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Abstract

The thesis topic is the analysis and testing of three chosen methods for the train position

dynamic estimation with the usage of track database and sensors, that are usually a part

of the standard train equipment. The result of these methods is matching of the mea-

sured position to the track database according to a chosen criterion. The chosen meth-

ods have the potential utilization in the automation of rail transportation for achieving

independence on a local positioning system. The analyzed methods are implemented

and tested on simulated data in MATLAB. The simulation results are discussed together

with the proposed improvements and delimitation of the usage area.

Keywords: state estimation, filtration, localization, map matching

Abstrakt

Tématem této práce je analýza a testovánı́ třı́ vybraných estimačnı́ch metod pro dyna-

mický odhad polohy vlaku za použitı́ databáze tratě a senzorů, které jsou již většinou

součástı́ vybavenı́ vlaku. Výsledkem těchto metod je určenı́ bodu či úseku na mapě

trati, jenž je podle definovaného kritéria optimálnı́m obrazem naměřené polohy. Zvo-

leny byly metody, které majı́ potenciálnı́ využitı́ v automatizaci železničnı́ dopravy pro

dosaženı́ nezávislosti na lokálnı́m systému určovánı́ polohy. Analyzované metody jsou

implementovány a testovány na simulovaných datech v prostředı́ MATLAB. Výsledky

simulacı́ jsou diskutovány spolu s návrhy na vylepšenı́ nebo vymezenı́m podmı́nek pro

jejich využitı́.

Klı́čová slova: odhad stavu, filtrace, lokalizace, přiřazenı́ na mapu
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Nomenclature

Abbreviations

CKF Cubature Kalman Filter

DR Dead Reckoning

EKF Extended Kalman Filter

GNSS Global Navigation Satellite System

GPS Global Positioning System

INS Inertial Navigation System

MEMS Microelectromechanical Systems

MSE Means square error

Defined functions

dodo(ts, te) distance measured by the odometer between the time instants ts te

di f (arg1, arg2) evaluation of difference or distance of arg1, arg2

Variables

δ roll angle

∆Ψ̇ yaw rate offset

∆θ̇ pitch rate offset

Ψ̇ yaw rate

Ψ̇gyro yaw rate measurement from gyroscope

2



NOMENCLATURE 3

θ̇ pitch rate

θ̇gyro pitch rate measurement from gyroscope

εi sum of all random errors for the i-th satellite

ω̂ measured yaw rate

ρ̂ similarity function between fusion position and candidate model

x̂ filtration state estimate

x̂′ prediction state estimate

λ longitude

ω map curvature

vodo averaged speed from odometer

φ latitude

Ψ yaw (heading) angle

ΨGNSS heading computed from GNSS

ρ pseudorange

a acceleration

d distance

f state equation

h measurement equation

P point of a line

P′ predictive density function covariance matrix

P(n) set of points for map matching defined by [xp, yp]

Pmaps , Pmape starting and ending point of a dataset for map matching

Pmatch matched point of map abscissa

Q covariance matrix of state noise



4 NOMENCLATURE

R covariance matrix of measurement noise

R f train position defined by [x f , y f , ll]

Ri position of the ith satellite

Ru user’s position

Rum measurement of Ru

v measurement noise

v velocity

x state vector

z measurement vector

θ pitch angle

ω̃ measured yaw rate transformed into curvature

ω̃avg ω̃ averaged within the segment borders

bu receiver clock bias

c speed of light in vacuum

F Jacobian matrix of state equations

H Jacobian matrix of measurement equations

h height (altitude)

h, h0 bandwidth

S scale error

t time

w1...w11 state noise

[E, N, U] [East, North, Up] coordinates

[EGNSS, NGNSS, UGNSS] East, North, Up position from the GNSS



NOMENCLATURE 5

C = {C1
map, C2

map, ..., CK
map} set of map curves

L = {L1
map, L2

map, ..., LM
map} set of map segments

R = {R1
map, R2

map, ..., RN
map} set of map points



Chapter 1

Introduction

In recent years automatic train positioning has become more and more required. The

most relevant factors are safety and efficiency. However other, for example financial,

reasons like potential lower personnel expenses, can decide in favor of automatic po-

sitioning. Possible facilitation of the management of arrivals/departures can save a lot

of money and avoid possibly dangerous mistakes. Railroad modernization also brings

higher comfort to passengers including, besides other things, applications that inform

travelers about the train location. As for the safety reasons, the goal is to create a system

that can send information to railroad level crossing or detect multiple vehicles on the

railroad and thus prevent train collisions.

The current train positioning system uses so-called on track balizes, which are bea-

cons with a known position [19]. The train, when running over a balize, reads the posi-

tion information (as a telegram).

When considering other train positioning possibilities, the train position, also re-

ferred to as user’s (receiver) position, can be estimated using various sensors for ex-

ample the GNSS [8], with the absolute position on the output, or sensors of relative

position which are called dead reckoning (DR) sensors and contain the accelerometer

[8, 16], gyroscope [7], odometer [16] and Doppler radar [11].

All these mentioned sensors, no matter whether absolute or relative, suffer from var-

ious errors. The GNSS position estimates can be affected by the propagation through

the atmosphere which has variable properties, or by other factors such as the surround-

ing of the receiver by high buildings, trees, etc., that can as well seriously influence the

quality of estimates [8]. The relative sensors are not affected by the vehicle surrounding,
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but suffer from errors as well. Increasing inaccuracies emerge in the DR estimates over

time due to the accumulating errors, therefore these sensors cannot work for a long time

without recalibration.

Due to limited reliability, the stand-alone GNSS cannot be used in critical applica-

tions. Similarily due to limited reliability DR sensors cannot be used as the sole source

for critical decisions. One possible solution is to support the GNSS estimates by DR

calculations especially during the time when the GNSS signal is not available. How-

ever, the need for frequent recalibration of the DR sensors, which is mostly done by the

GNSS, can be a problem when the GNSS signal is shadowed or of low quality.

The method of matching the position estimate provided by the GNSS or DR to a map

of the road/railroad may solve the problem. In this promising approach maps are used

to help with determining the position of the receiver [20]. The principle of this method

is the projection of the estimate onto a road/railroad on a map. In the case of train

positioning, the location of the vehicle is constrained to the railroad. Estimates that are

far from any railroad or do not make sense in the context of the previous estimates can

be removed.

The vehicle dynamics can be used to constrain the train state estimate as well, and

thus produce more accurate information about its position.

The thesis aim is to find, analyze and test algorithms using low-cost on-board equip-

ment and a map database, that have the potential to replace the current system based on

on-track balizes. Methods described in [17, 6, 12] will be examined and tested on simu-

lated data, provided by Ing. Ivo Punčochář, Ph.D. This data includes simulated GNSS,

odometer, accelerometer, and gyroscope measurements. The main advantage of using

these sensors would be independence from specific railroad equipment e.g. balizes.

The thesis is structured as follows. The sensors used for estimating the train posi-

tion are described in Chapter 2 together with a brief description of the used coordinate

systems and transformation between them. Map matching, as well as the mathematical

representation of the track and criteria for the algorithm, are presented in Chapter 3. In

Chapter 4 different methods of map matching are mentioned with the necessary math-

ematical background. Three of these methods are tested and evaluated in

Chapter 5.



Chapter 2

Sensors

In this chapter, the train position in different coordinate systems, train velocity and atti-

tude in three-dimensional space will be specified, followed by the description of sensors

available on board, possibly used for determining train position, velocity and attitude

in three-dimensional space.

The train position can be described in a coordinate system (described further in the

next section) using the absolute or relative position. The absolute user’s position Ru in

three-dimensional Euclidean space is determined by three coordinates, depending on

the used coordinate system. The relative position can be characterized by the distance d,

velocity v, acceleration a or the yaw (heading) Ψ, roll δ, and pitch θ angles representing

an attitude (Figure 2.1).

8
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Figure 2.1: Gyroscope measurement axis [15]

For determining the position of a user we need to specify the coordinate system. The

systems used for vehicle localization in this thesis are the Earth-Centred, Earth-Fixed

(ECEF) and the local East, North, Up (ENU) coordinate systems [22].

Geodetic Coordinate System

The Geodetic coordinate system is the system mostly used for orientation in a map.

The Earth’s surface (or close above) is described by latitude, longitude, and height [22].

