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ABSTRACT Energy management systems (EMSs) play an important role in the optimal operation of
prosumers. As an essential segment of each EMS, the load forecasting (LF) block enhances the optimal
utilization of renewable energy sources (RESs) and battery energy storage systems (BESSs). In this paper,
a new optimal day-ahead scheduling and operation of the prosumer is proposed based on the two-level
corrective LF. The proposed two-level corrective LF actions are developed through a very precise short-
term LF. In the first level, a time-series LF is applied using multi-layer perceptron artificial neural networks
(MLP-ANNS). In order to improve the accuracy of the forecasted load data at the first level, the second level
corrective LF is applied using feed-forward (FF) ANNs. The second stage prediction is initiated when the
LF results violate the pre-defined criteria. The proposed method is applied to a prosumer under different
cases (based on the consideration of BESS operation behaviors and cost) and various scenarios (based on
the accuracy of the load data). The obtained optimal day-ahead operation results illustrate the advantages
of the proposed method and its corrective forecasting process. The comparison of the obtained results and
those of other available ones show the effectiveness of the proposed optimal operation of the prosumers. The
advantages of the proposed method are highlighted while the BESS costs are considered.

INDEX TERMS load forecasting (LF), multi-layer perceptron artificial neural network (ANN-MLP),
optimal operation and scheduling, prosumer, battery energy storage system (BESS), renewable energy
sources (RESs).
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tery energy storage system for the m"
optimal operating scenario [kW]

Input matrix of Level-1 load forecasting
which includes 8760 historical hourly
load value

Input matrix of Level-2 load forecasting,
which includes historical hourly load
values of the previous 30-days period
Historical data of ¢ time interval of the
d"™ previous day, which is used as input
of Level-2 load forecasting

EMS modified battery energy storage
system’s state of charge for the m™ opti-
mal operating scenario [p.u]

Objective function [USD]
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and forecasted load data
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WOk Connection weight of the j” hidden
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boy Weight of the bias at the k™ neuron of
the output layer

Vi Output of the k”* neuron of the output
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INDICES
t  Index of time [hour]

i Index of the node of the input layer

Jj  Index of the neuron of the hidden layer
m  Index of optimal operating scenario
p  Index of load pattern
k  Index of the neuron of the output layer
q Index of the time interval
d Index of the day
ABBREVIATIONS
00 Optimal operation
ANN Artificial neural network
RBF-ANN Radial basis function artificial neural network
MLP Multi-layer perceptron
MLR Multiple linear regression
SVR Support vector regression
FF Feed-forward
IL Input layer
10T Internet of things
HL Hidden layer
OL Output layer
CI Computational intelligence
LF Load forecasting
RES Renewable energy source
PV Photovoltaic
WT Wind turbine
DG Distributed generation
ESS Energy storage system
EV Electric vehicle
BESS Battery energy storage system
O.F Objective function
P2P Peer-to-peer
NEM Net energy metering
FiT Feed-in tariff
SOC State of charge
EMS Energy management system
QP Quadratic programming
CCpP Chance-constrained programming
MILP Mixed integer linear programming
DP Dynamic programming
QPSO Quantum-behaved particle swarm optimiza-
tion
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TOU Time of use
MSE Mean squared error
RMSE Root mean squared error

STD Standard deviation
ARIMA  Autoregressive integrated moving average
SOM Self-organizing map

I. INTRODUCTION

Electric power systems and energy markets are facing
changes such as redesigning and restructuring due to the uti-
lization of renewable energy sources (RESs) and the deploy-
ment of communication technologies (blockchain, big data,
and internet of things (IOTs)). The formation of prosumers
in emerging energy markets is another critical change in
conventional power systems. Prosumers are energy units that
can consume and produce energy through the use of RESs.
However, the role of prosumers in electric power systems are
generally insignificant, and they are suffering from immature
energy business models [1]-[4].

Recently, the design of the new energy markets to increase
the integration of prosumers in the electric power system
has been highlighted. For instance, the clean energy package
by the European Union discussed the rules for prosumers in
energy markets and let active consumers produce electric-
ity as well as electricity sales [5]. In such energy markets,
the heart of the system is consumers. They would be able to
generate electricity by RESs and get their profits by selling
the amount of produced electricity [6]. However, due to low
feed-in-tariffs (FiT), prosumers may not enjoy the ideal eco-
nomic benefits of the market [7].

Peer-to-peer (P2P) communities are the other options for
prosumers, which enable the prosumers to directly sell their
produced renewable energy to local consumers [8], [9].
In order to achieve maximum economic benefits, prosumers
need to operate in optimum operation mode. Hence, the key
component of each prosumer unit is the energy management
system (EMS), which schedules the RESs and energy storage
systems (ESSs) [10]. As a major block of EMS, the LF
module plays an essential task in the optimal utilization of
RESs and the profitable trade-off with the utility grid [11].

The LF in prosumer microgrids is quite different from
the conventional power system because the variation of the
loads during a day is much significant due to its smaller load
size [12]. Moreover, there are less similar daily load curves
which makes it challenging to forecast load profiles. There
are different kinds of LF methods, namely, very short-term,
short-term, medium-term, and long-term. The very detailed
information about different LF methods can be found in [13].
However, the very short LF is used because most of the pro-
sumers’ activities occur in hourly and minutely cycles [13].

Generally, the LF is achieved by using the previous load
data to forecast the coming day or week load profiles. Con-
ventional LF methods, such as grey theory and linear regres-
sion methods, have been applied in the literature [14], [15].
These methods are based on simple structures and have
mature technologies. However, due to their linearity basics,
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it is quite difficult for conventional methods to forecast the
prosumers’ nonlinear load series [16]. Due to recent achieve-
ments in computational intelligence (CI), several studies
applied intelligent-based methods such as fuzzy systems and
artificial neural networks (ANN) for their short-term LF [17-
20]. Since fuzzy logic systems are appropriate to consider
the uncertainty of load profiles, various studies have applied
different methods of fuzzy inference systems to forecast load
profiles. However, fuzzy inference systems are not desirably
accurate, which make them inadequate in the short-term LF
with high accuracy. On the other hand, the learning abil-
ity, robustness, and the nonlinear approximation property of
typical ANN make them a suitable tool for short term LF.
However, because of the effects of the threshold parameter
and initial weighing factor, conventional methods of ANN
converge with slower speed, and their forecasting accuracy
is reduced [16].

The literature is reached with different methods of short-
term and very short-term LF for prosumer microgrids, which
are merely focused on their forecasting method [21]-[23].
In another mean, they have not applied their LF method on the
real day-ahead operation of the prosumer microgrids. The CI-
based methods have shown significant progress and accuracy
in this type of studies. In particular, ANN methods have
received a great deal of attention because of their superior
learning and nonlinear mapping abilities [23]. Various ANN-
based forecasting approaches such as multi-layer perceptron
(MLP) ANN [19], deep neural network deep-energy [21],
and bat algorithm-based backpropagation [24] have been pre-
sented in recent studies. In addition, time-series forecasting
methods have been interested in previous works. Time-series
forecasting is achieved by predicting future values based on
the formerly recorded values. The role of time-series fore-
casting is significant in nonlinear systems. Although time-
series forecasting is discussed in theoretical research fields,
it has engineering applications, too. The time-series LF has
been performed in literature by using different CI-based
methods namely fuzzy time-series [11], [25] and ANN times
series [26], [27]. However, most of the research works in
literature have not considered any corrective algorithm for the
time-series forecasting results [11], [16], [25]-[27].

