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Polyvinyl alcohol (PVA)/polyethylene glycol (PEG) blend nanocomposite films reinforced with
various loadings of carbon black nanoparticles (CBNPs) were synthesized via a solution casting
approach. The structural properties of PVA/PEG/CBNPs nanocomposites were investigated using
Fourier-transform infrared (FTIR) spectroscopy, indicating the strong interaction of CBNPs with the
polymer blend. The thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC)
results respectively confirmed the enhanced thermal stability and the variation in the melting
temperature with the addition of CBNPs in polymer blend . The dielectric measurements of
nanocomposite films were carried out over a frequency range from 50 Hz—20 MHz at a varied
temperature range from 40 °C—150 °C using impedance analyzer . The maximum dielectric constant
for neat PVA was observed to be about 21.4 at 50 Hz and 150 °C. For PVA/PEG/CBNPs
nanocomposites having higher loading of CBNPs (25 wt%) the maximum value of dielectric constant
was found tobe e = 375.1 at 50 Hz, 150 °C. The dielectric properties increased with the addition of
CBNPs which validates a significant control on percolation threshold attributing to the well-dispersed
CBNPs in the polymer blend. The electromagnetic interference (EMI) shielding effectiveness (SE) was
improved from 0.1 dB to 10.6 dB with the addition of CBNPs in the PVA /PEG blend. The improved
EMI SE and dielectric performance of these nanocomposites suggest CBNPs as excellent nanofillers
for the development of flexible, lightweight and low-cost material for electronic applications.

Introduction

Modern society is concerned with the unwanted electromagnetic interference (EMI) signals that arise due to the
evolution in the consumption of industrial, commercial, military, wireless and high-speed communication
systems. These EMI signals cause perturbation and distortion in the operation of electronic devices [1, 2].
Therefore, shielding of such electronic devices is necessary to avoid degradation in their performance. In recent
years, polymer nanocomposites (PNCs) comprising novel polymeric systems and carbon-based nanofillers have
gained much attention for the development of effective, light-weight dielectric and EMI shielding materials
[3-7]. Among varied types of polymers, the electrically insulating polymers exhibit very low dielectric constant
values leading to poor shielding attenuation, therefore to enhance such property they are reinforced with
electrically conducting fillers [1-3, 8]. Several researchers developed advanced conductive nanocomposites by
adding various conductive nanofillers as carbon black nanoparticles (CBNPs) [4], carbon nanotubes (CNT) [5],
carbon nanofibers (CNF) [6] and metal nanoparticles etc [7]. Furthermore, the interaction between conductive
polymer and nanofiller leads to high dielectric constant and low dielectric loss resulting from the insulator—
conductor transition occurring near the percolation threshold [8]. To achieve better electrical conductivity, a
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higher concentration of metal nanoparticles is needed and as a result composites become heavy and inflexible
[9]. On the other hand, CBNPs reinforced PNCs preserves the flexibility of composites and are lightweight, eco-
friendly as well as exhibit good thermal stability [10]. CBNPs are being used in various applications, including
electronic packaging, protective coatings, storage capacitors, structural reinforcement, EMIshielding, heating
elements, and so on [4, 5]. CBNPs exhibits exceptional properties like high specific surface area, conducting
nature, varied particle size, strong electric forces which closely bounds the aggregates [11]. CBNPs reinforced
PNCs were extensively used in aerospace industries as a flooring material for the dissipation of static electricity
charges and the fabrication of modern electrical devices and components [4].

