
University of West Bohemia

Faculty of Applied Sciences

Department of Cybernetics

MASTER THESIS

PLZEŇ, 2020 ROBERT BRADA

Zde bude Originál zadáńı DP podepsaný děkanem fakulty

Declaration

I hereby declare that this master’s thesis is completely my own work and that I used

only the cited sources.

Pilsen, March 29, 2020

.......................................

Robert Brada

Acknowledgements

I would like to express my gratitude and appreciation to Ing. Miroslav Hlaváč,

Ph.D. and Ing. Marek Hrúz, Ph.D. who provided me with the support and resources

necessary for the implementation of the system presented in this work.

Access to computing and storage facilities owned by parties and projects con-

tributing to the National Grid Infrastructure MetaCentrum provided under the pro-

gram ”Projects of Large Research, Development, and Innovations Infrastructures”

(CESNET LM2015042), is also greatly appreciated.

Abstract

The goal of this thesis is to design and implement an end-to-end Driver Attention

Warning system that automatically detects distracted driver based on visual data

provided by an onboard camera. The system is built using convolutional neural

networks using Python programming language and Keras library. Different neural

network architectures like VGG16, InceptionV3, ResNeXt50, EfficientNetB0 and Ef-

ficientNetB4 are implemented, modified, optimized and combined in order to achieve

the best results.

Keywords

distracted driver detection, convolutional neural networks, classification, Keras

Contents

I Introduction 1

II Theory 4

1 Classification 4

2 Artificial Neural Networks 5

2.1 Neuron . 5

2.2 Simple Neural Network . 6

2.3 Training ANN . 6

2.3.1 Loss Function . 7

2.3.2 Forward propagation . 8

2.3.3 Backward propagation . 8

2.4 Building blocks of ANN . 9

2.4.1 Activation functions . 10

2.4.2 Layers and regularization . 13

2.4.3 Convolutional Neural Networks 15

3 Architectures 19

3.1 VGG16 . 19

3.2 Inception Networks . 20

3.3 ResNeXt . 20

3.4 EfficientNet . 21

III System Imlementation and Evaluation 23

4 Datasets description 24

4.1 State Farm dataset . 24

4.2 Abouelnaga dataset . 27

4.3 ImageNet . 28

5 Working Environment 29

5.1 Software . 29

5.2 Hardware . 31

6 Network implementation 31

7 Data Preprocessing 32

7.1 Data augmentation . 32

8 Experiments 32

8.1 Initial experiments - no augmentation 34

8.2 Augmenting data and tuning parameters 35

8.3 Focusing on problematic classes - c0, c8, c9 37

8.3.1 Combining two models’ predictions 39

8.3.2 Lowering probability of c8 and c9 classes 39

8.4 Finding region of interest - driver detection 41

9 Best model overview 44

10 Conclusion 45

Part I

Introduction

Driver’s distraction plays a major role when it comes to car accidents. According to

the U.S. Department of Transportation [1], there were 3,166 people killed in motor

vehicle crashes involving distracted drivers in the United States, which is equivalent

to 9% of overall fatalities. The development of systems used to detect distracted

drivers can help to prevent such accidents. These systems are often referred to as

Driver Attention Warning (DAW) systems or Driving Monitoring and Assistance

Systems (DMAS).

The objective of DAW is to keep an eye on the driving status of a driver and

detect if the driver is paying attention to the road conditions or if the driver is doing

something else and thus is distracted. Such systems assist drivers by easing their

control efforts, reinforcing their sensing power, warning them in case of mistake, and

so on [2].

The basic task is to detect if the driver is distracted from safe driving or not

(simple yes/no answer). NTHSA [3] describes distracted driving as ”any activity

that diverts the attention of the driver from the task of driving”. There are more

types of distraction and the basic categories can be defined as manual distraction,

cognitive distraction and visual distraction [4].

Cognitive distraction occurs when a driver diverts his or her attention to another

mentally demanding task. Talking on a hands-free cell phone and using a voice-

activated electronic system are two activities that produce almost purely cognitive

distraction. Being lost in thoughts or daydreaming are also examples of cognitive

distraction [5]. Visual distraction includes distraction when ”driver’s eyes are off the

road”, which can happen because of inattention, sleepiness, fatigue or drowsiness.

Manual distraction includes situations when the driver takes his hands of the wheel.

This includes activities such as drinking, eating, operating the radio, using cell

phones, smoking, etc.

1

To decide about the driver’s distraction, DAW has to collect some data and then

make a decision based on this data. Data can be gathered from multiple kinds of

sources. One source of data can be visual data from a camera, which is the data

source chosen in this work. Data can also be obtained from biophysical sensors

(e.g. EEG signal, skin temperature, etc.). Another source of data are the vehicle’s

inside and outside sensors. These are sensors monitoring speed, acceleration, braking

and turning dynamics, sound, etc. Sensors in the vehicle’s seat can monitor body

posture, while sensors in the steering wheel can monitor hand posture. Data from

these sensors are collected, processed and then the decision about driver’s distraction

is made [2].

Usage of a cellphone was identified as a major cause of distraction [3], thus some

DAW systems were built on the principle of detecting a cellphone. A system built

by Zhang et al. was using a camera mounted above the dashboard and the cellphone

was detected using Hidden Conditional Random Fields (HCRF) model [6]. Seshadri

et al. [7] created their own dataset for cell phone usage detection. The authors

used the Supervised Descent Method (SDM) and Histogram of Oriented Gradients

(HOG) features in combination with various classifiers. Their system achieved 93.9%

classification accuracy.

Recent progress in the field of computer vision that was caused by the use of

Convolutional Neural Networks (CNN, ConvNets) enabled building more accurate

DAW systems. In 2018 Baheti et al. [8] used VGG16 neural network and achieved

96.31 % accuracy using a dataset created by Abouelnaga et al. [9].

The goal of this thesis is to analyze and get familiar with techniques used to build

DAW systems and then suggest a method to create a custom DAW system using

solely visual data. The chosen method is to build an end-to-end DAW system using

modern CNN architectures such as InceptionNet [10], ResNeXt [11] and EfficientNet

[12]. The system will rely solely on visual data obtained from a dashboard camera.

The input to this end-to-end system is an image of a driver and the output is a

specific type of driver’s distraction. The distractions will be classified into one of

the following categories: 1. safe driving, 2. texting with the left hand, 3. texting

with the right hand, 4. talking on a phone with the left hand, 5. talking on a phone

2

with the right hand, 6. talking to a passenger, 7. drinking, 8. adjusting hair or

putting on make-up, 9. reaching behind, 10. operating the radio. To build such a

system an appropriate dataset to train and evaluate the neural networks has to be

obtained.

3

Part II

Theory

This part describes the methods and principles used to build the Driver Attention

Warning system that is part of this thesis. First, the classification task is defined.

Next, a simple neuron and neural network are described. Finally, principles of

convolutional neural networks and implemented architectures are described.

1 Classification

In machine learning, the problem of classification is a task of categorizing data

instances into a predefined set of classes. Algorithm that implements classification

is called classifier. The most common types of classification are [13]:

� Binary classification

Input data are assigned to either one of two classes (e.g. email is or is not a

spam)

� Multi-class classification

Data instances are categorized into more than two classes, but only one class

can be assigned to each instance.

� Multi-label classification

Data instances are categorized into more than two classes and more classes

can be assigned to one instance.

The Driver Attention Warning system that is part of this thesis is a multi-class

classification system, because the goal is to categorize driver’s action into one of

the predefined set of classes (driving safe, texting, drinking, operating radio, etc.).

