
Testing Signal Processing Techniques for
Digital VHF/UHF Transceiver in High-level

SDR Programming Environment
Jiřı́ Skořepa, Pavel Kovář, Pavel Puričer,

Faculty of Electrical Engineering, Czech Technical University in Prague
Czech Republic, Prague

skoreji3@fel.cvut.cz

Abstract—Nowadays, due to cost savings, flexibility or
improvement of service quality, modern communication
devices solely rely on the digital domain when it comes to
signal processing. The paper presents a comfortable, fast
and straightforward approach of testing and verifying
developed digital signal processing techniques before
their implementation into a digital mobile transceiver.
The approach benefits from the concept of an Software-
defined radio (SDR) by employing a high-level pro-
gramming environment capable of direct analog radio
frequency (RF) front end control in real-time via a user-
defined software.

Index Terms—digital signal processing; digital mobile
radio; software-defined radio

I. INTRODUCTION

This paper presents several tests performed during
the development of a Very high frequency/Ultra
high frequency (VHF/UHF) transceiver operating
in analog narrowband frequency modulation (NFM)
mode [1] and digital Digital mobile radio (DMR)
mode [2]. The transceiver is developed together with
an industrial partner T-CZ, a.s. under the project of
innovation of a T-CZ’s professional product — VHF
and UHF transceiver for railway communication. The
transceiver’s design is in accordance with European
Telecommunications Standards Institute (ETSI)
standards for analog NFM [1] and for Digital Mobile
Radio [2] communication. In the previous paper [3],
we focused on Digital Up/Down Convertor (DUC,
DDC). The next step is developing digital signal
processing algorithms which are implemented in the
microprocessor inside the developed transceiver.

Thanks to mathematical correspondence between
the analog and digital domain of treatment the signal,
over the past years, there has been an increasing
trend of reducing the number of analog parts inside
all communication devices in behalf of digital logic
circuits to minimize construction and manufacturing
costs. Another benefit of employing digital circuits
results in the possibility of deploying advanced signal
processing techniques and algorithms which would be
burdensome or even impossible to implement in the
analog domain. Hence, not only in many commercial
off-the-shelf (COTS) transceivers, operations like
DDC/DUC, signal detection, automatic gain control,

modulation, equalization or voice compression are
performed entirely inside microcontroller units
(MCUs), Application-specific integrated circuits
(ASICs) or Field-programmable gate arrays (FPGAs)
of the digital transceiver.

The problem arises when the user-developed digital
signal processing methods have to be tested and
validated. In the analog domain, the RF front end can
be readily tested using conventional RF measurement
equipment. Testers for frequency modulation (FM)
or DMR standards is mostly expensive equipment
and often, due to the diverse nature of newly-applied
digital signal processing (DSP) algorithms, the market
does not offer a device capable of testing each specific
algorithm. Therefore, the process of testing a device
under development deploying the applied processing
algorithms becomes burdensome.

Fortunately, we can profit from software-defined
radio concept allowing us to use a device with an RF
front end parameters corresponding to parameters of
the developed device. Then, combining the SDR device
with an appropriate high-level programming environ-
ment, we can test and verify our developed/applied
DSP algorithms. In this paper, we present a useful
and simple way to verify several of those DSP algo-
rithms to be implemented in the developed VHF/UHF
transceiver.

II. TESTED ALGORITHMS

A successful development of a DMR transceiver
requires appropriate testing and implementation of
several signal processing techniques. From a practical
point of view, testing the algorithms only at the level of
simulation in Matlab, Octave or Scilab may not reveal
all the weaknesses of the algorithms and testing the
algorithms after direct implementation inside the MCU
or FPGA of the developed transceiver may be vastly
time-consuming. Hence, it is convenient to perform
more realistic examinations of the tested algorithm.
The developed transceiver, which can work in DMR
and legacy NFM mode, is composed of several digital
processing blocks; nevertheless, in this paper, we focus
on testing the following three blocks.

ISBN 978-80-261-0892-4 © University of West Bohemia, 2020

Authorized licensed use limited to: Univ of West Bohemia in Pilsen. Downloaded on November 05,2020 at 13:23:58 UTC from IEEE Xplore. Restrictions apply.

A. FM Demodulator

The signal in the legacy mode [1] is FM modulated;
in the DMR mode, the standard [2] defines 4-state
frequency shift keying (FSK) modulation. Samples of a
signal complex envelope sI, sQ coming from the DDC
block is forwarded to an FM demodulator. The FM
demodulator, is realized as a frequency discriminator
[4] described as

sNF[n] =
atan2(scross[n], sdot[n])

2πTs
(1)

where n = 0, 1, ..., N − 1 is the time-domain index
of the sample, atan2 denotes four-quadrant inverse
tangent function and Ts is the sampling period of
the incoming IQ samples — in our case, the Ts =
(96 · 103)−1 s. Cross and dot terms of IQ samples are

scross[n] = sI[n− 1]sQ[n]− sI[n]sQ[n− 1] (2)

sdot[n] = sI[n− 1]sI[n] + sQ[n− 1]sQ[n] (3)

The initial conditions are scross[−1] = sdot[−1] =
0.