In some studies, the optimal scheduling and operation
of prosumers with no LF application have been devel-
oped [28]-[31]. Choi and Min [28] proposed the optimal
scheduling of ESSs in a day-ahead operation of a prosumer.
They have performed a real-time corrective operation for
prosumers by using ESSs. However, the LF technology did
not exist in their proposed EMS. In another study, authors
of [29] introduced a day-ahead operation of prosumers with
interconnected energy sources. In order to indicate the neg-
ative effects of RESs, uncertainties such as fluctuations and
intermittence of RESs have been considered. Although they
have regarded the uncertainty of RESs, there was no anal-
ysis of the effects of load changes in the proposed system.
Researchers in [30] proposed a new day-ahead optimiza-
tion model for a residential prosumer, which was equipped

83563



IEEE Access

J. Faraji et al.: Optimal Day-Ahead Scheduling and Operation of the Prosumer

with RESs and electric vehicles (EVs). The proposed model
minimized the total operation cost of the prosumer, such as
electricity generation and EV wearing cost. Moreover, they
have considered the uncertainty of EV, load demand, and
RESs through the optimization process. The optimization
problem was solved using benders decomposition algorithm.
According to the results of the paper, the utilization of the EV
as ESS in the microgrid decreased the system operation cost.
Despite the consideration of the load uncertainty, the paper
has not suggested any methodology for forecasting purposes.
Qiu et al. [31] presented a new method for optimal interactive
operation of prosumers with two energy systems, e.g. gas and
power systems. The proposed model maximized its profits
from the optimal scheduling of DERs and unit commitments.
The authors stated that the proposed two-level coordinated
scheduling would result in the optimal and accurate operation
of prosumers.

To the best of the authors’ knowledge, there are few stud-
ies in the literature that have been considered short-term
LF in day-ahead optimal operation of prosumers [32]-[35].
Yuewen Jiang et al. has considered a two-level decision
model for a prosumer, which benefited from RESs and ESSs.
In the first level, monthly electricity purchases were opti-
mized, and in the second level, day-ahead uncertainties such
as electricity prices and economic risks were considered.
The paper also performed the optimal scheduling of ESSs to
maximize monthly economic benefits. Moreover, the paper
utilized forecasted wind speed, electricity price, and load
data in the optimization method. However, the paper has not
suggested any methodology on the prediction process and the
accuracy of the prediction.

A simple short-term LF method is proposed in [33] for
arbitrary EMSs. The proposed method did not require many
inputs, such as weather data. The only requirement was elec-
trical load data, which could be achieved from the smart
meters. However, the paper did not provide economic and
technical benefits of the proposed model in real application
of home EMS. In [34], Sun et al. proposed a method, which
included both energy management of prosumer and short-
term LF. The EMS was developed based on the economic per-
formance and regular operation of battery storage. They used
neural radial basis function artificial neural network (RBF-
ANN) for short-term LF. The effectiveness of the proposed
method was shown through simulation results. In another
study, Iwafune et al. [35] performed the short-term load and
PV output forecasting using multiple linear regression (MLR)
and support vector regression (SVR) in their proposed EMS,
respectively. According to the test results, the optimal opera-
tion of ESS has reduced the system operation cost. Moreover,
the system operation cost has not been improved by using the
forecasted data with their proposed model.

In Table 1, the available related research works are divided
into three general categories. In the first category, the meth-
ods have been focused on the short-term LF. In the second
category, the concentration of scientific works was in opti-
mal scheduling and operation of the microgrid prosumers.
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However, in the third category, a few of the papers were con-
centrated on the optimal operation of prosumers considering
short-term LF methods in their studies.

In this paper, a new very short-term LF model is proposed
by using the ANN and data-driven approaches. The proposed
model is a two-level LFE. The first level starts with a very
short-term LF using MLP-ANN time-series. In the second
level, in order to improve the accuracy of the forecasting,
the forecasted values of the first level are evaluated based
on the pre-defined prediction violation. Whenever the fore-
casted values are adequately precise, the load values would
be used in the optimization problem. However, due to the
accuracy constraint violation, another corrective forecasting
model based on the load patterns of the previous 30-days
period would be applied to improve forecasting results. The
feed-forward ANN (FF-ANN) is utilized in the second level
to find the best load pattern based on the previous days’ load
patterns. Finally, the proposed LF is implemented to the day-
ahead operation of an industrial prosumer.

The main contribution of this paper is proposing a new
corrective LF within the optimization of the prosumer opera-
tion costs. The use of the FF-ANN in the second level LF in
addition to the first level time-series-based LF is one of the
most important advantages of the proposed method.

The prosumer understudy is assumed to be contracted
to provide the electricity to the consumer during particular
periods. Different case studies are considered to investigate
the effectiveness of the proposed LF model in the day-ahead
operation of the prosumer. The optimization results have
shown that by applying corrective actions on the first level
LF, the accuracy of the prediction is enhanced. By using the
proposed corrective actions through the LF and optimization,
the prosumer operation cost is decreased. The comparison of
the test results with other available ones without corrective
LF or with one-level LF illustrates the advantages of the
proposed method.

The rest of the paper is structured as follows. In Section (2),
the proposed day-ahead optimization method based on a new
two-level very short forecasting is stated. In Section (3), LF
results include proposed Level-1 and Level-2 LF are pre-
sented. In Section (4), the optimization results based on the
proposed corrective LF are presented. The conclusion is given
in the final section.

Il. METHODOLOGY

A. THE ARCHITECTURE OF THE SYSTEM

The prosumer is equipped with RESs such as photovoltaic
(PV) and wind turbine (WT) DG unit as shown in Fig. 1.
For economic purposes, the BESS has also been utilized in
the architecture of the system. The prosumer is contracted to
provide a specific amount of the demand load of neighbor’s
consumers during particular hours of the day. The prosumer
is connected to the national utility grid. Thus, the prosumer
can purchase the required demand power and also sell the
surplus amount of RESs generation or the stored power of
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TABLE 1. Summary of the Literature Review in the Research Field of LF and Optimal Operation of Prosumers.

