
PLZEŇ, 2019 ONDŘEJ HAVLÍČEK 

 

Západočeská univerzita v Plzni 

Fakulta aplikovaných věd 

Katedra kybernetiky 

DIPLOMOVÁ PRÁCE 

  



   

 

2 

 

  



   

 

3 

 

 

  



   

 

4 

 

P R O H L Á Š E N Í  

Předkládám tímto k posouzení a obhajobě diplomovou práci zpracovanou na závěr studia na 

Fakultě aplikovaných věd Západočeské univerzity v Plzni 

Prohlašuji, že jsem diplomovou práci vypracoval samostatně a výhradně s použitím odborné 

literatury a pramenů, jejichž úplný seznam je její součástí. 

V Plzni dne 24.05.2019 

.………….…………………  

vlastnoruční podpis  

Poděkování 

Tímto bych chtěl poděkovat vedoucímu mé diplomové práce, panu Ing. Ondřeji Severovi, za 

jeho odborné vedení, za podnětné návrhy k práci a za čas, který mi byl ochoten věnovat. Dále 

bych také rád poděkoval panu Ing. BSc Dmitry Kochubey, za jeho vedení, rady a pomoc při 

řešení odborných problémů během diplomové práce a také panu Dipl.-Ing. Johannes Heinrich 

Hofmann, který mi umožnil uskutečnění této diplomové práce ve spolupráci se společností 

Siemens. Na závěr bych chtěl poděkovat mé rodině za to, že mi poskytla výborné zázemí pro 

studium na vysoké škole a psaní této diplomové práce. 

  



   

 

5 

 

Abstrakt 

Tato práce se zabývá integrací rozšířené reality do procesu virtuálního uvádění do provozu. 

Práce popisuje jednotlivé kroky obvyklého uvádění do provozu a posléze popisuje kroky 

modernějšího procesu virtuálního uvádění do provozu, který se snaží využívat nově 

vznikajících technologií. Na několika skutečných příkladech demonstruje využitelnost virtuální 

a rozšířené reality v průmyslu a následně navrhuje, jak využít rozšířenou realitu v podobě 

Microsoft HoloLens brýlí v procesu virtuálního uvádění do provozu. Navržené řešení zobrazí 

pracovní zóny a 3D model v HoloLens aplikaci, která po zobrazení umožní i úpravu těchto zón 

a synchronizuje je s ostatními programy. Výsledné řešení se skládá ze serveru, který běží na 

PC, a HoloLens aplikace, která komunikuje s tímto serverem přes Wi-Fi pomocí TCP soketů. 

Aplikace využívá funkcí programu NX MCD, kde se vytváří a exportují modely, a programu 

TIA Portal, kde se definují pracovní zóny, se kterými se pak následně pracuje v řídícím 

systému. 

Klíčová slova: HMI, HoloLens, Rozšířená realita, Virtuální uvádění do provozu. 

Abstract 

This thesis investigates the integration of augmented reality into the digital workflow of virtual 

commissioning. The thesis describes the stages of regular workflow of commissioning and then 

it describes the improved process of the virtual workflow of commissioning that uses newly 

emerging technologies. It demonstrates the applicability of virtual and augmented reality 

applications on several real-life use cases and then it proposes a solution to utilize the 

augmented reality via Microsoft HoloLens smartglasses. The proposed solution visualizes 

workspace zones and a 3D model using the HoloLens application that enables to adjust these 

workspace zones and synchronize them with other programs. The final solutions then consist 

of a server application running on a PC and HoloLens application that communicates with the 

server over Wi-Fi using TCP sockets. The application uses functions from the NX MCD 

program where 3D models are created and exported, and from TIA Portal where the workspace 

zones are defined and then used in a control system. 

Keywords: HMI, HoloLens, Augmented Reality, Virtual commissioning. 

 

 



   

 

6 

 

Table of Contents 

1 Introduction ......................................................................................................................... 8 

1.1 Workflow of Commissioning ...................................................................................... 9 

1.2 Siemens’s Virtual Workflow of Commissioning ...................................................... 11 

1.3 Virtual Reality Use Cases .......................................................................................... 12 

1.4 Augmented Reality Use Cases .................................................................................. 13 

2 Problem Definition and Analysis ...................................................................................... 15 

2.1 Problem Definition .................................................................................................... 15 

2.2 Problem Analysis ....................................................................................................... 15 

2.2.1 Use Case Specification ....................................................................................... 17 

3 Technologies Used ............................................................................................................ 19 

3.1 Unity .......................................................................................................................... 19 

3.1.1 Unity editor ........................................................................................................ 20 

3.2 Vuforia Engine .......................................................................................................... 20 

3.3 HoloLens (1st gen) ..................................................................................................... 23 

3.3.1 Mixed Reality ..................................................................................................... 23 

3.3.2 HoloToolkit ........................................................................................................ 24 

3.4 Sockets ....................................................................................................................... 24 

3.5 Pipes ........................................................................................................................... 25 

3.6 TIA Portal .................................................................................................................. 25 

3.6.1 TIA Openness ..................................................................................................... 27 

3.7 NX MCD ................................................................................................................... 28 

3.7.1 NX Open ............................................................................................................ 28 

4 Kinematics ........................................................................................................................ 29 

4.1 Kinematic Description of an Object in 3D Space ...................................................... 29 

4.1.1 Position ............................................................................................................... 29 

4.1.2 Rotation .............................................................................................................. 30 



   

 

7 

 

4.1.3 Quaternion .......................................................................................................... 33 

4.2 Converting Rotations Between Unity and TIA Portal ............................................... 34 

4.2.1 Converting rotation from TIA Portal to Unity ................................................... 35 

4.2.2 Converting Rotation from Unity to TIA Portal .................................................. 36 

5 Proposed Solution ............................................................................................................. 37 

5.1 Backend Server Application ...................................................................................... 37 

5.1.1 Import Asset Bundle Project .............................................................................. 38 

5.1.2 Simplified TIA API project ................................................................................ 39 

5.1.3 The NX Builder Project ...................................................................................... 41 

5.1.4 Convert 3D Model to Asset Bundle Project ....................................................... 43 

5.1.5 Synchronous Socket Server ................................................................................ 44 

5.1.6 Server Application for HoloLens ....................................................................... 45 

5.2 Frontend HoloLens Application ................................................................................ 49 

5.2.1 Encountered Problems During HoloLens Application Development ................ 53 

6 Application Demonstration ............................................................................................... 58 

6.1 Server Application ..................................................................................................... 58 

6.2 HoloLens Application ................................................................................................ 59 

7 Conclusion ........................................................................................................................ 62 

7.1 Future Work ............................................................................................................... 62 

8 Bibliography ..................................................................................................................... 63 

9 List of Figures ................................................................................................................... 68 

10 List of Tables .................................................................................................................... 69 

11 List of Snippets ................................................................................................................. 69 

12 List of Abbreviations ........................................................................................................ 70 

13 Appendix ........................................................................................................................... 71 

 



   

 

8 

 

1 Introduction 

Today, the rapidly changing marketplace demands that a manufacturing system should be able 

to swiftly adapt to a wide range of circumstances. Therefore, a modern manufacturing system 

should have sufficient responsiveness to adapt their behavior and at the same time be able to 

fulfil the constraints given by the cost, shortening product lifecycle, and strategies for rapid 

time-to-market. For these reasons, the timeframe for creating and commissioning a 

manufacturing systems tightens whereas the demand on planning accuracy and planning quality 

grows [1], [2]. 

The workflow of commissioning a manufacturing system can be in general divided into several 

stages. Concept Design stage, Mechanical Design stage, Electric Design stage, Automation 

programming stage and Commissioning stage [2]. The conventional commissioning workflow 

is usually done in a linear sequence where each stage is done after the previous one is 

completed. For that reason, an integrated test of the manufacturing systems cannot be done 

before the real commissioning. Consequently, many design mistakes are discovered during the 

commissioning which leads to time and money consuming corrective measures. Therefore, a 

new workflow of commissioning, called virtual commissioning, has been researched for more 

than 10 years [2]. The virtual commissioning creates a new stage in the system development 

workflow for more validation capabilities. Both of these workflows are described in detail in 

section 1.1. The section 1.2 provides a description how these workflows are implemented using 

a software solution provided by Siemens company. 

One of the new technologies that could improve the overall workflow of commission is virtual 

and augmented reality. The thesis describes several real-life use cases of virtual and augmented 

reality and based on these examples, it proposes a solution that integrates augmented reality 

into the virtual commissioning workflow. The goal of this thesis is to seamlessly integrate the 

augmented reality into digital workflow of virtual commissioning in order to improve the 

overall product life cycle management. 

The thesis is structured as follows. The first chapter contains the thesis introduction and 

describes the workflow of virtual commissioning and how this workflow is implemented in 

Siemens company products. Furthermore, it describes different real-life use cases that are 

implemented in virtual and augmented reality. The next chapter 2 defines and analyses the 

problem that this thesis will address. The following chapter 3 gives a general description of the 

technologies that were used in this thesis. The chapter 4 describes the kinematics and the 



   

 

9 

 

problems with describing position and rotation of an object in a general 3D space. The following 

chapter 5 then describes the proposed solution based on the use case specification that was 

provided in the chapter 2. The chapter 6 then demonstrates the application features and 

capabilities. 

The thesis ends with the evaluation of the improved workflow of commissioning with the 

developed application and then discusses possible future work and improvements. 

1.1 Workflow of Commissioning 

The workflow of commissioning is a process of developing and commissioning a plant or a 

line, based on customer’s requirements and needs. The main objective is to automate a 

production line to improve productivity, quality and reduce the costs of maintenance. 

Before commissioning a plant there are several design stages that must be done. This includes 

Concept Design stage, Mechanical Design stage, Electric Design stage and Automation 

programming stage. After these four stages are complete, it is then possible to start 

commissioning a plant. During these design stages the engineers try to propose, to the best of 

their knowledge, a solution that will fulfill the defined requirements. The workflow of all these 

stages as well as the commissioning stage is sequential which corresponds to a Waterfall model 

[3]. A Waterfall model is a type of Software Development Life Cycle (SDLC) process [3]. This 

means that in theory, each stage should be completed before the following stage begins as is 

visualized in the following Figure 1.1.  

 

Figure 1.1 Timeline of the workflow of commissioning 

The Waterfall model is known to not be very iterative which can lead to unexpected mistakes 

in design that are very expensive at later stages of the workflow. 

According to Peter Hoffmann et al. who reference to a study of the German Association of 

machine tool builders, the commissioning time uses up to 25 % of the available time for plant 

engineering and construction; and up to 15 % is consumed by correcting mistakes in the control 

software [2].  



   

 

10 

 

Therefore, a new workflow is being proposed that is called workflow of virtual commissioning. 

This new workflow adds a stage before the real commissioning and tries to do the Mechanical 

Design, the Electrical design and the Automation design in parallel as shown in Figure 1.2.  

 

Figure 1.2 Proposed timeline of the virtual workflow of commissioning 

The workflow with parallel processes corresponds more to the Agile development model [4] 

which is more common in software development because of its iterative behavior. However, 

the main advantage virtual commissioning workflow is that the engineers will test functions of 

the plant in virtual reality. Because of this feature, many mistakes during design can be 

discovered and rapidly redesigned with almost no cost compared to real commissioning. This 

advantage can be visualized in “the cost of change” curve in Figure 1.3. When using the 

Waterfall model, the cost of changing the design requirement rises exponentially, therefore in 

the early stages of development (i.e. in concept design or electric design) any changes are quite 

cheap because the automation engineers have not created any software based on the concept 

design. Changes in Agile development are obviously more expensive at this point. This will 

change in the long run, especially when a major mistake in design during the Automation stage 

is detected. If the virtual commissioning stage is successful and the systems were tested in 

virtual reality, it is reasonable to expect that less changes will occur in later stages of the 

SDLC [4]. 



   

 

11 

 

 

Figure 1.3 Cost of change over time in different SDLC processes [4] 

In addition, thanks to this iterative behavior and early detection of mistakes, the time needed to 

commission a plant shortens and the quality of the product rises. 

1.2 Siemens’s Virtual Workflow of Commissioning 

Siemens provides a wide range of software solutions to cover process of the virtual workflow 

commissioning based on the customer needs. The Figure 1.4 shows several customer use cases 

and describes which Siemens software is used for each particular case.  

