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Abstract
Polyvinyl alcohol (PVA)/polyethylene glycol (PEG) blend nanocomposite films reinforcedwith
various loadings of carbon black nanoparticles (CBNPs)were synthesized via a solution casting
approach. The structural properties of PVA/PEG/CBNPs nanocomposites were investigated using
Fourier-transform infrared (FTIR) spectroscopy, indicating the strong interaction of CBNPswith the
polymer blend. The thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC)
results respectively confirmed the enhanced thermal stability and the variation in themelting
temperature with the addition of CBNPs in polymer blend . The dielectricmeasurements of
nanocomposite filmswere carried out over a frequency range from50Hz–20MHz at a varied
temperature range from40 °C–150 °Cusing impedance analyzer . Themaximumdielectric constant
for neat PVAwas observed to be about 21.4 at 50Hz and 150 °C. For PVA/PEG/CBNPs
nanocomposites having higher loading of CBNPs (25 wt%) themaximumvalue of dielectric constant
was found to be ε=375.1 at 50Hz, 150 °C. The dielectric properties increasedwith the addition of
CBNPswhich validates a significant control on percolation threshold attributing to thewell-dispersed
CBNPs in the polymer blend. The electromagnetic interference (EMI) shielding effectiveness (SE)was
improved from0.1 dB to 10.6 dBwith the addition of CBNPs in the PVA/PEGblend. The improved
EMI SE and dielectric performance of these nanocomposites suggest CBNPs as excellent nanofillers
for the development offlexible, lightweight and low-costmaterial for electronic applications.

Introduction

Modern society is concernedwith the unwanted electromagnetic interference (EMI) signals that arise due to the
evolution in the consumption of industrial, commercial, military, wireless and high-speed communication
systems. These EMI signals cause perturbation and distortion in the operation of electronic devices [1, 2].
Therefore, shielding of such electronic devices is necessary to avoid degradation in their performance. In recent
years, polymer nanocomposites (PNCs) comprising novel polymeric systems and carbon-based nanofillers have
gainedmuch attention for the development of effective, light-weight dielectric and EMI shieldingmaterials
[3–7]. Among varied types of polymers, the electrically insulating polymers exhibit very low dielectric constant
values leading to poor shielding attenuation, therefore to enhance such property they are reinforcedwith
electrically conducting fillers [1–3, 8]. Several researchers developed advanced conductive nanocomposites by
adding various conductive nanofillers as carbon black nanoparticles (CBNPs) [4], carbon nanotubes (CNT) [5],
carbon nanofibers (CNF) [6] andmetal nanoparticles etc [7]. Furthermore, the interaction between conductive
polymer and nanofiller leads to high dielectric constant and low dielectric loss resulting from the insulator–
conductor transition occurring near the percolation threshold [8]. To achieve better electrical conductivity, a
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higher concentration ofmetal nanoparticles is needed and as a result composites become heavy and inflexible
[9]. On the other hand, CBNPs reinforced PNCs preserves the flexibility of composites and are lightweight, eco-
friendly aswell as exhibit good thermal stability [10]. CBNPs are being used in various applications, including
electronic packaging, protective coatings, storage capacitors, structural reinforcement, EMIshielding, heating
elements, and so on [4, 5]. CBNPs exhibits exceptional properties like high specific surface area, conducting
nature, varied particle size, strong electric forces which closely bounds the aggregates [11]. CBNPs reinforced
PNCswere extensively used in aerospace industries as aflooringmaterial for the dissipation of static electricity
charges and the fabrication ofmodern electrical devices and components [4].