There are more algorithms that are commonly used to perform a classification task

and each of them has its own pros and cons in terms of complexity, efficiency, and

accuracy. Very commonly used are the following learning algorithms:

4

� Support Vector Machines

� Artificial Neural Networks

� K-Nearest Neighbors

� Decision Trees

� Bayes classifier

2 Artificial Neural Networks

Artificial Neural Networks (ANN) are algorithms that are inspired by biological

neural networks. Using ANNs is in these days very popular and in many cases

the most successful approach to take when solving a wide variety of problems such

as classification, regression, image segmentation, object detection and many more.

ANNs are broadly used in many different areas like finance, medicine, advertising,

natural language processing, and security applications just to name a few.

A big advantage of ANNs compared to other approaches is that ANNs can learn

a lot of important deciding features by itself just by providing the network desired

output for a particular input.

2.1 Neuron

The core building block of an ANN is a neuron. A neuron is a function which takes

an input x and processes it in the following manner:

y = f(x) = f(
N∑

n=1

wixi + b), (1)

where x is the input vector and y is the output number. N is the dimension of

the input vector, wi is a weight associated with input xi, b is bias term and f is

called activation function. See Fig. 1 for an illustration.

5

x1
x2
x3

xN

b

f(x)

w1

w2

w3

wN

sum of inputs activation function

yx

Figure 1: Scheme of an artificial neuron.

2.2 Simple Neural Network

Neurons are usually stacked into layers which means that the output of one neuron

is the input to all neurons in the following layer (besides the last layer). Every neural

network consists of an input layer and an output layer. Neural networks usually have

also so-called hidden layers and in that case we call such architecture deep neural

network (DNN). Each layer can have a different number of neurons and neurons in

each layer can use different activation functions. See Fig. 2 for an illustration.

x1

x3

y1

y2

output layer

y3

hidden layerinput layer

input

x2

x4

Figure 2: Simple artificial neural network architecture.

6

2.3 Training ANN

The goal of training ANN is to minimize an error between predicted output and

the desired output (also called target value). This means we have to adjust the

network’s weights wi and bias terms b of each neuron in the network in such a way

that the network produces value as close as possible to the desired output. The

process of training a neural network consists of the following steps:

1. Computes network’s prediction using Forward Propagation.

2. Compute the error between predicted and target value according to selected

loss function.

3. Compute gradients of the loss function with respect to the network’s weights

using Backward Propagation.

4. Update the network’s weights using Gradient Descent procedure

2.3.1 Loss Function

The loss function is used to optimize the parameter values in a neural network model.

The loss is computed by a comparison of predicted and target values. Commonly

used loss functions are the following ones:

Mean Squared Error (MSE)

MSE is usually used for regression problems and the error is equal to the square

difference of predicted and target value.

L(y, ŷ) =
1

N

N∑
i=1

(ŷi − yi)2, (2)

where yi is the target value and, ŷi is the prediction and N is the number of

samples yi.

7

Categorical Cross-Entropy (CCE)

CCE is a loss function that is used for single label categorization. Usually, a softmax

function is applied to the scores before CCE loss is computed.

L(y, ŷ) = −
N∑
i=1

yi log(ŷi), (3)

where i is the index of the class, y is the true distribution (one-hot vector) and

ŷ is the predicted distribution.

2.3.2 Forward propagation

The goal of the forward propagation is to generate the network’s prediction for a

given input. We give the network input data and then we propagate these data

through all layers of the network. The last layer produces prediction which is in the

following step compared with the target value and the error value is computed.

2.3.3 Backward propagation

Backward propagation (also backpropagation) is a way of computing gradients of

expressions through recursive application of so-called chain rule.

We are given some function f(x) where x is a vector of inputs. We are interested

in computing the gradient of f at x which we denote as ∇f(x).

In case of neural networks, f will correspond to loss function L, which can

be one of the functions described earlier in section 2.3.1. The variable x consists

of training data and neural network weights. The gradient ∇f(x) gives us the

direction of the steepest descent (at least in the limit as the step size goes towards

zero). If we compute ∇L(x) with respect to the neural network’s weights, we can

adjust these weights in the direction of the steepest descent and therefore the loss

function gets minimized. This procedure is called optimization. The overview of the

backpropagation algorithm is illustrated in Figure 3.

8

Figure 3: Overview of backpropagation: (a) Training inputs xi are fed forward,

generating corresponding activations yi. An error E between the actual output y3

and the target output t is computed. (b) The error adjoint is propagated backward,

giving the gradient with respect to the weights ∇wi
E =

(
∂E

∂w1

, ...,
∂E

∂w6

)
, which is

subsequently used in a gradient-descent procedure (taken from [14]).

2.4 Building blocks of ANN

In this section, I will describe some of the activation functions, layers, and techniques

that are commonly used when building an artificial neural network. Later, I will

describe layers and techniques that are specific to convolutional neural networks.

2.4.1 Activation functions

As shown in section 2.1, neurons use so-called activation function to produce its

output. Activation functions are usually non-linear functions. The rationale behind

using a non-linear activation function is that it allows the neuron (or whole neural

network) to learn non-linear relationships between the given input and output. If a

linear activation function is used, the network can not learn non-linear relationships,

which is usually required in many problems. The most commonly used activation

functions are described on the following pages.

9

Hyperbolic tangent

f(x) =
ex − e−x

ex + e−x
(4)

Figure 4: Hyperbolic tangent function.

Hyperbolic tangent is a non-linear activation function. The problem with hy-

perbolic tangent is that it suffers from a so-called vanishing gradient problem [15].

That means that the gradient for relatively large positive and negative input values

(approximately x > 4 and x < −4) is a very small number. The gradient tells us

the direction of the steepest descent and this information is essential for network

training. If the gradient is small (vanishes), then the training process gets more

difficult.

10

ReLU (Rectified Linear Unit)

f(x) = max(0, x) (5)

Figure 5: ReLU function.

The advantage of using ReLU instead of the hyperbolic tangent is that the gra-

dient is equal to 1 for all positive values of x, which solves the vanishing gradient

problem for positive input values. Moreover, the computation of a gradient is much

easier. The (theoretical) problem is that the derivative for x = 0 is not well de-

fined. Nevertheless, this is an easily solvable problem in real-world implementation,

because we can say that the gradient for x = 0 is equal either to 0 or 1. Another

disadvantage is that the activation value for all x < 0 is equal to 0. That means that

neurons do not update their weights at all when the input is a negative number.

This problem is often referred as dead neurons problem [16]. Krizhevsky [17] reports

a much faster training with ReLU as opposed to the hyperbolic tangent.

11

Leaky ReLU

f(x) = max(0.1x, x) (6)

Figure 6: Leaky ReLU function.

Leaky ReLU maintains all the advantages of ReLU and at the same time tries to

avoid the dead neurons problem by giving the activation function negative slope for

x < 0. That means neurons will update their weights also for negative input values.

We still suffer from not defined derivative for x = 0 but we can easily get around

this problem in the same way as we did in the case of the ReLU function.

2.4.2 Layers and regularization

Fully connected layer

A fully connected layer connects every neuron in one layer to every neuron in another

layer. A fully connected layer expects an input of a fixed size which is defined by

the number of input neurons. The dimension of the output data is defined by the

number of output neurons. Architecture of this layer is illustrated in Figure 7.

12

input
5x1

output
4x1

Figure 7: Fully connected layer with 5 input neurons and 4 output neurons.