 

Figure 1.4 Siemens solutions for simulation based on the customer needs 



   

 

12 

 

An example how the workflow can be implemented using the Siemens software is described in 

the Figure 1.5.  

 

Figure 1.5 Interaction between different stages in the workflow of commissioning in Siemens 

solutions [5] 

When examining the Figure 1.2 and Figure 1.5 the Mechanical Design stage is controlled by 

NX which is a specialized Siemens CAD, CAE, CAM software that allows to create a 

mechanical part or its concept using CAD; verify and check the mechanical properties via CAE; 

produce a part and check its quality using CAM. The electric design is usually done by a third-

party solution like EPLAN [6] which is then integrated into TIA Portal using an open standard 

called Automation Markup Language (AutomationML). The Automation stage is developed 

using the TIA Portal where the control system is programmed. 

At the heart of the interaction between these stages is a Siemens’s Automation designer which 

provides central design application for electrics and automation software in the Digital 

Enterprise [5]. 

The stage of virtual commissioning is done by integrating the Mechanical Design in NX and 

the TIA Portal control system by adding a kinematic model to NX’s mechanical design. This 

kinematic model can then be controlled by a real PLC or PLCSIM Advanced which is Siemens 

program for simulating PLC behavior. The mechanical model in NX can now be controlled 

from outside the NX and the user is able to evaluate the 3D model as well as the controlling 

program using the Software-In-the-Loop (SIL) simulation. 

1.3 Virtual Reality Use Cases 

The virtual reality displays come in almost any configuration imaginable and virtual reality 

facilities may use one or more of the following technologies. A single large projection screen 

commonly called Powerwall; a multiple connected projected screen to give the user the feeling 



   

 

13 

 

of being inside virtual reality commonly called CAVE (Cave Automatic Virtual Environment) 

[7]; stereo-capable monitors with desktop tracking and head-mounted display (HMD). 

Several manufacturers of virtual reality headsets exist such as HTC VIVE by the Valve 

Corporation [8], Oculus Rift owned by Facebook [9], and the Samsung Gear VR [10]. They all 

obscure the user’s vision and create a virtual reality experience. This technology can be used 

for many use cases, such as developing and designing a robot or a machine. The user can then 

get a better idea of the machine size and even perform some kinematic simulations to test and 

debug the control software. This is all done in virtual reality, so any mistakes or design changes 

are safe and done almost free of charge compared to mistakes that happen during the 

commissioning of a real machine. 

A survey of industry use of virtual reality in product design and manufacturing by Berg, L.P. 

& Vance, J.M. [7] across several industries revealed that the most common scenario use case is 

evaluating the human ability to see in a particular setting or posture. This is well suited for VR 

applications because the designer can get a true sense of what the human can see. 

Another common use case was to study ergonomics and reachability. The designer asked 

questions like: “How’s someone going to posture themselves to do this technique?”. At Ford 

Motor Co., ergonomic engineers use VR to find the right design criteria related to the maximum 

allowable assembly force to install various hoses.  Using the HMD, physical props and force 

sensors, the engineers estimate the forces required to mount hoses given certain human posture. 

1.4 Augmented Reality Use Cases 

According to Akshay Kore [11] Augmented reality (AR) devices can be divided into four 

different groups as visualized in the following Figure 1.6.  

 

Figure 1.6 Augmented reality devices division [11] 



   

 

14 

 

The author of this thesis would argue that video see-through displays are not augmented reality 

devices because they do not extend the actual reality but rather record the reality and then render 

digital content to a screen to create the impression of a hologram. Otherwise the author agrees 

with this division.  

Heads up displays (HUD) can be a transparent display that renders some information on it. For 

example, imagine an army fighter plane screen that displays the current rotation of an airplane. 

Holographic displays are the “Star Wars” holograms we would expect. They do not require 

users to wear any gadgets. Smart glasses with optical see through displays are a popular 

augmented reality device. As the name suggests they augment or extend reality with new 

content. They render digital content to transparent glasses to create the impression of 

holograms. The last device is handheld, or smartphone based. The rise of new AR libraries like 

ARKit (iOS), ARCore (Android) or Mixed Reality ToolKit – MRTK (Windows) make creating 

augmented reality experiences even easier which might lead to new interesting use cases. 

One of the use cases where augmented reality would help could be civil engineering as 

described in Siddhant Agarwal’s article [12]. He refers to the work of Rankohi and Waugh [13] 

who showed that field workers and project managers have a high interest in using non-

immersive and desktop standalone AR technologies during the project construction phase, 

mainly to monitor progress and detect defective work. He describes the problem following way: 

“Currently, the engineers in the field rely on scaled drawings in all projects that are used for 

all practical purposes. And this is where human error tends to creep in the execution” [13] . He 

discusses the possible benefits of implementing AR technology in civil engineering such as 

reducing human error thanks to better control of different processes and better marketing thanks 

to project visualization. 

Today, the most well-known real-life AR use cases are mobile games like Pokémon-Go which 

is the most downloaded iOS app of 2016 [14]. We might also expect a boom of applications for 

smart glasses thanks to the Microsoft HoloLens which seems to be gaining popularity in the 

developer community, but these applications are probably going to be more business-oriented 

[15]. 

One of the interesting real-life applications is IKEA’s smartphone app for furniture shopping. 

It is possible to list the catalog and place the furniture in your room to get the idea of how it 

might look using a smartphone. If the customers use this application, they do not necessarily 

have to measure the size of the room and the furniture and then calculate whether the furniture 

fits there [16].  



   

 

15 

 

2 Problem Definition and Analysis 

The convetional approach to commissioning described in the previous chapter does not take 

full advantage of modern technologies regarding the virtual and augmented reality. The 

workflow of virtual commissioning could take inspiration from the real-life use cases described 

in previous chapter. These use cases utilize the virtual and augmented reality to improve the 

SLDC process as well as the overall product life cycle. Based on the studies mentioned above, 

there is a wide range of use cases for mixed reality applications, therefore it is reasonable to 

utilize the new technologies in the Siemens workflow of virtual commissioning. 

2.1 Problem Definition 

The current Siemens virtual commissioning workflow does not offer an easy way to integrate 

any of its software solutions for virtual commissioning with augmented reality. For example, if 

the user wants to export a model to augmented reality, he has to do all the necessary tasks 

manually as shown in the Figure 2.1. 

 

Figure 2.1 Task required to Export a 3D model from 

Currently there is no simple way to utilize an augmented reality glasses such as Microsoft 

HoloLens in the system development workflow which might be useful for the user. 

Furthermore, a third-party solution must be used in process of simplifying a 3D model in order 

to be usable in augmented reality applications. 

2.2 Problem Analysis 

Based on the problem definition an application that could automatically export 3D models from 

NX and import them to HoloLens glasses is needed. The application should also be able to 

integrate other Siemens software solutions such as TIA Portal in order to take the full advantage 

of the augmented reality potential. 



   

 

16 

 

This thesis proposes a solution that would export 3D models from NX and integrate work space 

zones into the workflow of virtual commissioning. The definition and functionality of work 

space zones are described in detail in chapter 3.6 but in general they define a work space where 

the machine can or cannot move. These zones are defined in TIA Portal and could provide a 

general description of the real space so that the commissioning engineer can get the general 

idea of the space distribution. It would also be convenient if he could adjust the zones in real 

time and upload those changes back to the TIA Portal.  

These two use cases would also be beneficial for the automation engineer who programs the 

PLC during the development stage. This would be helpful because it allows to view the defined 

zones and the developed 3D model in NX at the same time. The defined use case diagram is 

visualized in the following figure. 

 

Figure 2.2 Use Case diagram 

The general idea is that the automation engineer has the possibility to export the zones from the 

TIA Portal to NX and HoloLens and visualize them in these software solutions. The automation 

engineer needs to have an option to modify the zones in HoloLens application and synchronize 

the data back to the TIA Portal and NX. 

The commissioning engineer on the other hand, does not need to visualize the zones in NX but 

when he does change something it is important to have the zones synchronized between the 

TIA Portal, NX and HoloLens application. 

  



   

 

17 

 

2.2.1 Use Case Specification 

Use Case Name: Visualize model and zones in HoloLens 

Actor(s): Commissioning engineer, Automation engineer  

Description: Visualize 3D model and work space zones in the HoloLens application 

Pre-Condition: The Server is ready 

Basic Path: 1. The user starts application in HoloLens 

2. The user finds QR code representing reference point with camera 

3. The app loads the default 3D model 

4. The user opens console 

5. The user loads model using the console 

Table 2-1 Use case specification - Visualize model and zones in HoloLens 

Use Case Name: Move zones in HoloLens 

Actor(s): Commissioning engineer, Automation engineer 

Description: Move the work space zones in HoloLens application 

Pre-Condition: The “Visualize model and zones in HoloLens” use case basic path was 

done 

Basic Path: 1. Change to a move mode using menu bar 

2. Change position of the zone using hand 

3. Change to a default mode using menu bar 

Table 2-2 Use case specification - Move the work space zones in HoloLens application 

Use Case Name: Resize zones in HoloLens 

Actor(s): Commissioning engineer, Automation engineer 

Description: Resize the work space zones in HoloLens application 

Pre-Condition: The “Visualize model and zones in HoloLens” use case path was done 

Basic Path: 1. Change to a resize mode using a menu bar 

2. Change size of the zone using hand 

3. Change to a default mode using menu bar 

Table 2-3 Use case specification - Resize zones in HoloLens 



   

 

18 

 

Use Case Name: Upload to TIA Portal 

Actor(s): Commissioning engineer, Automation engineer 

Description: Resize the work space zones in HoloLens application 

Pre-Condition: The “Resize zones in HoloLens” use case or “Move zones in 

HoloLens” use case was done 

Basic Path: 1. User opens console 

2. Uploads new data to server using console 

Table 2-4 Use case specification - Upload to TIA Portal 

Use Case Name: Upload to NX project 

Actor(s): Commissioning engineer, Automation engineer 

Description: Resize the work space zones in HoloLens application 

Pre-Condition: The “Resize zones in HoloLens” use case or “Move zones in 

HoloLens” use case was done 

Basic Path: 1. User opens console 

2. Uploads new data to server using console 

Table 2-5 Use case specification - Upload to NX project 

Use Case Name: Visualize model and zones in NX 

Actor(s): Automation engineer 

Description: Export work space zones data from TIA Portal to NX 3D model 

Pre-Condition: • TIA Portal project with Kinematic Technological Object exists 

• NX project exists 

Basic Path: 1. The user defines input arguments for application in XML file 

2. The user starts application 

3. The application exports the zones to NX 

Table 2-6 Use case specification - Visualize model and zones in NX 

  



   

 

19 

 

3 Technologies Used 

This chapter contains a description of all used technologies that are necessary for a full 

understanding of the proposed solution. A list of the software solutions and frameworks used 

is listed in following Table 3-1. 

Software/Hardware Version License 

Unity 2017.4.23f1 Community license 

Vuforia Engine 7.0.57 Developer license 

HoloLens HoloLens 1st gen  

HoloToolkit 2017.4.3.0 - Refresh MIT license 

Visual Studio 2017 15.9.11 Community license 

TIA Portal V15.1  

NX MCD 12.0  

Table 3-1 List of used hardware and software 

3.1 Unity 

Unity is a cross-platform real-time game engine for developing various games and applications. 

It is developed by Unity Technologies which was founded in 2004 [17]. Unity is the most 

widely used VR and AR development platform and is used in the creation of over 91% of 

HoloLens experiences [18]. 

Unity can be used to develop 2D and 3D games as well as simulations using unity physics for 

wide range of platforms. The engine supports more than 25 platforms across mobile, desktop, 

console, TV, VR, AR and the Web including Microsoft HoloLens. The Figure 3.1 gives an 

overview of the supported platforms. 



   

 

20 

 

 

Figure 3.1 Overview of Unity’s supported platforms [18] 

3.1.1 Unity editor 

One of the main advantages of using the Unity game engine is that it comes with an editor 

which is an essential part when working with the Unity engine. The editor integrates all 

technologies used and provides a convenient graphical user interface for the developer. 

Unity uses C# as a scripting language. When developing a game in Unity the general idea is 

that you divide the game in scenes (sometimes referred to as levels) and then add game objects 

to these scenes. Game objects are essentially a capsule for some feature, service or behavior. It 

is up to the developer to decide how to implement his game. 