Polyvinyl alcohol (PVA) being a hydrophilic-organic polymer has fascinated the interest of material
scientists due to its variety of applications in food packaging, humidity sensors, thin-film transistors, fuel cells,
andsoon [12, 13]. PVA forms hydrogen bonding with other polymeric matrices due to the presence of hydroxyl
groups and exhibits good charge storage capacity, high dielectric strength, high tensile strength along with
excellent film-forming properties [14—18]. PVA being an insulating polymer shows poor conducting nature.
The conductivity of PVA at room temperature is relatively low, but blending it with polyethyleneglycol (PEG)
will improve its conductivity [19]. PEG is a hydrophilic and non-toxic polymer, having tremendous properties
like electron acceptor nature, biocompatibility, chain flexibility and a wide range of molecular weight [19]. PEG
is widely used to increase the ductility and flexibility of rigid polymers. However, PEG is having a low melting
point than PVA which preserves the highly strengthened carbon chain backbone in PVA as compared with the
C-0O-Cbackbone in PEG[19, 20]. Thus, the present work deals with the fabricating CBNPs reinforced PVA/
PEG blend nanocomposite films with an intent to investigate their structural, morphological, thermal, dielectric
and EMI shielding properties. The obtained results demonstrate the suitability of flexible PVA/PEG/CBNPs
nanocomposite films for EMI shielding applications.

Experimental technique

Materials

Polyvinyl alcohol (PVA) powder having molecular weight 1, 15 000 g mol ' and polyethylene glycol (PEG)
powder with molecular weight 6000 g mol ! were supplied by Loba Chemie Pvt. Ltd Mumbai, India. CBNPs
with 21 nm average particle size were procured from Plasma Chem GmbH, Berlin, Germany. Double de-ionized
water was utilized as a solvent for the synthesis of CBNPs reinforced PVA /PEG blend nanocomposite films. All
the chemicals were used without any further purification.

Preparation of PVA/PEG/CBNPs Nanocomposite Films

PVA/PEG/CBNPs nanocomposites were synthesized by employing a solvent casting approach using double de-
ionized water as a solvent. For the preparation of PVA/PEG blend film, first, 0.75 g of PVA powder was dissolved
in 20 ml double deionized water by heating at 70 °C for 3 hin a hot air oven. Later, 0.25 g of PEG powder was
dissolved in 20 ml water at room temperature and subsequently added to the prepared PVA solution to form a
PVA/PEG blend solution. This blend solution was stirred for 3 hours before casting and drying on Teflon petri
dish at 60 °C for 8 hours. After drying, the PVA/PEG blend films were removed from the petrish dish and
utilized for further study. Similarly, for the preparation of75/10,/15 (wt%) composition of PVA/PEG/CBNPs
nanocomposites, 0.75 g of PVA powder was first dissolved in 20 ml double de-ionized water by heating at 70 °C
for 3 hin ahotair oven. On the other side, in a separate beaker, 0.10 gm of PEG powder was dissolved in 20 ml
solvent at room temperature and subsequently added to the PVA solution. Later, 0.15 gm of CBNPs were
dispersed in 20 ml double de-ionized water via ultra-sonication for 1 h at room temperature and then mixed
with PVA/PEG blend solution. The obtained homogeneous PVA/PEG/CBNPs dispersion for 75/10/15 (wt%)
composition was stirred at room temperature for 8 h and finally spread on a clean Teflon petri dish for drying at
60 °C for 5 h. The resulting PVA/PEG,/CBNPs nanocomposite film having a thickness in the range 60—-80 yum
was peeled off and utilized for further characterizations. The other compositions mentioned in table 1 were also
prepared by following the same procedure. The step by step preparation procedure of PVA/PEG/CBNPs
nanocomposites is schematically illustrated in figure 1.

Characterizations

Fourier transform infrared (FTIR) studies of prepared PVA/PEG/CBNPs nanocomposite films with varying

content of CBNPs were evaluated using Fourier transform infrared spectrophotometer (Shimadzu, IRAffinity-1,

Japan) in a transmittance mode, in wavenumber range from 500 to 4000 cm L
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Table 1. Feed composition details of PVA/PEG/CBNPs

nanocomposites.
SrNo. PVA (wt%) PEG (wt%) CBNPs (wt%)
1. 75 25 0
2. 75 20 5
3. 75 15 10
4. 75 10 15
5. 75 5 20
6. 75 0 25
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Figure 1. [llustration of synthesis procedure of PVA/PEG/CBNPs nanocomposite films.