Softmax layer

The softmax layer performs a softmax operation. Softmax is a function that takes as

input a vector x of N real numbers and normalizes it into a probability distribution

consisting of N probabilities that are proportional to the exponential of the input

elements. The softmax layer is usually used as the last layer in a classification task,

where we want to turn the output vector into a probability distribution that tells

us the probability that input x belongs to a particular class. The formula for the

softmax function is as follows:

softmax(x)i =
exi∑N
n=1 e

xn

, (7)

where xi is i− th element of input vector x, which consists of N values.

Dropout

Dropout is a regularization technique used to reduce overfitting in neural networks

by repeatedly eliminating randomly selected neurons and their corresponding con-

nections of a neural network during training. Overfitting is a situation when the

neural network is ”over-trained” on the training data and thus can not generalize

well when unseen (test) data are presented.

13

The neurons in the network are usually dropped out with a probability of 0.5.

These ”dropped” neurons do not contribute to the forward pass and do not partic-

ipate in the backpropagation. This means that every time an input is presented,

the neural network samples a different architecture, but all these architectures share

weights. This technique reduces complex co-adaptations of neurons since a neuron

cannot rely on the presence of particular other neurons. It is, therefore, forced to

learn more robust features that are useful in conjunction with many different random

subsets of the other neurons [18].

Batch Normalization

Batch Normalization [19] is a commonly used technique that enables faster and more

stable training of deep neural networks.

This is achieved by augmenting the network with additional layers that force the

activations throughout the network to take on a unit Gaussian distribution. This

change makes the landscape of the corresponding optimization problem significantly

smoother. This has the effect of stabilizing the learning process and dramatically

reducing the number of training epochs required to train deep networks [20].

2.4.3 Convolutional Neural Networks

In this section, I will describe components and techniques that are specific to Con-

volutional Neural Networks (CNNs). CNN are special type of Artificial Neural

Networks. CNNs are most commonly used for the analysis of visual data. They are

still made up of neurons that have trainable weights and biases like regular neural

networks. The difference is that CNN architectures make the explicit assumption

that the inputs are structured data (commonly represented as gray-scale or RGB

images), which allows us to encode certain properties into the architecture. These

then make the forward function more efficient to implement and vastly reduce the

amount of parameters in the network.

14

Input Layer

In non-convolutional neural networks, the input is usually a flat vector of N real

numbers. In CNNs the input typically has the dimension of (img width; img height;

channels), where

� img width

represents the image width in pixels.

� img height

represents the image height in pixels.

� channels

is usually 3, which represents R,G,B color channels. If the input is a grayscale

image, the channels parameter will be equal to 1.

The layer holds the raw pixel values of the image, which means values from 0 to

255. This range is often rescaled to a range from 0 to 1.

Convolutional Layer

The Convolutional layer is the core building block of a Convolutional Neural Network

architecture. This layer works on a principle of 3D (or 2D) convolution. Convolution

is the simple application of a filter to an input that results in activation. Repeated

application of the same filter to an input results in a map of activations called a

feature map. See Figure 8 for an illustration. Usually, the convolutional layer has

more filters. Each filter creates its own feature map and number of filters specifies

the depth of the output of the convolutional layer (see Figure 9). The input to the

convolutional layer is often 3 dimensional. In that case, the principle stays the same

and the filters are also 3 dimensional.

The advantage of using a convolutional layer is that we can radically reduce the

number of parameters compared to a fully-connected layer.

The basic parameters of the Convolutional layer are:

15

� kernel size

Specifies the dimension of convolution mask.

� filters

Specifies the number of filters which then specifies the depth of the output.

� strides

Specifies how much should we shift the convolution filter after each convolu-

tional operation. See Figure 8 for an illustration.

Figure 8: Computation of 2D convolution with 3x3 filter (or kernel) size and stride 1.

We can see that the dimension of the output is reduced compared to the dimension

of the input. In order to preserve dimensions so-called padding operation can be

applied to the input.

16

Figure 9: 3D convolutional layer. The depth of the output depends on the number

of filters we have. The width and height depend on the stride parameter.

Pooling Layer

The Pooling Layer is used to compress the information propagated to the next

level of network and therefore reduce the number of parameters and computational

difficulty. A common form of pooling layer is applying filter size 2x2 with a stride

of 2 using MAX operation. See Figure 10 for this example. Another common form

of pooling is the one with AV ERAGE operation.

1 1
5 6
3 2
1 2 3 4

01
7 8

42
max pool with 2x2 filters
and stride 2 6 8

3 4

input 4x4 output 2x2

Figure 10: Example of MAX pooling operation with 2x2 filter and stride 2

17

Residual blocks

Deeper neural networks are more difficult to train. This problem is addressed by so-

called Residual Neural Network that was presented in 2015 [21]. Residual Network

implements residual connections, which connect the output of one layer with the

input of a layer that is a few (usually 2-3) layers ahead. The residual connections

simply perform identity mapping, and their outputs are added to the outputs of

the stacked layers (see Figure 11). Identity shortcut connections add neither extra

parameter nor computational complexity. Instead of learning an original underlying

mapping H(x), the model learns residual mapping F (x) = H(x) − x. The original

mapping is recast into F (x) +x. The hypothesis is that these residual mappings are

easier to optimize and therefore it makes training of deep neural networks easier.

weight layer

weight layer

reluF(x)

F(x)+x

relu

x

x
iden�ty

Figure 11: Residual connection

18

3 Architectures

This section briefly describes network architectures used in this work. I chose to

use VGG16, InceptionNet, ResNeXt, and EfficientNet neural network architectures.

In 2014, VGG16 was one of the first CNNs which won the ImageNet Large Scale

Visual Recognition Challenge [22]. Therefore this architecture proved that CNNs

have a big potential to solve image classification tasks. I will use the performance of

the VGG16 network as a baseline performance of convolutional architectures. The

InceptionNet and ResNeXt architectures use more advanced concepts than VGG16

and are considered to be state-of-the-art convolutional neural networks. Efficient-

Net is a modern network architecture which should achieve slightly worse accuracy

than InceptionNet and ResNeXt, but should require significantly less computational

resources.

3.1 VGG16

VGG16 is a convolutional neural network model introduced in 2014 by K. Simonyan

and A. Zisserman [23]. The model achieves 92.7% top-5 test accuracy in ImageNet,

which is a dataset of over 14 million images belonging to 1000 classes [22]. This

architecture was built on the idea of having smaller filter sizes and deeper network.

The model architecture consists of 12 convolutional, 6 max pooling, 3 fully-connected

and one softmax layer (see Figure 12). Convolutional layers use 3x3 filters. We

use this network to get a baseline accuracy of convolutional network architectures.

Architectures described on the following line are expected to achieve better accuracy.

19

Figure 12: VGG16 network architecture.

3.2 Inception Networks

One of the common problems in computer vision is that the salient parts of the

image can significantly vary in sizes. For example, we try to detect a cat, the cat

can fill the whole image or there can be just a small cat in the top right corner. The

area occupied by the cat is different in each image. This is important because this

influences the choice of the right kernel size of convolutional layers. A larger kernel

is preferred for information that is distributed more globally, and a smaller kernel

is preferred for information that is distributed more locally.

Inception networks try to solve this problem by using multiple kernel sizes that

operate on the same level. Outputs given by the application of these kernels are

then concatenated and sent to the next inception module [10]. The overview of the

working principle is captured in Figure 13.