Each game object has components which are one of the most important things in Unity because 

they make up a huge part of the game. By default, each game object must have a Transform 

component which defines an object’s position, rotation and scale in a scene. The component 

can be anything that behaves or acts in a scene. That is why, when writing C# script, you must 

inherit from MonoBehaviour class in order to be able to attach the component to a game object. 

A special game object that can be stored in an asset folder is called Prefab. This is like a template 

game object with defined components and parameters that you can instantiate a use within Unity 

editor or even during runtime. 

Each MonoBehaviour class has methods that are based on Unity’s defined execution order which 

is available in the manual [19]. More on how to develop in unity can be found on Unity’s official 

pages. There are also great resources on Unity learn page, the Unity Manual, and the Unity 

scripting reference page [20], [19]. 

3.2 Vuforia Engine 

Vuforia Engine is a platform for AR development with support for leading phones, tablets, and 

eyewear. It is developed by Parametric Technology Corporation (PTC) which focuses on 

https://unity.com/learn


   

 

21 

 

developing software to improve product lifecycle management (PLM) including the integration 

of augmented reality solutions into industrial use cases. 

The Vuforia Engine uses computer vision technology to recognize and track planar images 

(Image Targets), ground planes in user’s environment, 3D objects in real time. The engine 

supports the Unity Engine as well as three major native platforms: iOS, Android and UWP 

(Universal Windows Platform). The Vuforia Engine detects the capabilities of underlying 

devices and fuses them with Vuforia Engine features. The process of fusing different data is 

called Vuforia Fusion. Figure 3.2 gives an idea of the different parts of the Vuforia Engine. 

 

Figure 3.2 Vuforia Fusion components [21] 

The Vuforia Fusion capability is a procedure that solves the problem of fragmentation in AR-

enabling technologies on different platforms. This means that the Vuforia Fusion tries to 

leverage the richest set of software/hardware enablers as described in Figure 3.3. 



   

 

22 

 

 

Figure 3.3 Process of detecting available tools in Vuforia Fusion [21] 

First Vuforia Fusion tries to find a specialized SDK for AR. In practice this means to find either 

ARKit (iOS), ARCore (Android) or MR – Mixed Reality (Windows). If not found, the Vuforia 

Fusion tries to utilize Visual Inertial Simultaneous Localization & Mapping (VISLAM). The 

SLAM is a general problem of constructing or updating a map of an unknown environment 

while simultaneously keeping track of an agent's location within it [22]. The VISLAM is an 

algorithm implemented by Vuforia combining the benefits of Visual-Inertial Odometry (VIO) 

and Simultaneous Localization and Mapping (SLAM) [21].  

The term Visual Odometry (VO) represents a problem of estimating the position and orientation 

of a camera-carrying platform by analyzing images taken from consecutive poses. The VIO has 

the same problem but it includes data gathered from inertial sensors to the estimation algorithm 

[23]. 

  



   

 

23 

 

3.3 HoloLens (1st gen) 

The first-generation HoloLens are mixed reality glasses that create the impression of 

holograms. From the developer’s point of view, it is a standalone computer with ordinary 

components like batteries that last for 2-3 hours of active use, 64GB Flash memory, 2 GB RAM, 

32-bit Intel CPU (1 GHz), micro USB 2.0, built-in speakers, Bluetooth and Wi-fi. The glasses 

have a default HD resolution 720p (1268x720) but it is possible to lower the resolution to 360p 

(634x360). The HoloLens also has a custom-made Holographic Processing Unit (HPU) which 

is optimized for heavy computation that is needed for rendering holographs [24], [25].  

 

Figure 3.4 Microsoft HoloLens smartglasses 

3.3.1 Mixed Reality 

Microsoft defines mixed reality as the result of blending the physical world with the digital 

world. The mixed reality concept can be described as a spectrum of two realities, the physical 

reality on one side and the digital reality on the other. The following figure describes the 

blending between these two realities.  

 

Figure 3.5 Mixed reality device types [25] 

On the right side the user experiences a completely digital environment and is oblivious to what 

occurs in the physical environment around him. On the left side the user is made to believe that 

he never left the real environment. The middle area between physical reality and digital reality 

represents a smooth blending between the real world and the digital world. Microsoft compares 

this middle point as the experiences that the characters in the movie Jumanji (1995) had. 

https://www.imdb.com/title/tt0113497/


   

 

24 

 

When Microsoft talks about development for HoloLens it uses the terms “holographic” and 

“holograms”, but this could be misleading. The HoloLens eyewear does not fulfill the definition 

of hologram because real holograms do not require you to wear special goggles to see them. 

Scott Stein from cnet.com has a perfect way of describing this problem: “They (HoloLens) do 

not meet the "Help me, Obi-wan Kenobi" test, nor the dictionary definition of hologram” [26]. 

The dictionary definition of hologram according to merriam-webster.com is “a three-

dimensional image reproduced from a pattern of interference produced by a split coherent beam 

of radiation (such as a laser)” [27]. It is therefore more accurate to refer to HoloLens rendered 

objects as digital content or augmented reality content but not holograms. 

3.3.2 HoloToolkit 

As described in the official documentation, the HoloToolkit is a collection of scripts and 

components intended to accelerate the development of applications targeting Microsoft 

HoloLens and Windows Mixed Reality headsets. The HoloToolkit is available on GitHub under 

the MIT license but it has been deprecated in favor of the Mixed Reality Toolkit (MRTK) since 

December 5, 2018 [28]. The development of this thesis’s HoloLens application began in 

December 2018 and since there has been available only pre-releases of MRTK it was decided 

to use HoloToolkit instead of MRTK. As of now (April 2019), there is still no stable release 

available.  

3.4 Sockets 

The communication over a network between the HoloLens application and the server 

application was achieved by using an API for Inter Process Communication called Berkeley 

Sockets (often referred to as BSD Sockets). The BSD Sockets were popularized by Berkeley 

Software Distribution (BSD) UNIX and is a common two-way communication between 

processes.  

Thanks to the popularity of these sockets, there exist many libraries implementing this API. 

The implementation the BSD sockets are also included in the .NET Framework and the 

Universal Windows Platform (UWP) [29], [30]. Both of these implementations were used in 

this thesis because the author of this thesis had more experiences with .NET Framework and 

therefore, he decided to implement the server application in .NET Framework. Unfortunately, 

the HoloLens application does not support the .NET library and therefore, he had to use the 

UWP implementation of BSD sockets. Both of these libraries implement Transmission Control 

Protocol (TCP) and (User Datagram Protocol) UDP sockets. A TCP socket was used for 

communication between the applications over the Wi-Fi network. 



   

 

25 

 

3.5 Pipes 

A pipe is a section of shared memory that processes use for communication. As the name 

suggests it has two ends. One process writes data and the other process reads data and therefore, 

it is a simplex communication (one-way communication). In order to have duplex 

communication (two-way communication) it is needed to create two pipes and give the other 

process handles for both pipes. 

The .NET Framework has two implementations of pipes at its disposal. The first is called the 

Named pipe and the second is the Anonymous pipe. The Named pipe provides an interface for 

transferring data between processes on the same computer or processes that communicate over 

a network. An Anonymous pipe provides an interface for transferring data as well, but it 

typically transfers data between a parent process and a child process. Anonymous pipes are 

always local, and they cannot be used for communication over a network. Compared to named 

pipes, the Anonymous pipes require less overhead. An Anonymous pipe exists until all pipe 

handles have been closed. All pipe handles are also closed when the process terminates. [31]. 

In this thesis a .NET Framework implementation of Anonymous pipe is used. 

3.6 TIA Portal 

Totally Integrated Automation Portal (TIA Portal) is part of the SIMATIC product family. It is 

an editor that integrates several other SIMATIC software products including SIMATIC STEP 

7 for programming PLCs (Programmable Logic Controllers), and WinCC for designing HMIs 

(Human Machine Interfaces). It provides a convenient way for developing automation 

solutions.  

One of the features of PLC programing in the TIA Portal is programming kinematics technology 

objects. These are special objects for calculating the motion setpoints for the tool center point 

(TCP) with respect to the robot’s dynamics settings. The kinematics technology objects can 

calculate motion setpoints using the forward and inverse kinematic transformation based on the 

robot composition. The kinematic model is defined within the kinematic technology object 

along with several coordinate systems and zones. The list of coordinate systems defined in 

kinematic technology object is listed in Table 3-2. 

 

 

 



   

 

26 

 

Name Position 

World coordinate system (WCS) Fixed coordinate system of the environment 

or workspace of the kinematics. 

Kinematics coordinate system (KCS) Defined relative to WCS 

Flange coordinate system (FCS) Defined relative to KCS 

Tool coordinate system (TCS) Defined relative to FCS 

Object coordinate system (OCS) Defined relative to WCS 

Table 3-2 Types of Coordinate systems defined in Technology Objects 

The following Figure 3.6 was extracted from the official TIA Portal documentation of 

Kinematics Functions [32]. It demonstrates the relative position of coordinate systems. 

 

Figure 3.6 Example of coordinate system placement in Technology Object 

Another feature of kinematic technology object is zone monitoring. The purpose of zone 

monitoring is to avoid collision with mechanical installations and triggering process related 

actions. In order to use this feature, you must define workspace zones, which describes the 

environment, and kinematics zones, which describe the shape of the machine. The zone 

monitoring checks the kinematics zones for penetration with the workspace zones. 

The workspace zones further divide into 3 types: 



   

 

27 

 

1. Work zones 

The work zone is a space where the kinematic zones can move freely, and no signal 

will be issued. When the work zone is not defined, the whole environment is a work 

zone. 

2. Signal zones 

When a kinematic zone enters a signal zone, a signal is triggered to the user program 

3. Blocked zones 

The blocked zones will trigger an alarm and stop the machine. 

The following figure demonstrates the use of kinematics and workspace zones. 

 

Figure 3.7 Example of zone placement in Technology Object 

3.6.1 TIA Openness 

One of the great features of the TIA Portal is that it provides a public API for interaction with 

the program. This API is called TIA Openness and using this API one can easily automate 

repetitive tasks in project development, generate new projects based on custom template, extract 

and import from existing projects and so on. The API supports all languages from the .NET 

Framework such as C#.  

The user can run a program with or without a user interface based on his needs. The option 

without a user interface is faster to execute. The program development is straightforward. 

Several TIA Openness examples are available on the Siemens Industry Online Support page 

that can be used as a templates or inspiration for the task at hand. All the user needs to do, to 



   

 

28 

 

use TIA Openness, is to install the TIA Portal and use the example project to create a simple 

application.  

The only problem that might occurs is setting up the user rights to execute the TIA Openness 

application. The complete description is in the official manual [33], all the developer needs to 

do is to add the user account to the OpennessUser group, defined in the Windows operating 

system application called Computer Management. 

3.7 NX MCD 

NX is Siemens Computer Aided Design (CAD) software for construction design and modeling. 

NX Mechatronics Concept Designer (MCD) is an NX plugin for a simulation of the 

mechatronic behavior of the current 3D model. It enables the simulation of various movements 

of the parts of the 3D model and it is also possible to control these movements from outside the 

NX software. For example, it is possible to connect the variables that control speed of a rotor 

to PLCSIM Advanced for testing the developed PLC program. Mechatronics Concept Designer 

has easy-to-use modeling and simulation which allows you to quickly create and validate 

alternative design concepts early in the development cycle. Unlike a model-based tool, MCD 

allows you to not only see what it looks like but validate that it works. This concept of 

developing a software and a model fits in the new virtual workflow of commissioning. 

3.7.1 NX Open 

The NX software provides a public API for accessing functions within the software. This API 

is called NX Open and it supports several common programming languages. These include 

C/C++ , Java, Python and all .NET Framework languages.  

The NX Open has several ways how to execute a developed program. The one used in this 

thesis is called the Command Line Method. This method can only run as batch mode, therefore 

there can be no interaction with the running GUI (Graphical User Interface) of NX. The 

specifics of this execution method will be discussed in the proposed solution section. 

An easy way to create a script for automating a task or accessing data in NX is via the Journal 

feature. The Journal is like a macro. The user starts recording using the journal and the journal 

creates a record of what the user has done and exports it to a script into the desired programming 

language (i.e. C#). This script can then be used for creating a more complex automation task. 

