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ABSTRACT

The use of hierarchical spatial decomposition in 3D scenes in order to manage the complexity of the objects is a well known

approach. The main problem with this technique is the updating process when the mesh is modified. Any deformation or
rotation means a new complete reconstruction of the structure. By other way remeshing techniques modify the structure of a
mesh in order to achieve a given quality requirement. In this study a combination of remeshing techniques and hierarchical
spatial decomposition is presented. Our goal is to develop an new model applying a remeshing process based on the hierarchical

structure elements. This new model allows to extend one deformation in the spatial decomposition to the mesh. The tetra-tree

is chosen as the spatial decomposition because of its advantages in relation to the remeshing algorithm. Tests with medium

meshes with the new model were performed with good results.
Normal orientation, mesh repair, visibility, patch connectivity, CAD tools.
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1 INTRODUCTION

Nowadays the visualization of complex scenes is com-
mon in interactive environments. The complexity of the
objects inside the 3D interactive-scene and the time re-
quirements (real-time) force us to develop simplifica-
tion techniques to fulfill the requirements without de-
creasing the detail. Spatial decomposition is one of
these approaches that solves this problem [15]. One ad-
vantage of these structures is that can be implemented
hierarchically, so its complexity can be adapted to dif-
ferent environments. The main disadvantage is the up-
dating process that is forced by any modification (de-
formation) of the original mesh. This problem appears
because the relation between triangles and nodes of the
spatial decomposition is not unique, so one triangle
could belong to more than one node.

On the other hand remeshing techniques are common
in many areas of computer graphics areas such as:
surface sampling [3], surface parametrization [14],
remeshing irregular geometry [1], improving mesh
quality [16] and mesh approximation [6]. These
techniques modify the triangles of the mesh in order to
fulfill some quality requirement where the complexity
is often constrained. In our paper a combination be-
tween remeshing techniques and spatial decomposition
is proposed. We call exact model if each triangle of
the mesh belongs to only one node, on otherwise is an
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non-exact model. Our goal is adapting the mesh to the
nodes of the spatial decomposition in order to develop
an exact geometric modeling. Previous work [5, 10, 13]
uses spatial decomposition to define the way to gen-
erate new meshes. This remeshing transforms the
triangles mesh inside the nodes into new nodes of the
structure. In this paper a novel hierarchical spatial
decomposition based on the work by Jimenez [7] is
proposed, but with some modifications in order to
overcome the limitations of the classical model and for
developing an exact geometric model.

2 REMESHING

In many applications, a remeshing procedure is
necessary to increase the level of detail, generate
non-homogeneous triangulation or improve triangu-
lated meshes [5, 10, 13]. Besides needing to reduce
the complexity of the meshes, the mesh quality must
be improved. Other remeshing techniques focus on
compatible refinement, hierarchical simplicial trees
and the definition of the maximum factor of mesh
growth [4]. Alliez et al. [2] performed a complete
survey of remeshing techniques, defining remeshing
as: "Given a 3D mesh, compute another mesh, whose
elements satisfy some quality requirements, while
approximating the input acceptably”. In this paper, a
remeshing procedure is applied to adjust the original
mesh to a hierarchical spatial decomposition, so our
quality requirements are based on the nodes of the
hierarchical spatial decomposition. The remeshing is
localized because the procedure is not applied to the
whole mesh but only to a subset of triangles which do
not belong completely to a node of the hierarchical
decomposition. This remeshing procedure could be
considered as a high quality remeshing, taking into
consideration the fact that the mesh is subdivided in
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order to obtain a new mesh with more triangles than the
original one. If in previous applications this approach
is focused on adapting the mesh to some properties of
the mesh such as curvature [1], in our work the mesh is
adapted to the hierarchical spatial decomposition.

3 COMBINING HIERARCHICAL SPA-
TIAL STRUCTURES AND REMESH-
ING TECHNIQUES

The nodes of the tetra-tree are tetra-cones that are tetra-
hedrons with their base at infinity. So the problem of
intersecting nodes and shared triangles is reduced to a
triple intersection triangle and lateral tetra-cone face,
that is a triangle - triangle 3D intersection. The tri-
angle - triangle intersection is easily reduced to a seg-
mented/ray - triangle intersection where each ray is an
edge of the triangle and the triangle is one of the lat-
eral faces of the tetra-cone. The ray - triangle intersec-
tion is an important problem in many computer graphic
areas. The classical algorithm used for the ray - tri-
angle intersection is the one proposed by Moller [11].
The main problem of this approach is how it deals with
limit cases which forces us to trace new rays. A review
of ray-triangle intersection algorithms is shown in [9].
To overcome the problem of the limit cases we use a
robust point in polygon test based on barycentric co-
ordinates [8] and the intersection algorithm proposed
by the same author [9] where the limit cases are found
directly during the study of the value of barycentric co-
ordinates. In this scheme the use of tetra-tree is a major
advantage because, the classification method for the hi-
erarchical structure, the point in polygon test and the
ray-intersection algorithm are all based on barycentric
coordinates so some calculations may be reused. Af-
ter the combined inclusion and intersection procedure,
all the possible cases of triangle - triangle intersection
are studied and one of the splitting patterns is chosen
(see figure 2). The splitting patterns are selected to be
as simple and efficient as possible, attempting to reduce
the number of triangles generated and being invariant
to the edges intersected. In this paper this scheme has
been applied in a general form without any precalcula-
tion during the building of the spatial structure, so this
approach could be applied to any spatial structure that is
composed or reduced using tetrahedrons or tetra-cones.