20

Figure 13: Inception module. Convolutions using three different filter sizes (blue)

are applied to the data coming from the previous layer. Additionally, max pooling

is also performed. The outputs are depth-wise concatenated and sent to the next

inception module. Additionally, in order to reduce computational complexity, other

1x1 convolutions (yellow) are added to reduce the depth of the data coming from

the previous layer. Taken from [10].

3.3 ResNeXt

ResNeXt [11] is an image classification network that tries to decrease the complexity

of designing a network architecture as the number of hyper-parameters grows (width,

filter sizes, strides, etc.). This network achieved a 3.03% top-5 error on the test set

in ILSVRC competition [22].

The network is constructed by repeating a building block that aggregates a set

of transformations with the same topology. The simple design results in a homoge-

neous, multi-branch architecture that has only a few hyper-parameters to set.

ResNeXt builds on the architecture of ResNet [24] which takes advantage of

residual blocks described in section 2.4.3. ResNeXt builds on this idea and exposes

a new dimension called ”cardinality” (the size of the set of transformations). The

”classical” residual blocks are then replaced with ”cardinality” blocks. If the depth

of the block is equal to 2, the block reformulation creates trivial topologies that are

21

equivalent to each other in complexity (see figure 14). If the block has depth ≥ 3,

the reformulations produce nontrivial topologies. For this example see Figure 15.

Figure 14: Equivalent blocks. Left: A residual block of ResNet [24]. Right: A

block of ResNeXt with the cardinality of 32, with the same complexity. Note that

32·4 = 128, which is the number of input/output channels in ResNet block (bold). A

layer is shown as (number of input channels, filter size, number of output channels).

Figure 15: Left: A residual block of ResNet [24]. Right: A block of ResNeXt

with the cardinality of 32, with roughly the same complexity. A layer is shown as

(number of input channels, filter size, number of output channels).

3.4 EfficientNet

Scaling up Convolutional Neural Networks is commonly used practice in order to

achieve better accuracy. On of the ways to scale CNNs is to increase their depth

22

[24], width [25] or image resolution [26]. However, in practice choosing the right

scaling and its parameters can be a tedious process leading to sub-optimal accuracy.

EfficientNet [12] proposes a new scaling method that uniformly scales all scaling

dimensions (width, depth, resolution) using a simple yet highly effective ”compound

scaling method”. The authors of the original paper [12] empirically observed that

the scaling dimensions are not independent thus it is necessary to coordinate and

balance these dimensions in order to get the best results. The principle of the

EfficientNet approach is to scale each of the network’s dimensions with a constant

ratio. See 16 for an illustration.

For example, if we want to use 2N times more computational resources, then we

can simply increase the network depth by αN , width by βN , and image resolution

by γN , where α, β, γ are constant coefficients determined by a small grid search on

the original small model [12].

layer_i

#channels

resolution HxW

wider

deeper

higher
resolution

compound scaling

Figure 16: EfficientNet scaling method. Left: baseline model Right: model scaled

using compound scaling (taken from [12]).

23

Part III

System Imlementation and

Evaluation

Building an end-to-end Driver Attention Warning system using convolutional neural

networks consists of the following steps:

1. Obtain an appropriate dataset to train the network. This dataset should in-

clude all actions we want to detect and should include as much data as possible

because that is an essential requirement for training deep neural networks.

2. Build a convolutional neural network architecture. One could build a brand

new architecture or use an architecture that was already tested on a different

problem and make appropriate modifications to it. This practice is known as

transfer learning [27] and it is the approach I chose in this thesis.

3. Train the network and tune network parameters in order to achieve the best

performance. Parameters can be related to network architecture (number of

layers or number of neurons, activation function type, dropout, convolution

kernel size etc.) or the parameters can be related to the training algorithm

(like learning rate or optimization algorithm type).

4. Build the final system in such a way the the input is an image and the output

is driver’s action.

See Figure 17 for a high-level overview of such a system.

24

Training phase

Testing phase
Get prediction probabilites for input, choose the highest one and make final prediction.

max texting

Get prediction probabilites and compare them to target value.
Compute the categorical cross-entropy loss and update the weights properly.

drinking

0

0

0

0

0

0

1

0

0

0

target valuepredictions

0.0

0.0

0.1

0.2

0.0

0.1

0.2

0.3

0.0

0.1

Training data ConvNet

Figure 17: A high-level overview of building a basic end-to-end DAW system using

convolutional neural networks.

4 Datasets description

I use two different datasets in this work. To train the networks, I use State Farm’s

dataset that was published as a part of a Kaggle competition [28]. The model is also

evaluated on this data using Kaggle’s evaluation algorithm. However because this

25

dataset was presented as part of a competition, the ground truth labels for test data

are unknown and therefore it is difficult to do any further analysis (e.g. compute

confusion matrix or check the exact accuracy of the model’s predictions).

For the reasons mentioned above another dataset created by Abouelnaga et al.

[9] is used for a more rigorous analysis. Using two different datasets with the same

categories of driver’s distraction is also a great way how to evaluate the network’s

ability to apply learned knowledge from one dataset to another slightly different

dataset.

4.1 State Farm dataset

This dataset is used for training and evaluating the model. The dataset includes

102 150 images of drivers that are separated into 10 categories which are labeled as

follows:

� c0: safe driving

� c1: texting - right

� c2: talking on the phone - right

� c3: texting - left

� c4: talking on the phone - left

� c5: operating the radio

� c6: drinking

� c7: reaching behind

� c8: hair and makeup

� c9: talking to passenger

Sample images from the dataset are shown in Figure 20. The dataset is split into

train and test sets. The train set contains 22 424 images and the test set contains

26

79 726 images. All of the images have the same resolution of 640×480 px. We know

the class and the driver ID for each image in the training data (driver ID specifies

which driver is on the image). There are 26 different drivers in the dataset. Class

distribution is plotted in Figure 19.

As mentioned before, the images are split into train and test sets. The better

approach is to split data into the three following sets:

� train

These images are used solely to train the model. The model learns its weights

from this data. The accuracy of predictions for training data is not very

important if we want to evaluate the model’s real-world accuracy. The model

can have great accuracy on training data, but it does not mean it will generalize

well when unseen data are presented.

� validation

The model is not trained using these images. These images are used just

measure the accuracy of the model while tuning model hyper-parameters. We

cannot use validation accuracy as the actual accuracy of the model on unseen

data. That is because we chose the best parameters for the one specific set of

validation data.

� test

These images represent the real world (never seen before) data. We do not

train the model or tune any parameters using these images. The model’s final

accuracy is the accuracy achieved on this dataset.

This approach gives us a more realistic estimation of the model’s accuracy. In

this thesis, validation set size is set as 25 % of training data and the classes in

validation set are distributed equally as in the training set.

27

c0 c1 c2 c3

c4 c5 c6 c7

c8 c9

Figure 18: Sample images for each class from the State Farm dataset.

2 489
2 346 2 326 2 325 2 317 2 312

2 267
2 129

2 002
1 911

Figure 19: Distribution of classes in the training data of the State Farm dataset.

28

4.2 Abouelnaga dataset

This is a smaller dataset and contains 17 308 images. Images are separated into the

same classes as images in the State Farm dataset. This dataset includes different

car interiors and different people than the State Farm’s dataset. Images have a

different resolution (1920 × 1080 px) and are taken from a different angle than

the images in the State Farm’s dataset. If the model trained on the State Farm’s

dataset performs well on this dataset too, it means the model has a good ability

to generalize its knowledge. Sample images from Abouelnaga dataset are shown in

Figure 20. Class distribution is in Figure 21.

c0 c1 c2 c3

c4 c5 c6 c7

c8 c9

Figure 20: Sample images for each class from the Abouelnaga dataset.