Thermal studies of PVA/PEG/CBNPs nanocomposite films with various loadings of CBNPs were evaluated
by Shimadzu’s TGA-50 series thermogravimetric analyzer (TGA), under nitrogen (N,) atmosphere. The
samples were heated up to 800 °C with a rate of 10 °C min .

Differential scanning calorimetry (DSC) measurements of PVA/PEG/CBNPs nanocomposite films with
various loadings of CBNPs were carried out using DSC 8000 advanced double furnace differential scanning
calorimeter (Perkin Elmer, USA) at a heating rate of 10 °C min !, ina temperature range of 10-250 °C, under
nitrogen atmosphere.

The dielectric measurements of PVA/PEG/CBNPs nanocomposite films with various loadings of CBNPs
were evaluated using PSM1735 Impedance Analyser (Newtons 4th Ltd, UK). The samples were coated both sides
with silver paste to confirm uniform charge transfer and placed inside the computer controlled-furnace with the
accuracy of 0.2 °C. The measurements were carried out at a temperature range (40 °C-150 °C) and in the
frequency range (50 Hz—20 MHz).

The EMI SE studies of the PVA/PEG/CBNPs nanocomposite films with various loadings of CBNPs were
carried out in the Ku-band frequency region using an 8510C Vector Network Analyzer (VNA), (Agilent
Technologies, USA) with a waveguide dimension of 25.5 X 13 X 5.6 mm.

Results and discussions

FTIR spectroscopic studies

The FTIR spectra of pure PVA and PVA/PEG blend with different loadings of CBNPs are depicted in

figures 2(a)—(e). The FTIR spectrum of the neat PVA presented in figure 2(a) shows various characteristic bands.
The broad absorption band at 3265 cm ™ can be attributed to the vibration of O—H symmetrical stretching [21].
The characteristic peaks at 2939 cm ™' and 2908 cm ™' can be ascribed to an alkyl group and C—H asymmetric
stretching vibration respectively. The absorption band appearingat 1711 cm ™' and 1661 cm ™" indicates the
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Figure 2. FTIR spectra of (a) Pure PVA (b) PVA/PEG blend (c) PVA/PEG/CBNPs nanocomposite films with 5 wt% of CBNPs, (d)
15 wt% of CBNPs, () 25 wt% of CBNPs.

C=O stretching vibration of the carbonyl group of PVA [19]. The absorption bands at 1413 cm ™', 1327 cm ™'

and 1240 cm ™' confirm the presence of CH, bending, stretching and C—H wagging vibrations, respectively. The
characteristic peak observed at 1085 cm ™' can be ascribed to the O~H bending and C-O stretching of an acetyl
group [15]. The bands appeared at 918 cm ™' and 831 cm ™! can be ascribed to the skeletal vibration of PVA [22].
The FTIR spectrum of PVA /PEG blend film illustrated in figure 2(b), displays all characteristic peaks of neat
polymers. The FTIR bands observed at 1081 cm ™' and 838 cm ™' were ascribed to stretching vibrations of the C—
O-C ether linkage and C—C group [23]. The peak at 3265 cm ™ attributing to O—H symmetrical stretching
vibration was shifted to 3269 cm ™" in PVA/PEG blend. The peak at 2939 cm " ascribing to C~H asymmetric
stretching vibration was shifted to 2916 cm ™. Similarly, the peak at 1327 cm ™' corresponding to CH, stretching
vibration was shifted to 1326 cm ' and another peak at 1711 cm ™' corresponding to the C=0 stretching
vibration was also shifted to 1710 cm ™", These shifts in the characteristic peaks towards lower wavelength in
FTIR spectra indicate the formation of hydrogen bonding interaction between the O—H groups of polymeric
chains[15, 24]. The FTIR spectra of PVA/PEG/CBNPs nanocomposites with various loadings of CBNPs are
depicted in figures 2(c)—(e), from which the presence of all the characteristic peaks of PVA and PVA /PEG blend
can be identified. The similar characteristics peaks were observed at 3262 cm ™, 1320 cm™ ', 1081 cm ™' and

830 cm ™' with a slight shift towards the lower wavelength indicating the hydrogen bonding formation and the
substantial interaction of CBNPs with the polymer blend [4]. Thus, the FTIR results indicate the successful
preparation of PVA/PEG/CBNPs nanocomposites.