Reference Year Subject Category Methodology
00 LF&OO LF method Optimization
method
1 [18] 2010 X X Fuzzy and x Combined fuzzy and evolutionary
evolutionary method for short-term LF
2 [17] 2012 X X Combined fuzzy x Combined fuzzy and ANNs method
and ANNs for short-term LF
3 [25] 2015 X x Modified fuzzy x A modified version of fuzzy time-
system series for daily LF
4 [26] 2015 x x Heuristic-based x Heuristic-based ANNs for time-series
ANNs short LF method
5 [20] 2017 X X Improved ANNs X An improved version of ANNs for
short-term LF
6 [14] 2017 X X Combined WD X Combined method to improve the
and GNN with accuracy of short-term LF
ADF
7 [22] 2017 X X Differential X Combined  heuristic method to
evolution improve the accuracy of short-term LF
algorithm based
8 [19] 2018 x x Combined x Combined ANNs and evolutionary
evolutionary and method for short-term LF
ANNs
9 [21] 2018 X X ANNs X DeepEnergy model based on ANNs
for short-term LF
10 [27] 2018 X X RNN X An RNN for multiple time-series LF
11 [24] 2018 x x heuristic-based X Heuristic-based model for short-term
LF

12 [23] 2019 X X modified ANNs X A multivariant time-series method
based on modified ANNs for short-
term LF

13 [15] 2019 x x Regression-based x Regression-based method for short-

term LF

14 [28] 2018 v x X Quadratic Corrective scheduling of battery

programming  energy storage systems (BESSs) in a
(QP) day-ahead operation of prosumer
15 [29] 2019 v x x Chance- Day-Ahead scheduling of prosumers
constrained considering intermittency of RESs
programming
(CCP)
16 [31] 2019 v X X Two-stage Optimal operation of prosumers in
stochastic integrated energy systems
programming
17 [30] 2017 v X X Bender’s Optimal operation of a prosumer
decompositio  microgrid considering EV as ESS
n

18 [33] 2015 v v Statical SimulationX LF method for prosumer EMS
Matlab

19 [35] 2015 v v MLR Mixed-integer ~ EMS for residential prosumer

linear considering solar and LF
programming
(MILP)
20 [34] 2016 v v Combined RBF- Dynamic LF method based on RBF-ANN for
ANN programming  prosumer EMS
(DP)

21 [32] 2019 v v Statical Quantum- Day-ahead optimization of prosumers
behaved considering uncertainties such as
particle electricity price and LF

swarm
optimization
(QPSO)
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FIGURE 1. The architecture of the proposed energy system.

BESS. The prosumer benefits from the energy traded between
the grid and consumers. Moreover, consumers also advantage
from lower energy imported by the prosumer. However, due
to variable peer-to-peer electricity prices, the profits from
energy selling to consumers have not been considered in the
optimization model. The utilized EMS guarantees the optimal
operation of the prosumer.

B. THE PROPOSED METHOD OF OPTIMAL OPERATION
AND SCHEDULING OF PROSUMERS BASED ON THE
SHORT-TERM LF AND VERY SHORT-TERM CORRECTIVE
ACTIONS

In this paper, the operation and scheduling of the prosumer
are optimized by using the short-term LF and very short-term
corrective actions. The short-term LF data could be used for
optimizing the operation and scheduling of the prosumers.
Moreover, by adding the real-time assessment of the fore-
casted load values and the measured ones, it is possible to re-
optimized the system operation strategies. Through applying
the day-ahead optimal operation strategies, it is possible to
experience a significant error in the LF procedure. Hence,
the system operation cost is affected due to the discussed inac-
curacies in the forecasted load data. It is interesting to perform
some corrective actions to avoid this subject. By applying the
proposed method based on the real-time measurement of the
load data, the modified very short-term LF and finding the
modified optimal operation strategies based on the modified
forecasted input data decrease, the system operation cost of
the prosumer would be decreased.

In this section, the proposed two-level LF, which is
used in the optimization of the prosumer’s operation cost,
is explained. In the proposed two-level LF, an MLP-ANN
time-series algorithm is used to implement the short-term LF
on the first level. The first level LF is sufficient, while the
accuracy of the LF is satisfying based on the comparison of
the measured and forecasted load data. The second level of the
proposed LF is started when the LF accuracy is less than the
desired level. In Fig. 2, the starting procedure of the second
LF and its structure have been shown.
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Corrective LF based on previous 30

— Measured load data
— Level-1 forecasted load data
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@ Evaluation of LF accuracy /

e
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I Desired difference between measured and level-1 forecasted values
¥ 4 Non-desired difference between measured and level-2 forecasted values
¥ Difference between measured and level-2 forecasted values
(a)
Input Data
Previous 30 days’
hourly load data
Output Data
Modified
Training, fi
¢ orecasted load
Testing, and 2" level LF Results
Validation values for the next
hours
e measured previon
hourly load data
between the first hour
and the stating time of
the 2" LF
Target Data
(b)

FIGURE 2. The 2nd level very short-term corrective LF: (a) Starting
procedure and (b) LF structure.

The literature review of LF using ANNs shows that the
MLP ANN is more accurate and useful than other neural net-
works such as well-known radial basis function (RBF) ANNSs
in short-term load forecasting [36], [37]. In [36], different
ANNS for short-term LF on four datasets have been com-
pared. The RBF-ANN, MLP-ANN, generalized regression
ANN, three models of self-organizing map (SOM), and two
models of fuzzy counterpropagating ANNs were studied in
[36]. Based on the comparison test results, it was reported in
[36] that MLP and generalized regression ANN have identical
performance and accuracy for all input data. It was also con-
cluded that the performance of MLP-ANN was better in com-
parison with other state-of-art methods and classical models
such as exponential smoothing and autoregressive integrated
moving average (ARIMA) approaches. Hence, MLP-ANN is
used in the proposed method for LF.

This paper focuses on corrective actions based on very
short-term load forecasting. However, it should be noted that
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despite the advantages of RESs in the energy systems, uncer-
tainties in the output of RESs bring challenges in stability
and reliability to the energy systems [38]. In the prosumer’s
day-ahead operation, neglecting uncertainties of RESs output
power would increase the system operation cost [39]. The cor-
rective actions based on renewable energy forecasting in the
scheduling and operation of prosumers help to reduce the sys-
tem costs. Although this study has not considered corrective
actions based on renewable energy forecasting, the proposed
method is flexible for adding this paradigm. The develop-
ment of optimal scheduling and operation of prosumers using
corrective actions based on renewable energy forecasting is
one of the authors’ future works. The uncertain parameters,
e.g. output power of renewable energy resources and load
curves, could be forecasted in the first level of the proposed
method. Similar to the load forecasting, the historical data of
PV and WT DG units output power are used for time-series
short-term renewable energy forecasting by an appropriate
forecasting method such as MLP-ANN. In the second level,
the forecasted renewable energy output similar to forecasted
load data is compared to the actual measured values. After-
wards, based on the accuracy thresholds, real-time correc-
tive actions are applied. Therefore, the proposed model for
the optimal day-ahead operation of the prosumer could be
developed by renewable energy forecasting as a practical
innovation.

1) LEVEL-1 LF: MLP-ANN TIME-SERIES METHOD

In the first level, a day-ahead LF is applied using time-
series MLP-ANN method. Time-series forecasting usually
is performed using delays in the input data. The structure
of the time-series MLP-ANN method is based on hierarchal
processing units that are ordered in two or more series of
distinctive layers of neurons. The historical data is imported
to the ANN through the input layer (IL). The input data of
Level-a LF is a matrix with dimensions 1 x 8760 of historical
load data as (1):

Pprosumer

Level—1
rosumer rosumer rosumer rosumer
Z[Pﬁ7 Pg Pf ""’P§760 ](1)

The mapping process of input data is done in the output
layer (OL) [40]. In this paper, the Levenberg-Marquardt back-
propagation algorithm (BPA) is applied for learning the MLP.
The error between target and input values are minimized in
Levenberg-Marquardt BPA. Fig. 3 illustrates the architecture
of the MLP-ANN. As can be seen, the MLP consists of three
layers. In the first layer, IL is located, which is a set of source
nodes. In the second layer, one or more hidden layers (HLs)
are located, and OL is located in the third layer. The number
of nodes in IL and OL directly depends on the number of
input and output variables. The calculations of MLP output is
described as follows [41, 42].