Polyvinyl alcohol (PVA) being a hydrophilic-organic polymer has fascinated the interest ofmaterial
scientists due to its variety of applications in food packaging, humidity sensors, thin-film transistors, fuel cells,
and so on [12, 13]. PVA forms hydrogen bondingwith other polymericmatrices due to the presence of hydroxyl
groups and exhibits good charge storage capacity, high dielectric strength, high tensile strength alongwith
excellentfilm-forming properties [14–18]. PVAbeing an insulating polymer shows poor conducting nature.
The conductivity of PVA at room temperature is relatively low, but blending it with polyethyleneglycol (PEG)
will improve its conductivity [19]. PEG is a hydrophilic and non-toxic polymer, having tremendous properties
like electron acceptor nature, biocompatibility, chain flexibility and awide range ofmolecular weight [19]. PEG
is widely used to increase the ductility andflexibility of rigid polymers. However, PEG is having a lowmelting
point than PVAwhich preserves the highly strengthened carbon chain backbone in PVA as comparedwith the
C–O–Cbackbone in PEG [19, 20]. Thus, the present work deals with the fabricating CBNPs reinforced PVA/
PEGblend nanocomposite filmswith an intent to investigate their structural,morphological, thermal, dielectric
and EMI shielding properties. The obtained results demonstrate the suitability offlexible PVA/PEG/CBNPs
nanocomposite films for EMI shielding applications.

Experimental technique

Materials
Polyvinyl alcohol (PVA) powder havingmolecular weight 1, 15 000 g mol−1 and polyethylene glycol (PEG)
powderwithmolecular weight 6000 g mol−1 were supplied by LobaChemie Pvt. LtdMumbai, India. CBNPs
with 21 nmaverage particle sizewere procured fromPlasmaChemGmbH, Berlin, Germany. Double de-ionized
waterwas utilized as a solvent for the synthesis of CBNPs reinforced PVA/PEGblend nanocomposite films. All
the chemicals were usedwithout any further purification.

Preparation of PVA/PEG/CBNPsNanocomposite Films
PVA/PEG/CBNPs nanocomposites were synthesized by employing a solvent casting approach using double de-
ionizedwater as a solvent. For the preparation of PVA/PEGblend film, first, 0.75 g of PVApowderwas dissolved
in 20 ml double deionizedwater by heating at 70 °C for 3 h in a hot air oven. Later, 0.25 g of PEGpowderwas
dissolved in 20 mlwater at room temperature and subsequently added to the prepared PVA solution to form a
PVA/PEGblend solution. This blend solutionwas stirred for 3 hours before casting and drying onTeflon petri
dish at 60 °C for 8 hours. After drying, the PVA/PEGblend filmswere removed from the petrish dish and
utilized for further study. Similarly, for the preparation of 75/10/15 (wt%) composition of PVA/PEG/CBNPs
nanocomposites, 0.75 g of PVApowderwas first dissolved in 20 ml double de-ionizedwater by heating at 70 °C
for 3 h in a hot air oven.On the other side, in a separate beaker, 0.10 gmof PEGpowderwas dissolved in 20 ml
solvent at room temperature and subsequently added to the PVA solution. Later , 0.15 gmofCBNPswere
dispersed in 20 ml double de-ionizedwater via ultra-sonication for 1 h at room temperature and thenmixed
with PVA/PEGblend solution. The obtained homogeneous PVA/PEG/CBNPs dispersion for 75/10/15 (wt%)
compositionwas stirred at room temperature for 8 h and finally spread on a clean Teflon petri dish for drying at
60 °C for 5 h. The resulting PVA/PEG/CBNPs nanocomposite filmhaving a thickness in the range 60–80 μm
was peeled off and utilized for further characterizations. The other compositionsmentioned in table 1were also
prepared by following the same procedure. The step by step preparation procedure of PVA/PEG/CBNPs
nanocomposites is schematically illustrated in figure 1.

Characterizations

Fourier transform infrared (FTIR) studies of prepared PVA/PEG/CBNPs nanocomposite filmswith varying
content of CBNPswere evaluated using Fourier transform infrared spectrophotometer (Shimadzu, IRAffinity-1,
Japan) in a transmittancemode, inwavenumber range from500 to 4000 cm−1.
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Thermal studies of PVA/PEG/CBNPs nanocomposite filmswith various loadings of CBNPswere evaluated
by Shimadzu’s TGA-50 series thermogravimetric analyzer (TGA), under nitrogen (N2) atmosphere. The
samples were heated up to 800 °Cwith a rate of 10 °Cmin−1.