  



   

 

29 

 

4 Kinematics 

This chapter contains a kinematic description of an object in 3D space and methods for 

converting between the coordinate systems of the Unity and the TIA Portal. It describes 

different methods for describing a general rotation and the problems that arises with these 

descriptions. 

4.1 Kinematic Description of an Object in 3D Space 

An object in general 3D space has 6 degrees of freedom which can be described as a position 

in 3D space and a rotation in 3D space. To be able to define a position and rotation of an object 

in space a Coordinate System (CS) must be defined. In software engineering the most common 

is the Cartesian Coordinate System.  

In 3D space a Cartesian Coordinate System is a set of 3 linear axes that are mutually 

perpendicular. The Cartesian Coordinate System is usually denoted as O(x,y,z) where O means 

the origin of the coordinate system and (x,y,z) are the coordinates. It is up to the developer to 

choose the orientation of these axes. For this reason, the Cartesian Coordinate Systems are 

divided into left-handed CS and right-handed CS based on the axis orientation. 

4.1.1 Position 

As mentioned before position is mostly described using the Cartesian Coordinate System 

O(x,y,z) as is displayed in the following Figure 4.1. 

 

Figure 4.1 Cartesian Coordinate System 



   

 

30 

 

4.1.2 Rotation 

A common and perceptible way of describing a rotation in 3D space are Euler Angles. Euler 

Angles take advantage of Euler’s theorem which implies that any orientation can be achieved 

by composing three elemental rotations in which two consecutive rotations are not about the 

same axis. This condition is fulfilled for example by rotations about the axes of the Cartesian 

Coordinate System. 

  

Figure 4.2 Euler Angles (ZXZ) fixed (extrinsic) rotation 

 

Figure 4.3 Euler Angles (ZXZ) mobile (intrinsic) rotation  

There are many conventions when using Euler Angles because there are plenty of ways to 

compose the order of rotation around different cartesian axes. When using the cartesian axes, 

only twelve unique meaningful ordered sequences of rotations exist or twelve Euler Angle 

conventions: XYX, XYZ, XZX, XZY, YXY, YXZ, YZX, YZY, ZXY, ZXZ, ZYX, ZYZ [34]. 

The use of Euler Angles can be further divided into intrinsic and extrinsic conventions. When 

given a Euler Angle sequence convention (i.e. XYZ) you must specify whether you will rotate 

about fixed axes (extrinsic) or about newly emerged axes (intrinsic).  

Because the rotation can be described with a minimum of 3 parameters, Euler Angles are a 

minimal representation of object orientation in space. Therefore, the parameters are 

independent of each other. 



   

 

31 

 

When programming 6DOF manipulator robots in the TIA Portal a convention called E6AXIS 

or E6POS is used. This is a common convention and is used by Siemens strategic partner KUKA 

which is a supplier of robotics and plant manufacturing systems [35].  

The E6AXIS convention is a structure of 6 parameters describing axis rotation in degrees and 

6 optional parameters describing external axes. The axis parameters are denoted A1, …, A6 

and are visualized in Figure 4.4 . This figure is copied from the official user manual [36]. It is 

possible to see that the position of each axis rotation is dependent upon the previous axis 

position. Therefore, the E6AXIS convention is an intrinsic convention.  

 

Figure 4.4 The E6AXIS structure 

The E6POS is a structure of 6 + 2 parameters describing the position and rotation of the 

coordinate system of the robot’s end position (i.e. the tool). The 2 parameters, called Status and 

Turn, describe a more precise specification of the alignment at the current position with 

Cartesian position specification. 

The 6 parameters of the E6POS structure are usually denoted as X, Y, Z describing the position 

and A, B, C describing orientation. A is orientation around the Z axis, B the Y axis and C the 

X axis in that order [36]. The official documentation “S7-1500T Kinematics Functions V4.0 in 

TIA Portal V15” unfortunately does not explicitly say whether an intrinsic or extrinsic rotation 

is used for E6POS, so using the GUI in the TIA Portal it was shown that the TIA Portal uses 

intrinsic convention. The documentation probably expects that the convention in robotics is to 

use the intrinsic convention called yaw, pitch, roll.  

 



   

 

32 

 

Coordinates Description 

x Shift in the x direction in the reference coordinate system  

y Shift in the y direction in the reference coordinate system 

z Shift in the z direction in the reference coordinate system  

A Rotation around the z-axis in degrees 

B Rotation around the y-axis in degrees 

C Rotation around the x-axis in degrees 

Table 4-1 Coordinates in E6POS structure 

Therefore, E6POS uses an intrinsic ZYX convention of Euler Angles. The coordinate system 

of the robot’s endpoint is visualized in Figure 4.5. 

 

Figure 4.5 The E6POS structure 

Significant disadvantage of using Euler Angles as a representation of general rotations is that 

they suffer from a phenomenon called Gimbal Lock. When applying the three rotations in turn, 

it is possible for the first or the second rotation that the third rotation axis points in the same 

direction as one of the two previous rotation axes. This means that a degree of freedom is lost 

because the third rotation cannot be applied around a unique axis. Therefore, any rotations are 

in degenerate two-dimensional space.  



   

 

33 

 

In practice this means that when Gimbal lock occurs there are infinite possibilities of how to 

represent current rotations using the 3 Euler Angles. This then leads to numerical instability 

even when the system is near this configuration because the parameters that are used to calculate 

the angles are approaching to infinity or zero. An easy solution to resolve this problem is to 

lock one angle value and calculate the other two, unfortunately this leads to discontinuous 

behavior which might be problem for follow-up calculations. 

In the case of yaw, pitch, roll (ZYX) rotation, the gimbal lock occurs when pitch approaches 

±90 degrees. To avoid this problem, quaternions are used represent general rotation in space. 

4.1.3 Quaternion 

The quaternions are an extension of complex cumbers. They are noncommutative and they can 

be defined as a set of 4 numbers with defined operations for adding and multiplying. The 

quaternion has one real and three imaginary components and is usually denoted either as an 

ordered pair of a real number and vector 

 𝑞 = (𝑤, 𝑣⃗);   𝑤 ∈ ℝ, 𝑣⃗ = (𝑥, 𝑦, 𝑧) ∈ ℝ3 (1) 

or as a number 

 𝑞 = 𝑤 + 𝑥𝒊 + 𝑦𝒋 + 𝑧𝒌;    𝑤, 𝑥, 𝑦, 𝑧 ∈ ℝ (2) 

where 𝒊, 𝒋, 𝒌 denotes the imaginary components. The defined operations fulfill the following 

equations [37] 

 

𝒊2  =  𝒋2  =  𝒌2  =  𝒊𝒋𝒌 =  −1 

𝒊𝒋 = 𝒌, 𝒋𝒌 = 𝒊, 𝒌𝒊 = 𝒋 

𝒋𝒊 = −𝒌, 𝒌𝒋 = −𝒊, 𝒊𝒌 = −𝒋 

(3) 

The conjugated quaternion is denoted 

 𝑞̅ = 𝑞 = 𝑤 − 𝑥𝒊 − 𝑦𝒋 − 𝑧𝒌 (4) 

The quaternion can be used as a non-minimal representation of general rotation in 3D space. 

An intuitive way of understanding a quaternion as 3D rotation is to think that in the ordered 

pair 𝑞 = (𝑤, 𝑣⃗), 𝑣⃗ represents an axis in 3D space and 𝑤 represents a rotation angle about this 

axis.  

When using quaternion as general representation of rotation, a unit quaternion is used. 

Therefore, the following restriction must be applied. 



   

 

34 

 

 |𝑞| = √𝑤2 + 𝑥2 + 𝑦2 + 𝑧2 = 1 (5) 

Quaternion can then be used as a rotation operator of 3D vector 𝑝⃗ the following way. 

Suppose we want to rotate a 3D vector 𝑝⃗ around axis 𝑣⃗ = [𝑣1, 𝑣1, 𝑣1] about 𝜃 degrees. The 

quaternion is calculated as 

 𝑞 =   cos
𝜃

2
+ sin

𝜃

2
(𝑣1𝒊 + 𝑣2𝒋 + 𝑣3𝒌) (6) 

The vector 𝑝⃗ must be written as pure quaternion 

 𝑝⃗𝑞 = 𝑝1𝒊 + 𝑝2𝒋 + 𝑝3𝒌 (7) 

The desired rotated vector is calculated as  

 𝑝⃗𝑞
′ = 𝑞 ⋅ 𝑝⃗𝑞 ⋅ 𝑞̅ (8) 

4.2 Converting Rotations Between Unity and TIA Portal 

Unity software uses left-handed CS while the Siemens’s NX MCD and TIA Portal uses right-

handed CS. The following table describes the differences in coordinate systems from Unity 

software to other software solutions. The direction is considered from the object’s point of view 

when looking forward. 

Direction Unity TIA Portal 

Forward z -y 

Right x -x 

Up y z 

Table 4-2 Mapping axis from Unity to TIA Portal coordinate system 

The differences between Unity and TIA Portal can be seen on GUI. Below is a comparison of 

a workspace coordinate system in Unity and in TIA Portal.  



   

 

35 

 

 

Figure 4.6 Coordinate system orientation comparison of TIA Portal (left) and Unity (right) 

4.2.1 Converting rotation from TIA Portal to Unity 

Using the Figure 4.6 it is possible to calculate the transformation of TIA Portal coordinates to 

Unity coordinates of workspace zone. Thanks to Unity API, the conversion can be easily done. 

The following code demonstrates positioning of workspace zone in Unity using TIA Portal 

coordinates E6POS. 

The previous code example first negates the coordinate of x and then rotates the vector around 

Unity’s x-axis about 270 degrees. This vector then represents the position of the cube’s pivot 

point in space. Then the cube’s rotation is calculated using Unity API. The method 

Quaternion.AngleAxis(angle, axis) calculates quaternion that represent rotation around the 

vector axis and angle in degrees. 

The rotation of the cube can be calculated using the property that quaternions have in Unity. 

Rotating a vector by the product of two quaternions is the same as applying the two rotations 

in sequence – first you apply the left-hand side quaternion and then you apply the right-hand 

side quaternion relative to the reference frame resulting from left hand side rotation [20]. 

It is important to note that the angle at parameter A is negated. This is because we are changing 

from a right-handed to left-handed coordinate system. Therefore, we must check each axis and 

Snippet 1 Transforming coordinates from TIA Portal to Unity 

//position 

Vector3 position = new Vector3(x, y, z); 
position.x = - position.x; 
position = Quaternion.AngleAxis(270, Vector3.right) * position; 
// rotation 
Quaternion rotation = 
 Quaternion.AngleAxis(-A, Vector3.up) * 
 Quaternion.AngleAxis(B, Vector3.forward) * 
 Quaternion.AngleAxis(C, Vector3.right); 



   

 

36 

 

use the left-hand rule to determine the correct positive direction of rotation and compare it with 

the original. 

The positive direction of a coordinate system can be easily determined by using the right-

handed rule for right-handed CS and the left-handed rule for left-handed CS. To determine 

positive direction, point the correct hand’s thumb in the direction of rotational axis. The 

direction in which your fingers curl and point is the direction of positive rotation. 

4.2.2 Converting Rotation from Unity to TIA Portal 

Calculating the rotation of a cube in Unity back to TIA coordinates is more difficult because of 

the conversion to Euler Angles. They, as mentioned before, suffer from singularities due to the 

gimbal lock which can lead to numerical instability. 

When given a quaternion in Unity coordinates, the general conversion process to different CS 

is to map the quaternion axis into the new coordinate system and if changing from left to right-

coordinate systems, negate the rotational angle [38]. Compare Table 4-2  and the 

implementation in the following Snippet 2 example. 

At first, the function converts the Unity quaternion to TIA Portal quaternion and then use the 

following set of equations 

 [
𝜙
𝜃
𝜓

] =

[
 
 
 
 
 
 tan−1

2(𝑞𝑤𝑞𝑥 + 𝑞𝑦𝑞𝑧)

1 − 2(𝑞𝑥
2 + 𝑞𝑦

2)

sin−1 2(𝑞𝑤𝑞𝑦 − 𝑞𝑧𝑞𝑥)

tan−1
2(𝑞𝑤𝑞𝑧 + 𝑞𝑥𝑞𝑦)

1 − 2(𝑞𝑦
2 + 𝑞𝑧

2) ]
 
 
 
 
 
 

 (9) 

to convert from quaterion to euler angles int ZYX convention. These equations were taken from 

a report by José Luis Blanco Claraco [39].  