The latitude (φ) specifies the angle between the equatorial plane and the line to the

measured point. The longitude (λ) measures the angle between the prime meridian

and the point. The height/altitude (h) is the distance of the measured point above the

reference ellipsoid. The user’s position is described as RGeod
u = [φ, λ, h]. Latitude and

longitude are shown in Fig. 2.2.

ECEF Coordinate System

The ECEF system has its origin in the Earth’s center and rotates around its spin axis.

The x-axis intersects the sphere in the crossing of the equator and the prime meridian

[22], [18]. The y-axis is orthogonal to the x-axis and also intersects the equator. The z-

axis is along the spin axis, orthogonal to the x and y-axis. The user’s position in ECEF is

RECEF
u = [x, y, z]. The relation between x, y, z-axis, and the φ, λ coordinates are shown

in Figure 2.2.
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ENU Coordinate System

The ENU system is a Cartesian coordinates system on the Earth’s surface. The North

and East axis lay in a plane that is normal to the ellipsoid model [22]. The up-direction is

orthogonal to this plane. The user’s position in ENU is described as RENU
u = [E, N, U].

The East, North and up vectors are shown in Fig. 2.2.

Henceforth Ru will be used for the user position RENU
u .

Figure 2.2: Coordinate Systems [5]

Transformation from ECEF to ENU

The transformation of a point from the ECEF to ENU coordinate system is done using

the Geodetic Coordinate System by the following equation


x

y

z

 =


−sin(λ) cos(λ) 0

−sin(φ)cos(λ) −sin(φ)sin(λ) cos(φ)

−cos(φ)cos(λ) cos(φ)sin(λ) sin(φ)




x–N · cos(φ)cos(λ)

y–N · cos(φ)sin(λ)

z–N(1− e2)sin(φ)

 , (2.1)

where N = a
1−e2sin2(φ)

stands for the radius of curvature in the vertical plane normal

to the astronomical meridian, a is the semi-major axis and e is the eccentricity [22], [18].

2.1 GNSS

Global Navigation Satellite System (GNSS) is a service for determining the three-dimensional

position of a receiver [1]. It is a well-known technology used for positioning and navi-

gation.
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2.1.1 GNSS Constellations

There are currently five GNSS constellations. The best-known GNSS constellation is

certainly the Global Positioning System (GPS) owned by the United States of America.

This system, built and operated by the U.S. Air Force was originally designed for the

military but was later made available for public use [8]. The specified accuracy of civil

GPS is 9 meters in the horizontal and 15 meters in the vertical direction. The European

satellite system (GALILEO) even claims to provide its users by position estimations

with greater precision than offered by any other available systems [3]. Other global

powers like China or the Russian Federation have their own satellite system (BeiDou,

GLONASS) which grants at least partial independence on the American GPS [8].

2.1.2 GNSS structure

GNSS is composed of three segments. The space segment consists of a constellation of

20 to 30 satellites that orbit around the Earth in three to six different orbital planes [8].

The control center listens to the broadcast signals in several different locations and uses

this information to compute the exact orbits and clock drift (further discussed later in

this section) corrections for each satellite. This information is then sent back to the satel-

lites and broadcast as a part of the navigation message. The user segment includes all

receivers of the GNSS signal.

The GNSS calculates the user position from the time it takes the signal from the

satellites to reach the receiver. This time interval is computed as ∆ti = ti − tECEF
u , where

ti is the time when the ith satellite broadcast the signal, i ∈ {1, 2, ..., N} is the index of a

specific satellite and N is the total number of the available satellites.

The time tECEF
u , when the signal reaches the receiver, is then used to compute the so-

called pseudorange, which is the diameter of a sphere from the satellite running through

RECEF
u [18]. The pseudorange of the ith satellite ρi is counted as

ρi = c∆ti, (2.2)

where c ≈ 3 · 108 is the speed of light in vacuum.
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However, in the real world, various errors have a nonnegligible effect of the pseu-

dorange estimate. That is why the equation 2.3 is used for the real pseudorange charac-

terization.

ρi = |RECEF
u −Ri|+ cbu + εi, (2.3)

where Ri is the ith satellite position, bu is the receiver clock bias, that affects all the

computed pseudoranges equally, and εi is the sum of all random errors for the i-th

satellite [8].

The pseudorange between each satellite and the receiver determines the radius of a

sphere around each of the satellites. The intersection of two spheres defines a circular

region and adding the third sphere gives us two points in one of which the receiver is

located. These points are marked as yellow dots in Fig. 2.3. The point closer to the

Earth’s surface is chosen as the estimated receiver position.

Figure 2.3: Intersection of three spheres

Despite the fact that only three coordinates (x, y, z) are estimated, at least four satel-

lites are needed for this task. The reason for this is the absence of an extremely precise

atomic clock in the receivers, thus the local time of a receiver is considered as a fourth

unknown.

Although in theory the position can be counted with as many as four satellites, in

reality there are many more satellites in a constellation, which increases the probability

of at least four satellites being visible at every time all over the globe and gives us more

satellites to choose from. For example GPS operates with a 27 satellite constellation [2].
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The redundancy of satellites in the GNSS provides the possibility of choosing those,

which are trusted the most. Also greater number of satellites can be used for achieving

higher precision of estimates.

2.1.3 GNSS drawbacks

There are many factors that can limit the GNSS accuracy and availability. One of the

most important factors is the error due to signal passing through the Earth atmosphere,

especially the Troposphere and Ionosphere. This inhomogeneity of the environment,

that the signal travels through, may add error to the time delay between the transmis-

sion and receiving of the signal. No less serious situation arises due to the absence of the

signal when the receiver is passing through a tunnel or other physical barrier. The in-

terference by multipath, when, due to the reflection from surrounding objects, multiple

signals from one satellite arrive with different time delays can as well cause distorted

estimates [21].

In most cases, choosing satellites above some elevation mask (usually of 5°) is used

to eliminate the firstly mentioned error. The elevation mask is the minimum elevation

angle above the horizon that the satellites must have to be trusted to give an undistorted

estimate. In case of the receiver riding through a tunnel, the GNSS signal is shadowed

and the position cannot be updated until the receiver comes out of the barrier.

Some of the drawbacks of GNSS can be corrected by using the space-based aug-

mentation system (SBAS). This geosynchronous satellite system uses data from several

reference points over the continent, transfers all of the measurement errors to a comput-

ing center, where the corrections of the atmospheric delays are calculated and broadcast

by a network to all receivers which can use them to compute their own differential cor-

rections.

2.2 Inertial Navigation System (INS)

The Inertial Navigation System uses sensors of the Inertial Measurement Unit (IMU),

consisting of accelerometers and gyroscopes for determining the user’s position by dead

reckoning. These sensors do not receive any external broadcast signal and thus are

available regardless of their surroundings.
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The main technology used in accelerometers and gyroscopes is the microelectrome-

chanical systems (MEMS), which uses the principle of mass on a spring. The specific ap-

plication is further described in the following subsections. A great advantage of MEMS

technology is its low-cost. The disadvantages are biased estimates, noise, and the need

to calibrate often.

2.2.1 Accelerometers

Accelerometers are sensors that measure the acceleration of the vehicle in a specific axis

[8]. Acceleration describes the force interactions, due to the change of velocity, between

objects with mass (Figure 2.4). When the measured object moves (along the x-axis in

the Figure) with an unsteady velocity, the mass in the accelerometer tends to remain

stationary due to its inertia and therefore the spring is stretched or compressed. This

deformation of the spring induces capacitance that corresponds to the object’s accelera-

tion.

Figure 2.4: The principle of accelerometer [14]

For the purpose of object positioning, acceleration can be used to determine the

change of velocity, the current velocity or position

∆v =
∫ t2

t1

a(t) dt, (2.4)

∆v is the change in velocity between time steps t1 and t2 and a is the acceleration

measured by the accelerometer.

By integrating the change in velocity ∆v over the time period < t1, t2 > we obtain

the distance (d) traveled over this time interval.

d =
∫ t2

t1

v(t) dt. (2.5)
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2.2.2 Gyroscopes

Gyroscopes are sensors that measure the rotation rate about an axis [7]. It is possible to

measure the roll, pitch, and yaw (heading) rate (shown in Figure 2.1). Gyroscopes are

rotating physical devices, that tend to maintain the orientation of their rotation axis due

to the law of angular momentum conservation and measure the angular velocity of a

body around a generic axis with respect to the initial reference [9].