At the j’h HL neuron, the net value is calculated as (2).

ni
Net(hj) = Z (Whi x x; +bhj), j=1,2,....,n5 (2)

i=1
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X\
X, @(Net(h;)) o(Net(y,)) —>
h/
Xm
Input layer
p(Net(h,)) 8, pWNet(y,)) ¥ > Y

nh

Hidden Layer Output layer

FIGURE 3. The architecture of MLP-ANN [41].

The output of the i HL neuron is calculated by using (3).

1
hj = ¢ (Net (})) = 1 o Netn)

3

At k™ OL neuron, the net value is calculated as (4):
np

Net (yr) =Z(w0kj x hj+box), k=1,2,...,n, (4)
j=1

Moreover, the k" OL neuron is calculated, as shown in 5.

1
Yk = ¢ (Net () = T4 oNer0)) &)

In the first layer, a typical MLP-ANN with three hidden
layers is applied for time-series-based short-term LF. The
measurement at time (t—24) was used to predict the electrical
load at time (t424). In addition, 70, 15, and 15 percent
of samples were taken for training, validation, and testing,
respectively.

2) LEVEL-2: THE PROPOSED CORRECTIVE VERY
SHORT-TERM LF

In the proposed method, Level-2 ANN forecasts the upcom-
ing load profile using the data of the previous 30 days load
profiles. The types of inputs for feedforward MLP-ANN in
Level-2 are different from the MLP-ANN time-series LF in
Level-1. Hence, the better accuracy of LF could be achievable
by Level-2 while the MLP-ANN time-series LF has not the
desired performance due to unknown events. On the other
hand, it is desired to perform one day-ahead scheduling for
the whole day. Hence, most of the time, the adequately precise
LF is achievable by Level-1 LF, and in some cases due to
some reasons, Level-2 LF modifies the accuracy of the LF
and the prosumer operation costs. By applying the proposed
two-level LF-based optimal scheduling and operation of pro-
sumers, the advantages of very short-term LF is achievable
while fewer LFs and solving the optimization problems are
needed. By decreasing the forecasted period in Level-2 LF
instead of 24-hour forecasting period of the Level-1 LF,
the better performance of the forecasting would be expected.

83567



IEEE Access

J. Faraji et al.: Optimal Day-Ahead Scheduling and Operation of the Prosumer

According to the proposed two-level LF method, the mea-
sured and forecasted load data are compared together in
determined intervals as described in (6).

AP, = P?ctual _ Pforecasted )

The difference between the measured and forecasted load
data is checked by a specified LF accuracy threshold as
(7). While the accuracy of the LF is satisfying based on
(7), the prosumer is scheduled and operated by using the
optimization results according to the first level LF data. How-
ever, the second corrective LF is started when the discussed
difference exceeds the pre-defined threshold.

AP; <& @)

In the proposed two-level LF-based optimal scheduling
of prosumers, the Level-2 LF applies corrective actions for
future time steps. For instance, as can be seen in Fig. 2, at
the end of the first and second interval times (to-t; and t;-tp),
the Level-1 LF data are compared with the actual measured
values. In these times, the accuracy of the LF is desirable.
Hence, corrective actions and the level-2 LF are not applied.
At the end of the third interval time (t3), the comparison of
the Level-1 LF data and the measured values indicates that
the accuracy of LF is not satisfying. Accordingly, the level-
2 LF and corrective actions are applied for the fourth time
step and other next time steps.

In the proposed method, the optimization problem,
as defined in (12-19), is solved based on the Level-2 LF
data. It means the constraints (as (13-19)) are concerned to
obtain corrective actions according to the modified optimal
scheduling and operation of the prosumers. The constraint of
the BESS’s final SOC at the end of the day is satisfied when
corrective actions are applied.

The proposed corrective LF has been developed based
on the data-driven approach. The Level-2 ANN forecasts
the upcoming load profile using the previous 30 days load
profiles as input (Fig. 2a). In Level-2 LF, a set of load patterns
are given to the input of the FF MLP-ANN. The input data is a
matrix, which indicates hourly load data for the previous 30-
days period. The number of columns is fixed and assumed to
be 30 because of selecting a historical 30-days period. The
number of rows depends on the starting time of Level-2 LF
(the g™ time interval of the operating day). The input matrix
of Level-2 LF can be defined as (8).

rosumer rosumer rosumer
Pz1) .q ’ Pg,q ’ te Pgo,q
rosumer rosumer rosumer
rosumer Pll),qul ’ PIZ),qul ’ teeo P(;O,qul
Pievel -2 =
rosumer rosumer rosumer
Pﬁ,,24 ’ P§,24 ’ Tt P§0,24
)]

If the modified values of the forecasted load data are
adequately precise, they would be used for solving the re-
optimization process. Otherwise, the proposed Level-2 LF
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FIGURE 4. Flowchart of the proposed two-level LF consists of corrective
LF actions.

The modified optimization
problem is solved.

]
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\
‘ The previous 30 days’ load ‘
|
\
\
|
|
\
\

once again forecasts the upcoming load profile using the
previous 30 days load patterns as input. In this level, instead
of using the time-series-based LF method, FF MLP-ANN is
used for finding the best load pattern.

The inputs are the data of the previous 30-days period,
and the target values are the measured hourly load data. The
flowchart of the proposed very short-term LF is illustrated
in Fig. 4. The results of MLP-ANN time series-based have
been evaluated by statical criteria such as mean squared error
(MSE), root mean squared error (RMSE), and standard devi-
ation (STD) as described in (9-11). Moreover, the regression
results of forecasting results have been depicted to have a
better understanding of forecasting accuracies [43]-[45].

1 N
MSE = + 3 (¥, -x,) 9)
p=1
RMSE = | - i (¥, — X,)’ (10)
= Np:1 p —4Ap
N \2
_ (X, —X)
STD = ;ﬁ (11)

In Level-1 LF, a time-series based MLP-ANN is used for
day-ahead LF of the prosumer. The time-series MLP-ANN
performs the LF based on the delayed inputs of the algorithm.
However, in Level-2 LF, instead of using a time series LF, FF-
ANN, which collects a set of load pattern as the input of the
algorithm is used. This is mainly because of the effectiveness
of FF-ANN for load pattern recognization. In FF-ANN, a set
of previous load patterns (loads of previous 30-days period)
is used for training the ANN, so the accuracy of the LF would
be significantly improved. The decrease in the period of LF
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based on the starting time of Level-2 also helps improve the
accuracy of the method.

