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ABSTRACT

Kernel density estimation (KDE) is widely used statistical method to study distribution of the data. The problem with this

method is choosing the right bandwidth. In our work we focus on semiautomatic bandwidth selection with the use of visual

paradigm of the Mode Tree. We not only enhanced the bivariate mode tree visualization, which was only sketched by the

authors, but we also developed a hybrid CPU/GPU implementation to improve the speed of the mode tree construction.
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1 INTRODUCTION

Nonparametric density estimation was overlooked for

years as an interactive visual data exploration tool. It

was mainly due to the intense computational complex-

ity, but with todays GPU algorithms even a low end

graphics hardware can compute a kernel density esti-

mate in real time. Current hardware allow us to interac-

tively change the parameters and see the results instan-

taneously, but the search for the best bandwidth is not

easily solved even if we can compute and observe tens

of different KDEs in real time.

Thus in our work we picked up the mode tree visual

paradigm and brought it to interactive life with a GPU

algorithm. This powerful tool is not widely used, be-

cause one needs to compute tens to hundreds of differ-

ent KDEs, which is a time consuming task. The Mode

Tree is a powerful graphical tool for choosing the right

bandwidth for KDE construction, it can reveal distri-

butional characteristics, such as multimodality. Here

we present an implementation which is capable of con-

structing a bivariate mode tree on a main stream hard-

ware in interactive rates and we also enriched the visu-

alization with following enhancements:

• height and depth augmented visualization for easy

identification of important features and suppressing

the outliers

• mitigated clutter of the 3D plot

• interactive hybrid CPU/GPU implementation
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Figure 1: 1D kernel density estimate (in red) for 32

random samples with the bandwidth of 0.04 with the

corresponding Gaussian kernels (in blue) and a 16-bin

histogram (in grey).

2 RELATED WORK

KDE (Fig. 1) is a well established visual analysis

method in many fields, e.g. in bioinformatics [2, 3]

and in visualization of heat maps [5]. This idea

was also adapted to the parallel coordinates [4]

visualization [21, 1].

In nonparametric density estimation, the kernel func-

tion choice does not influence the final density recon-

struction that much. More important is the choice of the

right bandwidth, the smoothing parameter. This choice

effects how much of the underlying structure will be

exposed to the user. Wrong bandwidth can lead from

undersmoothed to oversmoothed reconstruction, as can

be seen in Fig. 2.

Figure 2: Three KDEs from random data with varying

bandwidths from oversmoothed to undersmoothed re-

sults.

Scientists were trying to find automatic methods

to find the best bandwidth [18], some say that the

bandwidth should vary with data sample [10]. In the

adaptive bandwidth selection, the work by Maciejew-
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ski [7] uses the k-nearest neighbours to estimate the

kernel.Until now, there is no completely satisfactory

automatic method to find the right bandwidth and many

real world data show, that one global bandwidth is

insufficient.

For this reason a visual tool called the Mode Tree was

introduced by Minnotte and Scott [11]. This method

summarizes information from density estimates com-

puted for many different bandwidths h (Sec 4). The

mode tree was further enhanced to display modes’

sizes, antimodes and bumps. Later Marchette and

Wegman introduced the Filtered Mode Tree which is

constructed from filtered kernel estimator [8]. Minnotte

et al. also developed a Mode Forest [9], which is a si-

multaneous view of many mode trees, which are based

on original data but with variations such as resampling

and jitter. This method can filter out outliers which can

strongly affect the simple mode tree.

Recent research on mode trees was done by Klemalä [6]

who generalized the idea of mode tree to multivariate

settings in form of multiframe mode graphs.

3 KDE

Kernel density estimation (KDE) was introduced by

Rosenblatt [14] and Parzen [12]. Given a set of n data

samples (x1, . . . ,xn)|xi ∈ R the KDE is

f̂h(x) =
1

nh

n

∑
i=1

K

(
x− xi

h

)
(1)

where K is a kernel and h is the bandwidth (smoothing

parameter). The kernel function K usually has the fol-

lowing properties: K(x)≥ 0 ∀x,
∫ ∞
−∞ K(x)dx = 1 and K

is centered in 0. In our work we focus on the Normal

kernel and figure 1 shows an example of a KDE with

the corresponding Gaussian kernels and histogram.