Thermogravimetric analysis

The TGA thermographs measuring the weight loss as a function of temperature for PVA /PEG/CBNPs
nanocomposites with various loadings of CBNPs are presented in figures 3(a)—(f). As with the increase in
temperature, there was a decrease in weight of the sample which indicates the continuous decomposition of the
material. In figure 3(a), the TGA thermograph of PVA/PEG blend below 250 °C shows nearly 10% weightloss
resulting from the evaporation of absorbed water [25, 26]. The decomposition of PVA/PEG blend film held
between 250 °C to 450 °C temperature range with almost 89% weight loss attributing to the abolition of
functional groups such as hydroxyl and free amine groups [27]. Further increase in temperature up to 800 °C,
the 3% weight loss was observed indicating the breaking of carbon chain backbone in the PVA /PEG blend. On
adding, CBNPs in the polymer blend, there was a slight decrease in weight loss. The TGA thermographs for
CBNPs with 5 wt% loading given by figure 3(b), shows almost 84% weight loss at the temperature ranging from
250 °Cto 600 °C indicating the less weight loss as that of the PVA/PEG blend. Similarly, the weight loss trend
was observed for 10 wt% and 15 wt% loadings of CBNPs (figures 3(¢), (d)). With further increase in CBNPs
loadings, TGA thermographs show two-step decomposition having a significant drop in the weight loss as
compared to PVA/PEG blend. The CBNPs loadings with 20 wt% and 25 wt% show a weight loss of almost 52%
and 54% respectively, at 250 °C to 450 °C temperature range attributed to the elimination of functional groups
present in the polymer chains [28]. On a further rise in temperature from 550 °C to 800 °C the weight loss
corresponding to 20 wt% and 25 wt% CBNPs loadings were 32% and 27% respectively which could be ascribed
to the strong interaction between polymer matrices and the CBNPs [24, 28]. Therefore, the TGA results indicate
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Figure 3. TGA thermographs of (a) Pure PVA, (b) PVA/PEG blend, (c) PVA/PEG/CBNPs nanocomposite films with 5 wt% CBNPs,
(d) 10 wt% CBNPs, (€) 15 wt% CBNPs, (f) 20 wt% CBNPs, (g) 25 wt% CBNPs.
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Figure 4. DSC thermographs of (a) PVA/PEG blend (b) PVA/PEG/CBNPs nanocomposites with 5 wt% CBNPs, (c) 10 wt% CBNPs,
(d) 15 wt% CBNPs, (e) 20 wt% CBNPs, (f) 25 wt% CBNPs.

asignificant decrease in the weight loss by the addition of CBNPs, as compared to the PVA /PEG blend thereby
improving the thermal stability of PVA/PEG/CBNPs nanocomposites.