C. THE OPTIMIZATION OPERATION OF THE PROSUMERS
BASED ON THE TWO-LEVEL LF AND EMS

The following optimization problem based on the introduced
objective function (O.F) in [28] as described in (12) is used
in the proposed optimal operation of the prosumers based on
the two-level LF and EMS.

24
Min {O.F => (ct x P{ + W x (SOC; — SOC(,D)Z)}
t=1

(12)

The main purpose of the optimization problem is to mini-
mize the operation cost of the prosumer. The cost of energy
purchased from the grid is stated in the first term of the O.F.
Also, the degradation of the BESS in the second term of the
O.F is concerned. The degradation of the BESS is controlled
by minimizing the changes in the BESS SOC. Due to the
existence of a quadratic term in the O.F, the problem is solved
using quadratic programming.

In the proposed method, the optimization.

1) SOC-RELATED CONSTRAINTS

The BESS SOC plays an important role in the lifetime of the
batteries [46]. BESS SOC indicates the amount of available
electricity in the battery. As an example, it could be compared
with the fuel gauge of gasoline-based vehicles. The constant
full charge and discharge of BESS will gradually degrade
the BESS efficiency and lifetime. Therefore, the SOC-related
constraints ignoring would result in the reduction of battery
lifetime [47]. For this reason, (13) is considered to limit the
variation of the BESS SOC during the day-ahead operation
[48].

SOCnin = SOC; < SOCrmax 13)

Generally, the SOC of BESS has a direct relation with the
output power of BESS as presented in (14).

BSS

SOC, = SOC(_1) — (14)

_t__

EBSS

Moreover, due to the consideration of SOC limits in (8),

it is necessary to consider a similar equation for the output

power of BESS. As illustrated in (14), the BESS SOC and

output power of BESS have direct relation. Hence, similar
limits are applied to BESS output power in (15-16).

(SOC(—1) — SOCpmax) EPSS < PBSS (15)

(SOC(—1) — SOCpin) EPSS > PBSS (16)

Because the BESS has a daily operation, it is essential to

have the same initial and final values of SOC. This constraint
is applied in (17).

SOCs4 = SOC) (17)
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FIGURE 5. The architecture of proposed optimal prosumer operation,
including the two-level LF and EMS.

2) ENERGY BALANCE CONSTRAINT

Overall consumption and generation power of the system
must be balanced. Hence, (18) should be considered as a
major constraint.

Pf n va n PtWT + P?SS _ P;;rosumer _ Pfontract =0 (18)

The BESS output power (Pfss ) is positive when the BESS
is discharging, and it acts as a power source. Moreover, Pfss
could be negative while the BESS is charging and it acts as
a load. The P?SS upper and lower bounds are determined
according to SOC constraints.

In the proposed method, the prosumer’s load (P}"”**"")
is forecasted by Level-1 LF, and the optimization problem is
solved based on the accurate values of the forecasted loads.
By using the accurate load data, it is possible to reduce
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the prosumer’s operation cost in comparison with conven-
tional approaches use the predefined load values. Moreover,
the accuracy of the forecasted load values is controlled during
the prosumer’s operating time. The Level-2 LF starts when
the accuracy of LF is not desirable, and the optimization
problem is solved again according to the very short-term LF
data. It means the prosumer’s load (P}"*""") is forecasted
to obtain more accurate values by Level-2 LF if it is needed.
Improving the optimal day-ahead operation of prosumer by
two-level LF and the use of more accurate load data is the
most important contribution of this paper.

As described in the prosumer structure, the prosumer
should provide a specific amount of the load demand load
of neighbor consumers during particular hours of the day.
Hence, the demand side has two parts, e.g. prosumer loads
and contracted consumers. The power balance condition,
including both demand loads and contracted consumers,
should be met.

The imported and exported power of the system should be
in the specified range of the transmission capacity, as shown
in (19).

PS

min = P? = Pinax (19)
D. THE ARCHITECTURE OF PROPOSED OPTIMAL
DAY-AHEAD OPERATION AND EMS

The step-by-step flowchart of the proposed optimal operation
of the prosumers consists of the two-level LF and EMS is
shown in Fig. 5. The proposed method is initialized with
collecting historical data such as RESs generation, market
electricity price, and electrical load data. Depends on the
using the proposed LF levels, the optimal operation results
are calculated. Finally, the system operation cost is assessed
based on the optimal operation and scheduling decisions and
the measured load data.

E. THE PROPOSED PROSUMER’S EMS
The steps of the proposed EMS are shown in Fig. 6. The
shortage or surplus energy due to changes in the load data
in comparison with the pre-defined or forecasted load data is
evaluated in the proposed EMS as (20).

While the value of «; ,, is between the lower and upper
bounds described in (21), it is necessary to adjust the power
imported/injected from/to the grid as depicted in (22). In this
condition, the EMS does not change the BESS-based opera-
tion decisions.

If the power shortage of the prosumer due to changes in the
load data regret the forecasted load values is greater than the
available power capacity (as shown in (20)), which could be
imported from the grid, the power imported from the grid is
set to the maximum value.

Qo = Pfraxumer + Ptconzmcz + Pi*m _ PZPV
—PIT R
vm € {1, 2, 3} (20)
Pl — P}ijm <o = anax - Pfjkm 21

min
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TABLE 2. The load analysis results.

Season Maximum load Minimum load Average load
value [kW] value [kW] value [kW]
Winter 242.7147985 68.317767 126.2413321
Spring 180.3397806 45.7744984 93.03737024
Summer 169.8761575 43.0125855 83.62107378
Fall 245.0093951 57.7749339 120.2875865
P = a4 PP, (22)

In addition, the rest of the required power is supplied
by the BESS according to the EMS commands subject to
BESS constraints such as maximum output power and the
maximum level of SOC. Under the conditions, where have
been explained in (23), the EMS would change the output
values as (24-26). It should be concerned in the design of the
prosumer that under all conditions, the grid and BESS could
provide the required energy in the worst cases. Otherwise,
load shedding is necessary.

It is possible to exceed the surplus power than the available
capacity for power injection to the grid, as demonstrated in
(27). The explained operation changes, which are introduced
in (28-30), should be applied. The appropriate capacity of the
BESS should be considered in the design and configuration
of the energy system. Otherwise, the energy generation of
renewable DG units is stopped due to prosumer limits.

Qrm > Pl — Py (23)
Pin ™ = P 24

P " = Min{ (e — P+ PI5) P ) (29)
(O‘t,m - anax + P;jkm)

socyedted — soc, + 00 (26)
arm < Py— Py 27)
Pf;andlﬁed _ an " (28)
ESS —modified
PR TO — Max {(cym + P — PL) - PSS (29)
" o 4 P5. — ps*
SOC st = soc, + S 0 i) (30)

IIl. LOAD FORECASTING RESULTS

A. LOAD ANALYSIS

In this paper, the historical load data extracted from [49], as
shown in Fig. 7 has been used. The used load data belongs
between 2017/12/31 to 2018/12/31. As revealed by Fig.
7, the highest load consumptions have occurred in winter
and fall. However, during the spring and summer, the load
consumptions have been gradually decreased. The detailed
descriptions about the load profile are shown in Table 2.
As can be seen in Table 2, the maximum load consump-
tion has occurred at fall with 245.00 kW, and minimum
load consumption has occurred in summer with 169.87 kW.
In addition, summer has the least average consumption with
83.62 kW, and winter has the most average load consumption
during the year.
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FIGURE 6. The flowchart of the proposed EMS.
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FIGURE 7. Yearly load profile.

