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Anotace

Tato diplomová práce se zabývá některými zobecněnými úlohami nelineárńı filtrace, které

se vyskytuj́ı v reálných situaćıch při sledováńı pohybuj́ıćıho se objektu. Konkrétně se jedná

o připuštěńı nedetekováńı objektu, př́ıtomnost falešných měřeńı, či připuštěńı neexistence

objektu. Tato zobecněńı jsou kĺıčová pro úlohy sledováńı v́ıce objekt̊u, kterým je zde kladen

zvláštńı d̊uraz. Tato diplomová práce si bere za ćıl seznámit čtenáře s př́ıstupy k modelováńı,

s potřebným matematickým aparátem a se základńımi filtračńımi algoritmy. Prezentované

koncepce jsou srovnány jak z teoretického, tak z praktického pohledu. Konkrétně je disku-

tována aplikace na sledováńı polohy objekt̊u na videu. Implementace je řešena pomoćı

gaussovských směśı.

kĺıčová slova: nelineárńı filtrace, sledováńı v́ıce ćıl̊u, asociace dat, náhodné množiny, bodové

procesy

Annotation

This thesis addresses some generalizations of the nonlinear filtering problem that appear

in real world scenarios when tracking moving objects. In particular, the generalizations

include admittance of the object being undetected, presence of extraneous measurements, or

assumption that the object is not necessarily present. The generalizations are the key in the

area of multiple target tracking, to which a stress is laid. The goal is to present the modeling

approaches, the necessary mathematical tools, and the resulting basic filtering algorithms.

The concepts are compared in both theoretical and practical points of view. Specifically, a

visual tracking application is discussed. Gaussian sum implementations are used.

keywords: nonlinear filtering, multiple target tracking, data associations, random sets,

point processes
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CHAPTER 1

Introduction

Tracking of moving objects has been a topic in a large variety of practical interests such

as surveillance, defense, positioning and navigation, autonomous vehicles, computer vision

and air traffic control. Today, tracking problems often include phenomena such as multiple

targets1 of different nature and behavior, multiple sensors, sensor faults, and many others.

See for example [1, 2, 3, 4, 5] and references therein. Algorithms used to deal with such

problems are usually beyond the classic textbook-level of the optimal filtering theory [6]. To

establish a connection between the theoretical basis and real tracking scenarios, we could

look back into the history of target tracking.

In the beginnings, the aim was to solve a problem of tracking exactly one object present,

given measurement data. Ever since the early works of Wiener, and Kolomogorov, the

task has been reformulated and addressed with various assumptions and concepts. About

twenty years after the Wiener’s rather measure theoretic approach, Kalman [7] has pushed

the theory forward, introducing a state space approach for a specific linear problem. After

further generalizations, the optimal nonlinear estimation/filtering theory emerged, based on

Bayesian inference [8]. This theory, which today became a textbook-level [6, 9], settled down

a standardized approach for various problems. Tracking moving object is addressed to be

such a problem. Research and textbooks often deal with a solution to its nonlinear basis

with techniques such as the Gaussian sum filtering [10], extended and unscented filtering

[11, 12], sequential Monte Carlo techniques, point mass filtering [13] and other approaches,

see for example [14, 15, 16]. In this thesis, we take the solutions to the underlying nonlinear

basis for granted. We will build upon the general case, while dealing with another research

direction, inspired by requirements of qualitatively different applications.

Other research is dedicated to solving rather practical tracking scenarios, trying to deal

with more relaxed assumptions, or generalizations to the classic problem of target tracking.

In other words, in the real-world scenarios, the nature does not always fit into the single-

target Bayesian filtering framework. Such a case has risen in the late seventies, when [17,

1The terms targets and objects are assumed to have the same meaning and will be used interchangeably.
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18, 19] proposed methods to solve the problem of tracking multiple objects in cluttered

environment, which has emerged into a new research direction, today referred to as multiple2

target tracking (MTT). Originally, this problem was solved rather heuristically, forming the

so-called data association hypotheses. The Multiple hypothesis tracking (MHT) approach

has been established in [17, 18, 19], and reviewed later in [20]. Both the moving objects

and measurements were modeled as random tuples of vectors. Later, in the mid-nineties,

Mahler [21] introduced a new mathematically tractable approach to modeling random finite

sets of vectors, that gave rise to a multi-target case of the Bayesian framework. Recently, the

Mahler’s approach has gained a considerable research interest and many appealing algorithms

has been derived [22]. Also, another approach to modeling targets as sets, referred to as the

point process approach, has been introduced by Streit [23, 24, 25], and also others [26], lately.

A form of animosity has originated in the field, since the approaches of Streit’s and Mahler’s

differ mostly in phenomenological thoughts, such as Streit’s modeling of ”clutter target”.

Mahler saw these concepts (and also other aspects) as false and improperly attributed, and

he released his scientific criticism in an arXiv paper [27].

Various books and number of papers have been dedicated to the introduced research

direction. In fact, considerably general real tracking scenarios concerning multiple target

tracking have been widely considered, such as multi-sensor multi-target tracking, extended

object tracking, tracking based on intensity measurements3 or other type of measurements,

and others4. For a novice in this field, it may be hard to grasp the main concepts of the

multi-target tracking. A possible solution might be a free online course on edX, introduced

in mid-2019 [28]5. This thesis is partially inspired by this online course, but aims to deepen

the mathematical insight, i.e. to offer a comprehensive introduction to the underlying math-

ematics, for the reader to be able to understand the derivation techniques of various state-

of-the-art filters. Note that we aim to give an appropriate introduction namely to tracking

of multiple moving objects, stressing the connection to tracking a single moving object6.

In particular, this thesis aims to cover the basic ideas, such as modeling undetection7

of a target, introducing an extraneous ”false alarm” measurements called the clutter, and

2The terms multiple and multi, when referring to the target tracking, will be used interchangeably.
3Known as the track-before-detect (TBD).
4Note that the real practical applications of MTT is often classified.
5The course consists of lecture videos, which are also uploaded on YouTube to be freely available.
6This should justify why this thesis is called simply tracking of moving object and not tracking of multiple

moving objects.
7Undetection (also called missed detection) is an event such that an existing object have generated no

measurement at a particular time instant.
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letting a target to be randomly switching on/off 8. These constructions are key in the area

of multi-target tracking, for which an idea of approximating the targets to be independent

and identically distributed (i.i.d.) is discussed. The stress is laid on the foundation of

the practical multiple target filters. That is, the approaches, the underlying mathematical

models and their application. Various notes are given to establish basic connections to more

general cases described above. Note that attempting to keep the mathematics simple and

easy to understand, the rigor may be slightly reduced. In such case, it is noted and references

to appropriate literature are provided.

The thesis is organized as follows. In Chapter 2, the theoretical foundations are given

for both the single-target and multi-target modeling. In particular, the classical filtering

theory is summed up in Section 2.1, the introduction to modeling and treating random

finite sets (RFS) especially using the finite set statistics (FISST) is given in Section 2.2,

and a general Gaussian sum filtering principles are established in Section 2.3. The following

three chapters are dedicated to the derivation of basic filtering algorithms, gradually relaxing

assumptions of the classical filtering theory. In Chapter 3, we deal with the assumptions

of target undetections and the presence of clutter. The data association hypotheses are

introduced and the general single-target special case of the multiple hypothesis tracking

(MHT) algorithm is derived. In Chapter 4 an assumption that the target is randomly

switching on/off is added. This case is modeled using the FISST, yielding the Bernoulli

filter. In Chapter 5, generalizations to tracking multiple targets is discussed, leading to the

so-called PHD, or intensity filter. This case is modeled rather heuristically and intuitively,

leaving the FISST-based derivation for an appendix. Also, an outlook of MTT is given to

deepen the insight to the literature and related work. Next, in Chapter 6, an application to

tracking objects from videos is discussed, providing a practical comparison of the algorithms.

The thesis concludes in Chapter 7. Useful information and insights are provided in the

following appendices.

8Such object will be referred to as Bernoulli object.
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CHAPTER 2

Theory Preliminaries

In this chapter, the mathematical foundations needed to understand the derivations in the

following chapters are given. As was stated in the introduction, in this thesis, we limit our-

selves to a special case of the tracking problem, frequently appearing in the MTT literature.

That is, we deal only with the so-called point objects1 that all obey the same transition

process, and point measurements that arrived from a single source2. We model discrete time

tracking case, and we assume centralized data processing3.

In particular, we assume the moving objects to be sufficiently modeled as points in some

vector space X ⊆ Rnx , i.e. we say that xk is a single-target state-vector at the discrete

time step k ∈ N0, if xk ∈ X , and if xk completely characterizes the physical target at the

particular time k. We will call X the single-target state space. Also, the measurements are

assumed to be points in some vector space Z ⊆ Rnz . Recalling the term point objects, it

is to say we assume that no more than one measurement may be generated by a particular

object.

Following the classical filtering theory, we model the targets to be non-deterministic, i.e.

we describe them with probability measures, or densities. The goal is to find a probabilistic

representation of the targets, given all measurements available, i.e. up to the present time

instant k.

Single object modeling and the classic filtering theory are reviewed in Section 2.1, followed

by tools to model the generalized scenarios. To grasp a graphical intuition, a possible single

target tracking scenario with position measurements and assumptions of the classic filtering

theory is contrasted with a multi-target tracking scenario in Fig. 2.1.

1For tracking of extended objects see e.g. the survey [29].
2For sensor-focused discussion, such as track before detect (TBD) and multi-sensor fusion, see e.g. [1, 2,

4, 30].
3For distributed estimation see e.g. the survey [31]
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Classic Filtering Theory

Multi-target Tracking Theory

undetection

known initial description

Fig. 2.1: Illustration of the scenarios.

2.1 Classic Single-target Modeling

In this chapter, we review the classical filtering theory as depicted in Fig. 2.1, i.e. it is

assumed that the object exists for the whole tracking time horizon, its initial description is

known, and a measurement at every time step is a single vector, known to be generated from

the object.

2.1.1 Uncertainty Representation

Let the (moving) single-target be a stochastic process {ξk}kFk=0 continuous in values, and

discrete in time, such that xk ∈ X ∀k is a realization of the random vector ξk. Denote

the probability measure of ξk by Pξk(S), where S is an arbitrary Borel subset of X . If

the measure is absolutely continuous, then by the Radon-Nikodým theorem, its probability

density function (PDF) pξk(xk) exists, such that the probability Pr(ξk ∈ S) of ξk being in

S ⊆ X can be computed as

Pr(ξk ∈ S) = Pξk(S) =

∫
S
dPξk(xk) =

∫
S
pξk(xk)dxk (2.1)

In the following, we assume a PDF always exists. From now on, the notation for the random

vectors at their measures and densities will be omitted for convenience. Moreover, we will

abuse the notation ξk = xk for the sake of simplicity.

6



2.1.2 Statistical Moments

Omitting the time index, the first and second statistical moments of a random vector x are

the mean m and the covariance matrix P, defined as

m = E[x] =

∫
X

x p(x)dx (2.2)

P = E[(x−m)(x−m)T ] =

∫
X

(x−m)(x−m)Tp(x)dx (2.3)

where E[·] denotes the expectation operator and T stands for matrix transpose. They repre-

sent summary statistics of the random vector x. The mean is the expected realization of the

random vector and the covariance matrix represents a spread of realizations from the mean.

2.1.3 Gaussian and Gaussian Mixture PDF

A random vector x is said to be Gaussian, if its PDF is given by

N (x; m,P) =
1√

det(2πP)
exp

(
−1

2
(x−m)TP−1(x−m)

)
(2.4)

where the parameters m and P are the first two moments of the random vector x, respec-

tively. In this thesis, for simplicity, we are concerned with the Gaussian sum implementation

technique only. All the densities referring single-objects are assumed to be Gaussian, or

Gaussian mixtures.

A Gaussian mixture (GM) PDF is a sum of Gaussian PDFs N (x; mi,Pi), i = 1, . . . ,M ,

called the components or terms, weighted by wi ≥ 0 ∀i called the weights,

pGM(x) =
M∑
i=1

wiN (x; mi,Pi), such that
M∑
i=1

wi = 1 (2.5)

7



2.1.4 State-space Model

Let the single-target xk be a hidden Markov process, which generates the measurement zk

at every time step k. Then, it can be described in terms of the autonomous stochastic

state-space model,

xk = fk−1(xk−1,wk−1), with the PDF ψk|k−1(xk|xk−1) (2.6)

zk = hk(xk,vk), with the PDF lk(zk|xk) (2.7)

where fk−1 describes the system dynamics, hk is the measurement function, wk and vk

are the state and measurement noises with PDFs pWk
(wk) and pVk

(vk), respectively. We

will use the equivalent probabilistic description with the Markov transition density function

ψk|k−1(xk|xk−1), and the measurement likelihood function lk(zk|xk). Note that the subscripts

may be omitted, if not causing confusion within a given context.

2.1.5 Single-target Bayesian Recursive Relations

Assume the PDF of xk at time k = 0 is known and denoted by

p0|0(x0|z0) , pX0(x0) (2.8)

We assume a single measurement arrives at a time. The goal is, at the given time k (i.e.

online), to find the conditional PDF of xk given all the measurements up to the time k.

Denote the desired PDF pk|k(xk|zk), where zk , (z1, . . . , zk) is the sequence of measurements

up to the time step k, which are assumed known.

The core result in the nonlinear filtering theory are the Bayesian recursive relations

(BRRs), which give a solution to the problem providing two steps as follows,

pk|k−1(xk|zk−1) =

∫
X
ψ(xk|xk−1)pk−1|k−1(xk−1|zk−1)dxk (2.9)

pk|k(xk|zk) =
l(zk|xk)pk|k−1(xk|zk−1)

p(zk|zk−1)
∝ l(zk|xk)pk|k−1(xk|zk−1) (2.10)

where the eq. (2.9) is the Chapman-Kolomogorov equation, which represents the prediction,

also called time-update; and eq. (2.10) is the Bayes rule, which represents the filtering step,

also called Bayes-update, or measurement-update. We call pk|k−1(xk|zk−1) the prior PDF
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and pk|k(xk|zk) the posterior PDF. The BRRs are solved recursively as the time progresses

using various techniques briefly stated in the introduction [10, 11, 12, 13, 14, 15, 16].

2.1.6 Linear-gaussian Case

As was said before, we are interested only in the Gaussian sum implementation technique

[10]. The core of this technique is the ”PDF-based” Kalman filter [6, 9, 32]. This refers

to a specific form of the underlying problem, i.e. of the Markov transition density (2.6),

measurement likelihood (2.7) and the initial PDF (2.8), that lead to a closed-form solution

to the BRRs (2.9-2.10) 4.