B. CTCSS Detector

The analog legacy operation mode of the developed
transceiver requires reception and detection of the Con-
tinuous Tone-Coded Squelch System tones (CTCSS)
[5], [6]. The frequencies of the CTCSS tones are
in the subaudible range of 60 – 260 Hz, thus, the
demodulated sNF signal needs to be bandpass-filtered
and decimated first by a factor of 12 resulting in a
new fs = 8 kHz. As we see in table I taken from
[5], the CTCSS tones are closely spaced meaning that
high frequency resolution is required. Together with
a requirement for fast detection of the tones, simple
methods based on computing fast Fourier transform
(FFT) over an interval of N samples are not applicable.
Our solution adopted the following algorithm.

TABLE I
A LIST OF CTCSS TONES

ftone [Hz] ftone [Hz] ftone [Hz] ftone [Hz]

67.0 94.8 131.8 186.2
69.3 97.4 136.5 192.8
71.9 100.0 141.3 203.5

...
...

...
...

91.5 127.3 179.9 250.3

A phase of a tone signal replica with frequency ftone
is being accumulated:

θ[n] = θ[n− 1] + 2π
ftone
fs

, (4)

where n = 0, 1, ...N − 1 and N spans the inte-
gration interval. Then the mutual energy between the
demodulated and decimated signal s′NF and the ftone
replica is computed and integrated over the interval of
N samples:

yI[n] = yI[n− 1] + s′nf [n]cos(θ[n]) ,

yQ[n] = yQ[n− 1] + s′nf [n]sin(θ[n]) .
(5)

At the end of the integration interval, energy of the
integrated signal and its phase is computed:

E[N − 1] = y2I [N − 1] + y2Q[N − 1] , (6)

ϕ[N] = atan2(yI[N], yQ[N]) . (7)

To comply with range of principal values of the
atan2 function, which is (−π, π], the phase difference
∆ϕ[N] of the two consecutive integration intervals
needs to be checked and wrapped

∆ϕ[N] = ϕcurrent[N]− ϕold[N] . (8)

The phase difference ∆ϕ[N] is also required for a
detection condition preventing from the false detection
due to phase error ϕerr. The CTCSS tone is detected
when following condition is met:

E[N] > γE ∧ |∆ϕ[N]| < ϕerr . (9)

The initial conditions at the beginning of each
integration interval are set to be θ[−1] = yI[−1] =
yQ[−1] = ϕ[N]old = 0

C. Voice Dynamic Range Compressor

When the transceiver is operating in the NFM
mode, the dynamic range of the sampled (fs = 8
kHz) modulating voice signal must be compressed to
prevent overmodulation of the FM carrier leading to
corruption of the allowed spectral mask [1]. However,
at the same time, the compressed voice must remain
comprehensible. The voice compressor we designed
for our VHF/UHF transceiver can be perceived as a
nonlinear system with an adjustable gain g[n] and hard
limiter. In the first step, the signal sNF is multiplied by
the g[n] set at programmable initial value

x[n] = sNF[n]g[n− 1] . (10)

Then the first fixed threshold γ1 determines either
the gain coefficient must be decreased, or increased by
a factor γ−1 , or γ+1 :

∆[n] = |x[n]| − γ1 , (11)

g[n] =

{
γ−1 g[n− 1], ∆ > 0 (12)
γ+1 g[n− 1] ∆ ≤ 0 , (13)

Passing the compressor part, the signal is clipped
in a hard limiter following condition determined by a
second threshold γ2:

y[n] =

{
γ2, x[n] ≥ γ2 (14)
−γ2, x[n] ≤ γ2 . (15)

Initial and fixed parameters of the described
dynamic range compressor — g[−1], γ1, γ2, γ−1

Authorized licensed use limited to: Univ of West Bohemia in Pilsen. Downloaded on November 05,2020 at 13:23:58 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Block scheme – the flow graph – of the GNU Radio high-level programming environment for testing the developed algorithms
(marked with *).

adjusting a step of a gain decrease, γ+1 adjusting a
step of gain increase — are programmable.

III. TESTING ENVIRONMENT

These days, we have several options on how
to examine the previously described algorithms.
Besides well-established MATLAB and its graphical
programming environment Simulink, LabVIEW and
LabVIEW Communication System Design Suite
graphical programming platforms allow us practical
testing of developed DSP algorithms before their
implementation. The common problems of listed
software are unflattering licence prices and limited
support of SDR front end hardware.