DSC measurements

The DSC curves for the PVA/PEG blend and the PVA/PEG/CBNPs nanocomposites with various CBNPs
loadings are presented in figure 4. For PVA/PEG blend (figure 4(a)), there are two endothermic peaks detected
among which one strong peak is present at 58 °C, whereas the second short but broad peak is present at 220 °C.
The endothermic peaks observed for PVA /PEG blend are possibly associated with the melting temperature (T ,,)
of PEG and PVA [29, 30]. Since there is a huge difference between the two temperature values which might be
due to the incompatibility of the blend having high PEG (>20 wt%) concentration [31, 32]. The influence of
various concentrations of CBNPs on the PVA /PEG blend is represented in figures 4(b)—(e). It was found that
with the addition of CBNPs, the single endothermic peak is detected with a significant shift in the T, whereas
the width of the peak is almost similar to that of the PVA/PEG blend supporting the single-phase behaviour of
polymer blend [33]. Another reason for the shift in the T, of PVA/PEG/CBNPs nanocomposites might be the
intermolecular interaction between the incorporated CBNPs and the polymer blend indicating the changes
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occurring between semi-crystalline and an amorphous phase of the polymers [30, 34, 35]. The Ty, is slightly
shifting towards the lower values with the increase in CBNPs content (5 wt%—20 wt%). However, the depth of
peak is decreasing with an increase in CBNPs loading and almost vanished for the 25 wt% loading of CBNPs.
Also, it can be seen that, as the PEG content decreases the depth of peak also gets lower while no endothermic
peak was observed for the nanocomposite containing higher CBNPs loading and in the absence of PEG. The
reason for the disappearance of the endothermic peak for 25 wt% CBNPs loading added in the PVA matrix is
might be due to the amorphous nature of PVA and there is no significant formation of crystallization in the
polymer matrix on adding nanofiller [36, 37]. The endothermic peaks are assumed to be due to the melting of
PEG [32]. In addition, the interaction of CBNPs and PEG is strongly attractive as the T\, is higher than that of
58 °C in nanocomposites [38, 39]. The DSC studies indicate that the PEG and CBNPs have influenced the
thermal properties of PVA/PEG/CBNPs nanocomposites.

Dielectric properties

The variation of dielectric properties of CBNPs reinforced PVA /PEG blend nanocomposites in the frequency
range 50 Hz to 20 MHz and at temperature range 40 °C to 150 °C were presented in figures 5 and 6. These
properties of nanocomposites with various loadings of CBNPs were examined to estimate their feasibility for
EMI shielding applications. The maximum values of dielectric constant (¢) and dielectric loss (tan ¢) are
summarized in table 2. For neat PVA, the maximum e shown in figure 5(a) was observed to be 21.4, at 50 Hz and
150 °C. Similarly, for PVA/PEG blend in figure 5(b), the £ obtained was 40.3 at the same frequency and
temperature as that of PVA. In both cases, the maximum ¢ was observed at low frequency (50 Hz) and it was
decreased swiftly with further increase in the frequency. According to the Maxwell-Wagner-Sillar effect, atlow
frequency, the maximum ¢ values can be attributed to the presence of interfacial polarization [20, 40]. The e
plots for PVA/PEG/CBNPs nanocomposites with various loadings of CBNPs are depicted in figures 5(c)—(g).
On adding nanofiller in the polymer blend, the increment in € values was noticed. Generally, the reinforcement
of CBNPs as filler in the polymer matrix can reduce the interfacial polarization because of the fillers
conformation in the chain length of the polymer matrix [41]. It can be seen in figures 5(c)—(g) that when the filler
concentration increases the ¢ was increased. For lower concentration (5 wt%) of CBNPs the ¢ value was 50.3 and
itincreases up to 375.1 for higher concentration (25 wt%) of CBNPs. The ¢ values are especially higher for filler
loadings near to percolation threshold which can be due to the introduction of interlayers within the conductive
nanofillers to avoid the current leakage [42]. Furthermore, the £ values were maximum at low frequency for all
the nanocomposites which later decreases sharply with further increase in frequency. This rapid reduction of €
value in the 50 Hz to 20 MHz frequency range was due to the tendency of dipoles orientation towards the
direction of the applied field [43]. Although at high frequency range the dipoles barely orient themselves towards
the applied field direction and hence in consequence the € values become nearly constant [44].