The underlying estimation problem is said to be linear-gaussian, if

ψk|k−1(xk|xk−1) = N (xk; Fk−1xk−1,Qk−1) (2.11)

lk(zk|xk) = N (zk; Hkxk,Rk) (2.12)

p0|0(x0|z0) = N (x0; m0|0,P0|0) (2.13)

where Fk−1 ∈ Rnx×nx is the state transition matrix, Qk−1 ∈ Rnx×nx is a covariance matrix

of the additive state noise, Hk ∈ Rnz×nx is the measurement matrix, Rk ∈ Rnz×nz is a

covariance matrix of the additive measurement noise, m0|0 ∈ Rnx is the initial mean vector

and P0|0 ∈ Rnx×nx is the initial covariance matrix. The time indices of Fk−1,Qk−1,Hk and

Rk will be omitted for the sake of simplicity.

Suppose that Q,R and P0|0 are positive definite. The solution to the BRRs (2.9-2.10) is

then given by the prior and posterior being

pk|k−1(xk|zk−1) = N (xk; mk|k−1,Pk|k−1) (2.14)

pk|k(xk|zk) = N (xk; mk|k,Pk|k) (2.15)

4For a future discussion, note that such result is closely connected to the term conjugate prior, which
refers to case when the prior and the posterior distributions, if connected by the Bayes rule, are both from
the same family of distributions. In another words a specific choice of the prior distribution on the Bayes
rule entry results to the posterior having the same distribution that differ only in value of its parameters.
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with the means and covariance matrices given by the Kalman filter (KF) equations

mk|k−1 = Fmk−1|k−1 (2.16a)

Pk|k−1 = FPk−1|k−1F
T + Q (2.16b)

mk|k = mk|k−1 + Kk(zk −Hmk|k−1) (2.16c)

Pk|k = (I−KkH)Pk|k−1 (2.16d)

with Kk = Pk|k−1H
T (HPk|k−1H

T + R)−1 (2.16e)

where I ∈ Rny×nx is the identity matrix. This result is a corollary of the well known identity

for Gaussian densities [33, pp. 9-11]. Later in the text we will need a further insight into Eq.

(2.10), noting the particular form of the measurement prediction p(zk|zk−1). Using the law

of total probability and noting it results into (2.14 with 2.16a,2.16b) for the linear-Gaussian

case, it can be shown that

p(zk|zk−1) =

∫
X
l(zk|xk)pk|k−1(xk|zk−1)dx = N (zk; ẑk|k−1,P

ẑ
k|k−1) (2.17)

where

ẑk|k−1 = Hmk|k−1 (2.18)

Pẑ
k|k−1 = HPk|k−1H

T + R (2.19)

Therefore, the numerator of the Bayes update (2.10) for the linear-Gaussian case, is

l(zk|xk)pk|k−1(xk|zk−1) = N (zk; ẑk|k−1,P
ẑ
k|k−1) · N (xk; mk|k,Pk|k) (2.20)

Having reviewed these results, we are ready to start with the multi-target and ”multi-

measurement” modeling with finite sets.
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2.2 Finite Set Modeling

At any fixed time instant, assume there is an unknown number of targets in the tracking area,

whose states are unknown as well. A possible approach to constructing MTT algorithms is

to handle every single target as an isolated entity and to extend the single-target tracking

methods to the multi-target case ”straightforwardly”. The measurement origin uncertainty

problem then arises, which can be tackled by evaluating the co-called data association hy-

potheses. Such approach, referred here to as hypothesis-based approach, takes the MHT and

similar algorithms such as the probabilistic data association (PDA)-based filters. One of

the major drawbacks of this approach is that there is no explicit modeling to estimate the

number of objects in the tracking area [3, pp. 223-225]. A possible solution is to assign a ”uni-

fying” probabilistic description to the targets and to model them together as a single entity.

An appropriate, phenomenologically correct model of multiple targets (and measurements

as well) seems to be a finite set of distinct vectors. To continue with non-deterministic mod-

eling, such set should be modeled similarly to a random variable. Random entities, whose

outcomes are such sets, can be called random finite sets (RFSs), or finite point processes.

These can be viewed as sets containing a finite random number of targets, whose states are

random as well.

The RFSs can be attributed as representations of the finite point processes that are

treated in an unconventional manner. It is quite hard to make things completely clear. For

the theory presented in this chapter, we consider an RFS as a subclass of the point processes

that model the underlying physical reality with sets, no matter how they are treated (thus

to be phenomenologically interchangeable). However, to attribute the so-called point process

approach to the MTT, the term point processes in this thesis refers to the case of modeling

RFSs with the conventional probabilistic manner (which might be misleading [27, 34]).

For the RFSs, analogous probabilistic descriptions and laws to the single-target case can

be introduced. In particular they can be described by a density and obey appropriately

defined BRRs. The finite set statistics (FISST) is a collection of tractable mathematical

tools to work with RFSs, describing them with non-additive measures. This theory was used

to derive tracking algorithms, some of which are presented in this thesis. To verify that these

algorithms are correct in terms of the standard probability treatment, it is argued that FISST

densities can be viewed as the standard probability densities in Appendix A. In the case of

tracking discussed in this thesis, we therefore argue that the theory of point processes and
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RFSs with FISST can be used to model the physical reality interchangeably. The following

discussion covers some basics of both FISST and point process theory. Since the following

text includes only some basics of the theory, the discussion is extended in Appendix A.

2.2.1 Uncertainty Representation and the Set Integral

The moving objects are modeled as a sequence for k = k0, . . . , kF of finite sets of single-

object states
{

Ξk

}kF
k=k0

, with Xk being a realization of the RFS Ξk = {x1
k, . . . ,x

nk
k }. Both

the cardinality nk and the states are a assumed random5. The vectors xik ∈ X ∀k ∀i
represent the states of the targets. If |Xk| = 0, then Xk = ∅ is an empty configuration. The

notion of RFSs can be straightforwardly generalized to model both the moving targets6 and

measurements. Hence, in the following, the time indices will be omitted, and Ξ will denote

a general RFS.

The belief mass measure βΞ(S) of the RFS Ξ is a set function used to describe the RFS

with FISST analogically to the probability measure when treated conventionally,

βΞ(S) ,
∫
S
pΞ(X)δX (2.21)

where
∫
S f(X)δX denotes the FISST set integral of the set-valued function f(X) over S ⊆ X

defined as [21, 4]

∫
S
f(X)δX ,

+∞∑
n=0

1

n!

∫
Sn
f({x1, . . . ,xn})dx1 · · · dxn (2.22)

It is usual to call the function pΞ(X) in 2.21 the FISST density, multi-target PDF, or simply

a PDF. Analogically to the single-target case, βΞ(X ) = 1, but note that both the set integral

and the belief mass measure are non-additive in general. For a deeper understanding and

connection to the conventional probabilistic approach, see Appendix A.

Note that

pΞ({x1, . . . ,xn}) = pN(n) · pΞ|n({x1, . . . ,xn}|n) (2.23)

5We assume that Ξk is a simple process, which means we do not allow multiplicities in Xk, i.e. xik 6=
xjk, i 6= j, i.e. all realizations (vectors in Xk) are assumed distinct.

6Referred to as multi-target, and multi-object.
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is the joint PDF of both the states {x1, . . . ,xn} and their number n, with pN(n), n ∈ N0

being the cardinality distribution, i.e. the distribution of N , |Ξ|.

2.2.2 Ordered Realization

An RFS can be arbitrarily ordered and modeled as a random tuple, or a matrix X ,

(x1, . . . ,xn). This structure is obviously no longer a set, thus precisely speaking it is not an

RFS but still a point process. Its PDF is given by

pX|N(x1, . . . ,xn|n) =
1

n!
· pΞ|N({x1, . . . ,xn}|n) (2.24)

This introduces generally no phenomenological bias, however, it is not usual to define such

orderings in terms of FISST, as it might potentially lead to some unknown or hidden statisti-

cal bias [4, 35]. Such ordering will be used e.g. in Chapter 3, when modeling data association

hypotheses arising from arbitrarily ordering a given set of measurements.

2.2.3 FISST Multi-target Bayesian Recursive Relations

The common probabilistic tools, such as the law of total probability and conditional prob-

ability7, are based on the notion of additivity of the underlying probability measures [36].

If the measures are absolutely continuous, which we assume here, those tools apply to the

PDFs also. Since the FISST densities are ”in essence” the probability densities8, we can

define the multi-target BRRs with the FISST set integral as [21, 4]

pk|k−1(Xk|Zk−1) =

∫
X
ψk|k−1(Xk|Xk−1)pk−1|k−1(Xk−1|Zk−1)δXk−1 (2.25)

pk|k(Xk|Zk) =
l(Zk|Xk)pk|k−1(Xk|Zk−1)∫

X l(Zk|Xk)pk|k−1(Xk|Zk−1)δXk

∝ l(Zk|Xk)pk|k−1(Xk|Zk−1) (2.26)

where Zk = Z1, . . . , Zk is a sequence of previous measurement-sets, and the set functions

ψk|k−1(Xk|Xk−1) and l(Zk|Xk) are of course far from those introduced in Section 2.1 when

dealing with the single-target case, but it should be clear from the context or from the fact

that the arguments are sets. To grasp a notion, the meaning of the particular densities

appearing in the multi-target BRRs may be described as follows.

7And therefore the use of Chapman-Kolomogorov equation, and Bayes rule.
8See Appendix A, and [37].
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• The posterior density pk|k(Xk|Zk) describes the positions and the nature of the targets,

especially the relationships among each other. The prior density pk|k−1(Xk|Zk−1) has

the same essential meaning for the predicted set of targets.

• The transition density ψk|k−1(Xk|Xk−1) describes the transition of the whole set of

states. For each target, it allows to model its survival, birth (appearance), death

(disappearance), and spawning, from one time instant to another.

• The measurement likelihood function l(Zk|Xk) can be very general. It describes how

the measurements are likely to be generated by the underlying state-set. For each

target, it allows to model its undetections, the way the measurements are generated

and related to each other.

The main difference from the single-target models is, at least in this thesis, that we are

essentially interested in describing the differences among the vectors in the random sets,

rather than how they behave separately. In the following, the aim is to present some im-

portant properties of the RFSs, in particular the multi-target densities that can be used to

model the multi-target state-set, and also the tools that can be used to form the transition

and measurement processes. We need to be able to model unions of random sets. For this,

the probability generating functionals (PGFLs) and their derivatives are useful. Note that

these are not essentially needed to understand the ”special-case” derivation of the filters in

the following chapters, but they are readily used to derive the general cases, and also many

other popular multi-target filters rely on them. Their practical use can be seen in Appendix

B. Most of the following concepts can be found e.g. in [4, 21, 38].

2.2.4 Probability Hypothesis Density

The probability hypothesis density (PHD) corresponding to the RFS Ξ, is defined as a

function DΞ(x) : X → R, such that integrating it over a certain area of the single-target

state space results into the expected number of targets in that area,

E[|Ξ ∩ S|] =

∫
S
DΞ(x)dx (2.27)
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It turns out that the PHD can be computed as the first moment density9 D({x}), defined

with the set integral as

DΞ(x) = DΞ({x}) ,
∫
X
pΞ({x} ∪W )δW =

∫
X
δx(W )pΞ(W )δW (2.28)

where

δx(W ) ,

0, if W = ∅∑
w∈W δx(w), otherwise

(2.29)

with δx being the Dirac delta centered at x. Therefore, PHD can be viewed as summary

statistics of the RFS Ξ.

Since the integral (2.27) is additive (it is not a set integral), we can assume the PHD

can be written as a product of a constant and a function that integrates to one. To derive

a formula for the constant and the function, ordering of a state-set (2.24) to deal with the

PDF should be introduced (remind that this is not typical for FISST). Then, it turns out

that the constant is the expected number N = EN [N ] =
∫
X DΞ(x)dx of targets in the whole

single-target state space X , and the function that integrates to one is a normalized sum of

marginal PDFs of ordered Ξ|N being a singleton set, denoted by p(x),

DΞ(x) = N · p(x) (2.30)

To the author’s best knowledge, the result of specifying p(x) does not appear in the literature.

A proof of (2.30) and a further discussion about the function p(x) is in Appendix A.5.1.

2.2.5 Probability-generating Functional

The probability generating functional (PGFL) GΞ[h] of the RFS Ξ is a tractable represen-

tation of the RFS, which allows working with yet engineering-friendly functional calculus,

rather than with calculus defined for belief mass measures. It is defined as an integral

9The PHD and the first moment density are equal almost everywhere, for more details see Appendix A
and Eq. (A.19a).
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transform of its PDF, as

GΞ[h] ,
∫
X
hX pΞ(X)δX (2.31)

where

hX =

1, if X = ∅∏
x∈X h(x), otherwise

(2.32)

with h : X → R being a real-valued function (also called the test function), which is the

input of the PGFL. It can be viewed as a generalization of the belief mass measure, since

βΞ(S) = GΞ[1S ], where 1S is the indicator function of the set S ⊆ X .

2.2.6 Union of Random Sets

Let Ξ1, . . . ,Ξm be statistically independent RFSs with the PDFs pΞ1(X1), . . . , pΞm(Xm), and

PFGLs GΞ1 [h], . . . , GΞm [h]. Then, their union Ξ = Ξ1 ∪ · · · ∪ Ξm is an RFS with PDF given

by the convolution formula

pΞ(X) =
∑

X1]···]Xm=X

pΞ1(X1) · · · pΞm(Xm) (2.33)

where ] stands for disjoint union. The term convolution is due to the analogy with a sum

of random vectors. In case of having union of exactly two RFSs, the resulting formula for

PDFs resembles the usual convolution for random vectors. An example is in Chapter 3, Eq.

(3.10c), when deriving a measurement process for a single-target scenario.

The PGFL of Ξ is given by the product formula

GΞ[h] = GΞ1 [h] · · ·GΞm [h] (2.34)

An analogous product formula holds for the probability measure and belief-mass measure

also. We can view those as integral transforms of the PDFs such as Laplace or Fourier

transforms, which give rise to the well known relation between convolution and product

within the corresponding transformation. Since the convolution is intractable in general and

we will need to form e.g. the measurement process as a union of various RFSs, we will rather

work with the PGFLs, when constructing more general tracking algorithms.
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2.2.7 Functional Derivatives

If we use PGFLs, we have to be able to recover the PHD and PDF back from a PGFL. To do

so, the functional derivatives are used. We will define them in a simplified way. For further

discussion see [4, 21, 27, 38, 39].

The directional (or Gâteaux) derivative of the functionalG[h] in the direction of a function

g is given by

∂GΞ[h]

∂g
, lim

ε→0

GΞ[h+ εg]−GΞ[h]

ε
(2.35)

If heuristically g = δx is a Dirac delta centered at x (or more precisely by Radon-Nikodým

derivative [40]), the directional derivative can be called the functional derivative. Abbreviate

δGΞ[h]

δx
,
∂GΞ[h]

∂δx
(2.36)

For iterated derivatives with respect to X = {x1, . . . ,xn} with x1, . . . ,xn distinct, denote

δGΞ[h]

δX
,

δnGΞ[h]

δx1 · · · δxn
=

∂nGΞ[h]

∂δx1 · · · ∂δxn
(2.37)

which in the case of X = ∅ is simply GΞ[h]. Functional derivatives obey standard differen-

tiation rules, well known in undergraduate calculus, such as product rule, exponential rule,

etc., see [4, pp. 387-395].