29

Figure 21: Distribution of classes in Abouelnaga dataset.

4.3 ImageNet

ImageNet [22] is a large image database containing more than 14 million hand-

annotated images. In this thesis I take advantage of ImageNet database for the

purpose of transfer learning [27]. Transfer learning is a machine learning method

where a model developed for a task is reused as the starting point for a model on a

second task.

Neural networks used in this thesis were trained to classify images from the

ImageNet database into one of 1 000 categories. These pre-trained weights can

be used in the problem of driver’s action detection. The rationale behind using

transfer learning in computer vision is that a model that is trained on a big-scale

database like ImageNet has already been trained to recognize universal low-level

image features (e.g. edges). If we use these pre-trained weights, it is often sufficient

to retrain these weights in order to solve a more specific task. This technique saves

a lot of computational resources, less data is needed to train the model and we can

take advantage of already well-tested network architectures.

30

5 Working Environment

In this section, I will describe software and hardware that I used to build the driver

attention warning system presented in this thesis.

5.1 Software

The code for this thesis is written in Python version 3.7.4 and takes advantage of

the following libraries:

� tensorfow 1.13.1

TensorFlow is an end-to-end open-source platform for machine learning [29].

In this thesis, I use TensorFlow as a backend of Keras library which is used

for building and training artificial neural networks.

� keras 2.2.5

Keras is a high-level neural networks API, written in Python and capable of

running on top of TensorFlow, CNTK, or Theano. It was developed with a

focus on enabling fast experimentation [30].

� numpy 1.17.3

NumPy is the fundamental package for scientific computing with Python. It

makes manipulation with high dimensional data easier and more effective [31].

� pandas 0.24.2

Pandas is an open-source, BSD-licensed library providing high-performance,

easy-to-use data structures and data analysis tools for the Python program-

ming language [32].

� matplotlib 3.0.3

Matplotlib is a Python 2D plotting library which produces publication quality

figures in a variety of hardcopy formats and interactive environments across

platforms [33].

31

5.2 Hardware

The models were trained using graphics processing units (GPUs) which are very

suitable for training neural networks. The main reason is that GPU can perform

matrix multiplication and convolution more efficiently than the central processing

unit (CPU) and the computation can be easily parallelized.

The GPUs were provided by MetaCentrum VO, which is a catch-all virtual orga-

nization of the Czech National Grid Organization MetaCentrum NGI. MetaCentrum

operates and manages distributed computing infrastructure consisting of comput-

ing and storage resources owned by CESNET as well as resources of co-operative

academic centers within the Czech Republic [34].

GPUs used in MetaCentrum:

� nVidia Tesla T4 16GB

� nVidia Tesla K20 5GB

� GPU nVidia GeForce GTX

6 Network implementation

Architectures for VGG16, ResneXt and InceptionV3 networks were implemented

using Keras Applications API [35]. Custom parameters like trainable layers, input

and output dimensions were specified by popping or adding custom layers. Example

of the InceptionV3 network implementation can be seen in appendix.

EfficientNet architecture is not part of the official Keras or TensorFlow API at

the time of writing this thesis. For that reason, this network architecture had to

be reimplemented and the code is inspired by the implementation made by Pavel

Yakubovskiy [36]. Because of installation issues at MetaCentrum, Yakubovskiy’s

implementation was modified for the purpose of this thesis using Keras library with

TensorFlow backend only.

32

7 Data Preprocessing

The default image pixel values are in range 0 - 255. All image pixel values were

before the training and testing process re-scaled from a range of 0 - 255 to the range

0 - 1 because that is the format expected by the pre-trained network architectures.

The data augmentation technique was also applied before training the networks.

7.1 Data augmentation

Having enough data is a key element for a successful training process of deep neural

networks, which helps the networks to learn more robust features and thus prevent

overfitting. Augmenting the training data we already have is a common practice.

Based on the experiments the following augmentation techniques improved the mod-

els’ performance the most.

Zoom

Figure 22: Zoom augmentation. The same image with different zoom ratios.

33

Shear

Figure 23: Shear augmentation. The same image with different shear ratios.

8 Experiments

In this section, I describe all of the experiments I have done in order to achieve the

best performance on the State Farm dataset using the Kaggle evaluation algorithm.

Kaggle evaluates the predictions using a multi-class logarithmic loss function. The

formula for multi-class logaritmic loss is then,

logloss = − 1

N

N∑
i=1

M∑
j=1

yijlog(pij), (8)

where N is the number of images in the test set, M is the number of image class

labels, log is the natural logarithm, yij is 1 if observation i belongs to class j and 0

otherwise, and pij is the predicted probability that observation i belongs to class j.

34

The output of the file that is submitted to Kaggle is a CSV file with the image file

name, and a probability for each class. The format of the submission file can be

seen in Figure 24.

img, c0, c1, c2, c3, c4, c5, c6, c7, c8, c9

img_0.jpg, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0

img_1.jpg, 0.3, 0.1, 0.6, 0, 0, 0, 0, 0, 0, 0

...

Figure 24: Example submission CSV file that is ready for the Kaggle evaluation

algorithm.

8.1 Initial experiments - no augmentation

The models were trained using the original dataset without any augmentations or

preprocessing. The learning rate remained constant throughout the whole training

process. The training process was stopped once the validation accuracy did not

improve. All of the models use pre-trained weights on the ImageNet database and

these weights were set as a starting point. Training without pre-trained weights was

not successful. When training the InceptionV3 network, only the last two inception

blocks and one fully connected layer were trained (see Section 6). Updating all layers

of InceptionV3 did not result in successful training and better accuracy was achieved

by preventing the first 249 layers from training. When training VGG, ResNeXt, and

EfficientNet, all weights were updated during the training, because this approach

led to the best results. Results are in Table 1.

35

Architecture learning rate optimizer epochs Kaggle loss val. accuracy (%)

VGG16 1e−4 SGD 10 1.1053 99.26

InceptionV3 1e−4 Adam 5 2.6683 73.18

ResNeXt50 1e−4 SGD 10 0.7088 99.15

EfficientNetB0 1e−4 SGD 10 0.7524 99.44

EfficientNetB4 1e−4 SGD 10 0.7569 99.06

Table 1: Training results for initial experiments.

From Table 1 we see that the best test score was achieved by ResNeXt50, which

achieved the Kaggle loss score equal to 0.7088. InceptionV3 network was by far the

most difficult one to train. Training InceptionV3 with SGD optimizer did not lead

to successful training and Adam optimization algorithm had to be used. Also, only

the last two inception blocks with a fully connected layer on top of it were trained.

Training all layers of the InceptionV3 network did not lead to successful training.

Both the EfficientNetB0 and EfficientNetB4 achieved almost the same score, but

EfficientNetB0 was faster to train thanks to its more compact architecture. VGG16’s

performance in the middle. It performed significantly better than InceptionV3, but

also significantly worse than the other networks.

8.2 Augmenting data and tuning parameters

In this experiment, the data were augmented before training the network. Based on

the experiments the best result were achieved by implementing shear and zoom aug-

mentation techniques as described in section 7.1. In terms of parameters, the most

important was the right choice of a starting learning rate, optimization algorithm,

and the number of training epochs. By slowly decreasing the learning rate as the

training loss converged another extra accuracy percentages were gained. Another

technique that helped training the ResNeXt nad EfficientNet was training the last

few layers first and after that, the training process continued while training all layers

of the network.