Similarly to accelerometers, gyroscopes are mostly constructed by MEMS technol-

ogy and use the Coriolis force that causes mass on a spring to displace from its original

position [9]. Figure 2.5 shows the gyroscope principle. The two masses of the system

are joined by means of an elastic element. If one of the masses is moving in the direction

of the X-axis with velocity VX, then applying the rotation Ωz about the Z-axis results in

the mass experiencing the Coriolis force FCoriolis in the direction of the blue arrow. The

other mass will experience force of the same magnitude but opposite direction. This

force causes changes in the piezoresistive material structure that can be transduced to

an electrical signal.

For train positioning the main focus is on the heading angle Ψ and the pitch angle θ.

Figure 2.5: The principle of gyroscope [9]

2.3 Other sensors

2.3.1 Odometers

Odometers are a part of the dead reckoning (DR) system. Odometers calculate the trav-

eled distance by counting the turns of the wheels presuming a constant wheel radius

(and thus circumference). Because it would not be sufficient to only count the whole
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360° wheel turns, there are multiple marks around the wheel placed over a constant

angle so that it is possible to record smaller traveled distance. A pulse is generated

whenever the wheel turns over the mark. The speed is calculated by dividing distance

traveled during the sampling time interval T by the duration of T. This is shown in the

following equations

di = pi · α · r (2.6)

vi =
di

T
, (2.7)

where di is the distance traveled during the ith sampling period, pi is the number of

marks that were read by the odometer, α is the angle in radians between two marks, r is

the wheel radius and vi is the average speed during T.

The main error affecting the odometer estimate is when the wheel slips, meaning

it travels some distance without turning. This happens mainly when the vehicle starts

rolling or is breaking. This error gets larger with the traveled distance which is the

reason why odometers need to be calibrated. In the current railroad system, calibration

is done when running over a balize with a known position [4].

A balize is an electronic transmission device (beacon) placed between the rails of

a railroad. Balizes can send telegrams to an on-board subsystem passing over it. The

odometer is recalibrated when passing over a balize. This system could possibly be

substituted by the GNSS position estimates for achieving the independence on a system,

that is different in some other countries, and avoid the risk of physical balizes being

damaged or stolen.

2.3.2 Doppler radar

The Doppler radar, mounted on the bottom of the locomotive, measures the speed over

ground [11]. The output of the radar is a rectangular signal with frequency proportional

to the vehicle speed. Because the sensor calculates the speed by counting leading edges

of the signal over the sampling period, the measurement is available only if the train

speed exceeds a certain limit.



Chapter 3

Map Matching

3.1 Motivation

Due to the fact that the GNSS signal can be distorted by various factors and the DR sen-

sors accumulate errors when running for a long time without recalibration, a possible

solution is to couple these two systems in order to improve accuracy and availability,

or match the estimated position to a map database. This matched position can provide

calibration data for DR sensors.

3.2 Map description

A railroad track database, containing the reference information for the train positions,

is needed for the train map matching. The matching techniques differ by map models

and the optimization criterion, as will be described further in this section.

There are several levels on which the railroad map database can be modeled. On

level 1, it is operated only with the discrete measured points [12]. Level 2 takes the

points from level 1 and supplements them by important features (such as curvatures

from GNSS measurement or speed limits). Level 3 uses the points from level 2 and in-

terpolates them with e.g, Cubic spline function, defining a continuous track map. These

three approaches are illustrated in Figure 3.1, where each point is represented in 3D

space by the [x, y, z] coordinates and in levels 2 and 3 also with the curvature ω.

The database is a set of pointsR = {R1
map, R2

map, ..., RN
map}, segments

L = {L1
map, L2

map, ..., LM
map} or curves C = {C1

map, C2
map, ..., CK

map} describing the real

17
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world environment. Letters N, M, K represent the total number of points, segments,

curves. The points can be characterized by three or two coordinates (depending on if

the 2D projection is used), the segment is the track between two points. These can be

characterized by an abscissa with the map points as endpoints or a spline.

Curves are segments (specified by end points) supplemented by the segment curva-

ture described by the yaw and pitch angle.

[x1, y1, z1]

[x2, y2, z2]

[xn, yn, zn]. . .

(a) Level 1

[x1, y1, z1, . . .

[x2, y2, z2,

ω1]

ω2]

[xn, yn, zn, ωn]

(b) Level 2

[x1, y1, z1,ω1]
[xn, yn, zn,ωn]. . .

(c) Level 3

Figure 3.1: Different levels

3.3 Map Matching

Map matching is the process of taking the measured position and matching it to a

road/track database minimizing some criterion [6]. There are several possible approaches

to this task. The point-to-point algorithm chooses the point on the road/railroad (level

1 or level 2) with the smallest distance from the measured point, as shown in the fol-

lowing equation

R∗map(Rum) = argmin
Rmap∈R

||Rum −Rmap||2, (3.1)

where R∗map is the selected map point, Rum is the estimate of Ru from the sensor

measurement and Rmap are points in the map database. Point-to-point matching is il-

lustrated in Figure 3.2, where the map points Rn
map are marked by green circles, the red

circle shows the position of the measured point Rum, the gray lines, connecting Rum with

Rn
map symbolize the measuring the distance and the orange line connects the measured

point with the closest map point.
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Figure 3.2: Point-to-point matching

Because these points (Rmap) are just a chosen subset of points on the track, it is natu-

ral to somehow connect them into a continuous line and find the segment that is closest

to the measured point. This is the point-to-curve approach. For example the orthogo-

nal distance from the measured point to the segment of the map DB is counted and the

projected point P from the closest railroad segment is selected. The nearest segment is

calculated according to equation 3.2

L∗map(Rum) = argmin
Lmap(i)∈L

( min
P∈Lmap(i)

||Rum − P||2) (3.2)

where Lmap(i) is a specific curve segment from the database, P are points in this

segment and L∗map(Rum) is the selected segment. Point-to-curve matching is shown in

Figure 3.3, where the orthogonal lines from Rum to the abscissas symbolize the distance

between the point and abscissa, the line to the closest segment is marked yellow and P

is marked by a cross.

Figure 3.3: Point-to-curve matching

A method for calculating the distance from the measured position Rum to an abscissa

for the point-to-curve matching is presented in section 3.3.1.

The third approach in map matching is the curve-to-curve matching. This technique

takes a set of several measured data and matches them (the points position or the curve
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shape, angles...) to the map database looking for the segment with minimal distance

(or difference in case of comparing other than position parameters), as shown in the

following equation

j∗ = argmin
j

(di f (ω̃k:k+N, ω j:j+N)), (3.3)

where di f (arg1, arg2) is a function evaluating the difference or distance of the argu-

ments, here the difference between the two vectors of ω in some sense. The measured

yaw rate ω̂[rad/s] is transformed from time-referenced into distance-referenced data

ω̃[rad/m] (further described in 4.1) so that it can be compared to the track curvature.

The track curvature ω is extracted from the map database, N is the number of com-

pared transformed yaw rates, j is the starting index of the compared subset of trans-

formed yaw rates and j∗ is the index of j with the best match.

Now let us introduce two methods for finding the index j∗ from the equation (3.3).

Let Iω̃(n) = [x(n), y(n), ω̃(n)]T = [Rum(n)T, ω̃(n)]T be the nth measured point specified

by the x, y coordinate and yaw rate transformed to distance-referenced curvatures ω̃

(section 4.1). This example is from a 2D projection. Let {ω̃k, ω̃k+1, ..., ω̃k+n} be a subset

of n + 1 measured ω̂ transformed into ω̃, where ω̃k+n is the actual measured yaw rate

transformed into a distance-varying variable and ω̃k is the transformed yaw rate form

n steps ago. The task is to find the corresponding subset {ωi, ωi+1, ..., ωi+n} from the

set Ω = {ω j}J
j=1, where J ≥ n and Ω is a set of curvatures from the map database.