2.2.8 Recovery of the Representations

The key result of FISST calculus is that both the PDF pΞ(X) and the PHD DΞ(X) of the

RFS Ξ can be easily recovered from its PFGL GΞ[h] using the functional derivatives,

pΞ(X) =

[
δGΞ[h]

δX

]
h=0

(2.38)

DΞ(x) = DΞ({x}) =

[
δGΞ[h]

δx

]
h=1

(2.39)

Recalling that the PGFL is a generalization of the belief-mass measure, it can be shown that

the functional derivative is a co-called set derivative [38, Proposition 1]. Eq. (2.38) can be

seen as a set derivative [21, pp. 159-161], constructed using the Radon-Nikodým derivative
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of a corresponding belief-mass measure. A proof of Eq. (2.39) is given in Appendix A.5.2.

Note, that also higher-order moment densities can be recovered from a PGFL similarly to

Eq. (2.39).

We now discuss some of the multi-target densities that are crucial for real applications.

2.2.9 The Bernoulli RFS

An RFS Ξ is said to be Bernoulli, if its PDF is given by

pΞ(X) =


1− q, if X = ∅

q · p(x), if X = {x}

0, otherwise

(2.40)

i.e. it is singleton with probability q ∈ [0, 1] and the single element (random vector) x is

distributed with the spatial PDF p(x), and it is empty with probability 1−q. The parameters

q and p(x) will be referred to as Bernoulli parameters. One can easily see it is a PDF, i.e.

that
∫
X pΞ(X)δX = 1 − q + q

∫
X p(x)dx = 1. The Bernoulli distribution is often used to

model the following

• a target that randomly switches off and on (a Bernoulli object),

• a measurement that were generated from (a possibly undetected) target.

In case of the Bernoulli distribution, we will also need the PGFL, it is

GΞ[h] =

∫
X
hXpΞ(X)δX =

+∞∑
n=0

1

n!

∫
Xn

n∏
i=1

h(xi)pΞ({x1, . . . ,xn})dx1 · · · dxn (2.41a)

= pΞ(∅) +

∫
X
h(x)pΞ({x})dx + . . . (2.41b)

= 1− q + q

∫
X
h(x)p(x)dx︸ ︷︷ ︸
p[h],

= 1− q + q · p[h] (2.41c)
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2.2.10 The Poisson RFS and PPP

An RFS Ξ is said to be Poisson, if

1. its cardinality is Poisson distributed with parameter λ > 0, i.e.

pN(n) =
e−λλn

n!
(2.42)

2. the elements of Ξ are i.i.d. with spatial PDF p(x), i.e.

pΞ|N({x1, . . . ,xn}|n) = n! · pX|N(x1, . . . ,xn|n) = n!
∏
x∈X

p(x) (2.43)

When connected together, we can say that Ξ is said to be Poisson, if its PDF is given by

pΞ(X) = pN(n) · pΞ|N({x1, . . . ,xn}|n) = e−λ
∏
x∈X

λp(x) (2.44)

Note that this is an FISST-based model of the Poisson point process (PPP) known in the

point process literature.

In case of the Poisson RFS, we will need its PHD and PGFL. Its PHD is

DΞ(x) =

∫
X
pΞ({x} ∪W )δW =

+∞∑
n=0

1

n!

∫
Xn
pΞ({x,w1, . . . ,wn})dw1 · · · dwn (2.45a)

=
+∞∑
n=0

1

n!

∫
Xn
e−λλp(x)

n∏
i=1

λp(wi)dw1 · · · dwn (2.45b)

= λp(x) · e−λ
+∞∑
n=0

λn

n!

∫
Xn

n∏
i=1

p(wi)dw1 · · · dwn (2.45c)

= λp(x) · e−λ
+∞∑
n=0

λn

n!

n∏
i=1

∫
X
p(wi)dwi︸ ︷︷ ︸
=1 ∀i

(2.45d)

= λp(x) · e−λ
+∞∑
n=0

λn

n!
= λp(x) · e−λeλ = λp(x) (2.45e)

Note that its PHD is also called intensity in the PPP terminology.
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Its PGFL is

GΞ[h] =

∫
X
hXpΞ(X)δX =

+∞∑
n=0

1

n!

∫
Xn

n∏
i=1

h(xi)pΞ({x1, . . . ,xn})dx1 · · · dxn (2.46a)

=
+∞∑
n=0

1

n!

∫
Xn

n∏
i=1

h(xi)e−λ
n∏
j=1

λp(xj)dx1 · · · dxn (2.46b)

= e−λ
+∞∑
n=0

1

n!

∫
Xn

n∏
i=1

h(xi)λnp(xi)dx1 · · · dxn (2.46c)

= e−λ
+∞∑
n=0

λn

n!

n∏
i=1

∫
X
h(xi)p(xi)dxi (2.46d)

= e−λ
+∞∑
n=0

λn

n!

(∫
X
h(x)p(x)dx︸ ︷︷ ︸
p[h],

)n
= e−λeλp[h] = eλp[h]−λ (2.46e)

In the PPP literature (i.e. non-FISST literature), a superposition and independent (or

Bernoulli) thinning are defined as manipulations with PPPs [23, pp. 28-33]. Those will be

needed in derivation of the intensity filter in Chapter 5, in order to split targets on those

detected and undetected, and merge back again after their respective Bayes-update.

Bernoulli Thinning

Bernoulli, or independent thinning is a process of taking points from a PPP, independently

one by one, and keeping them in the realization with probability q ∈ R and deleting them

with probability 1− q. The result is viewed as a PPP with intensity given by the product of

the former intensity and q. In another words, for a PPP Ξ with intensity λp(x), the thinned

point process is a PPP with intensity qλp(x).

Superposition

Superposition of two PPPs is their union. The result is a PPP with intensity given by

summing the intensities of the superposed PPPs. In terms of PPPs Ξ1 and Ξ2, with intensities

λ1p1(x) and λ2p2(x), respectively, the result is a PPP with intensity λp(x) = λ1p1(x) +

λ2p2(x). Using the FISST, this can be easily verified with the PFGL of a Poisson RFS

(2.46e) and the product formula (2.34).
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2.3 Gaussian Sum Filter Tools

Gaussian sum filtering (GSF) refers to the linear Gaussian case presented in Section 2.1.

For multi-target scenarios, it can be viewed as framework providing tools to work with the

Gaussian densities, representing the targets and their transition, measurements, measure-

ment likelihood function, etc. The tools are gating, mixture reduction, and normalization.

2.3.1 Ellipsoidal Gating

When forming the so-called data-to-track association hypotheses, one tries to connect each

measurement zik that arrived at a particular time k with a trajectory of the object to be

tracked. Gating refers to deciding which measurements are to be kept to continue working

with, and which can be deleted right away. In another words, it means deciding, which

measurements might have been generated from a particular object, and which ”certainly”

have not.

Suppose the measurement-set Zk arrived at time k. Suppose the measurement prediction

PDF p(zk|zk−1) is a Gaussian PDF of the form (2.17), i.e. N (zk; ẑk|k−1,P
ẑ
k|k−1). The contours

of a Gaussian density are (hyper-)ellipsoids, whose shape is determined by its covariance

matrix. The covariance matrix gives rise to the squared Mahalanobis distance

d2(zk) = (zk − ẑk|k−1)T (Pẑ
k|k−1)−1(zk − ẑk|k−1) (2.47)

which can be evaluated for each measurement zik ∈ Zk. Defining the value G ≥ 0, called the

gate, we can test the measurements,

• if d2(zik) > G ⇒ keep the measurement zik in Zk,

• if d2(zik) ≤ G ⇒ delete the measurement zik from Zk.

Since d2(zk) obviously obeys the Chi-square distribution with nz degrees of freedom, denoted

with χ2
nz , the gate G defines the size of the (hyper)-ellipsoid in the following sense. The

value
√
G represents the maximal ”sigma-distance” from the mean ẑk|k−1 in the direction of

measurement zk. When passed into the cumulative distribution function of χ2
nz , the value

Pχ2
nz

(G) represent the probability of valid observation falling into the ellipsoid. Graphical

illustration of the ellipsoidal gating is in Fig. 2.2. More on Gating can be found e.g. in [1,

pp. 107-111][2, pp. 334-338].
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Measurement prediction
Measurements in Zk

Kept Measurements
√
G-sigma ellipse

inside: keep measurements
outside: delete measurements

Before AfterGating

Fig. 2.2: Illustration of ellipsoidal gating for nz = 2.

2.3.2 Reduction of Mixture densities

Suppose having a weighted sum of PDFs. The reduction then refers to decreasing the number

of its summands (components).

Deleting components whose weights are lower than a threshold is called pruning. Keep-

ing maximally some number of components with the largest weights is called capping.

For pruning and capping, the weights wi do not necessarily have to meet the condition∑M
i=1 w

i = 1. Pruning and capping are considered trivial.

Fusing information from all the given components while yielding a single one is called

merging. Assume that the given mixture is a GM of the form (2.5). Minimizing the

Kullback-Liebler divergence between the former GM and the new, single PDF, leads to the

new PDF being Gaussian N (x; m,P), with

m =
M∑
i=1

wimi, P =
M∑
i=1

wi
(

Pi + (m−mi)(m−mi)T
)

(2.48)

2.3.3 Normalization of Mixture Densities

Suppose having a weighted sum of PDFs whose weights wi do not meet the condition∑M
i=1 w

i = 1. This can happen e.g. after performing pruning or capping, but also when

deriving a Bayes update using the proportional relation (2.10,2.26). Normalizing the sum

means finding new weights, denoted as w̃i, such that they meet the above condition. The

new weights are easily given by w̃i = wi/(
∑M

i=1w
i).
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CHAPTER 3

Single Object Tracking in Clutter

This chapter is devoted to tracking an object, which is known to be present for the whole

tracking time horizon, in presence of undetections and false alarm measurements called the

clutter. Graphical illustration of a possible scenario is given in Fig. 3.1.

k

x
z

Single Object Tracking in Clutter

undetection

known initial description

Fig. 3.1: Illustration of single object tracking in clutter.

3.1 Explicit Data Associations

The first problem in this thesis is solved with a rather intuitive approach. The measurements

at any time instant k are modeled as an arbitrary ordered realization Zk = (z1
k, . . . , z

mk
k ) of

a measurement point process. The approach used in this section, is to separately try every

possibility, i.e. to use every measurement and a hypothesis of undetection to update the

knowledge about the state. This can be understood as forming the so-called data-to-track

association hypotheses denoted by θ, which leads to a special case of the multiple hypothesis

tracking (MHT) algorithm for a single target case.

This approach is graphically illustrated in Fig. 3.2 for a special case when the target

motion is two-dimensional and zik are noisy position measurements. At the time step k = 1,

assume a single measurement z1
1 arrived. The possibilities are such that the measurement
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was clutter-generated, or such that the measurement was generated by the object. In the

first case, it is assumed that the object was undetected and so a predictive PDF is kept in the

posterior, and in the second case the measurement is used to perform Bayes update. The

corresponding data associations θ1 are ”0” for the undetection, and ”1” for the detection

by the first (and the only) measurement. This forms two possible hypotheses about the

trajectory evolution expressed as conditional PDFs. Similarly, assume a single measurement

z1
2 arrived in the time step k = 2. The corresponding data associations θ2 are analogous, but

they are used for both existing hypotheses, hence yielding four new hypotheses in total.

p0|0(x0)

z11

θ1 ∈ { 0 , 1 }

k = 1

data associations:

an initial PDF

motion direction

time instant

measurement
index

undetection

(a) former posterior, Z1 = {z1
1} arrived

p0|0(x0)

z11

p
1|1|θ1(x1|z1k)

p
1|1|θ1(x1|∅)

θ1 = 0

θ1 = 1

k = 1

(b) new posterior, connected hypotheses

p0|0(x0)

z11

p
1|1|θ1(x1|z1k)

p
1|1|θ1(x1|∅)

z12

θ1 = 0

θ1 = 1

k = 2

θ2 ∈ { 0 , 1 }data associations:

undetection

(c) former posterior, Z2 = {z1
2} arrived

p0|0(x0)

z11

p
1|1|θ1(x1|z1k)

p
2|2|θ2(x1|z1k, ∅)

p
1|1|θ1(x1|∅) p

2|2|θ2(x2|∅, ∅)

z12

p
2|2|θ2(x2|z1k, z12)

p
2|2|θ2(x2|∅, z12)

θ1 = 0

θ1 = 1

θ2 = (0, 0)

θ2 = (0, 1)

θ2 = (1, 1)

θ2 = (1, 0)

k = 2

(d) new posterior, connected hypotheses

Fig. 3.2: Forming the data association hypotheses and trajectories.

Note, that MHT is usually used in multi-target tracking problems [1, 2, 20], where other

difficulties arise. The following discussion, mostly inspired by the online course [28], should
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establish fundamentals of the MHT for a single target case, rather than to explain the general

MHT. For other data association techniques, such as using the Viterbi algorithm, see e.g.

[41], or [2, pp. 403-282] for others. Modeling without explicit data associations, arising from

using sets, will be investigated later in Chapter 4, where a slightly more general assumption

of possibly nonexistent object is discussed.

3.2 Derivation of the Filter

First, representation of posterior PDF is discussed. Motivated by the given illustration of

MHT approach, namely from Fig. 3.2d, it can be seen that the final knowledge about the

state at time k is expressed in terms of some posterior PDFs p
k|k
∣∣θk(xk|Zk, θk) conditioned

on both the measurement sequence Zk = (Z1, . . . ,Zk) and the data association hypothesis

θk = (θ1, . . . , θk). Moreover, assume there exists a probability Pr(θk|Zk) of each hypothesis.

Then, from the law of total probability and conditioning, the posterior PDF can be expressed

as a mixture PDF

pk|k(xk|Zk) =
∑
θk

pk|k,θk(xk, θ
k|Zk) =

∑
θk

Pr(θk|Zk) · p
k|k
∣∣θk(xk|Zk, θk) (3.1)

where the symbol
∑

θk formally stands for summation over all hypotheses
∑m1

θ1=0 · · ·
∑mk

θk=0.

If we index them with some injective function hk : θk → N and Hk being total number of

existing hypotheses (such as hk = hk−1 +Hk−1θk), it could be also viewed as
∑Hk

hk=1.

To simplify the notation, abbreviate

wθ
k

k|k , Pr(θk|Zk), or denoted by whkk|k (3.2)

pθ
k

k|k(xk) , p
k|k
∣∣θk(xk|Zk, θk), or denoted by phkk|k(xk) (3.3)

where wθ
k

k|k can be called weights. Hence Eq. (3.1) can be written as

pk|k(xk|Zk) =
∑
θk

wθ
k

k|kp
θk

k|k(xk) =

Hk∑
hk=1

whkk|kp
hk
k|k(xk) (3.4)

Now, the time and measurement update will be discussed. Following the discussion in

Appendix A, about the generalizations of the Chapman-Kolomogorov equation and Bayes
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rule for modeling with sets, one can deduce these equations apply in analogous sense to this

case as well.