The tan é plots of pure PVA, PVA/PEG blend and PVA/PEG/CBNPs nanocomposites are presented in
figures 6(a)—(g). The tan 6 of pure PVA and PVA/PEG blend was 8.75 (100 Hz) and 9.14 (50 Hz) respectively
obtained at 150 °C. Further, on adding CBNPs in the polymer blend, the tan ¢ increased and the maximum value
observed was 20.9 (100 Hz, 140 °C) for the 25 wt% loading of CBNPs. For the CBNPs reinforced PVA/PEG/
CBNPs nanocomposites , the tan ¢ values were observed to be higher as compared to pure PVA. This
enhancement was ascribed to the dipole, interfacial charge polarization and the conductivity of the
nanocomposites [45]. The higher tan 6 values obtained for different CBNPs loadings are mainly ascribed to the
continuous network formation in the polymer matrix with the addition of conductive nanofiller [46]. Moreover,
the tan 6 decreases gradually and becomes nearly constant as the frequency reaches its maximum value (20 Hz).
Here, with the introduction of CBNPs the reduction in tan § with an increase in frequency, was attributed to the
restriction imposed on the dipole orientation in the polymer matrix [47]. Therefore, the obtained dielectric
results validate the significant control on the percolation threshold attributed to the well-dispersed CBNPs in the
polymer blend. The improved dielectric performance of these nanocomposites concludes CBNPs as an ideal
nanofillers for the development of high-k materials that can lead to its suitability for flexible, lightweight and
low-cost material for EMI shielding applications.

EMI SE measurements

The EMI SE plots in the Ku-band region (12—18 GHz) for the PVA/PEG blend and the PVA/PEG/CBNPs
nanocomposites with various CBNPs loadings are given in figure 7. As depicted in figure 7(a), the PVA/PEG
blend shows an EMI SE of 0.1 dB, being entirely transparent to incident electromagnetic radiations exhibiting
poor EMI shielding. The poor EMI shielding efficiency refers to the incapability of the polymer blend to form
conductive networks [48]. After adding CBNPs in the polymer blend, a significant increase in the EMI SE was
observed. Figures 7(b)—(f) presents the EMI SE plots of PVA/PEG/CBNPs nanocomposites with various CBNPs
loadings. It was observed that, with the addition of 5 wt% CBNPs loading in the PVA/PEG blend, the EMI SE is
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Figure 5. (a) Dielectric constant as a function of frequency at different temperatures for pure PVA film. (b) Dielectric constantas a
function of frequency at different temperatures for PVA/PEG blend film. (c) Dielectric constant as a function of frequency at different
temperatures for PVA/PEG/CBNPs nanocomposite film with 5 wt% CBNPs loading. (d) Dielectric constant as a function of
frequency at different temperatures for PVA/PEG/CBNPs nanocomposite film with 10 wt% of CBNPs loading. (e) Dielectric
constant as a function of frequency at different temperatures for PVA/PEG/CBNPs nanocomposite film with 15 wt% of CBNPs
loading. (f) Dielectric constant as a function of frequency at different temperatures for PVA/PEG/CBNPs nanocomposite film with
20 wt% of CBNPs loading. (g) Dielectric constant as a function of frequency at different temperatures for PVA/PEG/CBNPs
nanocomposite film with 25 wt% of CBNPs loading.

increased up to 1.5 dB. As the CBNPs content was further increased, the EMI SE was significantly increased from
3.6 dB (10 wt% CBNPs) to 8.7 dB (15 wt% CBNPs). This sudden rise in the EMI SE is attributed to the
conducting network formation between the CBNPs and PVA/PEG blend. However, the maximum EMI SE
attained was about 10.5 dB and 10.6 dB for 20 wt% and 25 wt% loadings of CBNPs respectively. This improved
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Figure 6. (a) Dielectric loss as a function of frequency at different temperatures for pure PVA film. (b) Dielectric loss as a function of
frequency at different temperatures for PVA/PEG blend film. (c) Dielectric loss as a function of frequency at different temperatures
for PVA/PEG/CBNPs nanocomposite film with 5 wt% of CBNPs loading. (d) Dielectric loss as a function of frequency at different
temperatures for PVA/PEG/CBNPs nanocomposite film with 10 wt% of CBNPs loading. (e) Dielectric loss as a function of frequency
at different temperatures for PVA/PEG/CBNPs nanocomposite film with 15 wt% of CBNPs loading. (f) Dielectric loss as a function
of frequency at different temperatures for PVA /PEG/CBNPs nanocomposite film with 20 wt% of CBNPs loading. (g) Dielectric loss
as a function of frequency at different temperatures for PVA/PEG/CBNPs nanocomposite film with 25 wt% of CBNPs loading.

