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EQUIVALENT ELECTRICAL MODEL OF AN INDUCTOR EXCITED
BY A TRIANGULAR CURRENT INCLUDING SATURATION

A model for an equivalent electrical circuit designed for a ferrite (3C90) inductor usually used in power converters
excited by a non-sinusoidal current appropriate for use in power electronics is proposed. This study, based on 3D
finite element analysis, leads to significant precision advantages over 2D analysis for non-symmetric inductors. The
Sfrequency range of the analysis for the toroidal core was between 15 kHz and 1 GHz, with different levels of excitation

in non-saturation and saturation status focusing on the power loss.
Keywords: ferrite inductors, 3d finite element analysis, power losses, saturation, hysteresis, eddy current losses,

magnetization

1 Introduction

Ferrites (3C90) are common used due to their losses
data and permeability characteristics [1-6] in power
converters. These components have non-linear behaviour
that needs to be added in electromagnetic analysis to
develop a transient simulation of these power converters
[7-11]. Models of these magnetic components can be found
in the bibliography [12-14], However, non-linear models
that represent non-linear behaviour is an an absence of
power converterfield. An electrical-magnetic model of
a ferrite inductor valid for triangular current excitations
is presented for a 15 kHz to 1 GHz frequency range (the
range of switching frequencies used by power electronic
converters based on Si, SiC or GaN semiconductors) with
different signals to include the saturation status in the
analysis.

The core for the inductor component analysed in
this work was toroidal because they are common in
transformers and inductive components, they do not have
symmetry and they cannot be solved using Maxwell’s
equations in either 1D or 2D finite element analysis (FEA).

A comparison between sinusoidal and triangular
excitation currents for the inductor component is included
in the analysis as well.

Section II explains the FEM procedure, Section
describes the signals used in this study and Section IV is
the definition of core loss used for the scripts in the FEM
software. At the end, the conclusions from the FEM results
are presented.

2 Procedure for parameter extraction

This work aims to achieve inductance, L, and
resistance, R, it means, the parameters of the the equivalent
circuit for the analysed inductor to obtain the output
voltage and current waveform for an input triangular
current excitation utilised in the inductor component.
The inducatance and the resistance connect in series. L
depends on the excitation current, I=f(L,I), and R depends
onthe I and frequency, R=f(1  , freq.) being non linear
components.

To develop the parameter extraction, a 3D component
without simplifications was analysed using FEM analysis
(Transient Solver with 2% energy error in Maxwell Ansys
to obtain the convergence), which involves three different
steps: pre-modelling, simulation and post-modelling phases.
If the computational limitations do not allow convergence
in the FEM simulation, a simplification model is described
in [15].

L was estimated applying a triangular current and the
BH data [16] in the pre-modelling that characterizes the
core material. After the simulation, the L-I curve described
in [17] can be defined the following parameter (¢-I curve):

dé
L) = —F, )
where ¢ is the magnetic flux.

R was derived during the post- modelling step R-I
curve as described in [17]:
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where P is the average value of the power and I is the
rms value of the current.

The equivalent resistance of a magnetic component is
normally defined as the resistance for a sinusoidal signal
instead of a triangular current signal. Nevertheless, the
resistance discussed in this work is the average resistance
for a triangular signal in a transient analysis developed by
FEM.

The inductor component studied is shown in Figure
1(a) (Model 1). This model is valid for saturation and non-
saturation status.

In the case of non-saturation and core linear behaviour,
it is possible to add the R and L for the winding in the model.
See Figure 1(b) (Model 2). These parameters were obtained
during the 3D FEM post-modelling, using the procedure in
[18] and Equations (3)-(4) to obtain the coefficients for any
frequency range for the winding parameters considering
a linear system because the superposition theorem was
used for deriving the values of the parameters.

In summation, in saturation status, Model 1(a) is
used because the core power loss is dominant over other
parameters. Model 1(b) is selected for non-saturation
including the winding parameters in the equivalent circuit
of the inductor component.
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3 Signals description
3.1 Triangular signals

Different triangular signals (type A and B) were
analysed.

Signal type A is a triangular signal with different offsets
and type B is a triangular signal with the same offset,
varying the peak value. See Figures 2-3. In total, 9 different
triangular signals were analysed.

The I _for each analysed signal are indicated in Table
1, where A.3, A.4 and A.5 produce core saturation according
to the manufacturer’s datasheet.