3.2.1 Time-update

Assume that the target motion is described by Markov transition PDF ψk|k−1(xk|xk−1), then

the Chapman-Kolomogorov equation can be used straightforwardly,

pk|k−1(xk|Zk−1) =

∫
X
ψk|k−1(xk|xk−1)pk−1|k−1(xk−1|Zk−1)dxk−1 (3.5a)

=
∑
θk−1

wθ
k−1

k−1|k−1

∫
X
ψk|k−1(xk|xk−1)pθ

k−1

k−1|k−1(xk−1)dxk−1 (3.5b)

=
∑
θk−1

wθ
k−1

k|k−1p
θk−1

k|k−1(xk) =

Hk−1∑
hk−1=1

w
hk−1

k|k−1p
hk−1

k|k−1(xk) (3.5c)

Hence for each hypothesis, the time-update of corresponding weights and associated PDFs

is given by

wθ
k−1

k|k−1 = wθ
k−1

k−1|k−1, or denoted by w
hk−1

k|k−1 (3.6)

pθ
k−1

k|k−1(xk) =

∫
X
ψk|k−1(xk|xk−1)pθ

k−1

k−1|k−1(xk−1)dxk−1, or denoted by p
hk−1

k|k−1(xk) (3.7)

and the number of hypotheses in (3.5c) remains unchanged.

3.2.2 Bayes-update

For the Bayes-update, we first discuss the measurement model, then we derive a (generalized)

measurement likelihood function and the Bayes update from the proportional relation such

as in Eq. (2.10,2.26).

Measurement Model

Modeling the underlying point processes with RFSs1, we can say that the measurement

process Σk|xk conditioned on xk, is modeled as a union of the object-generated measurement-

1Regarding the original MHT approach where no sets appear explicitly, modeling measurements as sets
is little obscure. We use the RFS approach to emphasize the underlying phenomenological intuition of the
measurements to be unordered in reality, and also because the results can be used straightforwardly in the
next Chapter.
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set Ok|xk, and the clutter Ck. The RFS Ok|xk is assumed to be either empty (undetection),

or singleton (detection), such that it is Bernoulli with the PDF

pOk|xk(Z
o
k |xk) =


1− PD(xk), if Zo

k = ∅

PD(xk)l(z|xk), if Zo
k = {z}

0, otherwise

(3.8)

where PD(xk) is the probability of detection, l(z|xk) is the measurement likelihood function

of the single object, and Zo
k is the realization of Ok|xk.

For the clutter-generated measurements, it is common to assume that they are identically

distributed in space with some spatial PDF c(z), and their number is Poisson with expected

value λ > 0. In another words, Ck is Poisson with the PDF

pCk(Z
c
k) = e−λ

∏
z∈Zck

λc(z) (3.9)

where Zc
k the realization of Ck.

Likelihood Function

Now, a measurement likelihood function, which is a PDF of Σk|xk = Ok|xk ∪ Ck, can be

found using multiple ways. Naturally, the measurement set can be assumed ordered, and a

simple intuition for the case Zo
k = ∅ and Zo

k = {z} can be used. Since this thesis aims to

present these slightly more general approaches, as they are used in more advanced multi-

target algorithms, the tools of FISST will be used. Ordering the measurement set into a

tuple will be done afterwards.

From the FISST, a convolution formula for PDFs, or product formula for PGFLs can be

used. Since for a single target the convolution formula is still tractable, it will be used now,

leaving the PGFL version for a more general case later.
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From the convolution formula (2.33), it follows that the measurement likelihood is

l(Zk|xk) , pΣk|xk(Zk|xk) (3.10a)

=
∑

Zok]Z
c
k=Zk

pOk|xk(Z
o
k |xk) · pCk(Zc

k) (3.10b)

=
∑
Zok⊆Zk
|Zok |≤1

pOk|xk(Z
o
k |xk) · pCk(Zk \ Zo

k) (3.10c)

= pOk|xk(∅|xk)pCk(Zk \ ∅) +
∑
z∈Zk

pOk|xk({z}|xk)pCk(Zk \ {z}) (3.10d)

=
(
1− PD(xk)

)
pCk(Zk) +

∑
z∈Zk

PD(xk)l(z|xk)

pCk (Zk)︷ ︸︸ ︷
e−λ

∏
h∈Zk\{z}

λc(h)·
(
λc(z)

λc(z)

)
︸ ︷︷ ︸

1

(3.10e)

=
(
1− PD(xk)

)
pCk(Zk) +

∑
z∈Zk

PD(xk)l(z|xk)
λc(z)

pCk(Zk) (3.10f)

= pCk(Zk) ·
(

1− PD(xk) +
∑
z∈Zk

PD(xk)l(z|xk)
λc(z)

)
(3.10g)

where \ stands for set difference. Now, to integrate this result into the MHT approach,

an arbitrary ordering of Zk = {z1
k, . . . , z

mk
k }, denoted by Zk = (z1

k, . . . , z
mk
k ) = (zθkk )mkθk=1,

is formed introducing a summing index θk = 0, 1, . . . ,mk, where θk = 0 stands for missing

detection (modeling undetection of any target). Since mk is known when the measurements

arrive, we can write the resulting likelihood as a PDF of ordered Σk, as

l(Zk|xk) = pZk|xk(Zk|xk) =
1

mk!
· pΣk|xk(Zk|xk) (3.11a)

=

(
e−λ

mk!

mk∏
θk=1

λc(zθkk )

)
·
(

1− PD(xk)︸ ︷︷ ︸
summand for θk=0

+

mk∑
θk=1

PD(xk)l(z
θk
k |xk)

λc(zθkk )

)
(3.11b)

Filtering Equation

The general Bayes update for this case in the proportional relation form is

pk|k(xk|Zk) ∝ l(Zk|xk)pk|k−1(xk|Zk−1) (3.12)
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Since the term e−λ

mk!

∏mk
θk=1 λc(z

θk
k ) in Eq. (3.11b) is constant with respect to xk, it can be

left to the proportional constant (i.e. omitted). Using the particular form of the prior PDF

(3.5c), the resulting proportional relation becomes

pk|k(xk|Zk) ∝
(

1− PD(xk) +

mk∑
θk=1

PD(xk)l(z
θk
k |xk)

λc(zθkk )

)
pk|k−1(xk|Zk−1) (3.13)

∝
∑
θk−1

wθ
k−1

k|k−1

(
1− PD(xk) +

mk∑
θk=1

PD(xk)l(z
θk
k |xk)

λc(zθkk )

)
pθ

k−1

k|k−1(xk) (3.14)

and since the posterior has to integrate to one, the resulting equality relation is

pk|k(xk|Zk) =
1

1−∆HT
k

∑
θk−1

wθ
k−1

k|k−1

(
1− PD(xk) +

mk∑
θk=1

PD(xk)l(z
θk
k |xk)

λc(zθkk )

)
pθ

k−1

k|k−1(xk) (3.15)

where

∆HT
k =

∫
X
PD(xk)

(
1−

mk∑
θk=1

l(zθkk |xk)
λc(zθkk )

)
pk|k−1(xk|Zk−1)dxk (3.16)

Note, that the superscript HT stands for hypothesis tracking. It might not seem reasonable

to write the normalization constant as 1 −∆HT
k , but it is especially useful when compared

to the Bernoulli filter later. For the following derivation, we use the proportional relation

(3.13).

It can be seen that every existing hypothesis θk−1 is endowed with a data association,

expressed by the index θk, to yield a new hypothesis θk = (θk−1, θk). This process can be

understood as trying every measurement to update every existing component of the prior

PDF, measuring its probability, and storing it for the future. To close the recursion, let

the posterior be written as a mixture PDF as in Eq. (3.4). First, rewrite the proportional

relation (3.13) such that every summand is a PDF (and so it integrates to one), multiplied

by some constant. For each existing hypothesis θk−1 and for each value of θk we define

θk = 0 :


cθ
k

k ,
∫
X

(
1− PD(xk)

)
pθ

k−1

k|k−1(xk)dxk

pθ
k

k|k(xk) =
1

cθ
k

k

(
1− PD(xk)

)
pθ

k−1

k|k−1(xk)

(3.17a)

(3.17b)

29



θk ≥ 1 :


cθ
k

k ,
∫
X

PD(xk)l(z
θk
k |xk)

λc(zθkk )
pθ

k−1

k|k−1(xk)dxk

pθ
k

k|k(xk) =
1

cθ
k

k

PD(xk)l(z
θk
k |xk)

λc(zθkk )
pθ

k−1

k|k−1(xk)

(3.18a)

(3.18b)

where cθ
k ∀θk are normalization constants such that the densities pθ

k

k|k(xk) integrate to one.

This connects every existing hypothesis θk−1 with the data association θk. Thus, we get the

relation in a compact form

pk|k(xk|Zk) ∝
∑
θk

wθ
k−1

k|k−1c
θk

k p
θk

k|k(xk) (3.19)

After normalizing the mixture (see Section 2.3.3), we get the general updated PDF,

pk|k(xk|Zk) =
∑
θk

wθ
k

k|kp
θk

k|k(xk), where wθ
k

k|k =
cθ
k

k w
θk−1

k|k−1∑
θk c

θk
k w

θk−1

k|k−1

(3.20)

or more conveniently using indexing with hk,

pk|k(xk|Zk) =

Hk∑
hk=1

whkk|kp
hk
k|k(xk), where whkk|k =

chkk w
hk−1

k|k−1∑Hk
hk=1 c

hk
k w

hk−1

k|k−1

(3.21)

where the total number of hypotheses in the posterior PDF is Hk = Hk−1(1 + mk). Note,

that the normalization constant, 1−∆HT
k =

∑Hk
hk=1 c

hk
k w

hk−1

k|k−1.
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3.3 Gaussian Sum Filter Implementation

Assume the transition PDF, measurement likelihood, and initial condition are such as in

the linear-Gaussian case (2.11-2.13). Also assume constant probability of detection PD =

PD(xk) ∈ R. There are no additional assumptions for clutter parameters λ and c(z). Then,

using the results reviewed in Section 2.1, and some indexing hk, both the prior and posterior

PDFs are Gaussian mixtures, denoted by

pk|k−1(xk|Zk−1) =

Hk−1∑
hk−1=1

w
hk−1

k|k−1N (xk; m
hk−1

k|k−1,P
hk−1

k|k−1) (3.22)

pk|k(xk|Zk) =

Hk∑
hk=1

whkk|kN (xk; m
hk
k|k,P

hk
k|k) (3.23)

From (3.6,3.7), and the KF equations (2.16a,2.16b), it is obvious that the time-update

for each hypothesis become

w
hk−1

k|k−1 = w
hk−1

k−1|k−1 (3.24a)

p
hk−1

k|k−1(xk) = N (xk; m
hk−1

k|k−1,P
hk−1

k|k−1) (3.24b)

where m
hk−1

k|k−1 = Fm
hk−1

k−1|k−1 (3.24c)

P
hk−1

k|k−1 = FP
hk−1

k−1|k−1F
T + Q (3.24d)

For the Bayes-update, from (3.17,3.18), and the KF equations (2.16c-2.16e), the connec-

tion between each old and new hypothesis is given by

θk = 0 :



chkk = 1− PD

phkk|k(xk) =
1− PD
chkk

· phk−1

k|k−1(xk) = N (xk; m
hk
k|k,P

hk
k|k)

where mhk
k|k = m

hk−1

k|k−1

Phk
k|k = P

hk−1

k|k−1

(3.25a)

(3.25b)

(3.25c)

(3.25d)
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θk ≥ 1 :



chkk ,
PD

λc(zθkk )

∫
X
l(zθkk |xk)p

hk−1

k|k−1(xk)dxk

=
PD

λc(zθkk )
· N (zθkk ; ẑ

hk−1

k|k−1,P
ẑ,hk−1

k|k−1 )

where ẑ
hk−1

k|k−1 = Hm
hk−1

k|k−1

P
ẑ,hk−1

k|k−1 = HP
hk−1

k|k−1H
T + R

phkk|k(xk) =
PD

cθ1:k
k λc(zθkk )

l(zθkk |xk)p
hk−1

k|k−1(xk)

= N (xk; m
hk
k|k,P

hk
k|k)

where mhk
k|k = m

hk−1

k|k−1 + Kk(z
θk
k −Hm

hk−1

k|k−1)

Phk
k|k = (I−KkH)P

hk−1

k|k−1

with Kk = P
hk−1

k|k−1H
T (HP

hk−1

k|k−1H
T + R)−1

(3.26a)

(3.26b)

(3.26c)

(3.26d)

(3.26e)

(3.26f)

(3.26g)

(3.26h)

(3.26i)

and so the relation (3.19) becomes

pk|k(xk|Zk) ∝
Hk−1∑
hk−1=1

w
hk−1

k|k−1(1− PD)N (xk; m
hk−1

k|k−1,P
hk−1

k|k−1)+

+

Hk−1∑
hk−1=1

mk∑
θk=1

w
hk−1

k|k−1

PDN (zθkk ; ẑ
hk−1

k|k−1,P
ẑ,hk−1

k|k−1 )

λc(zθkk )
N (xk; m

hk
k|k,P

hk
k|k) (3.27)

and the final equality is given by normalizing the weights (3.21). Note that the hypotheses

indexing hk is arbitrary since injective. Recall the possibility of using hk = hk−1 +Hk−1θk.

Since the total number of hypotheses increases over time, it is necessary to use some of

the tools presented in Section 2.3. When computing the measurement prediction to form

the constant chkk in Eq. (3.26b), the gating can be performed. It should be noted that the

probability of each hypothesis depends also on the clutter spatial PDF c(z). If the clutter is

not uniform, i.e. c(z) is not constant, then the gating, as presented in Section 2.3, may not

be plausible to decide which measurements to use. The pruning, merging and capping can

be done after the update, followed by normalizing the reduced posterior.

Two algorithms arise as a special reduction strategies [1, 2, 3, 28], that are the nearest

neighbor (NN) filter [42] and the probabilistic data association (PDA) filter [43, 44]. Both

of them keep only a single hypothesis in the posterior PDF. Also, in both of them, the

gating can be performed. In the NN filter, only the measurement which is the closest to the
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predictive one is used, i.e. the one with the greatest value2 of d2(z), if any, and all the other

measurements are left without notice. In the PDA filter, all the resulting hypotheses, in the

sense of GM components, are fused using merging. The strategies are graphically compared

in Fig. 3.3. Note, that in general (when not using the GSF implementation), the NN and

PDA are viewed as standalone filters, and should not be addressed as special cases of MHT,

see e.g. [5].

NN

PDA

MHT

predicted measurement

measurements

Gating

use only the closest gated measurement

merge the resulting hypothesis

keep all the resulting hypotheses
(perform GM reduction if necessary)

use all the gated measurements

use all the gated measurements

always keep only a single hypothesis

always keep only a single hypothesis

measurement prediction

Fig. 3.3: Relation among NN, PDA, and MHT for single target.