B. THE RESULTS OF THE PROPOSED TWO-LEVEL LF
METHOD

1) LEVEL-1 LF: TIME-SERIES FORECASTING

Fig. 8 shows the Level-1 LF results. The regression diagram
of the time-series MLP-ANN prediction for all data has been
presented in Fig. 8b. The regression value for all data is
0.9976, as can be seen in Table 3, which approves the proper
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TABLE 3. Details of statical results for the proposed time-series If for all
data.

Statical Criteria Value

MSE 7.984

RMSE 2.8256
Mean 0.0070518

STD 2.8257

R 0.9976

performance of the proposed LF. Figs. 8c and d show error
values and error histogram for the time-series LF. The MSE,
RMSE, and STD are demonstrated in Table 3. Moreover,
Fig. 9 shows the linear regression results for training, vali-
dation, and testing load data.

2) LEVEL-2 CORRECTIVE LF

In the Level-2 corrective LF, the LF accuracy criterion
(AP; < &) is evaluated as the starting condition. While
the Level-1 LF accuracy is satisfying, the Level-2 corrective
LF is not activated. However, when the LF error exceeds the
determined threshold, the proposed Level-2 ANN forecasts
the upcoming load profile using the previous 30 days load
profiles as input. The modifying LF is performed based on
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FIGURE 8. MLP-ANN time-series LF results during a year: (a) Comparison
of actual (targets) and forecasted (outputs) values; (b) Linear regression
analysis on target and forecasted load data; (c) Values of errors; (d)
Histogram of error values.

the load data of the previous 30-days period. In this study,
the desired accuracy level of the LF is selected as 2 kW
(§ =2 kW). Fig. 10 shows the measured and Level-1 fore-

83572

[
>
S

Forecasted Load Data [KW]
o .
o n
S S

n
=

50 100 150 200
Actucal Load Data [kW]

()

—Y=T
Fit

O Data

Forecasted Load Data [kW]
—
n
S

50 100 150 200
Actucal Load Data [kW]

(b)

T T T T

O Data
Fit
l—Y=T

[
>
(=]

Forecasted Load Data [kW]
—
n
=)

50 100 150 200
Actucal Load Data [kW]

(©)
FIGURE 9. Linear regression analysis on target and forecasted load data.

casted load patterns in a typical day (1 January 2019). As can
be seen, the accuracy of the Level-1 forecasted load data
in comparison with the measured value is not satisfying for
the first time interval (from 0:00 to 1:00). Moreover, the
differences between the measured actual and forecasted load
values of the typical understudy day have been presented
in Table 4.

By starting the Level-2 corrective LF (at the first time
interval (0:00-1:00 for the typical day), the previous 30 days
load profiles are imported to the FF-ANN’s algorithm. The
previous 30 days load profiles from the hour of Level-2 LF
starting (1:00 to 24:00) are shown in Fig. 11. The FF-ANN’s
algorithm collects load patterns as input values and actual
load data of the operation day (30 December 2018) are set
as the target of the prediction. FF-ANN’s algorithm benefits
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FIGURE 10. Actual and forecasted hourly load data of a typical day.
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FIGURE 11. Hourly load profile for the last 30-days period between
01:00 and 24:00.

from learning ability, and it is a proper tool for finding the
best load pattern. The utilized FF-ANN algorithm has 3 HLs.

Moreover, 70%, 15%, and 15% of load data are used for
algorithm training, validation, and testing purpose, respec-
tively. The Level-2 corrective LF results are shown in Fig. 12.
The test results illustrate the effectiveness of the proposed
Level-2 corrective LF. Fig. 13 shows linear regression results
for the actual and previous load data of the previous 30-
days period. The improvement of the LF accuracy by using
the proposed two-level LF method is evident. These accurate
forecasted values are used for the day-ahead optimization
problem.

IV. OPTIMAL OPERATION RESULTS BASED ON THE
PROPOSED TWO-LEVEL LF UNDER VARIOUS CASES AND
SCENARIOS

The selected system for applying the proposed optimal opera-
tion has been assumed to be equipped with RESs and BESS.
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FIGURE 13. Linear regression results for FF-ANN LF: (a) Training;
(b) Testing; (c) Validation; (d) All data.

The test system has bidirectional power flow with the util-
ity grid. Fig. 14 shows the assumed RESs output power in
the optimization problem. Furthermore, the prosumer has
contracted to consumer neighbors to supply overall 200 kW
power during two hours (17:00 to 18:00). More details on
BESS and utility grid specifications are available in Table 7.
Electricity price is also considered according to south Korean
electricity tariff, which is based on time-of-use (TOU) pricing
[28]. Table 8 shows the values of hourly electricity tariff.
The performance of the proposed method has been studied
for only one-day evaluation because the proposed method
focuses on the optimal day-ahead operation and scheduling
of the prosumers. It is possible to study for more evalu-
ations than one-day one in the paper. However, since the
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TABLE 4. Differences between the measured actual and forecasted
values of a typical day (1 January 2019).

Hour Ptactual [kW] Bforecasted [kW] APt [kW]
1 92.20015 97.24718867 5.047
2 80.38105 82.16916756 1.7881
3 75.72363 78.5061274 2.7825
4 74.91567 78.79675122 3.8811
5 75.58656 75.22080052 0.3658
6 83.29483 84.16999346 0.8752
7 106.1529 104.8100348 1.3429
8 136.3395 134.25763 2.0819
9 134.4902 131.1636458 3.3265
10 120.0316 116.1399172 3.8917
11 119.8637 118.2527256 1.6109
12 126.6138 119.6449457 6.9689
13 120.2129 123.9669933 3.7541
14 116.7227 114.0115798 2.7111
15 117.2657 116.7913853 0.4743
16 125.7689 125.3200959 0.4488
17 156.8955 156.8141255 0.0814
18 212.3067 206.7430247 5.5637
19 239.9626 240.6332136 0.6707
20 219.1529 225.670036 6.5171
21 207.9864 204.4056587 3.5807
22 191.263 191.9033996 0.6404
23 158.2459 158.4348303 0.189
24 126.6258 125.0913624 1.5345

optimization problem is solved every day, the results of the
next day are independent of the previous understudy day ones.

MATLAB 2014 and GAMS 27.3.0 software are used for
LF and solving the optimization problem. The CPLEX solver
has been used for solving the quadratic problem. A 64-bit
private computer with 8 GB RAM and Intel Core i5 CPU has
been used for required computations.

A. CASE STUDIES AND SCENARIOS
In order to investigate the effectiveness of the proposed opti-
mal operation of the prosumers based on two-level LF, two
cases have been presented as follows:

Case 1: without consideration of the BESS operation costs
(W=0)

Case 2: By consideration of the BESS operation costs (W
= 66)
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TABLE 5. Details of statical results for the linear regression of the
FF-ANN LF.