3.2 Sinusoidal signal

The sinusoidal signal selected for comparison with
the triangular signal is shown in Figure 4 and Table 2 for
the I = of this signal and the corresponding triangular
signal. Signal C.1 was set to have the most similar rms
value with the triangular signal chosen (signal A.1). All
the signals shown are repeated from the frequency range

studied.
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Table 1 RMS value for different signals

Signal Name I (A) B(T)

Al 1.286 0.244

B.1 1.570 0.292

B.2 1.856 0.341

B.3 2.141 0.365

A2 2.286 0.333

B4 2.426 0.382
A3 3.286 0.4

A4 4.286 0.444

Ab 5.286 0.462

Table 2 RMS value for triangular/sinusoidal signal

Cl1

I.@A) 1.286 1.354

Current (A)

T T
—&——signal AL

5 Signal C.1

Time (ns)

Figure 4 Triangular signals, Type A, and corresponding sinusoidal signal, Type C

4 Determination of the core power loss

The core loss calculated by Maxwell Ansys uses the
Steinmetz equation with parameters defined by Ansys or
modified by the user. This formula presents several issues,
the method is only for static, does not predict important
frequency/rate dependency and, in addition to linear
dynamics, does not capture non-linearity in excess loss
[19].

Nevertheless, Ansys Maxwell permits calculating the
power loss separately (5), including the hysteresis loop data
in the pre-modelling by transient analysis solver.

P = Bzyster()sis + Peddy . (5)

There is another loss, P (loss due to the
material properties modification due to the eddy
current); however, for this particular case, it is negligible

for the eddy current produced in the ferrite core
component.

4.1 Hysteresis loss

During each AC cycle, current flowing in the forward
and reverse directions alternatively magnetizes and
demagnetizes the core. Energy is lost in each hysteresis
cycle within the magnetic core. Energy loss is dependent
on the properties (e.g. coercivity) of the core material and
is proportional to the area of the hysteresis loop [16]. The
calculation during post-modelling is defined by [20]:

1 .
Phyx[eresis:Lnly'w'lm(B'H)dv, (6)
where B is the magnetic flux density, H' is the complex
conjugate of the magnetic field and @ is the angular
frequency.

4.2 Eddy current loss

An eddy current is an electric current set up by an
alternating magnetic field. Thus, if the core is manufactured
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Table 3 Dissipated energy vs Irms

B(T) 0.244 0.292 0.341 0.365 0.333 0.382 0.4 0.444 0.462
(A 1.286 1.570 1.856 2.141 2.286 2.426 3.286 4.286 5.286
E (D) 0.063 0.122 0.163 0.173 0.37 0.265 0.71 1.497 1.723
E, . 2E-12 3E-12 bE-12 8E-12 4E-12 1E-11 8E-12 1E-11 2E-11
_E.@ 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0027 0.0035 0.0041
Table 4 Values of coefficients for k vs Irms
kg k, k,
Non-saturation 0.036 - I&s 21012 Ihi 0.0001
Saturation 0.036 - 145 21012 [ 0.0008 - I

Tms

Figure 5 Inductor analyzed

with a conductor material, the eddy current losses arise
modyfing the flux and producing circulatin current into the
core. Eddy current loss depends upon the rate of change of
flux as well as the resistance of the path. According to the
theory, it expects that the loss changes with the square of
both the maximum flux density and frequency if the core
has been mmanufactured withferromagnetic materials..
These currents, circulating in the core material cause
resistive heating in this material [20]:

Peore = Ll%-Re(j»f‘)dv, )

where J is the current density, J* is the complex conjugate
of the current density and o is the material conductivity
for the core. For the core surfaces, the eddy loss is given
by [20]:

Psurface =4/ %Z,uf f]_[t : I_It*ds, (8)

where M, is the tangential component of H on the
boundary and F/; is the complex conjugate tangential
component of A on the boundary.

Consequently, the total eddy current loss is defined as:

Peddy = PC(]?‘(’ + Psurfasﬂ . (9)

5 Analysis using 3D FEM

The selected Toroidal component core, C107.65.25 with
1 winding (4 turns with 1° lateral distance) using a 3C90
material, has been chosen because it is a non-symmetric
component [15] and 3D FEM analysis has more precision
than 2D FEM analysis, see Figure 5.

The FEM analyses were performed with the
magnetization choice selected for the core in the FEA tool
solver to apply Equations (6)-(9) for calculating the losses.

