborhoods of a larger size, but the computation times were longer.
As a trade-off between quality and speed we have selected using neighborhoods of the
same size.

We have created an automated test scenario, where the input model is randomly
divided into two overlapping parts (see subsection 10.2.1). For every split, we have com-
puted metrics for every variation of the feature vector modification proposed in subsection
10.1.3. The basic solution taken from [ZPK16] was able to correctly register only about
40% of our input test cases, while the rest was registered incorrectly (with metric values
being above 0.1).

We have conducted several thousand tests with different models of human heads and
faces. For the tests, we have used a triangle mesh and a point cloud representation of
the input model. The overall results were roughly the same for both approaches and
correspond with averaged results. These overall averaged results are presented in Table
10.1. The method number in the first column of the table corresponds with the feature
vector modification method number from subsection 10.1.3. The symbol ”− ” marks the
original [ZPK16] method without any modification. The table shows the percentage of
correct registrations for three different neighborhood sizes (10, 60 and 150). Note that
the globally low success rate in general is caused by an automated data creation, which
often leaves only a small overlap.

Method Size 10 Size 60 Size 150
- 41% 43% 34%
1 44% 42% 28%
2 48% 45% 33%
3 51% 50% 31%
4 55% 49% 36%

Table 10.1: Comparison of successfully registered input cases based on different points
count in the neighborhood

From the tests, we have observed that with the increasing neighborhood size, the
results were improving only to a certain threshold. The quality of the registration began
to decrease for a neighborhood calculated from around 60 points, probably because the
descriptor was constructed from a too large area. For a human head, it often means that
a large part of the descriptor is based on smooth surfaces located on cheeks, forehead
or chin. In these cases, the basic FGR algorithm offers better results and the proposed
improvement often leads to a worse registration outcome.

The visual comparison of results can be seen in Figure 10.8. The original data (Figure
10.8a) differs from the best registration result (Figure 10.8d). This difference is caused
by the data modification described in Subsection 10.2.1. The difference between Figure
10.8c and Figure 10.8d is mainly in the nose area. The two parts in Figure 10.8c are
registered very roughly and there are many intersections of the two parts along their
overlap. In Figure 10.8d the registration is correct with a smooth transition from one
part to another. The missing parts at the top and bottom of the model are caused by
the automated data creation.
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(a) (b) (c)

(d)

Figure 10.8: Visual comparison of results; a) Original data; b) Incorrect registration using
only [ZPK16] with error = 1.578; c) The proposed registration with error = 0.192; d)
The proposed registration with error = 0.074

10.2.4 Limitations

The proposed algorithm has certain limitations. Some of them are globally related to
the registration itself. If the overlap of two parts is too small, the resulting registration
is often incorrect. The same goes for too much noise in the data.

The main problem of the proposed solution is selecting optimal feature vector modifi-
cation. Depending on the data, one choice may be considerably better than others. This
is currently solved manually, when the user has to check if the registration is correct. If
not, the user must dismiss the registration result and another version of feature vector is
automatically used. In the future research, we would like to focus on this part and create
an automated system that can distinguish an incorrect registration automatically and
eventually choose another feature vector. We have already experimented with solutions
based on projections of geometry to 2D plane and comparison of the projected depth
values, but the results are currently not reliable.

Another problem are the input data themselves. Our current solution is only suitable
for a limited set of data - scans of human heads. We have also tested general models
with symmetries, however, the quality of registration was not globally improved with our
algorithm. In some cases, the results were correctly registered with results similar to the
ones for human heads, but most of the time there was no improvement.
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Conclusion

This thesis presents the problem of shape characteristics with the main focus on curvature-
based solutions. Curvature is one of the basic geometry descriptors and is widely used.
Based on curvature we are able to better understand the surface properties and use them
for various applications. These can be visualizations, registration, geometry deformations
etc.

One of the contributions of this thesis is an algorithm for real-time curvature esti-
mation that allows an interactive data editing with an immediate result. This field is
not widely researched but still important. During interactive geometry editing, users
prefer fast estimation over the overall quality. Our proposed algorithm achieves the best
performance with respect to the quality among the existing solutions.

From our point of view, the most important contribution is a high-quality curvature
estimation. This solution is targeted for a high quality data and for them, the results
are significantly improved over existing algorithms. This algorithm can be used as a last
step after the user has finished the interactive geometry editing and wants the highest
possible curvature estimation at a price of a longer time.

A practical use of the proposed curvature estimation algorithms is presented in our
remaining methods. Curvature can be used for a detection of feature points. In our
presented algorithm, we use curvature to detect points on a human face. These points
are used as a base for anchor points for deformations. These deformations have a wide
range of use cases, such as an interactive editing of players characters in computer games,
3D modeling, an automatic aging process etc.

At last, a symmetry-aware method for the registration of a human head model was
presented. This approach is based on our previous research where the data were obtained
from a scanning device. However, in many cases, the scanned parts have to be registered
manually, since the automatic solutions failed for symmetrical parts. The proposed al-
gorithms deal with this problem by the use of curvature and vector fields. The major
advantage of this approach is that the improvement can be included as an additional
information to existing state-of-the-art feature vectors and the rest of the registration
process can be preserved.

There is a lot of space for a future work. Each of the presented algorithms has
some weaknesses and limitation. These issues are discussed in separated sections of each
algorithm description. The main issues are usually connected with a narrow specialization
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of methods. For example, the symmetry registration is targeted to human head datasets,
the precise curvature estimation requires robust normal vectors etc. These limitations
are partially based on the problem definition where the proposed method is a working
solution for the given type of input data.
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