Item Value of R
Training 1
Testing 0.99976
Validation 0.99833
All data 0.99992

In case 1, the impacts of BESS SOC changes on the
prosumer operation costs are neglected because the weight-
ing coefficient in the O.F (12) has been considered as zero
(W = 0). Also, in case 2, the coefficient value of the BESS
SOC changes (W) is crucial to determine the optimum results.
By selecting the higher values for W, the prosumer intends
to use less than the BESS. Therefore, the system operation
cost increases due to this strategy. On the other hand, the very
low values for W result in the accelerated aging of the BESS.
The appropriate value of W should be determined according
to a trade-off between the total system operation cost and
the loss of life cost of the BESS. In this paper, the value of
the weighting coefficient corresponding to the BESS SOC
changes has been selected by using the sensitivity analysis.
The sensitivity analysis results showed that by selecting the
value of 66 for W, the best condition is achieved while the
system operation cost and the loss of life costs of the BESS
have been minimized simultaneously.

The day-ahead optimal operation of prosumer under vari-
ous LF scenarios is studied:

- Scenario 1: The optimal operation of the prosumer with-
out any LF like [28].

- Scenario 2: The optimal operation of the prosumer based
on ideal forecasted load data (100% accurate values).

- Scenario 3: The optimal operation of the prosumer based
on Level-1 LF.

- Scenario 4: The proposed optimal operation of the pro-
sumer based on two-level LF.

B. CASE 1

1) CASE 1-SCENARIO 1

In Fig. 15, the test results of the proposed optimal operation
under scenario 1 and case 1 have been shown.

The comparison test results of Fig. 15a shows a significant
difference between the pre-defined load data for solving the
day-ahead optimization problem and the measured data. This
comparison infers that the system operation cost would be
increased in comparison with the optimum condition. Due to
the changes in the load data regret the input data of the optimal
operation day-ahead scheduling, the operation strategies and
control variables such as the power imported/injected from/to
the grid (PBESS) are affected. Since the differences between
the pre-define load curve and the actual measured data are not
greater than the available transmission capacity with the grid,
the BESS scheduling is not affected.
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FIGURE 15. Day-ahead scheduling results of prosumer using pre-defined
load data under case 1 and scenario 1 (December 31, 2017): (a) electrical
load data; (b) imported/injected power to/from the grid (Pt’): (c) the

output power of BESS (P!‘BESS ); (d) the output power of BESS (Pthss )-

The prosumer operation cost under case 1 and sce-
nariol based on the EMS rules to adjust the day-ahead
planned operation parameters is equal to 137.2162 USD.
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TABLE 6. Differences between actual and forecasted values after level-2
corrective LF.

Hour Practual [kW] Bﬁ)recaxted kW] AR [kW]
1 92.20015 92.20016 0.00001
2 80.38105 80.38106 0.00001
3 75.72363 75.7947 0.0711
4 74.91567 76.50743 1.5918
5 75.58656 75.58656 0
6 83.29483 83.29483 0
7 106.1529 106.1529 0
8 136.3395 136.3395 0
9 134.4902 134.4902 0
10 120.0316 119.9922 0.0394
11 119.8637 119.6655 0.1982
12 126.6138 127.6067 0.9929
13 120.2129 121.0349 0.8220
14 116.7227 117.453 0.7303
15 117.2657 117.9141 0.6484
16 125.7689 126.5379 0.7690
17 156.8955 156.8955 0
18 212.3067 212.3067 0
19 239.9626 239.9626 0

20 219.1529 219.1529 0
21 207.9864 208.6287 0.6423
22 191.263 191.8562 0.5932
23 158.2459 158.2459 0
24 126.6258 126.6258 0
TABLE 7. Specifications of BESS and utility grid.
Parameter Value

1 Rfm 165 kW

2 P -165 kW

3 [ BESS 100 kWh

4 SOC,... 90%

s SOC,,  10%

6 SOC,, 50%

7 SOC, 50%

TABLE 8. Electricity price data.
TOU Period Time Price (USD/kWh)

1 12:00-14:00
5 On-Peak 15:00-19-00 0.1489
3 0:00-1:00
4 . 11:00-12:00
5 Mid-peak 14:00-15-00 0.0964
6 19:00-24:00
7  Off-peak 1:00-11:00 0.0584

2) CASE 1-SCENARIO 2

In scenario 2, it has been assumed that the 100% accurate
LF data is available. Hence, the optimization problem for
the day-ahead scheduling of prosumer is solved based on the
measured load data (December 31, 2018) as an ideal condi-
tion. The optimal operation test results of the prosumer such
as imported/injected power to/from the grid (Py), the output
power of BESS (PfESS), and BESS SOC are shown in Fig. 16.
Generally, the system behavior under scenario 2 is similar to
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FIGURE 16. Day-ahead operation results using actual load data under @ Hour
case 1 and scenario 2 (December 31, 2018): (a) electrical load data; (b) . .
imported/injected power to/from the grid (Pf); (¢) the output power of FIGURE 17. Day-ahead operation results using Level-1 forecasted load

data under case 1 and scenario 3 (December 31, 2018): (a) electrical load
data; (b) imported/injected power to/from the grid (Pts); (c) the output
power of BESS (P?Ess ); (d) the output power of BESS (PfESS )-

BESS (PEESS); (d) the output power of BESS (PEESS).

scenario 1. However, the system operation cost is achieved system operation cost under scenarios 1 and 2 implies that
135.6984 USD under this scenario. The comparison of the 1.18% increase in the system operation cost has occurred
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FIGURE 18. Day-ahead operation results using Level-2 corrective load
forecasting data under case 1 and scenario 4 (December 31, 2018): (a)
electrical load data; (b) imported/injected power to/from the grid (Pts); (o)
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FIGURE 19. Day-ahead scheduling results of prosumer using pre-defined
load data under case 2 and scenario 1 (31 December 2017): (a) electrical
load data; (b) imported/injected power to/from the grid (P:); (c) the
output power of BESS (PEESS); (d) SOC of BESS.
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FIGURE 20. Day-ahead operation results using actual load data under

case 2 and scenario 2 (December 31, 2018): (a) electrical load data; (b)
imported/injected power to/from the grid (Pf); (c) the output power of
BESS (PBESS); (d) SOC of BESS.
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FIGURE 21. Day-ahead operation results using Level-1 forecasted load
data under case 2 and scenario 3 (December 31, 2018): (a) electrical load
data; (b) imported/injected power to/from the grid (P's); (c) the output
power of BESS (PtBESS ); (d) SOC of BESS.
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due to inaccurate load data. The test results illustrate that by
the more accurate forecasting process for uncertain variables,
the better operation and schedule is achievable.

3) CASE 1-SCENARIO 3

In this case, MLP-ANN time series forecasting load data
has been used for optimal day-ahead scheduling of pro-
sumer. Fig. 17 shows the optimal prosumer operation results.
The system operation cost under case 1 and scenario 3 is
135.8862 USD. As revealed by test results, the system opera-
tion cost under scenario 3 has been decreased in comparison
with that of scenario 1. The decrease in the system operation
cost under scenario 3 highlights the effectiveness of the pro-
posed optimal operation of the prosumers based on accurate
LE. Moreover, the difference between the system operation
cost under scenario 3 (the one-level LF-based optimal opera-
tion) and scenario 2 (ideal and 100% accurate LF) is less than
0.2%., which approves the effectiveness of the proposed LF-
based method for operation optimization of the prosumers.