Differential scanning calorimetry (DSC)measurements of PVA/PEG/CBNPs nanocomposite filmswith
various loadings of CBNPswere carried out usingDSC 8000 advanced double furnace differential scanning
calorimeter (Perkin Elmer, USA) at a heating rate of 10 °Cmin−1, in a temperature range of 10–250 °C, under
nitrogen atmosphere.

The dielectricmeasurements of PVA/PEG/CBNPs nanocomposite filmswith various loadings of CBNPs
were evaluated using PSM1735 Impedance Analyser (Newtons 4th Ltd, UK). The samples were coated both sides
with silver paste to confirmuniform charge transfer and placed inside the computer controlled-furnace with the
accuracy of±0.2 °C.Themeasurements were carried out at a temperature range (40 °C–150 °C) and in the
frequency range (50 Hz–20MHz).

The EMI SE studies of the PVA/PEG/CBNPs nanocomposite filmswith various loadings of CBNPswere
carried out in theKu-band frequency region using an 8510CVectorNetworkAnalyzer (VNA), (Agilent
Technologies, USA)with awaveguide dimension of 25.5×13×5.6 mm.

Results and discussions

FTIR spectroscopic studies
The FTIR spectra of pure PVA and PVA/PEGblendwith different loadings of CBNPs are depicted in
figures 2(a)–(e). The FTIR spectrumof the neat PVApresented infigure 2(a) shows various characteristic bands.
The broad absorption band at 3265 cm−1 can be attributed to the vibration ofO–Hsymmetrical stretching [21].
The characteristic peaks at 2939 cm−1 and 2908 cm−1 can be ascribed to an alkyl group andC–Hasymmetric
stretching vibration respectively. The absorption band appearing at 1711 cm−1 and 1661 cm−1 indicates the

Table 1. Feed composition details of PVA/PEG/CBNPs
nanocomposites.

SrNo. PVA (wt%) PEG (wt%) CBNPs (wt%)

1. 75 25 0

2. 75 20 5

3. 75 15 10

4. 75 10 15

5. 75 5 20

6. 75 0 25

Figure 1. Illustration of synthesis procedure of PVA/PEG/CBNPs nanocomposite films.
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C=Ostretching vibration of the carbonyl group of PVA [19]. The absorption bands at 1413 cm−1, 1327 cm−1

and 1240 cm−1 confirm the presence of CH2 bending, stretching andC–Hwagging vibrations, respectively. The
characteristic peak observed at 1085 cm−1 can be ascribed to theO–Hbending andC–Ostretching of an acetyl
group [15]. The bands appeared at 918 cm−1 and 831 cm−1 can be ascribed to the skeletal vibration of PVA [22].
The FTIR spectrumof PVA/PEGblend film illustrated infigure 2(b), displays all characteristic peaks of neat
polymers. The FTIR bands observed at 1081 cm−1 and 838 cm−1 were ascribed to stretching vibrations of theC–
O–Cether linkage andC–Cgroup [23]. The peak at 3265 cm−1 attributing toO–Hsymmetrical stretching
vibrationwas shifted to 3269 cm−1 in PVA/PEGblend. The peak at 2939 cm−1 ascribing toC–Hasymmetric
stretching vibrationwas shifted to 2916 cm−1. Similarly, the peak at 1327 cm−1 corresponding toCH2 stretching
vibrationwas shifted to 1326 cm−1 and another peak at 1711 cm−1 corresponding to theC=Ostretching
vibrationwas also shifted to 1710 cm−1. These shifts in the characteristic peaks towards lowerwavelength in
FTIR spectra indicate the formation of hydrogen bonding interaction between theO–Hgroups of polymeric
chains [15, 24]. The FTIR spectra of PVA/PEG/CBNPs nanocomposites with various loadings of CBNPs are
depicted infigures 2(c)–(e), fromwhich the presence of all the characteristic peaks of PVA and PVA/PEGblend
can be identified. The similar characteristics peakswere observed at 3262 cm−1, 1320 cm−1, 1081 cm−1 and
830 cm−1 with a slight shift towards the lowerwavelength indicating the hydrogen bonding formation and the
substantial interaction of CBNPswith the polymer blend [4]. Thus, the FTIR results indicate the successful
preparation of PVA/PEG/CBNPs nanocomposites.