Two possibilities of finding the optimal ω for each ω̃ are illustrated by the following

equations

j∗ = argmin
j

(
1
n

k+n

∑
l=k

ω j+l−kω̃l

||ω j+l−kω̃l||2

)
, (3.4)

j∗ = argmin
j

(
1
n

k+n

∑
l=k
|ω j+l−k − ω̃l|

)
, (3.5)

where k is the starting index of a compared set of n points and j is the starting point

of the map subset of compared n points. Then j∗ is the index of the best suiting starting

point. The reason for 2 norm in the denominator in equation (3.4) is to suppress the role

of large ω values and thus avoid matching every measured subset {ω̃l}k+N
l=k to the subset
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of map segments with the largest values. The equation (3.5) shows the computation

of minimum absolute averaged error (MAAE). The curve-to-curve matching using the

index j∗ than becomes

C∗map(Iω̃) = Cmap(j∗). (3.6)

Note that the curvature of the map can be determined as κ(p) =
∥∥∥(I− ċ(p)ċ(p)T

||ċ(p)||22

)
· c̈(p)
||ċ(p)||22

∥∥∥,

where c is the parametrization of a regular curve P 7→ R3, where P = [ps, pe] ⊂ R.

The three approaches (point-to-point, point-to-curve, curve-to-curve) differ by accu-

racy, computational complexity, and also fields of application.

Not surprisingly, the point-to-point method has the lowest computational complex-

ity as the only task is to calculate distances from Rum to the map points and pick the

smallest. The drawbacks of this method are straightforward. In case of the track con-

sisting of abscissas of length L, than the average difference between the result from

point-to-point and point-to-curve approach is L
4 . An illustration can be seen in Fig-

ure 3.4. The train is moving between Rmap(j) and Rmap(j + 1) with an almost constant

speed, therefore the probability of Rum being matched (point-to-curve according to min-

imal distance) to any point of the abscissa is equal for all the points. This means that the

train position has a uniform probability distribution. The biggest difference between

the position matched by these methods is L
2 . The places that have the average distance

from Rmap(j) and Rmap(j + 1) are marked by green points.

L

L
2

L
2

Rmap(j) Rmap(j + 1)

Figure 3.4: The average error

A problem can occur in case that there are multiple railroads close to each other. The

solution to this problem could be taking the train dynamics into account.

The point-to-curve approach, in its simplest application of matching Rum to the near-

est point of the abscissa, has higher complexity than the previously analyzed method.

Finding the nearest point out of all abscissas would demand high computational power
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and would be very ineffective. Instead, it is possible to restrict the number of segments

for projection by calculating the point-to-point method first and trying to project Rum to

several closest segments. Another way to reduce the computational complexity of the

algorithm is to only consider segments among a defined area around the lastly matched

segment.

The advantage of this method, compared to the point-to-point approach, is the as-

sumption of a continuous map (instead of discrete points) and thus higher accuracy. A

problematic situation can occur where multiple routes meet, e.g. on railroad crossings,

as can be seen in figure 3.5.

?

Figure 3.5: Problem on railroad crossings

The curve-to-curve approach is more complex than the two mentioned previously.

The definition of segments difference itself can be a challenge. Multiple segments are

compared at once, thus the number of compared pairs is the number of map segments

J minus the number of compared transformed yaw rates minus 1 i.e. (n + 1−1 = n)

multiplied by the number of ω̃ compared at each iteration n + 1, that is (J− n) · (n + 1).

It is possible and perhaps even necessary to take the train dynamics into account for

the sake of maintaining the computational complexity within reasonable limits. When

the history of the train position and orientation is used, more accurate results can be

expected. The problem illustrated in Figure 3.5 is solved by this method as soon as the

train reads the first data after the crossing.

3.3.1 Point to line distance calculation

The point-to-curve map matching is mostly done by selecting the segment with the

least orthogonal distance from the filtered point. Let Rum = [Rumx , Rumy ] be the receiver

position, Ri
map = [Ri

mapx , Ri
mapy ] and Ri+1

map = [Ri+1
mapx , Ri+1

mapy ] the end points of the ith
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abscissa, and P = [Px, Py] the point of the orthogonal intersection from Rum to the line t

containing the abscissa defined by points Ri
map and Ri+1

map. This situation is illustrated in

Figure 3.6. The general equation of a straight line can be written as

y = kx + q, (3.7)

where x and y are the coordinates of any point of the line, k is the slope and q deter-

mines the value when the line intersects the y axis. Then the directional vector u from

Ri
map to Ri+1

map is defined as

u = [Ri+1
mapx − Ri

mapx , Ri+1
mapy − Ri

mapy ]
T (3.8)

An auxiliary point Rum is defined as [Rumx , Rumy − q]T.

The orthogonal projection of the point Rum onto a line defined by a projection matrix

as shown in the following equation

P = u(uTu)−1uTRum + [0, q]T. (3.9)

The orthogonal distance between Rum and the ith abscissa is equivalent to the dis-

tance between Rum and P. If the point P does not lie between the points Ri
map and Ri+1

map,

the distance from these two points is counted and the smaller is selected as the distance

between P and the ith map segment. Both these cases are shown in Figures 3.6 and 3.7.
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Figure 3.6: Orthogonal projection
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Figure 3.7: Finding the nearest end point



Chapter 4

Methods used for train positioning via

Map Matching

In this chapter, several methods of map aided train positioning will be presented to-

gether with mathematical models of the train movement and the railroad. Since it is

assumed that the train is not going through a very soaring landscape, it is possible to

approximate the 3D position with its 2D projection. In that case, the train position Ru in

the ENU coordinate system becomes [E, N] and no information from the accelerometer

z-axis or gyroscope roll angle is used. The map database of the railroad can accordingly

provide the 2D projection and a database of level 2 (described in section 3.2) will be

used for this purpose.

The train dynamics and the measurement can be described by the equations (4.1)

xk+1 = fk(xk) + wk

zk = hk(xk) + vk,
(4.1)

where xk ∈ Rn is the state vector and zk ∈ Rm is the measured system’s output,

fk : Rn 7→ Rn and hk : Rm 7→ Rm are differentiable vector-valued nonlinear functions

and wk and vk are unknown white noises [10]. The initial condition for random variable

xk and the probability density functions of white noises wk and vk are

x0 ∼ N(x0 : x̂′0, P0)

wk ∼ N(wk : 0, Qk)

vk ∼ N(vk : 0, Rk).

(4.2)

24
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4.1 Train positioning using DR and Map Matching

The main idea of this technique is to use the gyroscope and odometer for calculating

the track curvature and finding the segment with the corresponding curvature on the

map. This process is illustrated by the diagram in Figure 4.1. The algorithm is tested on

simulated data in section 5.1.

Gyro

Odo

Sensor Fusion
ω̂

v

Comparison

Map

ω

ω̃
x̂
map
k , ŷ

map
k

Figure 4.1: Diagram of position estimation with a map DB

As mentioned in the introduction, a dead reckoning system cannot be used as a po-

sition estimator alone but may support the GNSS during outages as it does not depend

on any external signal that may be blocked. Although the error between the true and

measured value gets larger over time and needs to be calibrated, for short time inter-

vals the DR system error is small enough to give a sufficiently precise estimate. In this

section, a method, mentioned in the article [17], for calculating the vehicle position us-

ing the odometer, gyroscope, and a map, that could be used to support GNSS, will be

introduced.

One possibility is to measure the yaw rate over time and use this data to estimate

the North, East, and up velocities [VN(t), VE(t), VU(t)] as shown in equation (4.4) [17].

The vehicle speed needs to be computed first and the odometer measurements can be

used for this purpose. The yaw (heading) angle Ψ(t) is calculated from the yaw rate by

the following equation

Ψ(t) = Ψ(tk) +
∫ t

tk

ω̂(τ)dτ, (4.3)

where ω̂ is the measured yaw rate and tk is the last point where the yaw angle was

determined.

Now that the vehicle speed is known, the mathematical relationship for calculating

the velocities in the North, East and up directions are shown in the following equation
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
VN(t)

VE(t)

VU(t)

 ≈


cos(Ψ(t)) −sin(Ψ(t)) 0

sin(Ψ(t)) cos(Ψ(t)) 0

0 0 1




v(t)

0

0

 =


v(t)cos(Ψ(t))

v(t)sin(Ψ(t))

0

 , (4.4)

where v(t) is the speed.

The North, East and up position [RN(t), RE(t), RU(t)] can be obtained by integrating

the velocity as shown in equation 4.5


RN(t)

RE(t)

RU(t)

 ≈


RN(tk)

RE(tk)

RU(tk)

+


∫ t

tk
v(τ)cos(Ψ(τ))dτ∫ t

tk
v(τ)sin(Ψ(τ))dτ

0

 . (4.5)

This algorithm for computing the N and E coordinate was tested on simulated data

and the results are illustrated in Figure 5.1.