3.1 2D KDE

Focus of this work is on the bivariate mode tree, so we

need an extended 2D kernel to compute 2D density es-

timate. Equation 1 for two dimensions is

f̂H(x) =
1

n

n

∑
i=1

KH (x−xi) (2)

where x ∈ {(x,y)|x,y ∈ R} and H is a symmetric

positive-definite bandwidth matrix. In our work we

have decided to use two different bandwidths (each

for one dimension) and not to use the full potential of

the matrix H, which would also allow rotation of the

kernel. The final separable extension of equation 1 to

2D with two bandwidths looks like this (Eq. 3) and an

example 2D plot can be seen in figure 3.

Figure 3: Example of a two dimensional KDE from the

cars dataset [20].

f̂h(x,y) =
1

n

n

∑
i=1

K

(
x− xi

hx

)
·K

(
y− yi

hy

)
(3)

For details on how to derive the final equation 3 we refer

to Scott and Sain [15], where extensions to arbitrary

dimensions can be found.

4 MODE TREE

For 1D KDE the mode locations are plotted against

the bandwidth at which the density estimate with those

modes is calculated [11]. In Fig. 4 the solid vertical

lines represent the modes corresponding to those in the

density estimates. Important thing in the mode tree con-

struction is to use a logarithmic scale for choosing the

different values of h, because at high values of h large

changes have lesser effect on the KDE than smaller

changes at lower values of h. Plotted locations of all

modes result in a set of lines called mode traces.

Silverman [16] proved, that for the normal kernel the

number of zeros in all derivatives of f̂h is decreasing

for increasing h. This implies that also the number of

modes is decreasing as the bandwidth is increasing.

5 2D MODE TREE

The mode tree is very useful tool in one dimensional

case and has a potential to be good with 2D KDE. In

the bivariate case it becomes a 3D plot instead of 2D,

where on X−axis is the first dimension, on Y−axis is

the second dimension and the Z−axis represents in-

creasing bandwidths and the streaks represent modes’

locations (Fig. 5).

Minnotte et al. in their work only sketched the idea of

bivariate mode trees [11]. They also had to resample

the data to have variance equal to 1, because they used

only single bandwidth for both dimensions. In our work

we do not have a limitation of resampling the data and

of single bandwidth.

One of the biggest drawbacks of mode trees is their

computational complexity, which is even bigger prob-

lem in the bivariate case. Recent main stream GPUs
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Figure 4: 1D Mode Tree. Solid vertical lines repre-

sent the modes corresponding to those in the density

estimates, where the bandwidth is on the Y -axis. Hori-

zontal lines are links from extinct modes to the modes,

which consumed them. Plotted from 100 KDEs.

Figure 5: The bivariate Mode Tree as defined by Min-

notte and Scott [11]. The streaks represent modes’

locations on 2D KDE for increasing bandwidths (the

Z−coordinate). At the bottom of the mode tree there is

the 2D KDE of the lower bandwidth limit.

can compute the 2D KDE in interactive times and we

modified the current GPU algorithm to be even more

efficient for the mode tree computation (Sec. 7.1).

6 ENHANCED BIVARIATE MODE

TREE

In this work we focus on enhancing the bivariate mode

tree, not only to mitigate the problems of three dimen-

sional plots (occlusion, navigation, etc.) but also make

the visualization more informative and clear to the user.

We also developed a GPU implementation to compute

the 2D mode tree and for smaller data sets we achieved

instantaneous construction times (Sec. 7.1).

One very important information, which is not commu-

nicated to the user in the original mode tree, is the

height of the modes. The mode tree tells us only where

the modes are and nothing more. To address this is-

sue we used special color coding with monotonically

increasing luminance of the color (Fig. 6), as developed

by Wyszecki and Stiles [22].

Figure 6: Color coding with increasing luminance used

to encode mode’s height.

The color and the brightness represent the relative

height of the modes, where the black color represents

the tallest mode and streaks with lighter colors are the

smaller modes, possible outliers. This color coding

makes the significant modes stand out, while the small

modes, outliers, are more hidden from the viewer.

Another problem of all 3D plots, not only bivariate

mode tree plot, is occlusion, so the features closer to

the camera occlude features farther away. This can

lead to hiding important features behind unimportant

ones, in some camera positions. To mitigate the prob-

lems with occlusion, we used semi transparent mode

streaks, where the transparency values are based on the

relative height of the mode to the current tallest mode.