EMI SE emphasized that with an increase in the loadings of CBNPs in the PVA/PEG blend, conductive
interconnected networks arise in the nanocomposite, which further signifies the formation of superior
interactions between the interfering EM radiations and the nanofiller [49, 50]. According to earlier reports,
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Table 2. € and tan ¢ values of neat PVA, PVA/PEG blend and the PVA/
PEG/CBNPs nanocomposites.

PRanietal

Samples € tan o
PVA 21.4,50 Hz, 150 °C 8.75,100 Hz, 150 °C
PVA/PEGblend 40.3,50 Hz, 150 °C 9.14, 50 Hz, 150 °C
5 wt% CBNPs 50.3,50 Hz, 150 °C 9.22,100 Hz, 140 °C
10 wt% CBNPs 110,50 Hz, 150 °C 18.92,50 Hz, 150 °C
15 wt% CBNPs 129,50 Hz, 150 °C 8.93,50 Hz, 150 °C
20 wt% CBNPs 299,50 Hz, 150 °C 12.9,50 Hz, 150 °C
25 wt% CBNPs 375.1,50 Hz, 150 °C 20.9, 100 Hz, 140 °C
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Figure 7. EMI SE of (a) PVA/PEG blend (b) PVA/PEG/CBNPs nanocomposites with 5 wt% CBNPs, (c) 10 wt% CBNPs, (d) 15 wt%
CBNPs, (e) 20 wt% CBNPs, (f) 25 wt% CBNPs, in Ku-band region (12 GHz-18 GHz).

adding two or more nanofiller in the polymer matrix can significantly enhance their EMI SE [51-53] whereas in
this case, CBNPs is the only nanofiller incorporated in the PVA/PEG blend. Furthermore, many studies
suggested that by increasing the thickness of the shielding material, a higher value of EMI SE can be achieved
[54-57]. However, higher thickness requires a higher concentration of fillers which consequently affects the
mechanical strength of the nanocomposite. Therefore, to achieve higher EMI SE at such alower concentration
of nanofiller is still a challenging task.

Conclusion

In the present work, CBNPs reinforced PVA/PEG blend nanocomposites were synthesized successfully by
employing a solution casting method. The FTIR results confirm the occurrence of strong hydrogen bonding
interaction between the incorporated nanofiller and the polymer blend. The TGA results indicate significant
decrement in the weight loss with the incorporation of CBNPs in the polymer matrix. This decrease in weight
loss was attributed to the formation of a strong interface between polymer matrix and the CBNPs thereby
improving the thermal stability of PVA/PEG/CBNPs nanocomposites as compared to the PVA /PEG blend.
The DSC results reveal the change in T, values with the addition of CBNPs in the polymer blend. The
incorporation of CBNP in the PVA /PEG blend leads to the significant enhancement in the dielectric constant
indicating the homogeneous dispersion of nanofiller within the polymer matrix. The maximum ¢ value
obtained for neat PVA, PVA /PEG blend and PVA /PEG/CBNPs nanocomposites was about 21.4, 40.3 and
375.1at 50 Hz, 150 °C respectively. Similarly, tan § increased from 9.22 to 20.9 for 5 wt% to 25 wt% CBNPs
loading respectively. The € and tan 6 were enhanced at low frequencies for all PVA/PEG/CBNP
nanocomposites. These results describe the change in interfacial polarization caused by the reinforcement of
CBNPs in the PVA/PEG blend matrix. The EMI SE was improved from 0.1 dB for PVA/PEG blend to 11 dB for
PVA/PEG/CBNPs nanocomposites with 25 wt% loading. Thus, the PVA/PEG/CBNPs nanocomposites with
improved EMI SE, relatively high dielectric constants and low dielectric loss values make them an attractive
material for the EMI shielding applications.
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