In order to form easy-to-understand results, tracking filters are desired to yield estimates

as points. In this case, the minimum mean square error (MMSE) estimate, and the most

probable hypothesis (MPH) estimate can be formed. In the GSF framework, the MMSE

estimate is the mean of Gaussian PDF, which arises when all hypotheses are merged. The

MPH estimate is simply the mean of the component with the largest weight. Since the

probabilities of each hypothesis vary in time, it is not granted that every single estimate

from a sequence of MPH estimates result from a single ”true” hypothesis. That is, there may

appear some ”jumps” in the resulting trajectory estimate, unreasonable from the motion

model point of view. A possible, yet computationally demanding solution would be to store

every MPH trajectory estimate through time and to switch between those trajectories.

2See Eq. (2.47).
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CHAPTER 4

Bernoulli Object Tracking in Clutter

This chapter is devoted to tracking an object, that randomly switches on/off in the sense of

its existence and that appears to be in presence of undetections and clutter. Moreover, it is

assumed that the initial probabilistic description may not be given. A graphical illustration

of a possible scenario is given in Fig. 4.1.

k

x
z

Bernoulli Object Tracking in Clutter

Fig. 4.1: Illustration of Bernoulli object tracking in clutter.

4.1 Avoiding Explicit Data Associations

It would be possible to continue modeling within the MHT approach, however, forming

explicit data associations has been criticized due to multiple reasons [4, 35]. We briefly

review some of those.

From Eq. (3.1), it is seen that the data association hypothesis θk is treated as random vari-

able, which is to be jointly estimated with the system state xk, i.e. the PDF pk|k,θk(xk, θ
k|Zk)

is introduced. Since, by an intuition, it is assumed that a point object has a single trajec-

tory, we would expect there exists a particular data association and hypothesis such that it

is the true one in reality, i.e. θk must be a nonrandom sequence. Since the Bayes filtering

framework assumes the estimated entities to be random, the Bayes-optimalilty statement is
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theoretically violated. Also, noting θk ∈ {0, . . . ,mk}, the number of measurements is implic-

itly included into the estimated values, which is theoretically problematic as well. Moreover,

the question is, whether forming data association hypotheses even makes sense in the case of

closely-spaced targets, or mainly, in case of other types of measurements, such as pixelized

image, which leads to the track before detect (TBD) tracking approach. This should serve

as a motivation to leave modeling with explicit data associations and turn to some other

general approach. That is, in this Chapter using point processes modeled with RFSs will be

considered. The Bernoulli filter, also called the joint target detection and tracking (JoTT)

filter, is derived in [4, 45], and is a basis of many modern MTT filters.

4.2 Derivation of the Filter

First, the posterior uncertainty representation of the object is discussed. As stated in Section

2.2.9, a target that randomly switches off and on can be modeled with a Bernoulli RFS which

is either empty (object missing), or singleton (object present). Consider the posterior PDF,

now denoted with the symbol f , to be

fk|k(Xk|Zk) =


1− qk|k, if Xk = ∅

qk|kpk|k(xk), if Xk = {xk}

0, otherwise

(4.1)

where qk|k = Pr(|Xk| = 1
∣∣Zk) is the posterior probability of existence, and pk|k(xk) is the

posterior spatial PDF of the single target. Since those are just parameters of the actual

posterior PDF, there si no need to write any conditioning on Zk explicitly. The subscripts

k|k should just indicate to which filtering stage is a particular parameter related to. In the

following, the goal is to find out how these parameters propagate through the motion and

measurement models.

4.2.1 Time-update

For the time-update, we will form a motion model, that is a multi-target Markov transition

density ψk|k−1, which will be substituted into the multi-target Chapman Kolomogorov Eq.

(2.25) to yield a multi-target prior PDF.
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Motion Model

For a maximally single object being present, the sets Xk and Xk−1, which are inputs of

ψk|k−1, can be both empty or singleton. If a target was not present at time k − 1, then it

may appear with state xk with probability of birth PB with the spatial PDF pB(xk), or stay

not present with the probability 1− PB. On the other hand, if the object was present, then

it may survive to the next time step k with probability PS and move with respect to the

single-target Markov density ψk|k−1(xk|xk−1), or disappear with probability 1 − PS. This

intuition gives rise to the multi-target Markov transition PDF of a form

ψk|k−1(Xk|Xk−1) =



1− PB, if Xk = ∅ & Xk−1 = ∅

PB · pB(xk), if Xk = {xk} & Xk−1 = ∅

1− PS, if Xk = ∅ & Xk−1 = {xk−1}

PS · ψk|k−1(xk|xk−1), if Xk = {xk} & Xk−1 = {xk−1}

0, otherwise

(4.2)

Whether ψk|k−1 refers to single-target or multi-target transition PDF should be clear from

the context, or noting that its arguments are sets.

Prediction Equation

Substitute (4.1) and (4.2) into (2.25). From the definition of the set integral, we get

fk|k−1(Xk|Zk−1) =

∫
X
ψk|k−1(Xk|Xk−1)fk−1|k−1(Xk−1|Zk−1)δXk−1 (4.3a)

= ψk|k−1(Xk|∅)fk−1|k−1(∅|Zk−1)+

+

∫
X
ψk|k−1(Xk|{xk})fk−1|k−1({xk}|Zk−1)dxk−1 + 0 (4.3b)
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Xk is assumed to be either empty or singleton. For the case Xk = ∅ we have

fk|k−1(∅|Zk−1) = (1− PB)(1− qk−1|k−1) +

∫
X

(1− PS)qk−1|k−1pk−1|k−1(xk−1)dxk−1 (4.4a)

= (1− PB)(1− qk−1|k−1) + (1− PS)qk−1|k−1 (4.4b)

= 1−
(
PB(1− qk−1|k−1) + PSqk−1|k−1

)︸ ︷︷ ︸
qk|k−1,

(4.4c)

and for Xk = {xk} we have

fk|k−1({xk}|Zk−1) = PB · pB(xk)(1− qk−1|k−1)+

+

∫
X
PSψk|k−1(xk|xk−1)qk−1|k−1pk−1|k−1(xk−1)dxk−1 (4.5a)

= PB(1− qk−1|k−1)pB(xk)+

+ PSqk−1|k−1

∫
X
ψk|k−1(xk|xk−1)pk−1|k−1(xk−1)dxk−1 (4.5b)

which can be written as a constant multiplied by a function of xk. One could verify that

the resulting PDF fk|k−1(Xk|Zk−1) integrates to one in terms of the set integral, and hence

it is a multi-target PDF. This implies that it can be rewritten into the form of the Bernoulli

PDF

fk|k−1(Xk|Zk−1) =


1− qk|k−1, if Xk = ∅

qk|k−1pk|k−1(xk), if Xk = {xk}

0, otherwise

(4.6)

where the parameters are

qk|k−1 = PB(1− qk−1|k−1) + PSqk−1|k−1 (4.7)
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and

qk|k−1pk|k−1(xk)
!

= PB(1− qk−1|k−1)pB(xk)+

+ PSqk−1|k−1

∫
X
ψk|k−1(xk|xk−1)pk−1|k−1(xk−1)dxk−1 (4.8a)

⇒ pk|k−1(xk) =
PB(1− qk−1|k−1)

qk|k−1

pB(xk)+

+
PSqk−1|k−1

qk|k−1

∫
X
ψk|k−1(xk|xk−1)pk−1|k−1(xk−1)dxk−1 (4.8b)

4.2.2 Bayes-update

For the Bayes-update, the measurement model will be easily adopted from the one derived

in previous Chapter 3. Then, the formal Bayes-update will be derived without making any

data association hypotheses.

Measurement Model

Now, the measurement process Σk|Ξk is conditioned on both the empty, and singleton state-

set,

Σk|Ξk =


Ck, if Ξk = ∅

Ok|xk ∪ Ck, if Ξk = {xk}

undefined, otherwise

(4.9)

since Ok|xk ∪ Ck = Σk|xk was already investigated in previous Chapter 3, we can readily

write the measurement likelihood function,

l(Zk|Xk) , pΣk|Ξk(Zk|Xk) (4.10a)

=


pCk(Zk), if Xk = ∅

pCk(Zk)
(

1− PD(xk) +
∑

z∈Zk
PD(xk)l(z|xk)

λc(z)

)
, if Xk = {xk}

0, otherwise

(4.10b)

Again, whether l refers to single-target or multi-target likelihood function should be clear

from the context, or noting that its arguments are sets.
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Filtering Equation

First derive the normalization constant of the multi-target Bayes rule (2.26),

K ,
∫
X
l(Zk|Xk)fk|k−1(Xk|Zk−1)δXk (4.11a)

= l(Zk|∅)fk|k−1(∅|Zk−1) +

∫
X
l(Zk|{xk})fk|k−1({xk}|Zk−1)dxk + 0 (4.11b)

= pCk(Zk)(1− qk|k−1)+

+ pCk(Zk)qk|k−1

∫
X

(
1− PD(xk) +

∑
z∈Zk

PD(xk)l(z|xk)
λc(z)

)
pk|k−1(xk)dxk (4.11c)

= pCk(Zk)

[
1− qk|k−1

∫
X
PD(xk)

(
1−

∑
z∈Zk

l(z|xk)
λc(z)

)
pk|k−1(xk)dxk︸ ︷︷ ︸

∆BT
k ,

]
(4.11d)

= pCk(Zk)
(
1− qk|k−1∆BT

k

)
(4.11e)

where the superscript BT stands for Bernoulli tracking. Using this result, the final multi-

target posterior PDF is given by

fk|k(Xk|Zk) =
l(Zk|Xk)fk|k−1(Xk|Zk−1)

K
(4.12a)

=


����pCk (Zk)(1−qk|k−1)

����pCk (Zk)(1−qk|k−1∆BT
k )

, if Xk = ∅

����pCk (Zk)
(

1−PD(xk)+
∑

z∈Zk
PD(xk)l(z|xk)

λc(z)

)
qk|k−1pk|k−1(xk)

����pCk (Zk)(1−qk|k−1∆BT
k )

, if Xk = {xk}

0, otherwise

(4.12b)

which can be rewritten in the form such that it is Bernoulli1 with the parameters

1− qk|k
!

=
1− qk|k−1

1− qk|k−1∆BT
k

⇒ qk|k =
1−∆BT

k

1− qk|k−1∆BT
k

qk|k−1 (4.13)

1We can now see, that the Bernoulli PDF is a multi-target conjugate prior with respect to the given
likelihood function.
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and

qk|kpk|k(xk)
!

=

(
1− PD(xk) +

∑
z∈Zk

PD(xk)l(z|xk)
λc(z)

)
qk|k−1pk|k−1(xk)

1− qk|k−1∆BT
k

(4.14a)

⇒ pk|k(xk) =
1

1−∆BT
k

(
1− PD(xk) +

∑
z∈Zk

PD(xk)l(z|xk)
λc(z)

)
pk|k−1(xk) (4.14b)

To sum up, we got a recursion for both the probability of existence (4.7,4.13) and the object

spatial PDF (4.8b,4.14b), which define the prior and posterior multi-target Bernoulli PDFs.

4.3 Gaussian Sum Filter Implementation

As well as in the MHT case, assume the single-target transition PDF, and measurement

likelihood are such as in the linear-Gaussian case (2.11,2.12). Also assume constant proba-

bility of detection PD = PD(xk). Again, there are no additional assumptions for the clutter

parameters λ and c(z). The initial PDF from (2.13) can be used as p0|0(xk), and if so, the

initial probability of existence q0|0 has to be given as well. For the multi-target transition

model, consider the target birth PDF to be a GM of the form

pB(xk) =

NB,k∑
i=1

wiB,kN (xk; m
i
B,k,Q

i
B,k) (4.15)

where NB,k is the number of birth-originated components at time k, and assume PB and PS

are specified. If the initial uncertainty about the target state is not known, it could be left

undefined, starting the recursion from the prediction step, with the target birth description

understood as the predicted initial PDF. Also, heuristic or ad-hoc logic-based methods of

track formation exist, see [3, pp. 322-329][1, pp. 153-168].

Such assumptions result in the spatial PDFs of prior and posterior Bernoulli RFSs being

Gaussian mixtures, denoted by

pk|k−1(xk) =

Hk|k−1∑
h=1

whk|k−1N (xk; m
h
k|k−1,P

h
k|k−1) (4.16)

pk|k(xk) =

Hk|k∑
h=1

whk|kN (xk; m
h
k|k,P

h
k|k) (4.17)
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where Hk|k−1, and Hk|k are total number of components in the prior and posterior PDFs,

respectively.

Assume the posterior probability of existence from the last time instant is qk−1|k−1. From

(4.8b), and the KF equations (2.16a,2.16b), the time-update of the spatial PDF is

pk|k−1(xk) =
PB(1− qk−1|k−1)

qk|k−1

NB,k∑
i=1

wiB,kN (xk; m
i
B,k,Q

i
B,k)+

+
PSqk−1|k−1

qk|k−1

Hk−1|k−1∑
h=1

whk−1|k−1N (xk; m
h
k|k−1,P

h
k|k−1) (4.18a)

where mh
k|k−1 = Fmh

k−1|k−1 (4.18b)

Ph
k|k−1 = FPh

k−1|k−1F
T + Q (4.18c)

where the time-updated probability of existence qk|k−1 is simply given by Eq. (4.7). The

prior spatial PDF (4.18a) can be easily rewritten into a GM of the form (4.16), where

Hk|k−1 = Hk−1|k−1 +NB,k is the prior number of GM components.

The Bernoulli posterior spatial PDF is computed in the same manner as the MHT pos-

terior PDF (3.25,3.26) in Section 3.3, because:

• here, the GM components are not essentially hypotheses, but can be indexed by h as

well as hk, and so they can be interpreted as hypotheses,

• the summation
∑

z∈Zk can be rewritten using arbitrary indexing of the elements of Zk,

such as with θk as
∑|Zk|

θk=1, only the index should not be called association hypothesis,

• the constant ∆BT
k (4.11d) is therefore formally the same as ∆HT

k (3.16),

• update Eq. (4.14b) is then formally equivalent to (3.15), and so, schematically

pk|k(xk) ∝
Hk|k−1∑
h=1

whk|k−1(1− PD)N (xk; m
h
k|k−1,P

h
k|k−1)+

+

Hk|k−1∑
h=1

|Zk|∑
θk=1

whk|k−1

PDN (zθkk ; ”prediction”)

λc(zθkk )
N (xk; ”update with zθkk ”) (4.19)

but note, that since the time-update differs, each algorithm outputs different results for the

spatial PDF. Precisely speaking, the Bernoulli parameter pk|k(xk) is not equal to pk|k(xk|Zk)
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from Chapter 3, as the time evolves.