To obtain the latitude (φ(t)) and longitude (λ(t)), we integrate the North and East

position as follows:

φ(t) ≈ φ(tk) +
∫ t

tk

RN(τ)

REB
dτ

λ(t) ≈ λ(tk) +
∫ t

tk

RE(τ)

REBcos(φ(t))
dτ

φ(t) 6= π

2
± nπ, n = 0, 1, ...,

(4.6)

where REB is the distance between Earth center and the vehicle (approximately the

Earth radius).

Matching an INS (and odometer) measurement to a map can be done by comparing

the several last yaw rate measurements with the track curvature from a map database

[17]. To be able to compare the measured yaw rate with the curvature from a map, two

main modifications have to be done.

The first step is to convert the measured yaw rate ω̂ which is time-varying [rad/s] to

a variable that is distance-varying [rad/m], so that both these variables, describing the

track curvature can be compared and matched according to the criteria (3.4) and (3.5).

This transformation, assuming that the speed is greater than zero, is expressed by the

following equation
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ω̃(kT) ≡ ω̂(kT)
v(kT)

, k ∈N/{n, v(nT) = 0} (4.7)

where ω̃(kT) is the track curvature computed from the measured yaw rate at the

time step kT, T is the sampling period, v(Tk) is the speed measured by the odometer

in the kth sampling period. Then, ω(dl) can be computed as the curvature related to

the traveled distance dl (distance traveled in tl) that is chosen from ω̃(kT) so that d(kT)

would be as close to dl as possible.

The next step is to find the transformed measured yaw rates ω̃ corresponding to the

map segments with curvature ω so that they can be compared. Assuming that we have

more gyro measurements than there are map segments, the task is to find the index j of

ω̃j when the train crosses from the ith segment to the i + 1th. This can be done using the

odometer. Let the map segments be L meters long. (The algorithm works equivalently

for variable spacing, this is for the facilitation of the example). The problem is illustrated

in Figure 4.2.

ω̃j
ω̃j+3

ω̃j+5
ω̃j+8L

2L 3L

dj+1dj

dj+3

dj+5

ω̃j+1 . . .
. . .

. . .
. . .

. . .
. . .

ωi ωi+1

ωi+2

Map

Real track

ωi+3

Figure 4.2: Finding the segment borders

One specific color unites the transformed yaw rate ω̃j and distance dj, traveled dur-

ing the Tj
th sampling period, belonging to one map segment with the curvature ωi. This

curvature is signed to the segment starting point.

The counter of the odometer adds up the traveled distance during the sampling

periods. Let us define dodo(ts, te) as the distance measured by the odometer between the

time instants ts to te, where s and e are the starting and ending indices of the time steps.

The traveled distance is then counted as

dodo(ts, te) =
e−1

∑
j=s

dj,

where dj is the distance traveled during the jth sampling period.
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The operator div(dodo(ts, j), L)1 is used and the difference between

div(dodo(ts, j + 1), L) and div(dodo(ts, j), L) is calculated in order to find the index j when

the train crosses segment borders. This difference gives the number of map segments

that were crossed from the last odometer measurement. Since we presume INS data

denser than the map points, div(dodo(ts, j + 1), L)− div(dodo(ts, j), L) can be either 0 or

1.

When the difference is 1, the index j + 1 is stored as the delimiter of the gyroscope

measurements corresponding to the ith and i + 1th map curve segment border. The

curvature ω̃avg is the averaged ω̃ within the detected segment borders.

Now the map matching algorithm, described in section 3.3 - curve-to-curve match-

ing is used. For this method to be successful, the differences in track curvature must be

large enough so that the segments are distinguishable.

4.2 Sensor Integration via EKF and Point-to-Curve match-

ing

Another approach to train positioning and map matching is mentioned in [6]. It is a

method for calculating the vehicle position using the GNSS, odometer, gyroscope and

a map database by the point-to-curve approach (discussed in section 3.3). The algorithm

will be tested in section 5.2.

Sensor data are fused using the Extended Kalman Filter (EKF), further discussed

in section 4.2.1. The vehicle state equations that describe the vehicle through time are

shown in equations (4.8) - (4.18)

1div(dodo(ts, j), L) = b dodo(ts ,j)
L c
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N(k + 1) = N(k) + v(k)Tcos(θ(k))cos(Ψ(k)) + w1 (4.8)

E(k + 1) = E(k) + v(k)Tcos(θ(k))sin(Ψ(k)) + w2 (4.9)

U(k + 1) = U(k) + v(k)Tsin(θ(k)) + w3 (4.10)

Ψ(k + 1) = Ψ(k) + TΨ̇(k) + w4 (4.11)

θ(k + 1) = θ(k) + Tθ̇(k) + w5 (4.12)

Ψ̇(k + 1) = Ψ̇(k) + w6 (4.13)

θ̇(k + 1) = θ̇(k) + w7 (4.14)

∆Ψ̇(k + 1) = ∆Ψ̇(k) + w8 (4.15)

∆θ̇(k + 1) = ∆θ̇(k) + w8 (4.16)

v(k + 1) = v(k) + w10 (4.17)

S(k + 1) = S(k) + w11, (4.18)

where Ψ̇ is the yaw rate, θ̇ is the pitch rate, ∆Ψ̇ is the yaw rate offset, ∆θ̇ is the pitch

rate offset, v is the speed, S is the scale error and [w1, w2, ..., w11]
T is a vector of white

noise.

The railroad is modeled by points connected by straight lines. The position data

measured by GNSS and INS are filtered by the EKF.

The measurement of the INS is usually available more often than that of the GNSS.

A possibility is to wait for the GNSS signals and average the velocity measured by

the odometer between the two GNSS positions. Let tj and tj+1 be two consecutive

time steps when the GNSS data is received and Nj+1 be the number of INS measure-

ments between tj and tj+1. The averaged velocity that can be paired with this position

is vj+1 = 1
Nj+1

∑
Nj+1
i=Nj

vi, where N0 = 1.
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The measurement dynamics is described by the following equations

NGNSS = N(K) + e1 (4.19)

EGNSS = E(K) + e2 (4.20)

UGNSS = U(K) + e3 (4.21)

Ψ̇gyro(k) = Ψ̇(k) + ∆Ψ̇ + e4 (4.22)

θ̇gyro(k) = θ̇(k) + ∆θ̇ + e5 (4.23)

ΨGNSS(k) = Ψ(k) + e6 (4.24)

vodo(k) = v(k)S(k) + e7, (4.25)

where (4.19) - (4.21) represent the N, E, U position given by the GNSS, Ψ̇gyro and θ̇gyro

are the measured gyroscope values, ΨGNSS is the value computed from two consecutive

GNSS measurements using the relationship from equation

ΨGNSS = arctan
(

NGNSS(j + 1)− NGNSS(j)
EGNSS(j + 1)− EGNSS(j)

)
. (4.26)

After filtering the measurements by EKF, the task is to match the estimated position

in every time step to a map segment. The matching (in the 2D projection after eliminat-

ing the z-axis) is done according to the method described in section 3.3.1.

4.2.1 Extended Kalman Filter (EKF)

EKF is a filter for systems with state or measurement equations that might not be linear,

represented by the equations (4.1).

In order to use the EKF, the Jacobian matrices are computed from the state and mea-

surement equations ((4.8) - (4.18) and (4.19) - (4.25)) getting Fk(x̂′k) and Hk(x̂′k).

Hk(x̂′k) is the partial derivation of hk(xk) at the point x̂′k.

Hk(x̂′k) =
∂hk(xk)

∂xk
|xk = x̂′k. (4.27)

Similarly the linearized version of fk(xk) in the proximity of x̂k is achieved as

Fk(x̂k) =
∂fk(xk)

∂xk
|xk = x̂k. (4.28)
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The matrices Fk(x̂k) and Hk(x̂′k) for system and measurement equations (4.8) - (4.18)

and (4.19) - (4.25) are

Fk(x̂k) =



1 0 0 a14 a15 0 0 0 0 a110 0
0 1 0 a24 a25 0 0 0 0 a210 0
0 0 1 0 a35 0 0 0 0 a310 0
0 0 0 1 0 T 0 0 0 0 0
0 0 0 0 1 0 T 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1


, (4.29)

a14 = −vTcos(θ(k))sin(Ψ(k)),

a15 = −vTsin(θ(k))cos(Ψ(k)),

a24 = vTcos(θ(k))cos(Ψ(k)),

a25 = −vTsin(θ(k))sin(Ψ(k)),

a35 = vTcos(θ(k)),

a110 = Tcos(θ(k))cos(Ψ(k)),

a210 = Tcos(θ(k))sin(Ψ(k)),

a310 = Tsin(θ(k)),

Hk(x̂′k) =


1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 1 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 S v

 . (4.30)

The form of filtration estimate x̂k and approximated filtration density function co-

variance matrix Pk are shown in the following equations

x̂k = x̂′k + P′kHT
k (x̂
′
k)[Hk(x̂′k)P

′
kHT

k (x̂
′
k) + Rk]

−1[zk − hk(x̂′k)]

Pk = P′k − P′kHT
k (x̂
′
k)[Hk(x̂′k)P

′
kHT

k (x̂
′
k) + Rk]

−1Hk(x̂′k)P
′
k.