Thermogravimetric analysis
TheTGA thermographsmeasuring theweight loss as a function of temperature for PVA/PEG/CBNPs
nanocomposites with various loadings of CBNPs are presented infigures 3(a)–(f). Aswith the increase in
temperature, there was a decrease inweight of the sample which indicates the continuous decomposition of the
material. Infigure 3(a), the TGA thermograph of PVA/PEGblend below 250 °C shows nearly 10%weight loss
resulting from the evaporation of absorbedwater [25, 26]. The decomposition of PVA/PEGblend film held
between 250 °C to 450 °C temperature rangewith almost 89%weight loss attributing to the abolition of
functional groups such as hydroxyl and free amine groups [27]. Further increase in temperature up to 800 °C,
the 3%weight loss was observed indicating the breaking of carbon chain backbone in the PVA/PEGblend.On
adding, CBNPs in the polymer blend, therewas a slight decrease inweight loss. The TGA thermographs for
CBNPswith 5 wt% loading given byfigure 3(b), shows almost 84%weight loss at the temperature ranging from
250 °C to 600 °C indicating the less weight loss as that of the PVA/PEGblend. Similarly, theweight loss trend
was observed for 10 wt% and 15 wt% loadings of CBNPs (figures 3(c), (d)).With further increase inCBNPs
loadings, TGA thermographs show two-step decomposition having a significant drop in theweight loss as
compared to PVA/PEGblend. TheCBNPs loadings with 20 wt% and 25 wt% show aweight loss of almost 52%
and 54% respectively, at 250 °C to 450 °C temperature range attributed to the elimination of functional groups
present in the polymer chains [28]. On a further rise in temperature from550 °C to 800 °C theweight loss
corresponding to 20 wt% and 25 wt%CBNPs loadings were 32% and 27% respectively which could be ascribed
to the strong interaction between polymermatrices and theCBNPs [24, 28]. Therefore, the TGA results indicate

Figure 2. FTIR spectra of (a)Pure PVA (b)PVA/PEGblend (c)PVA/PEG/CBNPs nanocomposite filmswith 5 wt%of CBNPs, (d)
15 wt%ofCBNPs, (e) 25 wt%ofCBNPs.
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a significant decrease in theweight loss by the addition of CBNPs, as compared to the PVA/PEGblend thereby
improving the thermal stability of PVA/PEG/CBNPs nanocomposites.

DSCmeasurements
TheDSC curves for the PVA/PEGblend and the PVA/PEG/CBNPs nanocomposites with various CBNPs
loadings are presented infigure 4. For PVA/PEGblend (figure 4(a)), there are two endothermic peaks detected
amongwhich one strong peak is present at 58 °C,whereas the second short but broad peak is present at 220 °C.
The endothermic peaks observed for PVA/PEGblend are possibly associatedwith themelting temperature (Tm)
of PEG andPVA [29, 30]. Since there is a huge difference between the two temperature values whichmight be
due to the incompatibility of the blend having high PEG (>20 wt%) concentration [31, 32]. The influence of
various concentrations of CBNPs on the PVA/PEGblend is represented infigures 4(b)–(e). It was found that
with the addition of CBNPs, the single endothermic peak is detectedwith a significant shift in the Tm, whereas
thewidth of the peak is almost similar to that of the PVA/PEGblend supporting the single-phase behaviour of
polymer blend [33]. Another reason for the shift in the Tm of PVA/PEG/CBNPs nanocompositesmight be the
intermolecular interaction between the incorporatedCBNPs and the polymer blend indicating the changes

Figure 3.TGA thermographs of (a)Pure PVA, (b)PVA/PEGblend, (c)PVA/PEG/CBNPs nanocomposite filmswith 5 wt%CBNPs,
(d) 10 wt%CBNPs, (e) 15 wt%CBNPs, (f) 20 wt%CBNPs, (g) 25 wt%CBNPs.