Snippet 2 Convert Unity Quaternion to TIA coordinates  

Quaternion ConvertToTIA(Quaternion input){ 
 // map the axis 
 Quaternion q = Quaternion.identity; 
 q.x = -input.x; 
 q.y = -input.z; 
 q.z =  input.y; 
 q.w =  input.w; // don’t map 
 
 // negate angle 
 q.x = -q.x; 
 q.y = -q.y; 
 q.z = -q.z; 
 return q; 
} 

 



   

 

37 

 

5 Proposed Solution 

The proposed solution visualizes these zones with the 3D model of the robot, which was 

previously created in NX MCD, in Microsoft HoloLens. It will also visualize these zones in 

NX MCD software so that the user will have multiple ways of visualizing these zones. In order 

to improve the workflow of commission it is proposed to take advantage of a HoloLens headset 

and visualize the workspace zones of industrial robots defined in the TIA Portal.  

There are three types of workspace zones. The first one is Work Zone. This is where the robot 

manipulator can operate. The second one is Signal Zone, which is a zone within Work Zone 

where the software will generate a signal if the robot enters this zone. The last one is Blocked 

Zone. This zone does not necessarily have to be within Work Zone, but it usually is because 

there is no point of defining Block Zone outside Work Zone since the robot should not escape 

the Work Zone. 

The solution is divided into two parts. The backend server that runs on a PC and a frontend 

HoloLens application called HoloSee that communicates with the PC over Wi-Fi using TCP 

Sockets. 

5.1 Backend Server Application 

The backend application is divided into five different projects and one standalone project for 

automating tasks in Unity editor. 

The five projects in the backend server application are listed in the table below with a brief 

description. 

Project name Job 

SimpTiaAPI Simplified API for communicating with TIA portal 

using TIA Openness 

NxBuilder_run_managed Simplified API for creating and deleting features in 

NX MCD using NX Open 

Convert3DModelToAssetBundle An API for creating Asset Bundles from .dae files 

using Unity editor 

SynchronousSocketServer A server that listens at specified IP and port and 

responds to any incoming request. Provides Asset 

Bundle and XML data structure of work zones 



   

 

38 

 

ServerApplicationForHololens Manages the application algorithm 

Standalone ImportAssetBundle Unity project for debugging C# script used in 

Convert3DModelToAssetBundle project 

Table 5-1 List of projects in Server Application 

5.1.1 Import Asset Bundle Project 

The Import Asset Bundle is a standalone project for debugging a script 

ImportModelAndCreateBundleClass.cs, which is then used in the main application. It is an empty 

unity project where only one asset/script is present. The script uses Unity editor scripting API 

and standard C# libraries for creating an Asset Bundle. According to official documentation, 

every script that is meant to extend the features of Unity editor must be in a folder called 

“Editor” somewhere in the asset folder. An easy way to launch a script within Unity editor is to 

create a static void method with an attribute [MenuItem("MyMenu/DoSomething")]. This will create 

a menu item in the editor menu bar and when pressed it executes this method. 

The script reads the program arguments using the System.Environment.GetCommandLineArgs() 

method. This includes specifying the path to .dae model, output path for Asset Bundle and Asset 

Bundle name. The script then sets up the project’s Player Settings. This means defining 

scripting backend and a scripting runtime version. Afterwards, it sets up build settings for the 

UWP HoloLens application. After setting up the project settings it copies the .dae file to asset 

folder and refreshes the asset database using the static method 

AssetDatabase.Refresh(ImportAssetOptions.Default). Then it creates the desired Asset Bundle 

in the desired directory within the asset folder.  

The Complete algorithm is shown on the following Figure 5.1. 



   

 

39 

 

 

Figure 5.1 Asset Bundle creation algorithm 

5.1.2 Simplified TIA API project 

The first project uses TIA Portal Openness to access information within a TIA Portal project. 

The user must give the program access to the TIA Portal at the beginning of the execution which 

is done in the TIA Portal popup window. If the user selects “Yes to all” he will not have to 

allow it again during the process lifetime. The project consists of three classes which are then 

called from the application algorithm. The UML domain diagram is visualized in Figure 5.2. 



   

 

40 

 

 

Figure 5.2 UML Domain diagram of SimpleTiaAPI project 

The SimpleTiaManager class provides a simplified interface of TIA Portal Openness for 

extracting and importing elements of data from the TIA Portal project. The ZoneDataExtractor 

class is created using the constructor. The constructor arguments are a string path to the saved 

project, string name of the PLC within the project, and Technological Object name of type 

‘TO_Kinematics’within the PLC in the project. The data extracted from the TIA Portal consist 

of a list of work zones within the specified technological object. An example code can be found 

in the Figure 13.1 in the appendix. 

This project was developed using the application example available at Siemens Online Industry 

Support (SIOS) [33] where a pdf and a Visual Studio solution is available. The pdf describes 

the demo application and serves as a documentation for TIA Openness. In order to compile the 

demo application, the user must reference Siemens.Engineering.dll and 

Siemens.Engineering.HMI.dll to Visual Studio solution. These files are in the installation 

directory of the TIA Portal. No major issues or problems were encountered during the 

development of the Simplified TIA API project. The manual is very well written.  

The hardest task during the development was to find the desired data within the TIA Project. 

Fortunately, the pdf manual contains a class diagram of all classes and their inheritance which 

was very helpful. Another key thing is to realize that the classes and data structures correspond 

with the GUI of the TIA Portal and therefore it is crucial to find the data in GUI and after that, 

using the class diagram, to find the desired data. 

Below is a figure with the class diagram for PLCs components in TIA Portal. 



   

 

41 

 

 

Figure 5.3 Partial class diagram of TIA Openness project [40] 

5.1.3 The NX Builder Project 

The NX Builder project is composed of two classes ZonesBuilder.cs and Program.cs. These 

classes are compiled to exe file and then launched as a separate process from the main 

application program. The NX Builder program is started as a separate process because of how 

NX Open executes batch mode applications. The official documentation for NX Open lists the 

following options to execute batch applications using the command line [41]: 

 

An NX Open application .exe file can be executed directly from a command line as any other 

executable. Since this is a managed application, you will need to do one of the following: 

1) Copy the NX .NET libraries to your local working directory. To do so, copy all of the 

libraries from the %UGII_BASE_DIR%\ugii\managed directory to your working 

directory. Use standard operating system command to execute the application. 



   

 

42 

 

2) Copy your .EXE to %UGII_BASE_DIR%\ugii\managed. Use standard operating 

system command to execute the application. 

3) Use run_managed.exe (%UGII_BASE_DIR%\ugii\run_managed.exe) 

run_managed.exe is a standalone executable that runs a managed NXOpen .EXE in the correct 

environment allowing it to pick up other DLLs from the install when they are not in the same 

directory as the .EXE itself. 

usage: 

run_managed <executable-file> <arguments> 

Since it is desired to distribute the software solution separately from the NX MCD and TIA 

Portal the most convenient solution, at least from the end-user point of view, is to use the third 

option. This way the user does not have to copy or alter any files within the installation directory 

of NX in any way, so there is a smaller chance that something goes wrong. Another issue could 

be that the user does not have administrator rights to the installation directory. Therefore, he 

would not be able to change anything in the directory and the application would not work. When 

using run_managed.exe, the user only has to provide a path to run_managed.exe which resides 

in the installation directory of NX MCD. 

The main application algorithm first creates an Anonymous pipe using the class 

AnonymousPipeServerStream then it creates a sub-process with run_managed.exe using the 

Process class in .NET Framework and gives the process a handle to the created 

AnonymousPipeServerStream class instance as an argument. The sub-process then reads data 

from the pipe and executes one of the commands specified in the enumeration Cmds. These 

commands are received via the pipe. The communication and sub-process execution are 

visualized in Figure 5.4. 



   

 

43 

 

 

Figure 5.4 NX Open execution 

5.1.4 Convert 3D Model to Asset Bundle Project 

The conversion from .dae model to an Asset Bundle is done by using Unity editor in batch 

mode. There are several arguments that can be used when using a batch mode, the complete list 

can be found in the official Unity Manual [19]. The ones used here are: 

-createProject <pathname> 

-projectPath <pathname> 

-executeMethod <ClassName.MethodName> 

The first command line argument creates an empty project to a specified path. The second 

command opens a project in a specified path. The third command line argument executes a 

static method of a scripts that must reside within an editor folder. 

The algorithm goes like this: 

1. Read input data arguments. These arguments include Unity editor exe path, .dae model 

path, project path for new empty project, Asset Bundle path etc. 

2. Start new Unity editor process in batch mode, create empty project and wait for process 

to exit 



   

 

44 

 

3. Copy the embedded ImportModelAndCreateBundleClass.cs from assembly resources to 

editor folder under the asset folder. 

4. Start new Unity editor process in batch mode, open the project and execute the method 

within the ImportModelAndCreateBundleClass.cs script. The script executes as described 

in chapter 5.1.1. 

5. The algorithm exists 

The main application algorithm now has the Asset Bundle in the specified location. 

5.1.5 Synchronous Socket Server 

The synchronous socket server project uses .NET Framework implementation of Sockets and 

listens to a specified endpoint. The project uses only one class called 

SynchronousSocketListener. This class has a public constructor with four parameters – IP 

address, port number, path to Asset Bundle and XML tree representing the workspace zones.  

After the class instantiation the user calls public method StartListening(…) which starts the 

server application. The application then listens for incoming requests for one second. If there 

are none it then checks if the user pressed the “Q” button. If so, the application terminates; 

otherwise it continues in a loop and listens for requests for another second. 

In the SynchronousSocketListener class there are three different enumeration types used for 

communication. 

The CommunicationToServer enumeration represents messages that the client sends to the server 

for confirmation of a response. The CommunicationToClient enumeration represents messages 

that the server sends to a client in response to the CommunicationToServer. 

CommandsToServer represents a list of commands from the client that the server is supposed to 

do. The TestConnection is used whenever a connection is initialized and is used mainly for 

debugging. The SendMeXML command tells the server to send an XML data describing the 

workspace via socket. The UpdateXml tells the server to listen for incoming data on the socket 

representing the new XML data describing the workspace. The last command, 

Snippet 3 Enumeration of commands for communication 

public enum CommunicationToServer {NoComCmd, ServerCanCloseConnection, 
TransferToClientCompleted} 
public enum CommunicationToClient {ClientCanCloseConnection, 
ransferToServerCompleted} 
public enum CommandsToServer {NoCmd, TestConnection, SendMeXML, UpdateXml, 

SendMeRobotAssetBundle} 



   

 

45 

 

SendMeRobotAssetBundle tells the server to send an Asset Bundle that was created using Unity 

editor.  

The communication that happens between the server and client when the client requests XML 

data about workspace zones and Asset Bundle holding the 3D model is visualized in the 

following figure. 

 

Figure 5.5 Communication process between client and server when downloading data from 

server 

5.1.6 Server Application for HoloLens 

The Server Application for HoloLens is a project that binds all projects together and controls 

the algorithm of the whole application. Figure 5.5 visually describes the application algorithm. 

First, the application reads input arguments. If the application finds that there is at least one 

argument available, it interprets the first argument as a path to an XML file where the server 

settings are stored. Otherwise it will look for XML file settings within the current directory. 

Then the application verifies the settings using static method verifySettings(…). 

After that, the application tries to find the TIA Portal session, or it will create a new one using 

the Simple TIA API project. With this session, the app extracts data about workspace zones. 



   

 

46 

 

Then it deletes any created zones in the specified .prt file using the NX Builder project. If the 

user specified that he wishes to the export model from NX the algorithm proceeds to export .prt 

file to .dae. If the user specified otherwise, the user has to do the export manually and specify 

a path to the exported .dae file. Then the algorithm recreates the zones again using NX Builder 

project. After the zone’s creation in .prt file, the algorithm starts the Convert 3D Model to Asset 

Bundle project, which will create the Asset Bundle.  

After all this is done, the application starts acting as a server and starts to listen to the port and 

IP address specified in the server settings. The algorithm uses the last project Synchronous 

Socket Server and communicates with the client as described in the previous section. 

The complete algorithm for the server application for HoloLens is visualized on Figure 5.6. 