The results for the 9 different triangular signals are
shown in Appendix I, where the losses (hysteresis and
eddy) and the magnetic field density peak for the different
cases are presented. The hysteresis losses from signal Type
A become linear at high frequencies when the I _increases
due to the magnetization impact. The hysteresis losses
reach larger peaks than Type B for cases where the peak
current value is the same.

The eddy losses (surface) suffer an inrush effect to get
to a constant value for Type A signals. Type B signals do not
reach the saturation state on the core surface.

The eddy losses (core) have a sinusoidal behaviour
according to the current for both types.

Since the analyses were developed from 15 kHz to 1
GHz, they can be used to calculate the dissipated energy.
See Appendix II, where the energy from hysteresis losses
and eddy current losses are shown. It is evidence that
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Figure 7 Comparison between A.1 and C.1
(Hysteresis Loss)

dissipated energy from eddy currents has a linear tendency
but the energy from hysteresis currents has a quadratic one
with the frequency.

See Table 3 for the dissipated energy by nature
and corresponding core peak magnetic field density
produced. At this point, the dissipated energy for the
inductive component versus frequency can be predicted.
Mathematical regressions from the energies results from
the FEA tool were calculated; thus, the eddy current is
divided into the energy at the boundary (10) and the core,
(11) and the energy for hysteresis is defined in (12).

Esurfuce = ka . (10)
Ecore = ka (11)
Enys = ku-f*. 12)

The dissipated energy for the component built with
ferrite can be calculated by summing the energies (10)-(12).
The specific coefficients, k, k, and k,, are indicated in Table
4 for saturation and non-saturation status for the core used
in this analysis and fis the frequency. Based on the results,

the dissipated energies from the eddy current are equal
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Figure 8 Comparison between A.1 vs C.1
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Figure 9 Comparison between A.1 and C.1
(Eddy Loss at the surface)

independent of the saturation, however, the hysteresis
energy suffers a tendency to change when the core is in
saturation.

The magnetic density peak for each signal according
to the I _has been plotted in Figure 6 to demonstrate that
there is a linear relationship between ¢ and I__ for the
analysed inductor.

The comparison of the hysteresis and eddy losses
between the triangular signal (A.1) and the sinusoidal (C.1)
is shown in the Figures 7-9. The tendency of the hysteresis
loss of Signal C.1. is similar to the loss of Signal A.1. The
values of the losses are in agreement with the I of the
signals. The values for the eddy losses from the core have
similar values and are negligible from the eddy losses from
the surface. The loss due to the eddy current for the core
surface is larger in Signal C.1.

Since electronics engineers design inductors for
working at a defined operation point in terms of frequency, it
is necessary to have a dedicated analysis for this frequency
operation point to obtain the difference for the output
voltage for different signals.

In saturation status, the inductance (1) and resistance
(2) for the core can be introduced in the simulator PSIM to
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obtain the voltage and current waveforms. If the core is not
saturated, the winding inductance (3) and resistance (4)
needs to be added into the model inductor in the simulator
for a defined frequency range.

The original contribution of this work that it can modify
the electrical parameters from one operating frequency
point and I = to another without performing any FEM
simulation using:

E

P:T,

13)
where E is E_, fm+Em+Ehys, calculated previously, and T
is 1/f to obtain the resistance. The inductance modification
according to the frequency and I is shown in Figure
6 with a linear relationship. With these results, it comes
back to Equations (1)-(2) to obtain R and L at the desired
frequency and signal for the core.

6 Conclusions

A model of an equivalent electrical circuit y designed
for inductors made with 3C90 core used with triangular
waveforms is presented in this manuscript.

The electrical parameters for the core and the coil,
depending on the saturation status, have been estimated
using a 3D FEM-model from 15 kHz to 1 GHz. The 3D model
was used to involve all the high-frequency effects in the
analysis that cannot be calculated in 2D.

This work focused on the behaviour of the core power
loss for toroidal components excited by triangular signals
(9 different triangular signals were selected).

Determining the core power loss was divided by nature
and they were not calculated for the Steinmez Equation.

The first conclusion of this paper is that the tendency
of the energy dissipated is linear with the frequency
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Appendixes I and II where the evolution of the core
loss and magnetic field density are plotted depending on
the input current used for the FEM analysis are at the end
of the paper.
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Appendix II

Hysteresis Eddy Loss (core) Eddy Loss(surface)
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