36

Architecture learning rate optimizer epochs Kaggle loss val. accuracy (%)

VGG16 1e−4 SGD 8 0.5327 98.81

InceptionV3 1e−4 Adam 6 0.6356 85.18

ResNeXt50 1e−5, 1e−6 SGD 8 + 2 0.4439 97.97

EfficientNetB0 1e−3 SGD 10 0.6506 99.66

EfficientNetB4 1e−3 SGD 10 0.6084 98.99

Table 2: Training results for augmented data and tuned optimizer parameters.

If we take a look at Table 2 we notice significant overall improvement on test data

among all of the network architectures. Moreover, the validation accuracy of VGG,

ResNeXt50 and EfficientNet networks decreased. This indicates that the over-fitting

problem was reduced which is mainly caused by data augmentation.

The best result on test data was achieved by ResNext50, which performs sig-

nificantly better than any other network. While ResNext50 is the most accurate

one, it requires much more computational resources for example compared to Effi-

cientNetB0, which performs the worst, but still better than the ResNeXt50 trained

on non-augmented data. For comparison, while training the ResNext50 model took

about 24 hours, EfficientNetB0 was trained under 10 hours using the same hard-

ware. The size of the file which stores ResNext50’s trained weights is 115 MB while

the same file containing EfficientNetB0’s weights is of size 32 MB. We can see there

is some trade-off between accuracy and the required computational resources.

EfficientNetB4 is re-scaled EfficientNetB0 so that it is deeper and wider. It

should theoretically achieve better results than EfficientNetB0 because deeper net-

work should be capable of better, or at least the same performance as a smaller

network theoretically. This assumption was confirmed and EfficientNetB4 indeed

achieved better performance than EfficientNetB0. The better performance came

with the cost of higher computational requirements

VGG16 network achieved the second-best result and we can see that data aug-

mentation and parameter optimization had a huge effect on its performance. The

biggest drawback of the VGG16 network was its inefficiency compared to other net-

37

works. These networks get trained faster and also the predictions were made faster.

For example, EfficientNets were about 50% faster in making predictions, which is a

significant difference especially if the goal would be to categorize images in real-time.

The augmentation process helped the InceptionV3 network the most. The loss

score was reduced from 2.6683 to 0.6356 which results in the fourth-best perfor-

mance. We can see that the validation accuracy is by far the lowest one compared

to all the other networks, while the test loss score is not that different. This fact

suggests an idea that the network is not over-fitted and thus will generalize well. Be-

cause only the last two inception blocks and one fully connected layer were trained,

the training process was very fast (about 50 % faster compared to ResNeXt and

VGG16 networks using the same hardware).

8.3 Focusing on problematic classes - c0, c8, c9

For a more rigorous analysis I plotted confusion matrices in Figure 25 for models

trained in section 8.2. The data in these matrices correspond to the Abouelnaga

dataset, which contains slightly different images than the State Farm dataset and

therefore the accuracy does not seem that great. On the other hand, the accuracy

of a different dataset allows us to asses models’ ability to generalize. We can notice

a common problem from these matrices. Most of the networks have the biggest

problem with the correct classification of classes c0 - driving safe, c8 -hair and make-

up and c9 -talking to passenger. Although InceptionV3 network didn’t perform the

best on State Farm’s dataset, it achieved by far the highest accuracy on Abouelnaga

dataset which is 9.75 % higher than the second best-model, which is VGG16. This

result confirms the presumption I made in the previous section that this network

will generalize well according to the results from Section 8.2.

If we take a closer look at the most problematic classes we can understand

why it is problematic to classify these classes correctly. I plotted sample images of

these classes in Figure 26. These activities are often ambiguous and are difficult to

correctly classify even for a human observer. Further experiments focus on easing

this problem.

38

ResNeXt50, accuracy: 37.69 %

VGG16, accuracy: 40.85 %

InceptionV3, accuracy: 50.61 %

Ef�icientNetB0, accuracy: 31.12 %

Ef�icientNetB4, accuracy: 28.88 %

Figure 25: Confusion matrices for the Abouelnaga dataset. c0-safe driving, c1-

texting - right, c2-talking on the phone - right, c3-texting - left, c4-talking on the

phone - left, c5-operating the radio, c6-drinking, c7-reaching behind, c8-hair and

makeup, c9-talking to passenger

39

Driving safe (c0)

c0 - a c0 - b c0 - c

Hair and make-up (c8)

c8 - a c8 - b c8 - c

Talking to passenger (c9)

c9 - a c9 - b c9 - c

Figure 26: Sample images from classes c0, c8, c9. While images in the first column

can be categorized without any ambiguity, images in the second and third columns

are ambiguous and it is difficult to categorize those images even for a human ob-

server. For example, we could say, that the woman in the picture c0-b is talking to a

passenger based on her smile, but the image is labeled as save driving. We see that

the picture c8-c labeled as hair and make-up distraction, which is not that obvious.

The man might be just waiting at traffic lights and is not distracted at all. The

image c9-b is labeled as talking to passenger, which might be the case. However,

another possibility is that the driver is just looking out of the side window to have

a better view of the road and the traffic conditions and thus is not distracted at all.

40

8.3.1 Combining two models’ predictions

In this experiment, I will try to improve the accuracy of the so-far best model

(ResNeXt50 from Section 8.2) by focusing on the better classification of classes

c0, c8 and c9. From Figure 25 we see that the InceptionV3 network performs the

best when it comes to the classification of these classes. For that reason, I tried

to combine ResNeXt50’s and InceptionV3’s predictions in order to get the final

prediction probability. I used ResNeXt’s predictions as default predictions. If the

class predicted by ResNeXt was c0 or c9, then I checked what is the Inception’s

prediction. If these two predictions were different and the probabilities differed by

more than some threshold (0.22), I used the Inception’s probabilities. This procedure

performed the best from all the other combinations I tried and it resulted in 3.6%

decrease of the loss score received on Kaggle.

8.3.2 Lowering probability of c8 and c9 classes

Another problem we can notice from Figure 25 is that networks are prone to classify

c0 as c8 or c9, but not the opposite. Therefore properly lowering the probability

of c8 or c9 in favor of other classes might improve accuracy. As a result of many

experiments, the biggest improvement was achieved by lowering the probability of

c8 and c9 classes according to the logic shown in the following piece of code.

If the predicted class is c8 and its probability is higher than the

second largest probability according to the following rule, then

lower c8’s probability by 70 %

if class predicted == ’ c8 ’:

if c8 probability − second max probability < 0.999:

c8 probability = c8 probability − 0.7 * c8 probability

Apply the same principle to c9 class if c9 is predicted.

if class predicted == ’ c9 ’:

if c9 probability − second max probability < 0.999:

c9 probability = c9 probability − 0.2 * c9 probability

41

A further extension of this logic is a combination of multiple models in order to decide

about the thresholds. I trained an InceptionV3 network in the same configuration

as in Section 8.2 to distinguish between c0, c8 and c9 classes only. The hypothesis

is that network trained to classify only these problematic classes might perform

better at classifying these classes than the default network trained on all classes. By

application of this technique, the loss score received on Kaggle was decreased by 0.23

%, which is not much when compared to the added complexity and computational

requirements. The logic of this technique can be seen in the following piece of code.