   

 

47 

 

 

Figure 5.6 Main application algorithm 



   

 

48 

 

5.1.6.1 Exporting NX Model to Digital Asset Exchange (.dae) 

The exporting of a 3D model from NX to Unity was a difficult task because nowadays the NX 

does not offer a fully compatible format for Unity. 

The first idea was to export NX’s .prt model to AutoCAD’s .dxf model which NX offers. 

Unfortunately, this does not give a usable result since there were no materials included and the 

exported model lacks the correct rotations of its parts.  

The second idea was to use a third-party software called PiXYZ [42]. This is a specialized 

software for exporting 3D models from various CAD software. This export gives good results, 

but it is a third-party software which had to be bought.  

Fortunately, the Siemens research team in Nuremberg is currently working on a new feature for 

NX that will export 3D models to various 3D formats including digital asset exchange format 

(.dae). DAE is a publicly available specification for 3D interchangeable format adopted by 

standard ISO/PAS 17506:2012 [43]. A pre-release version of this feature was obtained from 

the department and integrated into the algorithm. The exported .dae format gives great results 

and is fully compatible with Unity. 

  



   

 

49 

 

5.2  Frontend HoloLens Application 

The frontend HoloLens application has only one scene defined in Unity and this scene takes 

care of every aspect of the application. The application design is based on the user case 

specification described in chapter 2.1 and it is also based on the necessary frameworks 

recommended hierarchy structure for application development like HoloToolkit or Vuforia. The 

application scene hierarchy is visualized in the following figure 

 

Figure 5.7 Scene hierarchy 

AR Camera 

The first element of the hierarchy is the augmented reality camera. This is a Unity regular 

camera game object with Vuforia behavior script attached. The Vuforia needs to be configured 

in Vuforia configuration file which is created when importing ARCamera before the application 

can use Vuforia’s image recognition capabilities.  

Default Cursor 

The second element is the default cursor prefab that is provided with HoloToolkit. 

Input Manager 

The third element is Input Manager that takes care of user input. This means it detects user input 

like tap or tap&hold and notifies appropriate interaction receivers. The Input Manager uses 

physics raycast to detect where the user is looking so any interaction receiver must have a 

collider component attached in order to be able to receive any input from Input Manager. 



   

 

50 

 

Image Target 

The fourth element is Image Target which is Vuforia’s prefab for detecting images in the scenes. 

It has Image Target Behavior script component attached where the developer defines the target 

image. The image must be compiled using the Vuforia online service. The developer must 

upload the image to the server and then download the compiled version as a Unity package. 

Vuforia also offers an online service for compiling images during runtime but that is not used 

in this application. It is important to note that before the compiled image could be used, it must 

be enabled in Vuforia configuration. 

 

Figure 5.8 Image Target as it appears in Unity editor 

Look for Target 

The fifth element is Look for Target. This is a game object that appears at the beginning of the 

application to indicate to the user that he is supposed to look for a target image. After the image 

is found, this game object is destroyed using script that is attached to image target. The script 

contains a class that implements ITrackableEventHandler interface and receives a notification 

when the target image was found.  



   

 

51 

 

 

Figure 5.9 Indicator for a user that appears the beginning of the application 

Scene Content  

The sixth element is Scene Content game object. This game object represents the interface for 

communication between the application and the user as well as the communication between the 

user and the server. It contains a menu bar that has 5 buttons. The first button hides the console, 

with the exception of the hide button. The second button is showed when the hide button is 

pressed again. This button originally had a purpose but during development the purpose was 

removed, and it now acts similarly to the hide button. Pressing the show console will reveal the 

whole console. The third button will show/hide the imported 3D model so that the user can only 

see the work space zones. The fourth button executes method StartClientCommunication() in 

ConnectionManager which will be described later in this section. The fifth button executes 

method UpdateXMLToSever() in ConnectionManager and will be discussed later as well. 

 

Figure 5.10 Console application for user interaction 



   

 

52 

 

The Scene Content game object also contains console game object. This game object contains 

an output field, where the messages from the application are written, and an input field where 

the IP address and port number are written and can be changed. Any changes in the input field 

are saved to a local XML file when the user presses the LoadFromServer button. 

Connection Manager 

The seventh element is Connection Manager. This game object has a component 

SocketManagerHolder class that has a private field with an instance of a class 

SimpleStreamSocket. This class takes care of all communication between the application and the 

server. This class communicates directly with the class SynchronousSocketListener described 

in chapter 5.1.6. The class contains an asynchronous method StartComunication(Commands[]) 

with an input field of commands that the app wants to execute. 

 

Figure 5.11 Communication between the HoloLens application and the Server 

The SimpleStreamSocket has another method called UpdateXMLToServer(XElement data) which 

stores the XElement data to a private field of the instance and calls the StartCommunication(…) 

method with one command UpdateXML. The algorithm then sends the data in the private field to 

the server. The following Table 5-2 contains a list of the possible commands to the server. 

 

 

 



   

 

53 

 

Command name Description 

TestConnection Command used for debugging and testing 

SendMeRobotAssetBundle Reads data from socket and stores the data as file in 

application persistent storage. 

SendMeXML Reads data from socket and stores the XML to XElement 

field  

UpdateXml Sends data stored in private field XElement of the class to 

the server. 

Table 5-2 List of commands that can be send to server 

Zone Prefab 

Another element that is not in the hierarchy is the work zone prefab that is created during 

runtime based on the incoming data. The prefab’s name is “zoneID” but this paper refers to this 

prefab as work zone prefab. The work zone prefab is a Unity’s primitive cube type with 

BoundingBoxScript, HandDragable and ColorDuringDraggingController components attached. 

The prefab has a child game object that represents the primitive object because it is desired to 

have a pivot point on the same position as in the TIA Portal (right, front, down corner from the 

objects perspective). The BoundingBoxScript component creates menu bar and Bounding box 

that surrounds every work zone prefab. The menu bar consists of three buttons hide, adjust and 

move. As the name suggests, the hide button hides the menu bar and the work zone, adjust 

actives a box that is used for resizing the cube and move will allow the user to move the box by 

using tap & hold command. 

The BoundingBoxScript and HandDragable are parts of the HoloToolkit framework and the 

ColorDuringDraggingController component has only one task; to make sure that during the 

moving of the work space prefab the color of the cube is changed to an opaque magenta color. 

Keyboard 

The keyboard is a part of HoloToolkit framework. It is a singleton class meaning only one 

instance or none is present during runtime. It takes care of user input when typing to the input 

field in scene content game object. 

5.2.1 Encountered Problems During HoloLens Application Development 

During the development several unexpected problems occurred. This section describes these 

problems and how they were solved. 



   

 

54 

 

5.2.1.1 Slow developments process 

The first problem encountered was the slow development iteration time. This means the time 

needed to deploy an app from Unity to HoloLens device was too long for a smooth 

development. The time needed for a fresh new building and deployment of this application to 

HoloLens takes about 3 minutes 25 seconds. 

The building process of exporting from Unity to Visual Studio solution takes about 1 minute 

49 seconds. Opening the generated Visual Studio solution takes about 13 seconds. Building the 

solution in Visual Studio takes about 1:02 seconds and finally, deploying to HoloLens via USB 

cable takes about 21 seconds. The building process speeds up when rebuilding the same solution 

to the same folder, but it is still very slow. 

In order to speed up the process, the HoloToolkit offers a simple debugging process using Unity 

play mode. The HoloToolkit offers a command in the menu bar “Mixed Reality Toolkit → 

Configure → Apply mixed reality Scene settings“ which will import 

MixedRealityCameraParent. Using this camera game object, it is possible to move and use the 

tap command within the Unity editor play mode. This rapidly improves the iteration time.  

 

Figure 5.12 Unity play mode with Mixed Reality Camera 

5.2.1.2 Errors During Compilation of Vuforia and HoloToolkit in the Same Project 

When developing HoloLens application with the HoloToolkit framework everything worked 

fine, but when the Vuforia plugin needed to be added to the project some components needed 

to be changed. The recommended camera setup according to HoloToolkit is to use the Mixed 

Reality Camera Parent prefab. The recommended camera setup according to Vuforia is to use 

Vuforia’s ARCamera prefab. After the code examination it was decided to use the ARCamera 

prefab because it has the same properties as the Mixed Reality Camera plus Vuforia Behavior 



   

 

55 

 

Component attached. Unfortunately, when exporting the project to Visual Studio and then 

compiling the generated project, an unexpected error occurred. The error is visualized in the 

following figure. 

 

Figure 5.13 List of Errors During the Vuforia and HoloToolkit Compilation 

The figure shows that the AssemblyConverter.exe process failed. The root of this problem was 

not found but according to Joost van Schaik “Apparently some cruft stays behind preventing 

Unity from rebuilding the app the second time around. This is because Unity does not always 

overwrite all the files, presumably to speed up the build process that second time.” [44]. The 

solution was tested but it didn’t work for this case.  

The problem was solved if the Vuforia plugin was compiled first, without the HoloToolkit 

framework inside the project. A general process was developed to make sure that the problems 

with compilation were avoided. 

General Process of Developing Vuforia Application with HoloToolkit Framework 

1. Create new 3D project 

2. Switch target platform to UWP in Build Settings 

3. Player Settings: 

a. Activate Vuforia in your project 

i. Player Settings -> UWP window -> XR settings -> enable Vuforia 

b. Set run in background to true in Resolution and Presentation 

c. Check following capabilities in publish settings 

i. Internet client 

ii. Webcam 

4. Export and build the project 

5. Import HoloToolkit package 

6. Set up project using commands 

a. Mixed Reality toolkit-> Configure -> Apply mixed reality project settings -> uncheck 

spatial mapping (it is not required for this app) 

b. Mixed Reality toolkit-> Configure -> Apply mixed reality scene settings -> no spatial 

prefab (no need) 



   

 

56 

 

7. Save Scene to asset folder 

8. Delete MixedRealityCameraParent 

9. Add Vuforia Camera: GameObject->Vuforia->AR Camera 

a. This will import some scripts and assets 

10. Configure Vuforia 

a. Window->Vuforia Configuration->Digital Eyewear 

i. Type: Digital eyewear 

ii. Device config: HoloLens 

11. Set up extended tracking 

a. Window->Vuforia Configuration->Device tracker 

i. Track pose: true 

ii. Tracking mode: Positional 

iii. Set up extended tracking to each image target 

12. Add image target to Scene 

a. GameObject->Vuforia->Image 

13. Add asset to image target child to see after image found 

14. In case you want custom image target, do not forget to load it and allow it in Vuforia 

configuration 

15. Build Application normal 

Using this process, the application is compiled without errors. 

5.2.1.3 Communication Using C# Sockets in Unity 

The Unity API doesn’t provide an easy way to set up a socket to connect to specified IP and 

port number because the unity tries to hide these low-level details from the Unity developer.  

Originally it was intended to use .NET Standard C# library System.Networking.Sockets but this 

library is not supported in Unity and therefore a platform specific implementation needs to be 

used. UWP application has their own implementation of sockets and they doesn’t support the 

standart System.Networking.Sockets library as well. The UWP applications use 

Windows.Networking.Sockets library which supports C# asynchronous keywords await and 

asynch. These keywords were introduced in C# 5 which is not supported in Unity 2017.4. 

Therefore, the keywords cannot be used in the Unity editor, but they can be used in the 

generated application for UWP application. This is where the preprocessor directives come to 

action. 

In order to use Sockets in HoloLens application a preprocessor directive NETFX_CORE had to be 

used. This directive ensures that the code, enclosed by this directive in if statement, is compiled 

for UWP applications when using .NET scripting backend. A StreamSocket class from the 

standard UWP library is used for communication. 

5.2.1.4 Application Failure When the Connection is Not Established 

When the user requests communication with the server and the server is not available, the 

connection request is canceled after 7 seconds. Although the application correctly writes an 

output to the console that the time out was detected, the application then throws 



   

 

57 

 

NullReferenceException and terminates itself. This error was not fixed, and the application will 

terminate itself if the connection is not established. 

The class SimpleStreamSocket was tested on a PC computer in a different UWP application so 

the problem is probably not in the class itself. The problem might be in using asynch and await 

keywords and canceling a .NET standard Task class during execution in Unity. 

5.2.1.5 Firewall Blocking the Communication 

When the HoloLens application tried to connect to the server application on notebook via Wi-

Fi, a firewall blocked any attempts to establish the communication.  