4) CASE 1-SCENARIO 4

In Fig. 18, the test results under case 1 and scenario 4 have
been demonstrated. The comparison results of the measured
and the forecasted load data based on the proposed two-level
LF emphasizes the accuracy of the proposed method.

Because of the adequately precise LF by using the
proposed two-level LF, including the corrective actions,
the changes in the load data and its uncertainties cannot
affect the system operation and scheduling. The system oper-
ation cost under scenario 4 is 135.7020 USD. The difference
between the system operation cost under scenario 4 and
the ideal condition (scenario 2) is approximately zero. The
advantages of applying the proposed two-level LF-based
optimal operation of prosumers have been highlighted by
comparisons of the system operation costs under various
scenarios.

To concern the BESS operation cost, it is possible to add
some terms regarding the BESS SOC as introduced in [28].
Under case 2, the BESS operation cost has been concerned.
In addition, the effectiveness of the proposed optimal opera-
tion of the prosumers based on accurate LF could be exam-
ined in the viewpoint of BESS operation cost considerations.
In this paper, the weighting coefficient of the SOC terms in
the O.F is assumed to be 66 under case 2.

C. CASE 2

To concern the BESS operation cost, it is possible to add some
terms regarding the BESS SOC as introduced in [28]. Under
case 2, the BESS operation cost has been concerned. In addi-
tion, the effectiveness of the proposed optimal operation of
the prosumers based on accurate LF could be examined in
the viewpoint of BESS operation cost considerations. In this
paper, the weighting coefficient of the SOC terms in the O.F
is assumed to be 66 under case 2.
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1) CASE 2-SCENARIO 1

The day-ahead optimal operation of the prosumer under case
2 and scenario 1 is very similar to case 1 and scenariol, except
the considering of the BESS operation cost. In Fig. 19, the test
results of the optimal operation of the prosumer under case
2 and scenario 1 have been shown.

The comparison of the test results of case 1 and 2 under
scenario 1 illustrates the impacts of the BESS operation cost.
Because of the SOC-based term of the O.F, the variation of
the BESS SOC under case 2 is less than case 1.

Similar to the previous case study, the historical load data
of previous years’ (31 December 2017) has been selected to
import the optimization problem. No EMS and LF have been
considered in this case. The operation cost of the prosumer
is achieved as 158.1011 USD. By comparison of the system
operation costs for scenario 1 under cases 1 and 2, it can
be inferred that 15.2% increase in the operation costs has
occurred due to the BESS operation and LOL cost. It means
the studies under case 2 are more accurate than those of
cased 1.

The operation results under case 2 and scenario 1 are
shown in Fig. 19. The BESS does not charge or discharge,
consecutively. A smooth behavior of BES is observed through
the operation horizon under case 2 because of the BESS term
consideration in the OF.

2) CASE 2-SCENARIO 2

The actual load data is used to solve the optimization prob-
lem. The operation cost under case 2 and scenario 2 would be
147.6629 USD. The optimal operation results of prosumer
are depicted in Fig. 20. As expected, the battery is not con-
secutively charged or discharged, which increase the battery
lifetime.

The comparison of the test results under scenario 1 and
scenario 2 (ideal condition based on the load data) shows
6.97% increase in the prosumer operation cost due to the
inaccurate load data.

By comparison of the test results of scenario 1 and 2 under
different cases, it could be concluded that due to the consid-
eration of the BESS LOL and operation costs, the impacts
of inaccurate load data are highlighted. Under case 1, about
1% difference exists between the operation cost for scenarios
1 and 2, while under case 2, this difference is more than 6%.
It means that the impacts of accurate load data and LF are
highlighted due to the BESS operation costs.

3) CASE 2-SCENARIO 3
Under case 2 and scenario 3, the level-1 MLP-ANN time-
series LF has been used to optimize the prosumer opera-
tion and scheduling. The system operation cost would be
149.1725 USD, which is much less than the operation cost
using historical load data.

The comparison of the operation cost of this scenario
with that of scenario 2 (as the ideal scenario) illustrated that
by applying the proposed LF-based optimization method,

83580

TABLE 9. The operation cost of the prosumer under different cases and
scenarios.

Scenario No. Operation Cost [USD]

Case 1 Case 2
Scenario 1 137.2162 158.1011
Scenario 2 135.6984 147.6629
Scenario 3 135.8862 149.1725
Scenario 4 135.7020 147.7964

the increase in the system operation cost due to the load
data inaccuracy is limited to less than 1%. Fig. 21 shows the
optimization results of the prosumer using level-1 LF data
under case 2 and scenario3.

4) CASE 2-SCENARIO 4

The two-level corrective LF has been used under scenario
4. The system operation cost under this scenario would
be 147.7964 USD. The comparison of the system opera-
tion costs based on the proposed two-level LF-based opti-
mization method, ideal scenario and the available methods
like [28] illustrates the advantages of the proposed method.
As revealed by the test results, less than 0.1% increase in
the system operation cost could be achieved by applying
the proposed method (as scenario 4). Although the proposed
two-level LF-based optimization method is useful under case
1 (without consideration of the BESS costs), the economic
advantages of the proposed method are highlighted in case 2
(consideration of the BESS costs). In Fig. 22, the prosumer
operation and scheduling under case 2-scenario 4 have been
shown.

Table 9 shows the operation cost of the prosumer under dif-
ferent cases and scenarios. As can be seen in both cases 1 and
2, the operation cost of the prosumer in scenario 4 has the least
difference with scenario 2. As described above, the operation
cost of scenario 2 is achieved using ideal load data. This
significantly shows the effectiveness of the proposed two-
level LF method in the day-ahead operation of understudy
prosumer.

V. CONCLUSION
In this paper, a novel day-ahead operation and scheduling
of prosumers by using the corrective two-level LF has been
proposed. The first LF level performs an MLP-ANN time-
series forecasting based on the previous historical values
under the proposed method. The operation and scheduling of
the prosumer are optimized by the forecasted data instead of
the pre-defined values. Moreover, the real-time measurement
is performed. When the inaccuracy of the forecasted load data
in comparison with the measured data exceeds the desired
threshold, the second level LF is triggered. The FF-ANN is
used for corrective LF by using previous 30 days load patterns
as inputs and actual load data on the operation day as the
target.

The proposed method has been applied to a typical pro-
sumer under various scenarios based on the load data. The
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comparison test results illustrated the advantages of the pro-
posed LF-based optimal operation and scheduling of the
prosumers. Moreover, the test results show that by consider-
ation of the BESS LOL and operation cost, the advantages
of the proposed method are highlighted. About 1 and 7%
decrease in the prosumer operation cost could be achieved by
applying the two-level LF-based optimization method under
case 1 (without consideration of the BESS costs) and case
2 (by considering the BESS operation behaviors and costs),
respectively.
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