The other high-level programming environment we
use in this paper to validate the developed algorithms
with the help of SDR is GNU’s Not Unix (GNU)
Radio. Since the GNU Radio works under free GNU
General Public License, it is becoming popular among
the community of RF and DSP engineers who are
free to contribute to its development. GNU Radio
combines graphical and text-based programming
where a programmer can choose from a library of

predefined blocks implementing routine processing
algorithms, then set their input parameters and
interconnect them into a radio system as shown in the
Fig. 1.

Those blocks are mainly written in Python and
placed on the top of C++ ”core”. Thanks to that,
the programmer can create custom blocks either in
Python or C++, including support for a vast number
of RF front end hardware — from the state-of-the-
art Universal Software Radio Peripheral (USRP) SDRs
to the handy crowd-founded ones. Those advantages
allow real-time implementation helping rapid proto-
typing with inexpensive SDR. Moreover, similarly to
previously mentioned frameworks, GNU Radio offers
blocks for simulations, in which hardware is not de-
ployed. However, comparing to other environments, the
GNU Radio often miss proper documentation making
it less attractive to use.

Together with GNU Radio, we use SDR receiver
SDRplay RSP1A with parameters found in [7]. As a
reference source of signals, we use signal generator
R&S SMC100A.

Authorized licensed use limited to: Univ of West Bohemia in Pilsen. Downloaded on November 05,2020 at 13:23:58 UTC from IEEE Xplore. Restrictions apply.

Energy Threshold [-]

Phase Error Threshold [rad]

Frequency Error [Hz]

CTCSS Detected Frequency [Hz]

Noise Amplitude [-]

Num of Samples [-]

1.800

192.800

0.3000

0.250

1.200

256

f_det = f_tone
f_det = f_tone + err80 00080 000

60 000

40 000

20 000

-1 -0.5 0 0.5 1
Value

Co
un
t

Fig. 2. Graphical interface for setting and observing the parameters of the tested CTCSS detector.

IV. ALGORITHMS TESTING

In the GNU Radio environment, we developed a
system depicted in the flow-graph in the Fig. 1 testing
the overall functionality of the transceiver in which
the designed blocks were included. This environment
takes as a source of the signal either the input of the
RSP1A SDR (not in the scheme) – the signal generator
– with the sampling frequency identical as in designed
for VHF/UHF transceiver, or an input of the audio card
— the microphone — of the computer running the
GNU Radio with maximum available sample frequency
(48 kHz in our case) allowing us real-time switching
between all developed signal processing blocks (the
ones in a grey shade are disabled in the real-time
computation) and to verify their proper behaviour
from a system point of view. Nevertheless, first, the
developed blocks had to be tested individually.

A. Testing FM Demodulator

To test only the the FM demodulator processing
block proposed in the previous section, the flowgraph
was reduced to the necessary minimum. The sampling
frequency of the complex envelope of the signal
received by the developed transceiver is 96 kHz
which is the frequency at which the FM demodulator
runs. Then, the demodulated signal is decimated by
a factor of 12 to comply with the 8 kHz sample

frequency of the audio signal. The flowgraph was
hence simplified to include only RSP1A source,
complex envelope low-pass filter, developed FM
demodulator, decimating block, and root mean square
(RMS) block measuring the average power of the
received signal. Then, we input the FM modulated
signal from the signal generator via coaxial cable
to the RSP1A. The carrier is modulated with a 1
kHz tone with the frequency deviation of 1.5 kHz
according to the conditions of measurement defined
in standard [1]. Receiving the modulated signal at
the carrier frequency in the GNU Radio program, we
were able to estimate Signal-to-noise and distortion
ratio (SINAD) parameter by turning on and off the
FM modulation at the signal generator. The estimated
values were 10 dB for -120 dBm signal power at the
generator and 20 dB when -110 dBm.

By deploying the FM demodulator in the system
from the Fig. 1, we also verified its functionality by
listening a demodulated real voice signal coming from
the audio card of the PC and comparing the result with
the inbuilt narrowband frequency modulation (NBFM)
receiver.

Authorized licensed use limited to: Univ of West Bohemia in Pilsen. Downloaded on November 05,2020 at 13:23:58 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Time-domain voice signal record of word ”karel” (red) and its compressed duplicate (blue).

B. Testing CTCSS Detector

The main issue with the CTCSS tones is their
closely spaced frequencies and the requirement on
fast detection. The proposed algorithm in the second
section needs to be verified, i.e. we are interested
in the frequency interval inside which the detector
returns positive detection. This interval denotes the
eventual CTCSS tone frequency drift of a transmitted
signal which is received by the developed transceiver.
Clearly, two neighbouring CTCSS tones’ ”guarding
intervals” must not overlap.