This problem was solved by adding an inbound rule in a Windows application called Windows 

Defender Firewall with Advanced Security on the notebook. This application oversees the 

firewall settings on the target notebook.  

The rule was to allow access for an executable file “SynchronousSocketServer.exe” to accept 

any incoming TCP messages at a specified port on private networks. When the firewall was set 

up, the communication worked smoothly. 

  



   

 

58 

 

6 Application Demonstration 

This chapter demonstrates the application behavior. 

6.1 Server Application 

The first figure shows the output during the data extraction from the TIA Portal.  

 

Figure 6.1 Server application output part 1 

The second figure shows the output when the TIA Portal extraction is done which is followed 

by the import of work space data into NX. The user can see the communication via Anonymous 

pipes between the two processes. This communication is followed by old work space zones 

being deleted and the creation of new ones. 

 

Figure 6.2 Server application output part 2 

The third figure shows the result of the zone creation in NX and the communication between 

processes. After the zones are created, a process for creating an Asset Bundle starts. When the 

Asset Bundle is created, the application starts to act as a server and starts to listen at the specified 

IP and port. The figure demonstrates partial output of what happens when the HoloLens 

applications connects.  



   

 

59 

 

 

Figure 6.3 Server application output part 3 

6.2 HoloLens Application 

When the application starts, the user see a “Look for Target Image” message as is shown in 

Figure 6.4. This tells the user to look for the QR code. 

 

Figure 6.4 The “Look for Target Image” message 



   

 

60 

 

In order to visualize the application, a printed QR code needs to be placed on the floor. This 

QR code serves as a point of reference.  

 

Figure 6.5 Photo of the real space 

The QR code is visualized in the following figure. 

 

Figure 6.6 QR code used for reference point 

In the next figure is a photo taken during the application runtime. In the picture there is a part 

of an assembly line and three work space zones. Every zone has its menu bar which controls 

the zone. It is possible to see that the application gives a good idea of how the zones are related 

to the assembly line and to the real space, which fulfills one of the use cases defined in 

section 2.1. 



   

 

61 

 

 

Figure 6.7 HoloLens application with 3D model and imported work space zones 

  



   

 

62 

 

7 Conclusion 

This thesis aimed to integrate augmented reality into the digital workflow of virtual 

commissioning. The application described in the chapter 2.2 was successfully developed and 

implemented. Therefore, the thesis fulfilled the defined target. The created application satisfy 

the defined use case and it is fully integrated in workflow of virtual commissioning.  

Based on the feedback given by four of the Siemens’s employees it can be concluded that the 

application works as described and it is useful for adjusting workspace zones and synchronizing 

the data. But thorough research needs to be done among the end-users to verify this claim. 

Based on our experience with employees, the biggest issue with this application is that it is a 

new technology and not many people are used to working with it. It takes time for the user to 

get used to working with the basic tap and tap & hold commands. This might demotivate the 

users to utilize the developed HoloLens application. 

7.1 Future Work 

It is planned to improve the communication and then test the application in real environment to 

test the user experience and get the necessary feedback from the end-users. 

For the field application it is planned to use OPC UA communication standard for 

communication since it is becoming one of the main standards for communication [45]. The 

current implementation does not use a secure connection and therefore it is vulnerable to any 

potential attacks. 

The application will also need to resolve the problem with the Gimbal Lock phenomenon in 

order to be able to change the orientation in HoloLens application and then update these changes 

back to other software solutions. 

The development of HoloToolkit framework has been terminated and therefore, the application 

will be upgraded to Mixed Reality Toolkit (MRTK) when the first stable release of MRTK is 

released. 

The last improvement is related to coordinate systems defined in TIA Portal. Implementing 

these coordinate systems would simplify the zones configuration. The coordinate systems are 

listed in the section 3.6 in the Table 3-2. The data about these coordinate systems is already 

included in the XML export. 

  



   

 

63 

 

8 Bibliography 

1. Virtual Commissioning of an Assembly Cell with. Makris, S., Michalos, G. and 

Chryssolouri, and G. s.l. : Hindawi Publishing Corporation, 2012, Advances in Decision 

Sciences, Vol. 2012. ID 428060. 

2. Virtual Commissioning Of Manufacturing Systems A Review And New Approaches For 

Simplification. Hoffmann, Peter, et al. Kuala Lumpur, Malaysia : European Council for 

Modelling, 2010. pp. 175-181. ISBN: 978-0-9564944-0-5. 

3. A comparison between three SDLC models waterfall model, spiral model, and 

Incremental/Iterative model. Alshamrani, Adel and Bahattab, Abdullah. 1, s.l. : International 

Journal of Computer Science Issues (IJCSI), January 2015, Vol. 12, pp. 106-111. ISSN 1694-

0814. 

4. Impact of Requirements Elicitation Processes on Success of Information System 

Development Projects. Bormane, Līga, et al. 1, Riga : Information Technology and 

Management Science, December 2016, Information Technology and Management Science, 

Vol. 19, pp. 57-64. ISSN 2255-9094. 

5. Schloegl, Dr. Wolfgang. Automation Designer integrating Electrics and Automation in 

Digital Manufacturing. Siemens AG. 2018. Tech. rep. 

6. EPLAN. EPLAN - efficient engineering. [Online] EPLAN . https://www.eplanusa.com. 

7. Industry use of virtual reality in product design and manufacturing: a survey. Berg, Leif P. 

and Vance, Judy M. 3 01, 2017, Virtual Reality, Vol. 21, pp. 1-17. DOI:10.1007/s10055-016-

0293-9. 

8. HTC Corporation. Vive. Vive Product comparsion. [Online] HTC Corporation, 2019. 

https://www.vive.com/us/comparison/. 

9. Facebook Technologies, LLC. Oculus Homepage. Oculus. [Online] Facebook 

Technologies, LLC., 2019. https://www.oculus.com/. 

10. Samsung Electronics. Samsung Gear VR. Samsung. [Online] Samsung Electronics, 2019. 

https://www.samsung.com/global/galaxy/gear-vr/. 

11. Kore, Akshay. Understanding the different types of AR devices. UX Design. [Online] UX 

Collective, September 9, 2018. [Cited: May 9, 2019.] https://uxdesign.cc/augmented-reality-

device-types-a7668b15bf7a. 



   

 

64 

 

12. Review on Application of Augmented Reality in Civil Engineering. Agarwal, Siddhant. 

2016. International Conference on Inter Disciplinary Research in Engineering and Technology. 

pp. 68-71. ISBN: 978-81-929866-0-9. 

13. Review and analysis of augmented reality literature for construction industry. Rankohi, 

Sara and Waugh, Lloyd. s.l. : Visualization in Engineering, 8 29, 2013, Visualization in 

Engineering, Vol. 1, p. 9. ISSN: 2213-7459. 

14. Leswing, Kif. 'Pokémon Go' was the most downloaded iPhone app worldwide in 2016, 

Apple says. Business Insider. [Online] Business Insider Deutschland, 1 5, 2017. 

https://www.businessinsider.de/pokemon-go-most-downloaded-ios-app-worldwide-2016-

2017-1?r=US&IR=T. 

15. Delgado, Rick. 8 Real-World Uses for Microsoft HoloLens. Makeuseof.com. [Online] 

Makeuseof, 2 23, 2015. https://www.makeuseof.com/tag/8-real-world-uses-microsoft-

hololens/. 

16. Terry, Ruth. IKEA's New AR App Might Save You a Trip to the Store. Interesting 

engineering. [Online] Interesting engineering, 10 20, 2017. 

https://interestingengineering.com/ikeas-new-ar-app-might-save-you-a-trip-to-the-store. 

17. Takahashi, Dean. John Riccitiello sets out to identify the engine of growth for Unity 

Technologies (interview). VentureBeat.com. [Online] VentureBeat, October 23, 2014. [Cited: 

May 3, 2019.] https://venturebeat.com/2014/10/23/john-riccitiello-sets-out-to-identify-the-

engine-of-growth-for-unity-technologies-interview/. 

18. Unity Technologies. Unity. Unity3d.com. [Online] 2019. [Cited: May 4, 2019.] 

https://unity3d.com/unity. 

19. —. Unity User Manual (2017.4). Unity Documentation. [Online] Unity Technologies, 2017. 

https://docs.unity3d.com/2017.4/Documentation/Manual/index.html. 

20. —. Unity Scripting Reference. Unity Documentation. [Online] 2017. [Cited: May 2, 2019.] 

https://docs.unity3d.com/2017.4/Documentation/ScriptReference/. 

21. PTC Inc. Vuforia Fusion. Vuforia Developer Library. [Online] PTC Inc., 2018. [Cited: 

May 5, 2019.] https://library.vuforia.com/content/vuforia-library/en/articles/Training/vuforia-

fusion-article.html. 

22. Simultaneous localization and mapping: part I. Durrant-Whyte, H. and Bailey, T. 6 2006, 

IEEE Robotics Automation Magazine, Vol. 13, pp. 99-110. ISSN: 1070-9932. 



   

 

65 

 

23. Robust Real-Time Visual Odometry with a Single Camera and an IMU. Kneip, Laurent, 

Chli, Margarita and Siegwart, Roland. 2011. 

24. Rubino, Daniel. https://www.windowscentral.com/microsoft-hololens-processor-storage-

and-ram. Windowscentral. [Online] Windows Central, May 2, 2016. [Cited: May 6, 2019.] 

https://www.windowscentral.com/microsoft-hololens-processor-storage-and-ram. 

25. Microsoft Corporation. Mixed Reality documentation. Mircrosoft Documentation. 

[Online] Microsoft, March 21, 2018. [Cited: May 6, 2019.] https://docs.microsoft.com/en-

us/windows/mixed-reality/. 

26. Stein, Scott. Microsoft HoloLens: Not holograms, exactly, but strike one in AR turf war. 

CNET. [Online] CBS Interactive Inc., January 21, 2015. [Cited: May 7, 2019.] 

https://www.cnet.com/news/microsoft-hololens-not-a-hologram-exactly-but-another-entry-in-

an-augmented-reality-turf-war/. 

27. Merriam-Webster. Hologram | Definition of Hologram by Merriam-Webster. Dictionary 

by Merriam-Webster: America's most-trusted online dictionary. [Online] Merriam-Webster, 

Inc. [Cited: May 9, 2019.] https://www.merriam-webster.com/dictionary/hologram. 

28. Microsoft Corporation. MixedRealityToolkit-Unity. Github. [Online] December 5, 2018. 

[Cited: April 25, 2019.] https://github.com/microsoft/MixedRealityToolkit-

Unity/tree/htk_release. 

29. —. Universal Windows Platform documentation. Microsoft Docs. [Online] Microsoft 

Corporation. [Cited: May 8, 2019.] https://docs.microsoft.com/en-us/windows/uwp/. 

30. —. .NET API Browser. Microsoft Docs. [Online] Microsoft Corporation. [Cited: May 8, 

2019.] https://docs.microsoft.com/en-us/dotnet/api/?view=netframework-4.8. 

31. —. Pipes. Microsoft Docs. [Online] Microsoft Corporation, May 31, 2018. [Cited: May 8, 

2019.] https://docs.microsoft.com/en-us/windows/desktop/ipc/pipes. 

32. Siemens AG. S7-1500T Kinematics Functions V4.0. Siemens Industry Online Support. 

[Online] November 27, 2017. [Cited: May 8, 2019.] 

https://support.industry.siemens.com/cs/attachments/109749264/s7-

1500t_kinematic_function_manual_en-US_en-US.pdf?download=true. A5E42062707-AA. 

33. —. TIA Portal Openness: Introduction and Demo Application. Siemens Industry Online 

Support. [Online] Siemens AG, March 5, 2019. [Cited: May 2, 2019.] 



   

 

66 

 

https://support.industry.siemens.com/cs/document/108716692/tia-portal-openness%3A-

introduction-and-demo-application. 108716692. 

34. Company, Mecademic. How is orientation in space represented with Euler angles? 

Mecademic Indrustrial Robot Arms. [Online] Mecademic, 5 2, 2019. [Cited: May 9, 2019.] 

https://www.mecademic.com/resources/Euler-angles/Euler-angles. 

35. Meisen, Wolfgang. Siemens and KUKA announce cooperation. [Online] Siemens Media 

Relations, 9 17, 2013. https://www.siemens.com/press/pi/IDT2013094095e. 