(4.31)

The prediction estimate x̂′k and approximated predictive density function covariance

matrix P′k is computed according to equations

x̂′k+1 = fk(xk)

P′k+1 = Fk(x̂k)PkFT
k (x̂k) + Qk.

(4.32)
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4.3 Positioning via GNSS, INS and similarity maximiza-

tion principle

The article [12] suggests a method that integrates GNSS and INS data for train posi-

tioning using the Cubature Kalman filter - CKF that will be discussed further in section

4.3.1. The algorithm is tested in section 5.3. Odometer, accelerometer, and Doppler radar

are used for distance calculation and validation, gyroscope (used in gyro-odometry) for

routing detection on a switch. The track model (on level 2) from section 3.2 is used.

There are two possibilities of integrating the sensors:

1. GNSS/INS enhances the odometer - In this approach the actual system with bal-

izes, used for odometer recalibration, is enhanced by GNSS/INS thus has more

information to improve the accuracy of the estimates. An advantage of the imple-

mentation of this approach would definitively be integration without disrupting

the current system.

2. GNSS/INS substitutes the odometer - Here the GNSS/INS based system replaces

the whole current system so that higher independence on a specific control archi-

tecture is achieved.

Data from all of the sensors are fused using the CKF. The final position is matched

to a track map that is taken as an absolute reference.

Let the estimated (filtered) train position in time k be described as

I`(k) = [x(k) y(k) l(k)]T = [Rum(k)T l(k)]T, where l(k) is the traveled distance. Let

Pmap = [xmap ymap lmap] be the map points from level 2. The point-to-curve map match-

ing technique (described in section 3.3) is adopted and the task of the map matching al-

gorithm is to find the position Pmatch(k) in the map database, that corresponds to Rum(k)

with maximal probability and similarity. The track map consists of abscissas with the

points from the map database as endpoints. The pattern describing the similarity of

the x, y coordinates of the potential matching points on the abscissa with respect to the

distance from the abscissa endpoints is compared with the pattern describing the simi-

larity of the x, y coordinates of the filtered position with respect to the distance from the

endpoints of the abscissa as shown in equation (4.38). The matched point Pmatch is cho-

sen as the point with maximal similarity according to the equation (4.39). The algorithm

consists of 4 steps:

1. Obtaining the data fusion position - The data from the sensors are fused and fil-

tered by the CKF. The state equations (4.8) - (4.18) and the measurement equations
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(4.19) - (4.25) are used for data fusion.

2. Acquiring the candidate map segment - (A candidate map segment is a segment

that is somehow considered to be matched to Rum.) The probability of a candidate

segment is computed by using the distance between fusion output Rum(k) and the

map points {Pmap(j)} i+N
j=i with a fixed length window of N points. The Gaussian

function base probability is then

pca(k, j) =
1√

2πσc
· exp

(
−
∥∥∥∥Rum(k)− Pmap

h

∥∥∥∥2)
, (4.33)

where σc is a parameter and h =
√

2σc is the bandwidth2.

The most probable starting point of a segment can be computed by the following

equation

Pmaps(k) = argmax
j

(pca(k, j)). (4.34)

The endpoint Pmape(k)) of the chosen segment is selected as the second most prob-

able point from the set of map points {Pmap(j)} i+N
j=i excluding Pmaps(k) using the

same equation as for Pmaps(k)).

The curve segment between Pmaps(k) and Pmape(k) is chosen as a data set for map

matching.

3. Similarity calculation and identification - Now that the segment borders Pmaps(k)

and Pmape(k) have been obtained, the matching position Pmatch(k) can be found

from this segment. The distances between Rum, Pmaps(k) and Pmape(k) are com-

puted in the North (y) and East (x) direction and the initial target model, a vector

characterizing the position of Rum relative to the abscissa endpoints, can be given

as

q̂1 = C · exp
(∥∥∥∥−x(k)− xmaps

h0

∥∥∥∥2)
, q̂2 = C · exp

(∥∥∥∥−x(k)− xmape

h0

∥∥∥∥2)
q̂3 = C · exp

(∥∥∥∥−y(k)− ymaps

h0

∥∥∥∥2)
, q̂4 = C · exp

(∥∥∥∥−y(k)− ymape

h0

∥∥∥∥2) (4.35)

where C = 1√
2πσ

is the normalization factor2, h0 is the bandwidth chosen as
√

2σ

and xmaps , ymaps , xmape , ymape are the x and y coordinates of Pmaps(k) and Pmape(k).

2This relationship does not occur in the original text



34CHAPTER 4. METHODS USED FOR TRAIN POSITIONING VIA MAP MATCHING

The track between the points Pmaps(k) and Pmape(k) can be defined by a set of

points P(n), writing Pmaps as [Pmapsx, Pmapsy] and using the directional vector

u = [Pmapsx(k + 1)− Pmapsx(k), Pmapsy(k + 1)− Pmapsy(k)] , [ux, uy], as

P(n) ∈
[

Pmapsx(k) + ux · p
Pmapsy(k) + uy · p

]
, (4.36)

where p ∈< 0, 1 > is a parameter. The candidate target model, a vector char-

acterizing the position of each point P(n) relative to the abscissa endpoints, can

be described by the same parameters as the initial target model. The model for a

candidate element P(n) is defined as

p̃1 = Cp · exp
(∥∥∥∥−xP(n)− xmaps

h0

∥∥∥∥2)
, p̃2 = Cp · exp

(∥∥∥∥−xP(n)− xmape

h0

∥∥∥∥2)
p̃3 = Cp · exp

(∥∥∥∥−yP(n)− ymaps

h0

∥∥∥∥2)
, p̃4 = Cp · exp

(∥∥∥∥−yP(n)− ymape

h0

∥∥∥∥2)
,

(4.37)

where Cp = 1√
2πσ

is the normalization factor2 and [xP, yP] are the x and y coordi-

nates of P(n). Now the similarity function can be computed as

ρ̂(n) = ρ[ p̃(n), q̂] =
4

∑
i=1

√
p̃i(n) · q̂i, (4.38)

where ρ̂ ∈ [0, 1] is the similarity between the fusion position and the candidate

model P(n). The filtered position is then matched to the point Pmatch(k) which

represents a point from all the P(n) points meeting the following criterion

Pmatch(k) = argmax
n

(ρ̂(n)). (4.39)

4. Heading validation - Once the matched point Pmatch(k) is obtained, the measured

track curvature can be validated by the curvature from the map database. Given

a certain threshold ξ, the validation has the following form

|Ψm(k)−Ψmap(k)| ≤ ξ, (4.40)

where Ψgyro(k) and Ψmap(k) are the heading at measured position and the map

matched heading.
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4.3.1 Cubature Kalman Filter (CKF)

CKF is a filter for systems that can have a nonlinear state or/and measurement equation

described as (4.1). Unlike EKF, the CKF does not use local linearization. Instead, a set

of sampling (cubature) points is generated every time step and used to approximate the

distribution function of the random variable [13]. The dimension of the state parameter

is n. Let us define the variables used in the algorithm.

ξ i =
√

n{1}i, i = 1, ..., 2n (4.41)

{1} =




1

0
...

0

 ,


0

1
...

0

 , · · · ,


0
...

0

1

 ,


−1

0
...

0

 , · · · ,


0
...

0

−1




{1} represents a complete holohedral point set with {1}i being the ith point of {1}.

There are two main steps in the CKF algorithm; the time update, where the state

prediction x′ is computed from the transformed cubature points and the measurement

update, where the current state estimation x̂, using new cubature points and the mea-

surement z, is calculated.