In order to decrease the computational costs, the GM reduction discussed in Section 3.3

should also be adopted by the Bernoulli filter. It is to say that in order to compute the

updated probability of existence qk|k, the value ∆BT
k is needed. In theory, this value follows

from the normalization of the mixture (4.19), but can also be computed from this mixture

being already reduced too. From the implementation point of view, it is a matter of choice

on which information do we want to base the estimate of qk|k. One or the other, assume the

spatial posterior PDF (4.19) being rewritten as

pk|k(xk) ∝
Hk|k∑
h=1

w̃hk|kN (xk; m
h
k|k,P

h
k|k) (4.20)

where Hk|k denotes the number of components of possibly reduced mixture, and w̃hk|k−1

represents the un-normalized weights. Then, the final spatial PDF is given by

pk|k(xk) =

Hk∑
h=1

whk|kN (xk; m
h
k|k,P

h
k|k), where whk|k =

w̃hk|k∑Hk|k
h=1 w̃

h
k|k

(4.21)

and qk|k is readily given by Eq. (4.13) using ∆BT
k = 1−

∑Hk|k
h=1 w̃

h
k|k.

Both the MMSE and MPH estimates can be adopted to the Bernoulli filter, but we argue

that MPH estimate should be called something like ”strongest component estimate”. The

resulting quantity of the Bernoulli filter, which describes the object spatially, is the whole

spatial PDF. It is not expected, that there should exist one and only ”true” component in

reality, called hypothesis, as in the MHT case.

If we had continued with the explicit data association approach, the resulting algorithms

[3] would be similar to the Bernoulli filter. They do not model the target birth in the

prediction, but rather deal with a track formation logic. If the PDA reduction strategy is

used, the resulting algorithm is commonly referred to as integrated PDA (IPDA) filter [3].

However, to the author’s best knowledge, nothing like integrated NN (INN) filter appears in

the literature.
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CHAPTER 5

Multiple Objects Tracking in Clutter

This chapter is devoted to tracking multiple moving objects in presence of undetections and

clutter. Each of the objects can randomly appear and disappear, and its initial probabilistic

description may not be given. The goal is to jointly estimate the number of objects and their

states (or also trajectories). A graphical illustration is in Fig. 5.1.

k

x
z

Multiple Objects Tracking in Clutter

Fig. 5.1: Illustration of multiple objects tracking in clutter.

If we consider that the only data given to the algorithm, is a set of measurements at a

time, we argue that such problem is challenging. Moreover, even if we knew true positions

of the objects (imagine the characters not colored), deducing what the trajectories were, is

ambiguous. In reality, circumstances might be better disposed than they are in Fig. 5.1, but

it should be noted that the problem is generally assumed to be of such nature.

5.1 Approaches to MTT

In the previous chapters, we investigated two conceptually different approaches to single-

target tracking; in general, forming explicit data association hypotheses or avoiding them.

The algorithms dealing with the MTT problem can be also based on those concepts. However,

using RFSs does not generally imply avoiding data associations.
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In this thesis, we are interested in a specific assumption or approximation, such that

the moving objects are i.i.d.. This assumption leads to mathematically elegant algorithms,

that are similar to the single-target tracking case, namely with respect to the computational

costs. To provide a context and to motivate the approach, we first give a quick overview and

taxonomy of the MTT algorithms.

5.1.1 MTT Outlook

The most recent, yet already not up-to-date, survey of MTT can be found in [5]. For the

MHT approach survey see [20], and for RFS see [22]. For complementary information and

other approaches see e.g. [46, 47], and of course [1, 2, 3].

Having in mind, that we limit ourselves to the special case of the problem, we could

categorize object tracking algorithms with respect to the object/s appearance, and a general

approach used (omitting many other aspects). From this point of view, a naive and over-

simplified mind map is depicted in Fig. 5.2. Algorithms, that are more deeply discussed in

this thesis, are depicted in red.

As was already noted, the general MHT could be understood as a generalization of the

algorithm presented in Chapter 3. For convenience, we define a hypothesis-based approach

to put the NN and PDA based algorithms together with MHT. These are namely the global

NN (GNN) [2], and joint PDA (JPDA) filters for the case of having known the number of

objects, and the joint integrated PDA (JIPDA) filter [3] for the general scenario. It should be

noted that there exists a variety of specific types of solutions to the MHT approach [1, 2, 20],

which are outside the scope of this thesis.

For the RFS approach, we first discuss the algorithms that do not assume the targets to

be i.i.d. An RFS-based counterpart to the ”non-i.i.d.” hypothesis-based approach could be

called multi Bernoulli approximation strategies approach. Apart from the already discussed

Bernoulli (or JoTT) filter, some of emerging solutions designed for the general scenario are

the multi-target multi Bernoulli (MeMBr) filter [4, pp. 655-682], delta-generalized labeled

multi Bernoulli (δ-GLMB) filter [48, 49], and to complement the survey [5], the Poisson

multi Bernoulli mixture (PMBM) filter [50, 51] and filtering using sets of trajectories [52].

It should be noted, that these filters do not generally avoid data associations, and have a

strong relation to the MHT, see e.g. [53].

We want to point out, that the ”non-i.i.d.” approaches try to model the moving objects

comprehensively, trying to store information (such as a unique spatial probability distribu-

46



Multiple Target Tracking

RFS Approach

Izolated Targets

Hypothesis-based Approach Other Approaches

Sets of Targets

ex
a
ct
ly

1
m
a
x
1

i.
i.
d
.

ex
a
ct
ly

n
n
o
t
i.
i.
d
.

MHT, NN, PDA

Bernoulli filter (JoTT)

iFilter PHD, CPHD filters

MHT, GNN, JPDA

IPDA

MHT, JIPDA MeMBr, δ-GLMB,

special case of both Bernoulli and CPHD filters

special case of both Multi Bernoulli and CPHD filters

special case of Multi Bernoulli filter

O
b
je
ct
s/
ta
rg
et
s

PMBM, Set of Trajectories

Fig. 5.2: Simplified mind map of (possibly multiple) target/object tracking.

tion) for each target rather separately. In case of the RFS approach, we could imagine it as

filling a posterior multi-target PDF with a lot of data. This increases the accuracy, but also

the computational cost, which is many times higher than that of single target tracking algo-

rithms. In order to decrease the computational costs, drastic, but principled approximation

strategies can be made, assuming the targets are i.i.d.

The term other approaches refers to the measure theoretic approach [46, 34, 26] unifying

the point processes approach [47] or possible ad-hoc non-Bayesian solutions and others.
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5.1.2 i.i.d. Approximation to the Objects

If the targets were i.i.d., each one of them would be spatially described by the same (prob-

ably multi-modal) spatial PDF. Using such approximation to the moving objects sounds

computationally friendly, but there are some major problems (more deeply discussed later).

The density of i.i.d. objects is not a conjugate prior with respect to a usual measurement

likelihood, and hence the posterior is not from the same family of distributions as the prior.

To ensure recursification, this brings us to introduce other approximations. Now, we discuss

the RFS approach of Mahler and the point process approach of Streit.

Using the RFSs with the FISST theory, the general i.i.d. targets are described by the

i.i.d. cluster process, which is similar to the Poisson RFS, but the cardinality distribution

is arbitrary. Using such target description when performing the Bayes update, i.e. not nec-

essarily during the whole recursion, the cardinalized probability hypothesis density (CPHD)

filter was derived [4, pp. 632-653][54, 55]. Its special case1 when the state-set cardinality is

assumed to be Poisson2 for the Bayes-update, is called the PHD filter [4, pp. 587-632][56, 38].

Both the PHD and CPHD filters share the same idea of derivation. Since the PHD filter has

much simpler notation, we are only interested in the PHD filter in this thesis.

Using Poisson point processes (PPPs), another direction can be used to derive a filter

very similar to the PHD filter, called the intensity filter (or iFilter since 2010) [23]. Both the

PHD and intensity filters can be written such that they have the same resulting equations,

but the derivation procedure is different. To continue investigating various approaches, the

following section deals with the PPP derivation of the intensity filter, mainly inspired by

[23]. The PHD filter is derived3 in Appendix B using PGFLs, where various useful notes are

given to understand the original derivation in [38] easier. A few alternatives to the derivation

of the PHD (or intensity) filter exist [56, 38, 23, 57, 58], and a relationship with the MHT

has been established also [59].

1Strictly speaking, the PHD filter is not a direct special case of the classical CPHD filter from [54], since
this CPHD filter does not model target ”spawning” within the motion model, but the PHD filter does.

2It can be shown [38, Theorem 4], that the Poisson approximation using only a PHD of an arbitrary
RFS to describe the RFS, is the best in an informational sense (Kullback-Leibler divergence is minimal).

3Note that the PHD filter derivation using PGFLs can be understood as a fundamental approach for
deriving more advanced filters, such as CPHD, and PMBM filters mentioned before. This fact establishes
the reason for including this derivation into this thesis.
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5.2 Derivation of the Intensity Filter

In this section, the derivation is inspired by [23]. The random state-set Ξk is treated as a PPP

rather than a Poisson RFS (i.e. without the FISST), although the notation is kept similar

for convenience. Unlike the original PHD filter derivation, the intensity filter derivation

can be understood in ”essentially elementary terms” [25, 27]. In order to tackle the clutter-

generated measurements, the so-called endogenous model of clutter is introduced, defining the

clutter target, or target missing hypothesis state4. Those clutter targets randomly ”haunt”

the measurement space Z with their clutter measurements. The augmented single-target

state-space denoted with XA is defined as a union of the single-target state-space X and

the clutter target state-space φ, and so xk ∈ XA , φ ∪ X . The clutter target state-space

φ is defined to be a subset of Rnx with nonzero volume, such that X ∩ XA = ∅, and so

the augmented space XA is a disconnected subset of Rnx [25]. To separate the notation for

functions5 (and set functions such as integrals) defined on X , φ and XA, superscripts will be

used as follows.

• If a function is defined on X , no superscript is used.

• If a function is defined on φ, superscript φ is used.

• If a function is defined on XA, superscript A, standing for augmented is used.

Now, the point process realizations Xk = {x1
k, . . . ,x

nk
k } can incorporate multiple ”non-

existing” distinct state-vectors xik ∈ φ for some i ∈ {1, . . . , nk}. The posterior PDF of the

point process Ξk modeling the moving objects, is

fk|k(Xk|Zk) = e−N
A
k|k
∏
x∈Xk

DA
k|k(x), N

A

k|k =

∫
XA

DA
k|k(x)dx (5.1)

where Zk = (Z1, . . . , Zk) is the measurement-set sequence, N
A

k|k is the expected number of

targets, and DA
k|k(x) is the intensity, or PHD. Moreover, denote pAk|k(x) as the spatial PDF

4Note that in general, the introduction of clutter targets also enables to estimate target birth and
measurement clutter process as a part of the algorithm. For more discussion, see [25].

5Note, that the notation for the point process Ξk, its realizations and individual vectors will not be
explicitly distinguished.
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of the targets such that

DA
k|k(x) = N

A

k|k · pAk|k(x), x ∈ XA (5.2)

Note that the augmented space brings a notion such that

N
A

k|k =

∫
XA

DA
k|k(x)dx =

∫
X
Dk|k(x)dx︸ ︷︷ ︸
Nk|k

+

∫
φ

Dφ
k|k(x)dx︸ ︷︷ ︸
N
φ
k|k

(5.3)

where Nk|k is expected number of true targets, and N
φ

k|k is expected number of clutter

targets. The goal is to find out how all these parameters propagate through the motion and

measurement models.

5.2.1 Time-update

Define6 the augmented Markov transition7 PDF for xk,xk−1 ∈ XA as

ψAk|k−1(xk|xk−1) =



1− PB, if xk ∈ φ, & xk−1 ∈ φ

PB · pB(xk), if xk ∈ X ,& xk−1 ∈ φ

1− PS, if xk ∈ φ, & xk−1 ∈ X

PS · ψk|k−1(xk|xk−1), if xk ∈ X ,& xk−1 ∈ X

(5.4)

where PB is the probability of birth, pB(xk) is the birth spatial PDF, and PS is the probability

of survival. The term ψk|k−1(xk|xk−1) stands for the single-target Markov transition PDF

(2.6). Note, that pB(x) does not necessarily have to be the same for each time instant, and

we could generally define PS to be state-dependent.

Assume each of the targets in Ξk−1 = {x1
k−1, . . . ,x

nk
k−1} translates independently one by

one with respect to (5.4), so the cardinality of realizations retains |Xk| = |Xk−1|. This implies

that the random cardinality Nk = |Ξk| retains Poisson with the expected number N
A

k|k−1.

Since we assumed Ξk−1 to be i.i.d., Ξk is also i.i.d., and hence Ξk is also a PPP. Using this

6In [23], the Markov transition density was assumed general and not specified for the cases of xk being
from φ or not. Results provided in this thesis are therefore easier to use.

7Note that spawning of targets, contrary to the PHD filter, is not modeled within intensity filter.
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idea, we can easily form the prior PDF from the product of transitioned spatial PDFs as

fk|k−1(Xk|Zk) =

cardinality distribution︷ ︸︸ ︷
e−N

A
k−1|k−1

(
N
A

k−1|k−1

)nk

nk!
·

spatial distribution conditioned on cardinality︷ ︸︸ ︷
nk!

|Xk|∏
i=1

∫
XA

ψAk|k−1(xik|xik−1)pAk−1|k−1(xik−1)dxik−1 (5.5a)

= e−N
A
k−1|k−1

∫
XA

ψAk|k−1(xik|xik−1)

DA
k−1|k−1(xi

k−1)︷ ︸︸ ︷
N
A

k−1|k−1p
A
k−1|k−1(xik−1) dxik−1︸ ︷︷ ︸

DA
k|k−1

(xi
k)

(5.5b)

= e−N
A
k|k−1

∏
x∈Xk

DA
k|k−1(x) (5.5c)

Note that generally Nk|k−1 6= Nk−1|k−1, but rather

N
A

k|k−1 = Nk|k−1 +N
φ

k|k−1 = Nk−1|k−1 +N
φ

k−1|k−1 = N
A

k−1|k−1 (5.6)

The posterior intensity over the augmented space is

DA
k|k−1(xk) =

∫
XA

ψAk|k−1(xk|xk−1)DA
k−1|k−1(xk−1)dxk−1 (5.7a)

=


(1− PB)N

φ

k−1|k−1 + (1− PS)Nk−1|k−1, if xk ∈ φ

PB · pB(xk)N
φ

k−1|k−1+

+PS ·
∫
X ψk|k−1(xk|xk−1)Dk−1|k−1(xk−1)dxk−1, if xk ∈ X

(5.7b)

This equation can be understood as the final time-update equation for the intensity filter.

The original derivation from [23] stops at equation similar to (5.5c), hence this is a special

case when the Markov transition PDF is of the form (5.4).