36. Support, Siemens Industry Online. Controlling a KUKA Industrial Robot Using a 

SIMATIC S7-1500. 8 10, 2018. 

37. Jia, Yan-Bin. Quaternions. Problem Solving Techniques for Applied Computer Science. 

[Online] September 4, 2018. [Cited: May 2, 2019.] 

http://web.cs.iastate.edu/~cs577/handouts/quaternion.pdf. 

38. Gregory, Douglas. Converting a quaternion in a right to left handed coordinate system. 

Game Development Stack Exchange. [Online] Stack Overflow, April 28, 2018. [Cited: May 8, 

2019.] https://gamedev.stackexchange.com/a/157954. 

39. Blanco, José-Luis. A tutorial on SE(3) transformation parameterizations and on-manifold 

optimization. University of Malaga. 2010. Tech. rep. 

40. Siemens AG. SIMATIC Openness: Automating creation of projects. Siemens Industry 

Online Support. [Online] September 9, 2018. [Cited: May 8, 2019.] 

https://support.industry.siemens.com/cs/document/109477163/simatic-openness%3A-

automating-creation-of-projects?dti=0&lc=en-US. 109477163. 

41. Siemens Product Lifecycle Management Software Inc. NX Open for .NET - Executing 

Batch Applications. Documentation Center. [Online] 2017. [Cited: May 9, 2019.] 

https://docs.plm.automation.siemens.com/tdoc/nx/12/nx_api#uid:xid1162445:index_nxopen_

prog_guide:id1142076:id1253956:genid_for_net_22_1442 . 

42. Metaverse Technologies FRANCE. PiXYZ Software. PiXYZ Software. [Online] 

Metaverse Technologies FRANCE, 2019. [Cited: May 9, 2019.] https://www.pixyz-

software.com/. 

43. ISO. Industrial automation systems and integration — COLLADA digital asset schema 

specification for 3D visualization of industrial data. International Organization for 



   

 

67 

 

Standardization. [Online] 07 July, 2012. [Cited: May 9, 2019.] 

https://www.iso.org/standard/59902.html. ISO/PAS 17506:2012. 

44. Schaik, Joost van. Fixing the ''...Unity\Tools\AssemblyConverter.exe exited with code 1'' 

Error in Mixed Reality Apps. DZone. [Online] May 24, 2018. [Cited: May 5, 2019.] 

https://dzone.com/articles/fixing-the-quotunitytoolsassemblyconverterexe-exit. 

45. OPC Foundation. Major Automation Industry Players join OPC UA including TSN 

initiative. OPC Foundation Website. [Online] OPC Foundation, November 27, 2018. [Cited: 

May 10, 2019.] https://opcfoundation.org/news/press-releases/major-automation-industry-

players-join-opc-ua-including-tsn-initiative/. 

46. Simultaneous orthogonal rotation angle. Tomažič, Sašo and Stančin, Sara. Slovenia : The 

Elektrotehniška zveza Slovenije, 2011, Elektrotehniski Vestnik/Electrotechnical Review, Vol. 

78, pp. 7-11. 0013-5852. 

47. Spence, Ewan. Microsoft HoloLens Review: Winning The Reality Wars. [Online] 1 14, 

2017. https://www.forbes.com/sites/ewanspence/2017/01/14/microsoft-hololens-review-

experience-review/. 

48. Fitzsimmons, Michelle. Hands on: Microsoft HoloLens review. [Online] 6 17, 2017. 

https://www.techradar.com/reviews/wearables/microsoft-hololens-1281834/review. 

49. DeTellem, John. Automation Simulation: Your Gateway into Smart Manufacturing. 

Siemens Industry, Inc. 2017. Tech. rep. 

50. KISSEL, Richard L., et al. Security considerations in the system development life cycle. 

[Document] Gaithersburg : National Institute of Standards of Technology, 2008. MD 20899-

8930. 

 

  



   

 

68 

 

9 List of Figures 

Figure 1.1 Timeline of the workflow of commissioning ........................................................... 9 

Figure 1.2 Proposed timeline of the virtual workflow of commissioning ............................... 10 

Figure 1.3 Cost of change over time in different SDLC processes [4] .................................... 11 

Figure 1.4 Siemens solutions for simulation based on the customer needs ............................. 11 

Figure 1.5 Interaction between different stages in the workflow of commissioning in Siemens 

solutions [5] .............................................................................................................................. 12 

Figure 1.6 Augmented reality devices division [11] ................................................................ 13 

Figure 2.1 Task required to Export a 3D model from .............................................................. 15 

Figure 2.2 Use Case diagram ................................................................................................... 16 

Figure 3.1 Overview of Unity’s supported platforms [18] ....................................................... 20 

Figure 3.2 Vuforia Fusion components [21] ............................................................................ 21 

Figure 3.3 Process of detecting available tools in Vuforia Fusion [21] ................................... 22 

Figure 3.4 Microsoft HoloLens smartglasses ........................................................................... 23 

Figure 3.5 Mixed reality device types [25] .............................................................................. 23 

Figure 3.6 Example of coordinate system placement in Technology Object ........................... 26 

Figure 3.7 Example of zone placement in Technology Object ................................................ 27 

Figure 4.1 Cartesian Coordinate System .................................................................................. 29 

Figure 4.2 Euler Angles (ZXZ) fixed (extrinsic) rotation ........................................................ 30 

Figure 4.3 Euler Angles (ZXZ) mobile (intrinsic) rotation ...................................................... 30 

Figure 4.4 The E6AXIS structure ............................................................................................ 31 

Figure 4.5 The E6POS structure .............................................................................................. 32 

Figure 4.6 Coordinate system orientation comparison of TIA Portal (left) and Unity (right) . 35 

Figure 5.1 Asset Bundle creation algorithm ............................................................................. 39 

Figure 5.2 UML Domain diagram of SimpleTiaAPI project ................................................... 40 

Figure 5.3 Partial class diagram of TIA Openness project [40] ............................................... 41 

Figure 5.4 NX Open execution ................................................................................................ 43 

Figure 5.5 Communication process between client and server when downloading data from 

server ........................................................................................................................................ 45 

Figure 5.6 Main application algorithm ..................................................................................... 47 

Figure 5.7 Scene hierarchy ....................................................................................................... 49 

Figure 5.8 Image Target as it appears in Unity editor .............................................................. 50 

Figure 5.9 Indicator for a user that appears the beginning of the application .......................... 51 



   

 

69 

 

Figure 5.10 Console application for user interaction ............................................................... 51 

Figure 5.11 Communication between the HoloLens application and the Server ..................... 52 

Figure 5.12 Unity play mode with Mixed Reality Camera ...................................................... 54 

Figure 5.13 List of Errors During the Vuforia and HoloToolkit Compilation ......................... 55 

Figure 6.1 Server application output part 1 .............................................................................. 58 

Figure 6.2 Server application output part 2 .............................................................................. 58 

Figure 6.3 Server application output part 3 .............................................................................. 59 

Figure 6.4 The “Look for Target Image” message ................................................................... 59 

Figure 6.5 Photo of the real space ............................................................................................ 60 

Figure 6.6 QR code used for reference point ........................................................................... 60 

Figure 6.7 HoloLens application with 3D model and imported work space zones ................. 61 

Figure 13.1 Collapsed XML format for work space zones data extracted from TIA Portal .... 71 

 

10 List of Tables 

Table 2-1 Use case specification - Visualize model and zones in HoloLens ........................... 17 

Table 2-2 Use case specification - Move the work space zones in HoloLens application....... 17 

Table 2-3 Use case specification - Resize zones in HoloLens ................................................. 17 

Table 2-4 Use case specification - Upload to TIA Portal ........................................................ 18 

Table 2-5 Use case specification - Upload to NX project ........................................................ 18 

Table 2-6 Use case specification - Visualize model and zones in NX ..................................... 18 

Table 3-1 List of used hardware and software ......................................................................... 19 

Table 3-2 Types of Coordinate systems defined in Technology Objects ................................ 26 

Table 4-1 Coordinates in E6POS structure .............................................................................. 32 

Table 4-2 Mapping axis from Unity to TIA Portal coordinate system .................................... 34 

Table 5-1 List of projects in Server Application ...................................................................... 38 

Table 5-2 List of commands that can be send to server ........................................................... 53 

 

11 List of Snippets 

Snippet 1 Transforming coordinates from TIA Portal to Unity ............................................... 35 

Snippet 2 Convert Unity Quaternion to TIA coordinates ........................................................ 36 

Snippet 3 Enumeration of commands for communication ....................................................... 44 

 

file:///C:/UserData/z0040cad/Documents/00_MyThesis/Documentation/Thesis_Final_Version/Thesis.docx%23_Toc9577063
file:///C:/UserData/z0040cad/Documents/00_MyThesis/Documentation/Thesis_Final_Version/Thesis.docx%23_Toc9577076
file:///C:/UserData/z0040cad/Documents/00_MyThesis/Documentation/Thesis_Final_Version/Thesis.docx%23_Toc9577077
file:///C:/UserData/z0040cad/Documents/00_MyThesis/Documentation/Thesis_Final_Version/Thesis.docx%23_Toc9577078


   

 

70 

 

12 List of Abbreviations 

Abbreviation Term 

PC Personal Computer 

TCP Transmission Control Protocol 

HMI Human Machine Interface 

API Application Programming Interface 

HUD Heads Up Display 

TIA Totally Integrated Automation 

MCD Mechatronics Concept Designer 

PLC Programable Logic Controller 

CAD Computer Aided Design 

CAM Computer Aided Manufacturing 

CAE Computer Aided Engineering 

GUI Graphical User Interface 

SDLC Systems Development Life Cycle 

SIL Software-In-the-Loop 

CAVE Cave Automatic Virtual Environment 

AutomationML Automation Markup Language 

MRTK  Mixed Reality ToolKit 

SDLC Software development life cycle 

 

  



   

 

71 

 

13 Appendix 

 

<?xml version="1.0" encoding="utf-8"?> 

<TechnologicalObjects PLC_name_src="Packaging_PLC" 

Project="C:\1Ondrej_Havlicek\00__src\TIA_Portal_related\TIA_portal_src_zon

es\05_Handling_Machine_un\Packer_V15.1\Packer_V15.1.ap15_1" 

XmlExportVersion="1.0" TiaPortalVersion="V15.1"> 

  <TO_Kinematics TO_name="Kinematics"> 

    <CoordinateSystems> 

<!-- Coordinate systems, not implemented --> 

      <CorrdinateSystem name="KcsFrame.x" value="0" /> 

      <CorrdinateSystem name="KcsFrame.y" value="0" /> 

      ... 

    </CoordinateSystems> 

    <Zone zoneID="WorkspaceZone1"> 

      <TOParam name="WorkspaceZone[1].Active" value="false" /> 

      <TOParam name="WorkspaceZone[1].Valid" value="false" /> 

      <TOParam name="WorkspaceZone[1].Type" value="1" /> 

      <TOParam name="WorkspaceZone[1].ReferenceSystem" value="0" /> 

      <TOParam name="WorkspaceZone[1].Frame.x" value="0" /> 

      <TOParam name="WorkspaceZone[1].Frame.y" value="0" /> 

      <TOParam name="WorkspaceZone[1].Frame.z" value="0" /> 

      <TOParam name="WorkspaceZone[1].Frame.a" value="0" /> 

      <TOParam name="WorkspaceZone[1].Frame.b" value="0" /> 

      <TOParam name="WorkspaceZone[1].Frame.c" value="0" /> 

      <TOParam name="WorkspaceZone[1].Geometry.Type" value="0" /> 

      <TOParam name="WorkspaceZone[1].Geometry.Parameter[1]" value="50" /> 

      <TOParam name="WorkspaceZone[1].Geometry.Parameter[2]" value="50" /> 

      <TOParam name="WorkspaceZone[1].Geometry.Parameter[3]" value="50" /> 

    </Zone> 

    <Zone zoneID="WorkspaceZone2"> 

      <TOParam name="WorkspaceZone[2].Active" value="true" /> 

 ... 

    </Zone> 

    <Zone zoneID="WorkspaceZone3"> 

    </Zone> 

 ... 

    <Zone zoneID="WorkspaceZone10"> 

    </Zone> 

  </TO_Kinematics> 

</TechnologicalObjects> 

 

Figure 13.1 Collapsed XML format for work space zones data extracted from TIA Portal 