The CKF algorithm process is as follows:
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• Time update

1. Generating cubature points

χ
(i)
k−1 =

√
Pk−1ξ(i) + x̂k−1 (4.42)

2. Transformation of cubature points

χ
(i)
k−1 = f

(
χ
(i)
k−1

)
(4.43)

3. State prediction

x̂′k =
1

2n

2n

∑
i=1

χ
(i)
k−1 (4.44)

4. Covariance matrix of state prediction

P′k =
1

2n

2n

∑
i=1

χ
(i)
k−1

(
χ
(i)
k−1

)T
− x̂′k x̂

′T
k + Qk−1 (4.45)

• Measurement update

1. Calculating cubature points

χ
(i)
k =

√
P′kξ(i) + x̂′k (4.46)

2. Transformation of cubature points

z(i)k = h
(

χ
(i)
k

)
(4.47)

3. Measurement prediction

z′k =
1

2n

2n

∑
i=1

z(i)k (4.48)

4. Covariance matrix of innovation

Pzk =
1

2n

2n

∑
i=1

z(i)k

(
z(i)k

)T
− z′kz

′T
k + Rk (4.49)

5. Cross-correlation variance matrix

Pxkzk =
1

2n

2n

∑
i=1

χ
(i)
k

(
z(i)k

)T
− x̂′kz

′T
k (4.50)
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6. Calculation of gain matrix of filter

Kk = Pxkzk P−1
zk

(4.51)

7. Estimation of current state

x̂k = x̂′k + Kk(zk − z′k) (4.52)

8. Calculating covariance matrix of error

Pk = P′k + KkPzk KT
k (4.53)



Chapter 5

Simulations

In this chapter the methods from sections 4.1 and 4.2 were tested in MATLAB, using

simulated data, and evaluated. The data were received as a part of the assignment.

The MATLAB function ECEF2ENU(re f Point, ECEFpoint) was used for ECEF to

ENU transformation of the coordinates, where re f Point is the origin of the local ENU

system with the geodetic coordinates φ, λ, h and ECEFpoint are the coordinates of the

point RECEF
u that is to be transformed (discussed in chapter 2).

5.1 Numerical illustration of the method Train position-

ing using DR and Map Matching

The method from section 4.1, that was originally mentioned in [17] was tested on sim-

ulated data that were generated without any additional noise. From the gyroscope

only the yaw rate was considered. The map database consists of North and East points

spaced at 10m intervals with the corresponding curvature.

First, the odometer and gyroscope were used for track reconstruction without the

map to show how precise these sensors are. The yaw (heading) angle Ψ from the gyro-

scope was used to determine the train turning. By using Ψ and the speed v, given by

the odometer, it is possible to reconstruct the vehicle trajectory as shown in Figure 5.1.

The North and East coordinates are obtained from the equation (4.5).

38



5.1. NUMERICAL ILLUSTRATION OF THE METHOD FROM SECTION 4.1 39

-18000 -16000 -14000 -12000 -10000 -8000 -6000 -4000 -2000 0 2000

E[m]

-2.5

-2

-1.5

-1

-0.5

0

N
[m

]

×104The position from gyro and odo compared with ground truth in ENU

beginning
position from the odometer and gyro
ground truth

Figure 5.1: Position by DR sensors

The squared error of the real (ground truth) position and the position from DR is

plotted in Figure 5.2.
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Figure 5.2: Squared error of dead reckoning sensor estimate
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It is clear that dead reckoning does not provide accurate position in long terms (due

to the Earth rotation) and needs to be corrected by a reference positions if used as a

source of the North and East position.

In Figure 5.3 an example of the trajectory given by the odometer and gyroscope,

corrected by the GNSS ENU position every 1500 samples, is plotted with the ground

truth segments.
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Figure 5.3: Zoomed in corrected DR position

As the gyroscope provides more frequent data than the map database, it is necessary

to reduce (average) the number of measured yaw rates to match the map database. This

was done as mentioned in 4.1. Now the averaged yaw rate ω̃avg can be matched to a

segment curvature ω minimizing the criteria (3.4) and (3.5).

The number of compared map segments in each iteration is (J− n) · (n + 1), where J

is the number of compared map segments and n + 1 is the number of transformed yaw

rates to be compared.

Results

The percentage of correctly computed map curve segments using the equation (3.4) is

41.43%. The results of MAAE algorithm are better, for our simulated track the percent-
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age of MAAE correctly determining the segments is 55.78% for the tested data when

comparing the curvature of 20 consecutive map and gyro segments. This percentage

drops to 29.14% when the curvature of only 10 segments is compared. If the options

of the train position are constrained to the surrounding 200 segments (100 behind and

100 in front of the actual train position) the percentage of the correctly estimated posi-

tion rises to 75.06% for comparing 20 segments and 59.99% for 10 segments. The time

needed for the estimation also drops dramatically (by 96%).

Certain inaccuracies resulting from the conversion form ω̂ to ω̃ and choosing the

curvatures ω̃j to be averaged into ω̃avg have to be considered, thus the map curve seg-

ment was declared as matched correctly if matched to the map segment with the same

index j or j± 1.
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Figure 5.4: Illustration of wrong segment estimation

Figure 5.4 shows four cases when the correct segment was not found by the MAAE

algorithm restricted to 200 map segments. It is clear that the function may have more
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low values that relate to other similarly curved segments. One possible solution to this

problem is either to compare more segments or to restrict the area where the corre-

sponding map DB segments are searched from. Another possibility would be to inte-

grate more sensors. The simulations results confirm the presumption that this method

gives satisfactory results only for largely varying track curvatures.



5.2. NUMERICAL ILLUSTRATION OF THE METHOD FROM SECTION 4.2 43

5.2 Numerical illustration of the method Sensor Integra-

tion via EKF and Point-to-Curve matching

The method from section 4.2, that was originally mentioned in [6] was tested. The data

from GNSS, yaw, and pitch gyroscope and odometer were used and filtered by the EKF

to obtain the filtered estimate of the receiver position. Simulated data of the same trajec-

tory as for simulation described in the previous section were used together with GNSS

data, to which zero mean Gaussian white noise was added so that the efficiency of the

filter could be tested. ΨGNSS was computed according to equation (4.26).

The following matrices

Q =



10−5 0 0 0 0 0 0 0 0 0 0
0 10−5 0 0 0 0 0 0 0 0 0
0 0 10−5 0 0 0 0 0 0 0 0
0 0 0 10−2 0 T 0 0 0 0 0
0 0 0 0 10−2 0 T 0 0 0 0
0 0 0 0 0 10−1 0 0 0 0 0
0 0 0 0 0 0 10−1 0 0 0 0
0 0 0 0 0 0 0 10−7 0 0 0
0 0 0 0 0 0 0 0 10−7 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 10−5


(5.1)

(5.2)

R =


50·DOP 0 0 0 0 0 0

0 50·DOP 0 0 0 0 0
0 0 5200·DOP 0 0 0 0
0 0 0 10−2 0 1 0
0 0 0 0 10−2 0 1
0 0 0 1 0 10−2 0
0 0 0 0 0 0 10−2

 (5.3)

(5.4)

were taken from [6] and P0 was initialized as zeros(11, 11) as the starting position is

known in this simulation. DOP is an acronym for Dilution of Precision, the number that

characterizes the geometrical distribution of satellites and affects the level of trust that

can be placed in each satellite. The DOP values were part of the simulated data.

The state equation was initialized as

[GNSSENU(1)T , ΨGNSS(1) , θGNSS(1) , Ψ̇(1) , θ̇(1) , 0 , 0 , vmean(1) , 0]T. (5.5)

All these values are taken from the first time step the GNSS was available. ΨGNSS(1)

was computed according to equation (4.26) and θGNSS(1) was computed using the fol-

lowing equation

θ = atan
(

GNSSU(2)− GNSSU(1)
||(GNSSE(2)− GNSSE(1), GNSSN(2)− GNSSN(1))||2

)
, (5.6)
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Ψ̇(1) and θ̇(1) are the first gyroscope measurements and vmean(1) is the first mea-

sured odometer speed.

Results

The filtered position was matched to the closest point of the closest map segment ac-

cording to the algorithm described in section 3.3.1. The map matching using the min-

imal distance between measured point and abscissa is shown in Figure 5.5 for several

points of the filtered position estimate.