This means that small modes are represented not only

by lighter streaks (which could occlude dark streaks),

but the streaks are also semi transparent (Fig. 7). The

smaller the mode, the more transparent it is, thus ensur-

ing that significant modes represented by dark streaks

are always clearly visible and only subtly overlayed by

the outliers. If the user wants to study outlying modes,

then the color coding and semi transparency can be in-

verted.

The last problem of the 3D plots we addressed in this

work is difficult spatial location deduction. When look-

ing at a simple bivariate mode tree (Fig. 5) it is hard

to deduce the correct locations. Even an approximate

location is very hard to guess. We adapted a simple

idea from [13], where they made contour thickness of a

point in space dependent on distance to the camera. So

we made the mode streaks closer to the camera more

thicker and the far away streaks are thinner, which im-

proves depth perception (Fig. 7).

7 IMPLEMENTATION

Our implementation is a combination of a CPU and

GPU algorithm. The KDEs are computed on the

GPU (Sec. 7.1) and the identification of modes and

mode traces construction is done on the CPU. Finding

modes on a 2D grid is a simple task, but constructing

the mode streaks is a more challenging one.
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Figure 7: Enhanced bivariate mode tree: (top) Color

coding enabled, which reveals relative height of the

modes to the tallest mode, but with some small modes

occluding taller ones. (bottom) With transparency en-

abled, mitigating the clutter caused by plotting the

mode streaks in 3D. Only the important peaks are

clearly displayed and also their starting positions are

always visible. Streaks closer to the camera are more

thick and the far away streaks are thinner, for better

depth perception.

First we start by computing many KDE’s with different

bandwidths, from zero to the variance of the data. The

default value for the number of density estimates was

set to 64 and the bandwidth values are equally spaced

on a logarithmic scale. For the reason we refer to the

section 4. After this we identify the modes and then run

a matching algorithm to connect the modes’ locations

for different bandwidths to construct a mode streak. For

this we developed a simple multipass heuristic, where

in the first pass we connect modes which are directly

above each other and remove these modes from the

queue of unprocessed modes. Then we run multiple

passes where in each pass we try to find a correspond-

ing mode streak for each unprocessed mode, within an

increasing radius.

7.1 GPU implementation

Computing hundreds of KDEs is computationally the

most intensive task and therefore is entirely done on a

GPU. For this we developed a GPU algorithm, where

we precompute four Gaussian kernels into an RGBA

floating point texture, each for a different bandwidth

and to a different texture channel. Then we use a splat-

ting technique, which results in four KDEs computed

with different bandwidths, in the same time as one. The

thing that slows down the construction the most, is not

the KDEs computation, but the construction of mode

streaks, which is done on a CPU (Sec. 7).

Table 1 shows performance values for different data sets

and different GPUs, from low-end laptop Intel 4 mobile

GPU to a powerful AMD HD5700. The times vary for

the same GPU, because the construction time is heavily

dependent on the point matching algorithm, which de-

pends on the number of modes. We can compute mode

tree in real time even on low end hardware.

data / GPU Intel 4 mobile AMD HD5700

cars (400) 200 - 300 ms 60 - 90 ms

out5d (16k) 2800 - 3900 ms 600 - 800 ms

Table 1: Time of 2D mode tree construction, with

128×128 KDE resolution and 100 different bandwidth

values. The cars data set has 400 records and out5d has

16000 records.

8 CONCLUSION AND FUTURE

WORK

This work brought attention to an old idea of the Bivari-

ate Mode Tree. We achieved not only an interactive hy-

brid GPU/CPU implementation, but we also enhanced

the mode tree visualization with information about the

height of the modes for easy identification of impor-

tant modes. With making the unimportant modes trans-

parent, we removed some clutter, which is one of the

biggest problems of 3D plots. We also made modifi-

cations for better depth perception of mode streaks for

easier spatial localization.

In the future we want to further enhance the plot, for ex-

ample with better outliers visualization (stippled lines)

and with links from extinct modes to the modes which

consumed them. Further we would like to improve

the performance of our GPU algorithm with the use of

multiple render targets, which will allow us to render

16− 32 KDEs at once with only a small time increase

compared to the current implementation. And the last

thing we will do is a better initial camera placement,

which is very important in 3D plots, but is not a trivial

task. This could be achieved by geometric best view al-

gorithms [19], which we will have to adapt to the lines

geometry.
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