Figure 4.DSC thermographs of (a)PVA/PEGblend (b)PVA/PEG/CBNPs nanocomposites with 5 wt%CBNPs, (c) 10 wt%CBNPs,
(d) 15 wt%CBNPs, (e) 20 wt%CBNPs, (f) 25 wt%CBNPs.
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occurring between semi-crystalline and an amorphous phase of the polymers [30, 34, 35]. The Tm is slightly
shifting towards the lower valueswith the increase inCBNPs content (5 wt%–20 wt%). However, the depth of
peak is decreasingwith an increase inCBNPs loading and almost vanished for the 25 wt% loading of CBNPs.
Also, it can be seen that, as the PEG content decreases the depth of peak also gets lowerwhile no endothermic
peakwas observed for the nanocomposite containing higher CBNPs loading and in the absence of PEG. The
reason for the disappearance of the endothermic peak for 25 wt%CBNPs loading added in the PVAmatrix is
might be due to the amorphous nature of PVA and there is no significant formation of crystallization in the
polymermatrix on adding nanofiller [36, 37]. The endothermic peaks are assumed to be due to themelting of
PEG [32]. In addition, the interaction of CBNPs and PEG is strongly attractive as the Tm is higher than that of
58 °C in nanocomposites [38, 39]. TheDSC studies indicate that the PEG andCBNPs have influenced the
thermal properties of PVA/PEG/CBNPs nanocomposites.

Dielectric properties
The variation of dielectric properties of CBNPs reinforced PVA/PEGblend nanocomposites in the frequency
range 50 Hz to 20MHz and at temperature range 40 °C to 150 °Cwere presented infigures 5 and 6. These
properties of nanocomposites with various loadings of CBNPswere examined to estimate their feasibility for
EMI shielding applications. Themaximumvalues of dielectric constant (ε) and dielectric loss (tan δ) are
summarized in table 2. For neat PVA, themaximum ε shown infigure 5(a)was observed to be 21.4, at 50 Hz and
150 °C. Similarly, for PVA/PEGblend infigure 5(b), the ε obtainedwas 40.3 at the same frequency and
temperature as that of PVA. In both cases, themaximum ε was observed at low frequency (50 Hz) and it was
decreased swiftly with further increase in the frequency. According to theMaxwell-Wagner-Sillar effect, at low
frequency, themaximum ε values can be attributed to the presence of interfacial polarization [20, 40]. The ε
plots for PVA/PEG/CBNPs nanocomposites with various loadings of CBNPs are depicted infigures 5(c)–(g).
On adding nanofiller in the polymer blend, the increment in ε values was noticed. Generally, the reinforcement
of CBNPs asfiller in the polymermatrix can reduce the interfacial polarization because of the fillers
conformation in the chain length of the polymermatrix [41]. It can be seen infigures 5(c)–(g) that when thefiller
concentration increases the εwas increased. For lower concentration (5 wt%) of CBNPs the ε valuewas 50.3 and
it increases up to 375.1 for higher concentration (25 wt%) of CBNPs. The ε values are especially higher forfiller
loadings near to percolation thresholdwhich can be due to the introduction of interlayers within the conductive
nanofillers to avoid the current leakage [42]. Furthermore, the ε values weremaximumat low frequency for all
the nanocomposites which later decreases sharply with further increase in frequency. This rapid reduction of ε
value in the 50 Hz to 20MHz frequency rangewas due to the tendency of dipoles orientation towards the
direction of the applied field [43]. Although at high frequency range the dipoles barely orient themselves towards
the appliedfield direction and hence in consequence the ε values becomenearly constant [44].