Figure 5.5: Map matching

The time-average of squared errors between the estimated and ground-truth posi-

tion of the [N, E]T coordinates is [2.99m2, 4.70m2]T and [1.85m2, 1.38m2]T for the EKF-

filtered and the map matched position. The time-average of squared errors of the dis-

tance between the filtered and the ground-truth position is 7.70m2 and 3.23m2 for the

matched and the ground-truth position.

An experiment was conducted in order to find out how the EKF can cope with miss-

ing or senseless data. When the odometer measurements were set to zero from the 100th
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time step further, the time-average of squared errors between the estimated and ground-

truth position of the [N, E]T coordinates became [3.09m2, 4.58m2]T and the time-average

of squared errors of the distance between the filtered and the ground-truth position

was 8.02m2. The speed variance (in the filtration covariance matrix P(10, 10)) became

14.70m2 at the end of the simulation instead of 1.35m2 with the odometer.

When the same experiment was conducted with the elimination of the yaw gyro-

scope measurement, almost no difference from the original error was measured. Time-

average of squared errors between the estimated and ground-truth position of the [N, E]T

coordinates is [2.91m2, 4.74m2]T. The time-average of squared errors of the distance be-

tween the filtered and the ground-truth position was 7.66m2. Also the yaw gyro vari-

ance did not change.

On the other hand, when the GNSS North or East measurements were faulty, the

EKF was not capable of getting somewhat close to the real position with the estimates.

When the GNSS Up measurement was eliminated, the averaged square error in the

[N, E]T coordinates was [4.16m2, 4.26m2] and the averaged distance was 8.42m2. The Up

variance did not change significantly.

5.3 Numerical illustration of the method Positioning via

GNSS, INS and similarity maximization principle

The simulation of the method from section 4.3, originally mentioned in [12], is described

and evaluated in this section. The same data as for simulation in the previous section

(GNSS, odometer, gyroscope) were used including the added white noise to the GNSS

measurement. Unlike the original article, nor the accelerometer nor Doppler radar were

used in the simulation in order to gain data for comparing this method with the method

mentioned in 4.2.

The Cubature Kalman filter was adopted to process the measured data. The state

equations (4.8) - (4.18) were utilized and initialized as (5.6) as in the previous method.

The state noise covariance matrix Q was also taken from the previous method - (5.1).

For accomplishing satisfactory results, the measurement noise covariance matrix has to

be chosen ”small”, otherwise the filter tends to straighten the curves in the trajectory.

Therefore the covariance matrix R was chosen as 0.001 · I7×7 meaning that the mea-

surement can be trusted and that less weight should be placed in the model dynamics,

describing the movement along a straight line.
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Results

The map matching technique, mentioned in [12] was applied. Several values of σ were

tested, as shown in Table 5.1, and σ = 4 was chosen as the best parameter. In Figure 5.6

it can be seen that various σ values result in choosing different matched point Pmatch.

σ 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

error in [E,N]m2 [6.62, 6.61] [6.57, 5.42] [6.42, 4.4] [6.07, 3.55] [5.38, 2.94] [4.27, 2.62] [2.98, 2.57] [2.26, 2.69] [2.23, 2.88] [2.59, 3.09]

distance from GT m2 13.24 11.99 10.82 9.63 8.32 6.89 5.55 4.95 5.11 5.68

Table 5.1: The errors depending on σ
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Figure 5.6: Finding the best σ

The matching of several filtered points positions to a map according to this technique

with the parameter σ = 4 is shown in Figure 5.7.
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Figure 5.7: Map matching

The time-average of squared errors of the position from CKF in E, N coordinates

is [2.12m2, 6.63m2] and the average distance between the true and the estimated posi-

tion is 8.74m2. After map matching the time-average of squared errors of the position

E, N coordinates is [2.26m2, 2.69m2] and the average distance between the true and the

matched position is 4.95m2.

The heading validation, mentioned in the original article, was done by comparing

the yaw angle calculated from the yaw rate measured by the gyroscope from equation

(4.3) with the heading angle computed from the map points as

ψmap = atan

(
|Ri+1

mapy −Ri
mapy |

|Ri+1
mapx −Ri

mapx |

)
, (5.7)

with the variables Rmapx and Rmapy explained in 3.3.1.

Unfortunately, this validation was not successful probably due to great inaccuracies

in the computation of heading angle Ψgyro.

Instead, the transformed yaw rate ω̃ (the transformation was done using equation

(4.7)) was compared to the track curvature ω of the segment to which Rum was matched.

This validation is shown in Figure 5.8 together with the compared map curvature

and the speed of the train, which has a big impact on the accuracy of yaw rate measure-
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ment. The estimate is marked as ”validated” if |ω̃(k)−ω(k)| ≤ 0.3|ω(k)|.
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Figure 5.8: Validation of map matching

5.4 Method evaluation

The first method, Train positioning using DR and Map Matching, that uses only gyro-

scope, odometer data, and a level 2 map database (section 3.2), can be used for substitu-

tion of methods that use the GNSS in places, where the GNSS signal is blocked or poor

quality. The possible map segments, where the train may be localized, must be very

constrained both to cut down the time needed for the computation and to reduce the

chance of the position being incorrectly matched to a segment with a curvature similar

to the correct one. The time needed for the matching of one set of transformed measured

yaw rates is almost proportional to the number of map segments that are considered for

matching.
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When the train position was constrained to the 200 surrounding segments (which

gives 2km in case of segment length 10m), the percentage of correctly estimated seg-

ments reached over 75%. The main advantage of this method is the independence from

the GNSS.

For the other two methods the GNSS, yaw and pitch gyroscope, and odometer data

together with a map database were used. There is no need to constrain the area where

the train may be situated. From these two methods, the faster and more accurate (in

the sense of minimal distance from ground truth train position) was the method Sensor

Integration via EKF and Point-to-Curve matching. The system dynamics and mea-

surement equations need to be known as well as the covariance matrices of the state

and measurement noises, that have to be Gaussian independent random processes with

zero mean.

The EKF seems to be a good solution for the nonlinear state and measurement equa-

tions, presuming that the initial position of the train is known. Compared to that, the

CKF, used in the method Positioning via GNSS, INS and similarity maximization

principle seems like an unnecessarily complicated and slower solution with worse re-

sults. Also the map matching technique used in this method does not achieve as good

results as matching according to minimal distance. A recapitulation of the results (time-

average of squared errors) of these two methods is in Table 5.2.

EKF EKF - map matching CKF CKF - map matching

error in [E,N] m2 [2.99, 4.70] [1.85, 1.38] [2.12, 6.63] [2.26, 2.69]

distance from GT m2 7.70 3.23 8.74 4.95

Table 5.2: Errors of methods in sections 4.2, 4.3



Conclusion

The thesis is aimed to analyze, and test methods for train positioning using map match-

ing. First, the sensors that are used in these methods were described together with their

models. The coordinate systems in which the sensors measurements are given are pre-

sented. Subsequently, the train map database and map matching were discussed.

Next, three methods of train positioning via map matching were described with the

necessary filtering and map matching mathematical background. The firstly described

method, Train positioning using DR and Map Matching, uses data sensors other than

GNSS receivers and can be used to aid the GNSS or for train positioning in an envi-

ronment, where the GNSS signal is unavailable or corrupted. The other two methods,

Sensor Integration via EKF and Point-to-Curve matching and Train positioning us-

ing the GNSS and INS data and similarity maximization principle, take advantage

of all the mounted sensors and fuse them by a nonlinear filter. The advantage of the

last-mentioned method is the usage of the Cubature Kalman filter that does not require

local linearization at the price of higher computational complexity. Each method uses a

different map matching technique.

All these methods were implemented and tested in MATLAB. The method Train po-

sitioning using DR and Map Matching does not provide sufficiently accurate estimates

under standard conditions. The condition for the application of this method is a greatly

varying train track curvature or/and an additional positioning technique. The methods

Sensor Integration via EKF and Point-to-Curve matching and Train positioning using

the GNSS and INS data and similarity maximization principle provide more accurate

estimates and could be considered for direct use in rail automation.

50
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The future work could include finding and testing more methods of train position-

ing, for example using the particle filter to replace the EKF or CKF or a different method

for map matching. A detailed analysis of sensor errors could be carried out. Implemen-

tation in a programming language that would allow faster computation would be a

necessary step before testing during operation. Testing the algorithms on real data with

diverse noises would be necessary in order to develop a method that could be used in

safety critical applications.
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