Results For xk ∈ X

We are mainly interested in predicting true targets, rather than the clutter targets. For

convenience, assume N
φ

k−1|k−1 is known at time k and denote NB = PB ·N
φ

k−1|k−1, which is

obviously the expected number of target births. Then for xk ∈ X we get

Dk|k−1(xk) = NB · pB(xk) + PS ·
∫
X
ψk|k−1(xk|xk−1)Dk−1|k−1(xk−1)dxk−1 (5.8)
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which can be expressed using the prior expected number of targets and their spatial PDF,

Nk|k−1 = NB + PS ·Nk−1|k−1 (5.9)

pk|k−1(xk) =
NB

Nk|k−1

· pB(xk) +
PSNk−1|k−1

Nk|k−1

·
∫
X
ψk|k−1(xk|xk−1)pk−1|k−1(xk−1)dxk−1 (5.10)

We can observe, that Eq. (5.10) is very similar to Eq. (4.8b) of the Bernoulli filter, only the

coefficients scaling the birth PDF and the transitioned PDF differ. Instead of dividing by

the prior probability of existence, we have the prior expected number of targets. Instead of

multiplying the birth PDF with the probability of birth and probability of non-existence, we

multiply by the expected number of target births. Finally, since the probability of existence is

not computed, the second part is multiplied by the probability of survival and the posterior

expected number of targets. To conclude, both filters have similar time-update schemes,

although each of them tackles a different problem.

Initialization of Targets

Define the birth process to be a PPP with intensity NB
k|k−1 ·pB(xk). One can observe there is

a superposition (see Section 2.2.10) in Eq. (5.8), of the birth process and a PPP describing

the survived targets.

An initial spatial PDF p0|0(x0), together with expected number of targets N0|0, can

be given at the initial time step, but it is not necessary since a birth process is modeled.

Moreover, at any time step, if an initial PDF and probability of existence for any newly born

target is known, it8 can be easily incorporated into the birth spatial PDF pB(xk) yielding

a mixture PDF. Note that when initializing targets by adding their initial prior knowledge

into pB(xk), the effect is the same as adding their initial posterior knowledge straightly into

the posterior PPP at k − 1, but the target is not even present at that time step. It should

be noted, that in MTT filters, which model the birth processes, the targets are assumed

to be initialized using prior knowledge in the prediction step. This was already seen in the

Bernoulli filter in Chapter 4. In theory, this is obviously different from the single-target case,

that is usually assumed to start from a known posterior initial PDF at time k = 0. As noted

in Chapter 4, other methods of track formation exist, see e.g. [3, pp. 322-329][1, pp.153 168].

8After its single-target prediction.
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5.2.2 Bayes-update

The Bayes-update is based on the idea of splitting the state-set to two subsets, where one

consists of undetected targets, and the other one of the detected ones. Those state-sets are

constructed using the Bernoulli thinning (see Section 2.2.10) with an augmented probability

of detection PA
D (xk). Both sets are therefore PPPs with some intensity. The intensity of

undetected targets is left unchanged, and the other one is Bayes-updated. As has been

said before, the Bayes rule does not result into a posterior being a PPP under the usual

measurement likelihood and the prior being a PPP. Therefore, an approximation is made to

get the Bayes-updated part to be a PPP. In the end, both PPPs are superposed to yield the

final posterior. Using the notation yet to be defined, the derivation procedure is depicted in

Fig. 5.3.

DA
k|k−1(xk) =

(
1− PA

D (xk)
)
DA

k|k−1(xk)︸ ︷︷ ︸+PA
D (xk)D

A
k|k−1(xk)︸ ︷︷ ︸

DA
k|k(xk) =

︷ ︸︸ ︷(
1− PA

D (xk)
)
DA

k|k−1(xk)+

︷ ︸︸ ︷∑
z∈Zk

PA
D (xk)l

A(z|xk)

Dm(z)
DA

k|k−1(xk)︸ ︷︷ ︸

Bernoulli thinning

Superposition

DetectedUndetected

Bayes update with Zk

PPP approximation of

input

output

Fig. 5.3: Illustration of Bayes-update procedure, xk ∈ XA.

Splitting the Prior

Note, that Bernoulli thinning is an operation performed for the whole point process, rather

then for some specific outcome. As a result, when performed with parameter PA
D (xk) it

yields two PPPs with intensities
(
1 − PA

D (xk)
)
DA
k|k−1(xk) for the undetected process, and

DDA
k|k−1(xk) , PA

D (xk)D
A
k|k−1(xk) for the detected process. For the undetected process, as-

suming there is no measurement available to use for the update, its intensity is retained in

the posterior.

The outcomes of the thinned processes, being just a part of the final posterior, should be

denoted with some other symbol. However, the individual vectors have the same meaning.
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Since we do not need to work with the undetected targets explicitly, the terms ΞD
k , ND

k = |ΞD
k |

and XD
k = {x1

k, . . . ,x
nk
k } can be used to denote the detected PPP, its cardinality and its

outcomes, respectively. Moreover, its PDF will be denoted by fDk|k−1(XD
k |Zk−1) and its

expected number of targets and spatial PDF are

N
DA

k|k−1 =

∫
XA

DDA
k|k−1(xk)dxk = N

A

k|k−1

∫
XA

PA
D (xk)p

A
k|k−1(xk)dxk (5.11)

pDAk|k−1(xk) =
1

N
DA

k|k−1

DDA
k|k−1(xk) =

PA
D (xk)p

A
k|k−1(xk)∫

XA P
A
D (xk)pAk|k−1(xk)dxk

(5.12)

Complete Update of the Detected Process

Similarly to the single-target tracking case, the measurements Zk = {z1
k, . . . , z

mk
k } can be

obtained due to true targets, or due to clutter. Since the clutter targets are modeled, every

single measurement from Zk is assumed to be generated from one of the detected targets.

Therefore, when Zk arrives, the number of detected targets is known to be mk.

The first step is finding the posterior PDF of the detected targets. Define9 the single-

target augmented measurement likelihood function for xk ∈ XA as

lA(z|xk) =

c(z), if xk ∈ φ,

l(z|xk), if xk ∈ X ,
(5.13)

where c(z) is the clutter spatial PDF and l(z|xk) is the single-target measurement likelihood

function (2.7). Since every single measurement in Zk = {z1
k, . . . , z

mk
k } was generated by a

target in XD
k , the PDF of the measurement process Σk|Σk−1, can be derived using analogous

ideas as in derivation of the prior PDF. It is a PPP with the PDF

fΣk|Σk−1(Zk|Zk−1) =

card. distribution︷ ︸︸ ︷
e−N

DA
k|k−1

(
N
DA

k|k−1

)nk

nk!
·

spatial distribution conditioned on cardinality︷ ︸︸ ︷
nk!

nk∏
i=1

∫
XA

lA(zik|xik)
PAD (xk)pAk|k−1(xk)∫

XA PAD (xk)pAk|k−1(xk)dxk
dxik (5.14a)

= e−N
DA
k|k−1

mk∏
i=1

∫
XA

lA(zik|xik)

DDA
k|k−1(xi

k)︷ ︸︸ ︷
N
A

k|k−1P
A
D (xik)pAk|k−1(xik) dxik︸ ︷︷ ︸

Dm(zi
k),

(5.14b)

= e−N
DA
k|k−1

∏
z∈Zk

Dm(z) (5.14c)

9Similarly to the time-update, in [23] the augmented measurement likelihood was not specified as herein.
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where the measurement intensity is

Dm(zk) =

∫
XA

lA(zk|xk)PA
D (xk)D

A
k|k−1(xk)dxk (5.15a)

= c(zk)N
φ

k|k−1 +

∫
X
l(zk|xk)PD(xk)Dk|k−1(xk)dxk (5.15b)

Note, that the (prior) expected number of clutter targets/measurements N
φ

k|k−1, which is an

estimate, is usually denoted λ and assumed known.

Now, the measurement likelihood will be derived. Since we do not know, which target

generated which measurement, the likelihood is given by

lA(Zk|XD
k ) =


∑

σ∈Sym(mk)

∏mk
i=1 l

A(z
σ(i)
k |xik), if mk = nk

0, otherwise
(5.16)

where Sym(mk) represents the set of all permutations of integers up to mk. Notation for lA

is abused again, and should be obvious from the context. The Bayes updated PDF is then

nonzero only if mk = nk (i.e. if |Zk| = |XD
k |), and for such case it is

fDk|k(X
D
k |Zk) =

lA(Zk|XD
k )fDk|k−1(XD

k |Zk−1)

fΣk|Σk(Zk|Zk)
(5.17a)

=

(∑
σ∈Sym(mk)

∏mk
i=1 l

A(z
σ(i)
k |xik)

)(
�����
e−N

DA
k|k−1

∏
x∈XD

k
PAD (xk)D

A
k|k−1(x)

)
�����
e−N

DA
k|k−1

∏
z∈Zk Dm(z)

(5.17b)

=
∑

σ∈Sym(mk)

mk∏
i=1

lA(z
σ(i)
k |xik)PAD (xik)D

A
k|k−1(xik)

Dm(z
σ(i)
k )

(5.17c)

=
∑

σ∈Sym(mk)

mk∏
i=1

lA(z
σ(i)
k |xik)DDA

k|k−1(xik)

Dm(z
σ(i)
k )

(5.17d)

where the equality between (5.17b) and (5.17d) holds because each of the products can be

expressed using the same index. The PDF in (5.17d) is obviously not a PDF of some PPP.

From this point, there are several ways to continue with the derivation. We consider only

the following two possibilities, that were highlighted in [23, 58]. First, we could integrate the

PDF (5.17d) over all, except one state variable to find a single-variate function and then find

the expected number of targets. The found values would be used to form an approximating

PPP of the updated point process [23, pp. 239-243]. This procedure can be made more
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rigorous using the newly proven result for PHDs from Section 2.2.4, see Appendix A.5.1.

Second, we could establish a connection with the positron emission tomography (PET),

noting that the desired intensity filter update is formally equivalent to a single step of

the Shepp-Vardi algorithm with the time-of-flight data (when made continuous as a chosen

volume partition approaches zero), originally derived using the expectation-maximization

(EM) method. At the expense of possible convergence problems of a continuous version of

the EM method [60, 61] we argue that this can be made more rigorous avoiding the possibly

questionable limiting process of the original derivation in [23, pp. 112-118][58].

Both possibilities provide some valuable insight into the problem. In both of the deriva-

tions, the PDF (5.17d) is integrated over all, except one state, but the circumstances differ.

We present both possibilities in this thesis, contributing with the mentioned improvements.

Straightforward Derivation of the Posterior Intensity Function

For simplicity, explicit conditioning on the measurement process Σk is omitted and so ΞD
k

denotes the posterior point process. Remind that the point processes discussed in this thesis

are actually RFSs and they can be equivalently modeled with FISST. The PHD defined in

Section 2.2 with the FISST set integral is therefore defined for the updated point process with

the PDF (5.17d) as well. The idea is to find the PHD of this point process and parameterize

a PPP with it. In terms of FISST, this induces an approximation which can be shown to

be the best in an informational sense, see [38, Theorem 4]. In Section 2.2.4, the PHD was

said to be equal to a product of the expected number of targets in the whole single-target

state-space and a function that is a normalized sum of marginal PDFs of ordered ΞD
k |ND

k

being a singleton set. Since the resulting PHD is used as an intensity of an approximating

PPP, the function becomes the spatial distribution parameter of a PPP and hence can

be denoted pDk|k(xk), for more detail see Appendix A.5.1. Since the PDF before the Poisson

approximation is known to be (5.17d), we are able to form the PHD using the aforementioned

new result.

Since the PDF (5.17d) is nonzero only if mk = nk, its cardinality is given by the Kronecker

delta function centered at mk, fND
k

(nk) = δKron
mk

(nk) and so is actually nonrandom. This

simplifies the computation significantly.

• The expected value of the cardinality distribution, which is the desired expected num-

ber of targets in the whole single-target state-space is mk.
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• The normalized sum of marginal PDFs of ordered ΞD
k |ND

k being singleton (see Ap-

pendix A.5.1), denoted10 with pDk|k(x
l
k) has a single summand and is given by

pDk|k(x
l
k) =

∑+∞
n=1 n · fNk(n) · fXD

k |N
D
k

(xlk|n)∑+∞
n=1 n · fND

k
(n)

=
��mk · fXD

k |N
D
k

(xlk|mk)

��mk
(5.18a)

=

∫
(XA)mk−1

fXD
k |N

D
k

(x1
k, . . . ,x

l
k, . . . ,x

mk
k |mk)dx

1
k · · · dxl−1

k dxl+1
k · · · dxmkk (5.18b)

=
1

mk!

∫
(XA)mk−1

fΞDk |N
D
k

({x1
k, . . . ,x

l
k, . . . ,x

mk
k }|mk)︸ ︷︷ ︸

fD
k|k({x1

k,...,x
l
k,...,x

mk
k }|Zk)

mk∏
j=1
j 6=l

dxj (5.18c)

=
1

mk!

∫
(XA)mk−1

∑
σ∈Sym(mk)

mk∏
i=1

lA(z
σ(i)
k |xik)DDA

k|k−1(xik)

Dm(z
σ(i)
k )

mk∏
j=1
j 6=l

dxj (5.18d)

=
1

mk!

∑
σ∈Sym(mk)

lA(z
σ(l)
k |x

l
k)D

DA
k|k−1(xlk)

Dm(z
σ(l)
k )︸ ︷︷ ︸

this expression has mk! summands, which can be
rearranged into (mk−1)! sums over meaurements

mk∏
i=1
i 6=l

�����
Dm(z

σ(i)
k )︷ ︸︸ ︷∫

XA
lA(z

σ(i)
k |xik)DDA

k|k−1(xik)dx
i
k

�����
Dm(z

σ(i)
k )︸ ︷︷ ︸

=1

(5.18e)

=
(mk − 1)!

mk!

mk∑
i=1

lA(zik|xlk)DDA
k|k−1(xlk)

Dm(zik)
=

1

mk

mk∑
i=1

lA(zik|xlk)PAD (xlk)D
A
k|k−1(xlk)

Dm(zik)
(5.18f)

The desired PHD is then given by

DDA
k|k = mk · pDk|k(xk) =

mk∑
i=1

lA(zik|xlk)PA
D (xlk)D

A
k|k−1(xlk)

Dm(zik)
(5.19)

Taking this function to be the intensity of the approximating PPP finishes the derivation.

Likelihood Maximization Using EM Method

This part of the intensity filter update can be shown to be a single maximization step of

the EM algorithm, designed for a specific continuous problem to maximize the measurement

likelihood. The derivation in [23, pp. 112-118][58] focused on the positron emission tomog-

raphy (PET) with the time-of-flight data leading to the Shepp-Vardi algorithm. One step

of this algorithm, when ”made continuous”, was shown to be equivalent to the desired ap-

10Note, that introduction of the index l is just for simplicity when computing the integrals.
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proximate Bayes-update of detected process in the intensity filter. However, in the original

derivation a spatially discrete problem was solved, and the results were made continuous

taking a limit as a chosen volume partition approaches zero. We argue, that there is no

reason for breaking the single-target state-space into discrete pieces of volume to derive the

desired update. Therefore, we propose a derivation verifying that this step in the intensity

filter is one step of a continuous version of the imaging algorithm, which however generally

does not converge.