The tan δ plots of pure PVA, PVA/PEGblend and PVA/PEG/CBNPs nanocomposites are presented in
figures 6(a)–(g). The tan δ of pure PVA and PVA/PEGblendwas 8.75 (100 Hz) and 9.14 (50 Hz) respectively
obtained at 150 °C. Further, on addingCBNPs in the polymer blend, the tan δ increased and themaximumvalue
observedwas 20.9 (100 Hz, 140 °C) for the 25 wt% loading of CBNPs. For theCBNPs reinforced PVA/PEG/
CBNPs nanocomposites , the tan δ valueswere observed to be higher as compared to pure PVA. This
enhancementwas ascribed to the dipole, interfacial charge polarization and the conductivity of the
nanocomposites [45]. The higher tan δ values obtained for different CBNPs loadings aremainly ascribed to the
continuous network formation in the polymermatrix with the addition of conductive nanofiller [46].Moreover,
the tan δ decreases gradually and becomes nearly constant as the frequency reaches itsmaximumvalue (20 Hz).
Here, with the introduction of CBNPs the reduction in tan δwith an increase in frequency, was attributed to the
restriction imposed on the dipole orientation in the polymermatrix [47]. Therefore, the obtained dielectric
results validate the significant control on the percolation threshold attributed to thewell-dispersed CBNPs in the
polymer blend. The improved dielectric performance of these nanocomposites concludes CBNPs as an ideal
nanofillers for the development of high-kmaterials that can lead to its suitability forflexible, lightweight and
low-costmaterial for EMI shielding applications.

EMI SEmeasurements
The EMI SE plots in theKu-band region (12–18 GHz) for the PVA/PEGblend and the PVA/PEG/CBNPs
nanocomposites with various CBNPs loadings are given infigure 7. As depicted in figure 7(a), the PVA/PEG
blend shows an EMI SE of 0.1 dB, being entirely transparent to incident electromagnetic radiations exhibiting
poor EMI shielding. The poor EMI shielding efficiency refers to the incapability of the polymer blend to form
conductive networks [48]. After addingCBNPs in the polymer blend, a significant increase in the EMI SEwas
observed. Figures 7(b)–(f)presents the EMI SE plots of PVA/PEG/CBNPs nanocomposites with various CBNPs
loadings. It was observed that, with the addition of 5 wt%CBNPs loading in the PVA/PEGblend, the EMI SE is
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increased up to 1.5 dB. As theCBNPs content was further increased, the EMI SEwas significantly increased from
3.6 dB (10 wt%CBNPs) to 8.7 dB (15 wt%CBNPs). This sudden rise in the EMI SE is attributed to the
conducting network formation between theCBNPs and PVA/PEGblend.However, themaximumEMI SE
attainedwas about 10.5 dB and 10.6 dB for 20 wt%and 25 wt% loadings of CBNPs respectively. This improved

Figure 5. (a)Dielectric constant as a function of frequency at different temperatures for pure PVAfilm. (b)Dielectric constant as a
function of frequency at different temperatures for PVA/PEGblendfilm. (c)Dielectric constant as a function of frequency at different
temperatures for PVA/PEG/CBNPs nanocomposite filmwith 5 wt%CBNPs loading. (d)Dielectric constant as a function of
frequency at different temperatures for PVA/PEG/CBNPs nanocomposite filmwith 10 wt%of CBNPs loading. (e)Dielectric
constant as a function of frequency at different temperatures for PVA/PEG/CBNPs nanocomposite filmwith 15 wt%ofCBNPs
loading. (f)Dielectric constant as a function of frequency at different temperatures for PVA/PEG/CBNPs nanocomposite filmwith
20 wt%ofCBNPs loading. (g)Dielectric constant as a function of frequency at different temperatures for PVA/PEG/CBNPs
nanocomposite filmwith 25 wt%ofCBNPs loading.
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EMI SE emphasized thatwith an increase in the loadings of CBNPs in the PVA/PEGblend, conductive
interconnected networks arise in the nanocomposite, which further signifies the formation of superior
interactions between the interfering EMradiations and the nanofiller [49, 50]. According to earlier reports,