42

if class predicted == ’ c8 ’:

if c8 probability − second max probability < 0.999:

if the model trained on c0, c8 and c9 classes thinks the same

as the default model, lower the probability by a lower

amount. Otherwise lower the probability of c8 by larger

percentage.

if class predicted by c0c8c9 == ’ c8 ’:

c8 probability = c8 probability − 0.65 * c8 probability

else:

c8 probability = c8 probability − 0.7 * c8 probability

Apply the same principle to c9 class.

if class predicted == ’ c9 ’:

if c9 probability − second max probability < 0.999:

if class predicted by c0c8c9 == ’ c9 ’:

c9 probability = c9 probability − 0.28 * c9 probability

else:

c9 probability = c9 probability − 0.38 * c9 probability

Conclusion

By application of all of the techniques focusing on the better classification of classes

c0, c8 and c9, the Kaggle loss score of the default ResNeXt50 model was decreased

by 5.26 %.

8.4 Finding region of interest - driver detection

The original images from State Farm’s dataset include the driver and also some

surrounding which is not very important for a human observer when he decides

about the driver’s action. For that reason, I decided to detect the driver and blacken

the surrounding. The hypothesis is that this helps to reduce noise in the image and

thus the network can focus only on the important parts of the image. The driver is

detected using the YOLOv3 algorithm [37]. The implementation is based on Huynh

43

Ngoc Anh’s example [38]. The result of the driver detection algorithm is shown in

Figure 27.

I trained the same model architectures as in Section 8.2. and adjusted the

learning rates and the number of epochs in order to achieve the best results. The

training configuration and performance on the State Farm dataset can be seen in

Table 3. Comparison of results before and after driver detection reflects Table 4.

Architecture learning rate optimizer epochs Kaggle loss val. accuracy (%)

VGG16 1e−4 SGD 10 0.6387 90.00

InceptionV3 1e−4 Adam 2 0.9916 81.95

ResNeXt50 1e−5 SGD 7 0.5067 95.93

EfficientNetB0 1e−3 SGD 9 0.6600 92.98

EfficientNetB4 1e−3 SGD 10 0.6385 92.5

Table 3: Training configuration and results for State Farm dataset after driver
detection.

Architecture Kaggle loss before/after Abouelnaga accuracy before/after (%)

VGG16 0.5327 / 0.6387 40.85 / 41.14

InceptionV3 0.6356 / 0.9916 50.61 / 45.49

ResNeXt50 0.4439 / 0.5067 37.6 / 36.29

EfficientNetB0 0.6506 / 0.6600 31.12 / 28.66

EfficientNetB4 0.6084 / 0.6385 28.88 / 26.76

Table 4: Comparison of results before and after driver detection.

From Table 4 we see that the only improvement that happened is VGG16’s accuracy

for Abouelnaga dataset and event the difference is not big. Moreover, the driver

detection algorithm adds another extra layer of computational complexity and slows

down the prediction process significantly. Therefore it can be concluded driver

detection was not helpful in this particular case, but it can be helpful in other

situations (e.g. when there is more surrounding noise around the driver).

44

Figure 27: Application of the YOLOv3 algorithm to detect the driver. We can see

that the detection does not always work perfectly (third image) which may cause

some decrease in accuracy. Also, black padding is added to the images so that all

of the images have the same resolution before entering the network.

45

9 Best model overview

The best model is considered the one which achieved the lowest loss score on the

Kaggle evaluation site. This loss score is equal to multi-class logarithmic loss and

is computed as shown at the beginning of Section 8. The scheme of this model is

shown in Figure 28. The loss score achieved by this model is 0.4205, which is 5.26

% less than the loss score achieved by pure ResNeXt50 trained on augmented data

with optimized parameters.

ResNeXt50 InceptionV3

input image

Take ResNext50 probabilities as default.
Then Modify c0 and c9 probabilities by
comparison with InceptionV3Fs prediction

InceptionV3 trained on
c0, c8, c9 classes only

Lower the probabilty of classes c8 and c9
according to the IncptionV3 prediction.

Final prediction

Figure 28: A high-level overview of the model with the best performance on the

State Farm dataset.

46

10 Conclusion

The main goal of this thesis was to build an end-to-end Driver Attention Warning

system using convolutional neural networks and compare the performance of differ-

ent neural network architectures like VGG, Inception, ResNeXt, and EfficientNet.

First, I obtained datasets that are necessary for training and testing such a

system. Two different datasets were used - State Farm and Abouelnaga datasets.

The State Farm dataset is much larger and was used to train the networks. Because

the State Farm dataset is available only as a part of a Kaggle competition and thus

the labels for test data are unknown, I also used the Abouelnaga dataset to do a

more rigorous analysis of models’ performance.

After the initial experiments which did not include any data manipulation or

thorough optimization of hyper-parameters, all models but InceptionV3 network

were trained with accuracy higher than 90 % for validation data. However, the

problem of over-fitting was present. This problem was reduced by using appro-

priate augmentation techniques. The best results were achieved by zooming and

shearing the training images. Another step to improve accuracy was parameter

tuning. Choosing the right optimization algorithm and decreasing the learning rate

accordingly as the training process progressed improved the networks’ performance.

Another technique that helped in some cases was training the last few layers first

and after that training all layers of the network. The application of just mentioned

techniques significantly improved the performance of all tested networks (error rate

was reduced by 15 % up to 60 %). The best results were achieved by ResNeXt50

network architecture. Very good performance was achieved by VGG16 network

which received the second-best score on Kaggle website. However, VGG16’s biggest

drawback is its slow training time. In terms of efficiency, EfficientNetB0 and Ef-

ficientNetB4 performed very well. These networks performed slightly worse than

VGG16 but were significantly faster in terms of training and prediction times. Ef-

ficientNetB4 performed better than EfficientNetB0 in terms of accuracy but was

slower to train, which is an expected result because EfficientNetB4 is deeper and

wider than EfficientNetB0. While the InceptionV3 network did not perform the

47

best on the State Farm dataset, it achieved the highest accuracy on the Abouelnaga

dataset and therefore we can say this network generalizes the best.

By inspecting the confusion matrices it was discovered that the most difficult

problem for all of the architectures is to distinguish between actions driving safe,

hair and make-up and talking to passenger. This is due to the fact that the correct

label is not always obvious even for a human observer. For example, sometimes it

is hard to decide if the driver is talking to a passenger next to him or if the driver

is just looking out of the side window. I tried to address this problem by combin-

ing multiple models’ predictions. While the ResNeXt50 achieved the best overall

accuracy, InceptionV3 network seemed to perform better when these problematic

classes (c0, c8, c9) were presented. Another problem is the fact that the networks

were prone to predict c8 or c9 class when the actual label was c0. This problem was

addressed by decreasing the probability of classes c8 and c9 by an experimentally

chosen value. By application of these techniques the error rate of so far best network

(just optimized ResNeXt50) was lowered by another 5.26 %.

48

Possible improvements

As we could see in Section 8.3 , the most problematic is to correctly classify actions

driving safe, hair and make-up and talking to passenger. It is difficult even for

a human observer to classify these actions accurately when only static photos are

presented. Therefore one possible improvement might be using video data instead

of just static images. This would help us recognize better if the driver is talking

to the passenger sitting next to him or is talking to someone using some hands-

free device. This could be detected for example by detecting the movement of the

driver’s mouth. By using video data other types of distractions like sleepiness could

be detected by analyzing the driver’s facial movements. Another way to make the

Driver Attention Warning system more robust and accurate is to use other than just

image-based data. For example, by gathering the audio data driver’s inattention

could be detected more accurately.