The special case are divided into rejected special
cases, which are directly removed from the remesh-
ing procedure, and degenerated special cases where the
remeshing is applied but a test to remove degenerated
triangles is performed as well. In general geometric
problems the special cases are not usual or are very
rare [12], but in our case a previous splitting process
often generates many special cases. If these cases are
not explicitly controlled the splitting process could have
no ending. The Jimenez algorithm deals with the limit
cases naturally using the barycentric coordinates, so the
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Figure 1: The triangle - tetra-cone intersection can be
easily expressed as a triangle-triangle intersection using
the plane that contains the triangle.

special cases are handled directly with no additional op-
erations. If the mesh is required to be compatible some
post-processing algorithm could be applied [4].

3.1 Cases of intersection between two tri-
angles and subdivision patterns

There are 11 cases of intersection between two trian-
gles (see figure 2). In these images we consider the
blue triangle as the triangle of the mesh to split and the
red one as the triangle of the intersection of the plane
that contains the triangle and the tetra-cone (see figure
1). Taking into consideration the assumption that the
tetra-cone is larger than the triangle to be classified, the
most probable subdivision cases are (sorted by decreas-
ing probability): case 3, case 4, case 1, case 8, case 7
and case 11. Cases 2, 5, 6 and 9 are plausible theoret-
ically but did not appear on our tests [see section 4].
So most of the triangles intersect only one face of the
tetra-cones and have two intersection points. The tests
performed confirm this probability distribution. Once
the intersection case is defined, a subdivision pattern is
applied. These patterns have been defined attempting
to reduce the number of degenerated triangles. An ad-
ditional test to reject degenerated triangles is also used.

4 EXPERIMENTAL RESULTS

The new model has been tested over medium-size
meshes, similar to those most usually used in computer
graphics and common applications. The first mesh has
40000 triangles and 20002 vertices. Table (4) shows
how the size of the mesh increases according to tetra-
tree levels. The amount of new primitives increases
geometrically in relation to the number of tetra-cones
which increases exponentially. The distribution of the
cases where the subdivision is applied is shown in table
(4) too.

The mesh before the remeshing procedure and after
is shown on figure [5], and the green triangles are the
shared triangles found on the mesh.

More tests are summarized on tables 6, 7 and 8.
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Figure 2: Intersection cases and splitting patterns.
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Figure 3: Medium-size mesh used.

[ TTDepth [ TT Generated | Final triangles | Final points |

1 24 47232 27334
2 120 53599 33610
3 504 64967 44978
4 2040 82757 62768

Figure 4: Evolution of the number of triangles and
points when subdivision is applied. Distribution of the
intersection cases. C is the intersection case number,
and TTD is the tetra-tree depth.

Figure 5: Before (left) and after (right) the remeshing
algorithm, the shared triangles have been removed. In
green, the shared triangles from the original mesh
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Figure 6: Mesh, new size of the mesh and cases. The
original mesh has 1854 triangles and 1172 points. TTD
is the tetra-tree depth

TT Depth | Final triangles | Final points |

1 3131 2072
2 4044 2978
3 4634 3566
4 5462 4389

Figure 7: Mesh, new size of the mesh and cases. The
original mesh has 2180 triangles and 1132 points. TTD
is the tetra-tree depth
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Figure 8: Mesh, new size of the mesh and cases. The
original mesh has 69459 triangles and 35947 points.
TTD is the tetra-tree depth
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Figure 9: Evolution of the mesh size after the remesh-
ing procedure in relation with the tetra-tree level.

S CONCLUSIONS AND FUTURE RE-
SEARCH

A new hierarchical spatial decomposition for dealing
with complex objects has been presented. This new ap-
proach is based on regular spatial decomposition per-
formed by tetra-trees. In order to achieve this goal, a
local remeshing method is applied. This method trans-
forms the relation between triangle and tetra-cone into a
direct relationship, increasing the size of the mesh. The
splitting process adds triangles to the original mesh, but
this mesh is simplified with the hierarchical structure.
So we increase the time for tetra-tree building (only per-
formed at the beginning), attempting to avoid an updat-
ing process on the interaction environment.

Various tests with real meshes were performed to
compare the original meshes with the remeshed ones.
Regarding the main disadvantage of our model, the
computational cost of the building process, some pre-
liminary work for translating the building process to the
GPU are in progress. The geometric operations of the
split method are easily implemented in GPU as well so
the whole process could be performed in the GPU thus
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reducing the associated computational cost. With re-
gard to the geometrical operations applied to hierarchi-
cal decomposition some ideas are under development,
such us: a fast way to locate nodes and determine the
concavities and holes in the mesh, definition of depth
levels to classify the triangles inside the nodes, and a
space-filling index to perform transversal operations on
the tree.
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