Figure 6. (a)Dielectric loss as a function of frequency at different temperatures for pure PVAfilm. (b)Dielectric loss as a function of
frequency at different temperatures for PVA/PEGblendfilm. (c)Dielectric loss as a function of frequency at different temperatures
for PVA/PEG/CBNPs nanocomposite filmwith 5 wt%ofCBNPs loading. (d)Dielectric loss as a function of frequency at different
temperatures for PVA/PEG/CBNPs nanocomposite filmwith 10 wt%of CBNPs loading. (e)Dielectric loss as a function of frequency
at different temperatures for PVA/PEG/CBNPs nanocomposite filmwith 15 wt%ofCBNPs loading. (f)Dielectric loss as a function
of frequency at different temperatures for PVA/PEG/CBNPs nanocomposite filmwith 20 wt%ofCBNPs loading. (g)Dielectric loss
as a function of frequency at different temperatures for PVA/PEG/CBNPs nanocomposite filmwith 25 wt%of CBNPs loading.
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adding two ormore nanofiller in the polymermatrix can significantly enhance their EMI SE [51–53]whereas in
this case, CBNPs is the only nanofiller incorporated in the PVA/PEGblend. Furthermore,many studies
suggested that by increasing the thickness of the shieldingmaterial, a higher value of EMI SE can be achieved
[54–57]. However, higher thickness requires a higher concentration offillers which consequently affects the
mechanical strength of the nanocomposite. Therefore, to achieve higher EMI SE at such a lower concentration
of nanofiller is still a challenging task.

Conclusion

In the present work, CBNPs reinforced PVA/PEGblend nanocomposites were synthesized successfully by
employing a solution castingmethod. The FTIR results confirm the occurrence of strong hydrogen bonding
interaction between the incorporated nanofiller and the polymer blend. The TGA results indicate significant
decrement in theweight loss with the incorporation of CBNPs in the polymermatrix. This decrease inweight
loss was attributed to the formation of a strong interface between polymermatrix and theCBNPs thereby
improving the thermal stability of PVA/PEG/CBNPs nanocomposites as compared to the PVA/PEGblend.
TheDSC results reveal the change in Tm valueswith the addition of CBNPs in the polymer blend. The
incorporation of CBNP in the PVA/PEGblend leads to the significant enhancement in the dielectric constant
indicating the homogeneous dispersion of nanofiller within the polymermatrix. Themaximum ε value
obtained for neat PVA, PVA/PEGblend and PVA/PEG/CBNPs nanocomposites was about 21.4, 40.3 and
375.1 at 50 Hz, 150 °C respectively. Similarly, tan δ increased from9.22 to 20.9 for 5 wt% to 25 wt%CBNPs
loading respectively. The ε and tan δwere enhanced at low frequencies for all PVA/PEG/CBNP
nanocomposites. These results describe the change in interfacial polarization caused by the reinforcement of
CBNPs in the PVA/PEGblendmatrix. The EMI SEwas improved from0.1 dB for PVA/PEGblend to 11 dB for
PVA/PEG/CBNPs nanocomposites with 25wt% loading. Thus, the PVA/PEG/CBNPs nanocomposites with
improved EMI SE, relatively high dielectric constants and low dielectric loss valuesmake them an attractive
material for the EMI shielding applications.

Table 2. ε and tan δ values of neat PVA, PVA/PEGblend and the PVA/
PEG/CBNPs nanocomposites.

Samples ε tan δ

PVA 21.4, 50 Hz, 150 °C 8.75, 100 Hz, 150 °C
PVA/PEGblend 40.3, 50 Hz, 150 °C 9.14, 50 Hz, 150 °C
5 wt%CBNPs 50.3, 50 Hz, 150 °C 9.22, 100 Hz, 140 °C
10 wt%CBNPs 110, 50 Hz, 150 °C 18.92, 50 Hz, 150 °C
15 wt%CBNPs 129, 50 Hz, 150 °C 8.93, 50 Hz, 150 °C
20 wt%CBNPs 299, 50 Hz, 150 °C 12.9, 50 Hz, 150 °C
25 wt%CBNPs 375.1, 50 Hz, 150 °C 20.9, 100 Hz, 140 °C

Figure 7.EMI SE of (a)PVA/PEGblend (b)PVA/PEG/CBNPs nanocomposites with 5 wt%CBNPs, (c) 10 wt%CBNPs, (d) 15 wt%
CBNPs, (e) 20 wt%CBNPs, (f) 25 wt%CBNPs, in Ku-band region (12GHz–18 GHz).
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