49

References

[1] Traffic safety facts, 2019.

[2] M. Q. Khan and S. Lee. A Comprehensive Survey of Driving Monitoring and

Assistance Systems. Sensors (Basel), 19(11), Jun 2019.

[3] National highway traffic safety administration. https://www.nhtsa.gov/

risky-driving/distracted-driving. Accessed: 2019-12-22.

[4] Centers for disease control and prevention. https://www.cdc.gov/

motorvehiclesafety/distracted_driving. Accessed: 2019-12-23.

[5] Cognitive distraction. https://www.aktriallaw.com/Articles/

What-is-cognitive-distraction-and-why-is-it-so-dangerous-to-drivers.

shtml. Accessed: 2019-12-23.

[6] X. Zhang, N. Zheng, F. Wang, and Y. He. Visual recognition of driver hand-held

cell phone use based on hidden crf. In Proceedings of 2011 IEEE International

Conference on Vehicular Electronics and Safety, pages 248–251, July 2011.

[7] K. Seshadri, F. Juefei-Xu, D. K. Pal, M. Savvides, and C. P. Thor. Driver cell

phone usage detection on strategic highway research program (shrp2) face view

videos. In 2015 IEEE Conference on Computer Vision and Pattern Recognition

Workshops (CVPRW), pages 35–43, June 2015.

[8] B. Baheti, S. Gajre, and S. Talbar. Detection of distracted driver using convo-

lutional neural network. In 2018 IEEE/CVF Conference on Computer Vision

and Pattern Recognition Workshops (CVPRW), pages 1145–11456, June 2018.

[9] Yehya Abouelnaga, Hesham M. Eraqi, and Mohamed N. Moustafa. Real-time

distracted driver posture classification. 2017.

[10] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,

Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Ra-

binovich. Going deeper with convolutions, 2014.

50

https://www.nhtsa.gov/risky-driving/distracted-driving
https://www.nhtsa.gov/risky-driving/distracted-driving
https://www.cdc.gov/motorvehiclesafety/distracted_driving
https://www.cdc.gov/motorvehiclesafety/distracted_driving
https://www.aktriallaw.com/Articles/What-is-cognitive-distraction-and-why-is-it-so-dangerous-to-drivers.shtml
https://www.aktriallaw.com/Articles/What-is-cognitive-distraction-and-why-is-it-so-dangerous-to-drivers.shtml
https://www.aktriallaw.com/Articles/What-is-cognitive-distraction-and-why-is-it-so-dangerous-to-drivers.shtml

[11] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Ag-

gregated residual transformations for deep neural networks, 2016.

[12] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for

convolutional neural networks. 2019.

[13] Osvaldo Simeone. A brief introduction to machine learning for engineers, 2017.

[14] Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and

Jeffrey Mark Siskind. Automatic differentiation in machine learning: a survey.

2015.

[15] Yuhuang Hu, Adrian Huber, Jithendar Anumula, and Shih-Chii Liu. Overcom-

ing the vanishing gradient problem in plain recurrent networks, 2018.

[16] Lu Lu, Yeonjong Shin, Yanhui Su, and George Em Karniadakis. Dying relu

and initialization: Theory and numerical examples, 2019.

[17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. Imagenet classification

with deep convolutional neural networks. Neural Information Processing Sys-

tems, 25, 01 2012.

[18] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and

Ruslan R. Salakhutdinov. Improving neural networks by preventing co-

adaptation of feature detectors, 2012.

[19] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep

network training by reducing internal covariate shift, 2015.

[20] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry.

How does batch normalization help optimization?, 2018.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition, 2015.

[22] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,

Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein,

Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition

Challenge. International Journal of Computer Vision (IJCV), 115(3):211–252,

2015.

51

[23] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition, 2014.

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition. arXiv preprint arXiv:1512.03385, 2015.

[25] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks, 2016.

[26] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Mia Xu Chen,

Dehao Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and

Zhifeng Chen. Gpipe: Efficient training of giant neural networks using pipeline

parallelism, 2018.

[27] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. The MIT

Press, 2016.

[28] State farm distracted driver detection. https://www.kaggle.com/c/

state-farm-distracted-driver-detection.

[29] Tensorflow. https://www.tensorflow.org. Accessed: 2019-12-22.

[30] Keras. https://keras.io. Accessed: 2019-12-22.

[31] Numpy. https://numpy.org. Accessed: 2019-12-22.

[32] Pandas. https://pandas.pydata.org. Accessed: 2019-12-22.

[33] Matplotlib. https://matplotlib.org. Accessed: 2019-12-22.

[34] Metacentrum vo. https://metavo.metacentrum.cz/.

[35] Keras applications api. https://keras.io/applications/. Accessed: 2019-

12-29.

[36] Efficientnet implementation in keras. https://github.com/qubvel/

efficientnet. Accessed: 2019-12-29.

[37] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement, 2018.

[38] Yolov3 implementation in keras. https://github.com/experiencor/

keras-yolo3. Accessed: 2020-20-1.

52

https://www.kaggle.com/c/state-farm-distracted-driver-detection
https://www.kaggle.com/c/state-farm-distracted-driver-detection
https://www.tensorflow.org
https://keras.io
https://numpy.org
https://pandas.pydata.org
https://matplotlib.org
https://metavo.metacentrum.cz/
https://keras.io/applications/
https://github.com/qubvel/efficientnet
https://github.com/qubvel/efficientnet
https://github.com/experiencor/keras-yolo3
https://github.com/experiencor/keras-yolo3

Appendix

Inception V3 architecture implementation

−−

from keras.applications.inception v3 import InceptionV3

from keras.layers import Dense, GlobalAveragePooling2D

from keras.models import Model

Load model architecture without the top layer

(this allows us to use custom input shape).

Also load pre−trained ImageNet weights.

model base = InceptionV3(weights= ’ imagenet ’,

include top=False,

input shape=(640, 480, 3))

x = model base.output

Add global average pooling and fully connected layer on top of the

base model.

x = GlobalAveragePooling2D()(x)

x = Dense(1024, activation= ’ re lu ’)(x)

Add softmax layer to get probabilities for each class as an output

predictions = Dense(units=10, activation= ’ softmax ’)(x)

Create complete model architecture

model = Model(inputs=model base.input, outputs=predictions)

Prevent first 249 layers from training. This causes that only the

last 2 inception blocks will be trained.

n lock = 249

for layer in model base.layers[:n lock]:

layer.trainable = False

for layer in model base.layers[n lock:]:

layer.trainable = True

53

	I Introduction
	II Theory
	Classification
	Artificial Neural Networks
	Neuron
	Simple Neural Network
	Training ANN
	Loss Function
	Forward propagation
	Backward propagation

	Building blocks of ANN
	Activation functions
	Layers and regularization
	Convolutional Neural Networks

	Architectures
	VGG16
	Inception Networks
	ResNeXt
	EfficientNet

	III System Imlementation and Evaluation
	Datasets description
	State Farm dataset
	Abouelnaga dataset
	ImageNet

	Working Environment
	Software
	Hardware

	Network implementation
	Data Preprocessing
	Data augmentation

	Experiments
	Initial experiments - no augmentation
	Augmenting data and tuning parameters
	Focusing on problematic classes - c0, c8, c9
	Combining two models' predictions
	Lowering probability of c8 and c9 classes

	Finding region of interest - driver detection

	Best model overview
	Conclusion