To verify such a possibility, we enabled two devel-
oped tone detectors in our GNU flow graph envisioned
in Fig. 1. The first one is tuned exactly to the CTCSS
tone frequency; the second one is slightly detuned by
a frequency error added to the CTCSS tone frequency.
Their binary outputs are then plotted in a histogram in

As envisioned in th Fig. 2, by manually increasing
or decreasing the added frequency error to the signal
with the tone frequency, which is received by the
CTCSS detector, we determine at which frequency
the tone detector starts reacting. With this flow graph,
we can also investigate the effect of the length of
the integration interval N since its length corresponds
to the response of the proposed detector. Then we
can examine the effect of added noise or refine the
parameters of the phase and energy thresholds ϕerr, γE.

C. Testing Voice Dynamic Range Compressor

The standard [1] strictly defines a spectral mask
which needs to be abided by the developed transceiver.
The highest restriction is for 12.5 kHz channel
spacing where the frequency deviation of the FM
modulated signal must be 2.5 kHz at most. Hence,
the compression of the voice signal amplitude is
needed to prevent unwanted emissions at frequencies
where the transmission is not allowed and to avoid
the unpredictable distortion caused highly dynamic
voice at the transmitter side or by the input filters at
the receiver side.

To test the algorithm proposed in the second section,
we used the GNU Radio flowgraph in the Fig. 1
allowing us to speak directly to a microphone, plot the
uncompressed time-domain curve, compress the voice,
plot the compressed voice and listen to it via speakers

in real-time with negligible latency. That helps us to
verify the compressed voice comprehensibility and the
amount of compression, eventually refine parameters
of the thresholds γ1, γ2 and the slope of the gain
coefficient γ+1 , γ

−
1 . The Fig. 3 shows an example

test of the voice record of the word ”karel” sampled
at fs = 8 kHz and highly compressed, however,
remaining understandable.

V. CONCLUSION

In this article, we showed a complementary way to
test, verify and refine proposed algorithms in GNU
Radio environment. The profit coming with the imple-
mentations and simulations of radio systems in GNU
Radio is the free license and ease of use despite
missing documentation. Only fundamental knowledge
of Python scripting is needed. Reusing the predefined
blocks, the user is capable of comparison with user’s
custom blocks. When developed algorithms are not
computationally extensive as, e.g. computation of a
singular value decomposition and similar, the devel-
oper can obtain processed results with GNU radio
flow graph in real-time. During the development of
the VHF/UHF transceiver, this high-level programming
environment proved to be a viable and valuable tool
which shortened the whole process of development.

ACKNOWLEDGMENT

This work has been supported by grant no. FV30365
“Mobile radio with digital signal processing” funded
by the Ministry of Industry and Trade of the Czech
Republic.

REFERENCES

[1] REN/ERM-TGDMR351, “Land mobile service; radio equip-
ment with an internal or external rf connector intended primarily
for analogue speech; harmonised standard covering the essential
requirements of article 3.2 of the directive 2014/53/EU,” ETSI,
Sophia Antipolis, Standard EN 300 086 V2.1.2, 2016.

[2] REN/ERM-TGDMR-361, “Land mobile service; radio equip-
ment intended for the transmission of data (and/or speech) using
constant or non-constant envelope modulation and having an
antenna connector; harmonised standard covering the essential
requirements of article 3.2 of the directive 2014/53/EU,” ETSI,
Sophia Antipolis, Standard EN 300 113 V2.2.1, 2016.

[3] P. Kovář, P. Puričer, T. Morong, and F. Šturc, “Digital up and
down converter for high performance vhf and uhf transceiver,”
in 2019 International Conference on Applied Electronics (AE),
2019, pp. 1–4.

Authorized licensed use limited to: Univ of West Bohemia in Pilsen. Downloaded on November 05,2020 at 13:23:58 UTC from IEEE Xplore. Restrictions apply.

[4] J. T. Curran, G. Lachapelle, and C. C. Murphy, “Improving
the design of frequency lock loops for gnss receivers,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 48,
no. 1, pp. 850–868, 2012.

[5] X. Liu, Y. Zhao, and F. Song, “Comparative analysis of CTCSS
decoding algorithms,” in 2010 3rd International Congress on
Image and Signal Processing, vol. 7, 2010, pp. 3268–3271.

[6] “Continuous Tone Controlled Squelch System,”
http://radiohistory.uk/manuals/pye/CTCSS.pdf, Philips, Tech.
Rep., accessed: 03/30/2020.

[7] “SDRPlay radio spectrum processor 1,” www.sdrplay.com/wp-
content/uploads/2017/01/161129RSP1DatasheetV3.pdf,
accessed: 03/30/2020.

Authorized licensed use limited to: Univ of West Bohemia in Pilsen. Downloaded on November 05,2020 at 13:23:58 UTC from IEEE Xplore. Restrictions apply.