Note, that the EM method was originally defined for estimating discrete variables [62]. A

general EM method for a continuous problem like this exists [63], but it can be ill-posed and

thus does not generally converge [60, 61]. However, we are interested only in a single M-step.

The version of the EM method used in the following can be found in [23, pp. 223-228].

Let the estimated parameter11 θ, be an intensity function θ(xk) ∈ Θ, where Θ is a

set of all valid intensity functions defined on XA. Assume θk−1(xk) is the intensity of the

detected process DDA
k|k−1(xk). Then θk(xk) will be taken to be the intensity after the desired

approximate Bayes-update, denoted DDA
k|k (xk). Assuming Zk arrived, the objective is to find

θk(xk) maximizing the likelihood defined as

p(Zk|θk) , mk!
∏
z∈Zk

∫
XA

lA(z|xk)θk(xk)dxk (5.20)

Let the detected state-set XD
k = {x1

k, . . . ,x
mk
k } be the set of missing data. The E-step (just

a formal part) is then given by evaluating the auxiliary function, which can be defined as

the following expectation over the general posterior,

Q(θ, θk−1) = EXD
k |Σk,θk−1 [log f(XD

k , Zk|θ)] (5.21a)

=

∫
(XA)mk

(
log f(XD

k , Zk|θ)
) fDk|k(XD

k |Zk, θk−1)

mk!
dx1

k . . . dx
mk
k (5.21b)

where the term 1
mk!

could be interpreted as taking an ordered tuple XD
k of ΞD

k for simplicity12,

11Note that θ in this section, should not be confused with a data association hypothesis. We use θ to
respect the standard notation in EM methods.

12Since mk is known, the expatiation in (5.21b) can be understood as expectation for usual joint PDFs.
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or ordering a differential d{x1
k, . . . ,x

mk
k }. The joint PDF of ΞD

k ,Σk|θ is

f(XD
k , Zk|θ) ,

[
l(Zk|XD

k )fDk|k−1(XD
k )

]
DA
k|k−1

=θ

(5.22a)

=

 ∑
σ∈Sym(mk)

mk∏
i=1

lA(z
σ(i)
k |x

i
k)

(e− ∫XA θ(x)dx

mk∏
j=1

θ(xjk)

)
(5.22b)

The M-step is given by maximizing Q(θ, θk−1) with θ ∈ Θ,

θk(x) := arg max
θ∈Θ

Q(θ, θk−1) (5.23)

To continue, the logarithm of (5.22b) is given by

log f(XD
k , Zk|θ) =

�����������������

log

 ∑
σ∈Sym(mk)

mk∏
i=1

lA(z
σ(i)
k |x

i
k)

− ∫
XA

θ(x)dx +

mk∑
j=1

log θ(xjk) (5.24)

where the first part can be neglected for the minimization, since it is independent of the

optimal argument θ. Substituting (5.24) and (5.17d given θk−1) into Q(θ, θk−1), and noting

that Dm(z) =
∫
XA l

A(z|xjk)θk−1(xjk)dx
j
k, gives

Q(θ, θk−1) =

=

∫
(XA)mk

(
−
∫
XA

θ(x)dx +

mk∑
i=1

log θ(xik)

)
1

mk!

∑
σ∈Sym(mk)

mk∏
j=1

lA(z
σ(j)
k |xjk)θk−1(xjk)

Dm(z
σ(j)
k )

dx1
k . . . dx

mk

k

(5.25a)

= −
∫
XA

θ(x)dx +

mk∑
i=1

∫
(XA)mk

log θ(xik)
1

mk!

∑
σ∈Sym(mk)

mk∏
j=1

lA(z
σ(j)
k |xjk)θk−1(xjk)

Dm(z
σ(j)
k )

dxjk (5.25b)

= −
∫
XA

θ(x)dx +

mk∑
i=1

∫
XA

log θ(xik)
1

mk!

∑
σ∈Sym(mk)

mk∏
j=1
j 6=i

lA(z
σ(i)
k |xik)θk−1(xik)�����

Dm(z
σ(j)
k )

Dm(z
σ(i)
k )�����

Dm(z
σ(j)
k )

dxik (5.25c)

= −
∫
XA

θ(x)dx +

mk∑
i=1

∫
XA

log θ(xik)
lA(zik|xik)θk−1(xik)

Dm(zik)
dxik (5.25d)

To minimize Q(θ, θk−1) with respect to θ, we could take a functional derivative (assuming

θk−1 is a parameter) and set it to zero everywhere in XA, see e.g. [64] to get an intuition.

Note, that since the free variable is from the augmented space XA, this step might be
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questionable. Assuming XA is defined such that it is possible, we get

δQ(θ, θk−1)

δx
= −1 +

1

θ(x)

mk∑
i=1

lA(zik|x)θk−1(x)

Dm(zik)
!

= 0 ∀x ∈ XA (5.26)

δ

δx

(
δQ(θ, θk−1)

δx

)
= − 1(

θ(x)
)2

mk∑
i=1

lA(zik|x)θk−1(x)

Dm(zik)
≤ 0 ∀x ∈ XA, ∀θ ∈ Θ (5.27)

And therefore we get

θk(x) =

mk∑
i=1

lA(zik|x)θk−1(x)

Dm(zik)
(5.28)

which is due to (5.27) the desired argument of maxima. Remind that θ stands for the

intensity function. The desired update is then given by

DDA
k|k (xk) =

mk∑
i=1

lA(zik|xk)DDA
k|k−1(xk)

Dm(zik)
=
∑
z∈Zk

lA(z|xk)PA
D (xk)

Dm(z)
DA
k|k−1(xk) (5.29)

Superposing the Updated Processes

The final updated intensity is given by a superposition of detected and undetected processes

(both PPPs now), which yields the final intensity

DA
k|k(xk) =

(
1− PA

D (xk)
)
DA
k|k−1(xk) +

∑
z∈Zk

lA(z|xk)PA
D (xk)

Dm(z)
DA
k|k−1(xk) (5.30a)

=

(
1− PA

D (xk) +
∑
z∈Zk

lA(z|xk)PA
D (xk)

Dm(z)

)
DA
k|k−1(xk) (5.30b)

=


(

1− P φ
D(xk) +

∑
z∈Zk

c(z)PφD(xk)

Dm(z)

)
Dφ
k|k−1(xk), if xk ∈ φ,(

1− PD(xk) +
∑

z∈Zk
l(z|xk)PD(xk)

Dm(z)

)
Dk|k−1(xk), if xk ∈ X

(5.30c)

We can see that it is generally possible to estimate the intensity of clutter jointly with the

posterior intensity of true targets. However, the probability of detection P φ
D(φ) of the clutter

targets must be given. Vaguely speaking, how could we model a value, interpreted as a

probability of detecting a non-existing target? Therefore, we will omit further discussion

about the case when xk ∈ φ, and understand clutter targets as a useful theoretical construct

for the derivation of the filter.
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Results For xk ∈ X

Denote the expected number of clutter measurements λ = N
φ

k|k−1 (it appears in Dm(z)) and

assume it is known. Then, the final intensity can be written as

Dk|k(xk) =

(
1− PD(xk) +

∑
z∈Zk

l(z|xk)PD(xk)

λc(z) +
∫
X l(z|xk)PD(xk)Dk|k−1(xk)dxk

)
Dk|k−1(xk)

(5.31)

The integral in (5.31) is (in case of the PHD filter) usually denoted by

Dk|k−1[l(z|·)PD] =

∫
X
l(z|xk)PD(xk)Dk|k−1(xk)dxk (5.32)

For the expected number of targets and the spatial PDF we can generally get nothing but

Nk|k =

∫
X
Dk|k(xk)dxk, pk|k(xk) =

1

Nk|k
Dk|k(xk) (5.33)

but in case of constant probability of detection PD, it becomes

Nk|k = (1− PD)Nk|k−1 +
∑
z∈Zk

PDNk|k−1pzk(z)

λc(z) + PDNk|k−1pzk(z)
(5.34)

pk|k(xk) =
Nk|k−1

Nk|k

(
1− PD +

∑
z∈Zk

l(z|xk)PD
λc(z) + PDNk|k−1pzk(z)

)
pk|k−1(xk) (5.35)

where

pzk(z) ,
∫
X
l(z|xk)pk|k−1(xk)dxk (5.36)

is the single-target measurement prediction, which is the same for all the targets.

For the single-target case, the Bayes-update of the spatial PDFs was formally equivalent

for both MHT and Bernoulli filters. For the Poisson approximation to the multi-target case,

we observe that the main difference lies in the additive weighting of each measurement.
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5.3 Gaussian Sum Filter Implementation

The crucial update equations (5.8,5.31) were derived in this thesis such that they are formally

the same for both the intensity and PHD filter (without target spawning and constant

probability of survival, see Appendix B). Thus the following hold for both filters. The GSF

implementation of the general PHD filter (i.e. with spawning and state-dependent probability

of survival) is commonly known as the Gaussian Mixture PHD filter [65].

Remind that the targets are assumed to be independent, and their number is unknown

and varies in time. If any target is present, its single-target transition PDF and measurement

likelihood are assumed to be such as in the linear-Gaussian case (2.11,2.12). Assume constant

probability of detection PD = PD(xk). No additional assumptions for the clutter parameters

λ and c(z) are needed. The initial PDF, if given, is a GM of the form

p0|0(x0) =

H0|0∑
h=1

wh0|0N (x0; mh
0|0,P

h
0|0) (5.37)

where H0|0 is the number of targets that are assumed present at the initial time, and wh0|0,

mh
0|0, and Ph

0|0 are the weight, mean, and covariance matrix of the h-th target, respectively.

Note, that if the initial probability of existence associated with the h-th target qh0|0 is given,

the weight can be computed as wh0|0 =
qh
0|0
H0|0

. Consider the expected number of births NB is

given, and the birth PDF pB(xk) is a GM of the form (4.15). As discussed in Section 5.2.1,

new targets can be easily initialized during the run using the birth PDF, however, we assume

pB(xk) to be time-independent in this thesis. Finally, assume the probability of survival PS

is given.

Similarly to the Bernoulli filter, such assumptions result into the spatial PDFs of the

prior and posterior PPPs being Gaussian mixtures, denoted by

pk|k−1(xk) =

Hk|k−1∑
h=1

whk|k−1N (xk; m
h
k|k−1,P

h
k|k−1) (5.38)

pk|k(xk) =

Hk|k∑
h=1

whk|kN (xk; m
h
k|k,P

h
k|k) (5.39)

where Hk|k−1, and Hk|k are total number of components in the prior and posterior PDFs at

time k, respectively.
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Assume the posterior expected number of targets from the last time instant is Nk−1|k−1.

From (5.10) and the KF equations (2.16a,2.16b), the time-update of the spatial PDF is

pk|k−1(xk) =
NB

Nk|k−1

NB,k∑
i=1

wiB,kN (xk; m
i
B,k,Q

i
B,k)+

+
PSNk−1|k−1

Nk|k−1

Hk−1|k−1∑
h=1

whk−1|k−1N (xk; m
h
k|k−1,P

h
k|k−1) (5.40a)

where mh
k|k−1 = Fmh

k−1|k−1 (5.40b)

Ph
k|k−1 = FPh

k−1|k−1F
T + Q (5.40c)

where the time-updated expected number of targets Nk|k−1 is simply given by Eq. (5.9). Eq.

(5.40a) can be rewritten into a GM of a form (5.38), with Hk|k−1 = Hk−1|k−1 + NB,k being

the prior number of GM components.

For the Bayes-update, the formula is slightly different from the single target tracking

case. We first discuss the update of the spatial PDF. In order to compute the integral (5.32)

from the denominator for each measurement, compute the probabilities (5.36). From the

single-target measurement prediction (2.17), it follows that

pzk(z) =

∫
X
l(z|xk)pk|k−1(xk)dxk =

Hk|k−1∑
h=1

whk|k−1N (zk; ẑ
h
k|k−1,P

ẑ,h
k|k−1) (5.41a)

where ẑhk|k−1 = Hmh
k|k−1 (5.41b)

Pẑ,h
k|k−1 = HPh

k|k−1H
T + R (5.41c)

Then, form the unnormalised spatial posterior PDF

pk|k(xk) ∝

(
1− PD +

∑
z∈Zk

l(z|xk)PD
λc(z) + PDNk|k−1pzk(z)

)
pk|k−1(xk) (5.42a)

∝
Hk|k−1∑
h=1

whk|k−1(1− PD)N (xk; m
h
k|k−1,P

h
k|k−1)+

+

Hk|k−1∑
h=1

mk∑
i=1

whk|k−1

PDN (zik; ẑk|k−1,P
ẑ,h
k|k−1)

λc(zik) + PDNk|k−1pzk(z
i
k)
N (xk; m

h
k|k,P

h
k|k) (5.42b)
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where mh
k|k,P

h
k|k are given by the KF update equations (2.16a-2.16e)

mh
k|k = mh

k|k−1 + Kk(z
i
k −Hmh

k|k−1) (5.43)

Ph
k|k = (I−KkH)Ph

k|k−1 (5.44)

with Kk = Ph
k|k−1H

T (HPh
k|k−1H

T + R)−1 (5.45)

Observe, that the unnormalised posterior (5.42b) can be written as a GM, and denote it

pk|k(xk) ∝
Hk|k∑
h=1

w̃hk|kN (xk; m
h
k|k,P

h
k|k) (5.46)

Where Hk|k = Hk|k−1(1 + mk). The final step si normalising the posterior. Noting the

proportional constant is equal to
Nk|k−1

Nk|k
and Nk|k−1 is known, the final update is given by

pk|k(xk) =

Hk|k∑
h=1

whk|kN (xk; m
h
k|k,P

h
k|k), where whk|k =

w̃k|k∑Hk|k
h=1 w̃k|k

(5.47)

Nk|k = Nk|k−1

Hk|k∑
h=1

w̃k|k (5.48)

In order to moderate computational costs, the pruning and capping (see Section 2.3) can

be readily used. The gating is discussed later.

Obviously, the MMSE and MPH estimates do not make sense for the intensity (PHD)

filter. Note, that when dealing with a multi-target PDF, the classical maximum-aposteriori

(MAP) and expected-aposteriori (EAP) state estimators are not even defined in general [4,

pp. 494-508]. Since we deal with a GM representation of the intensity function, the means of

the posterior GM components are its local maxima (if they are not too closely spaced). We

can take simply Nk|k means corresponding to Gaussian densities with the largest weights,

Nk|k arguments of highest peaks, or all components with a weight greater than a threshold.

Note, that the GM components in the prior or posterior PDFs cannot be interpreted as

hypotheses similarly to the single-target sense. They contain information about a possible

evolution of all the targets, without any specification which component corresponds to which

target evolution. Because of this interpretation difficulties, we argue that gating should not

be performed, unless whenever any new target appears to the scenario, its initial spatial

PDF is known and properly incorporated into the birth spatial PDF.
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The GM components represent the whole intensity function (or PHD), i.e. a joint infor-

mation for all the targets. From the filter derivation it can be seen that no target trajectories

are modeled. Forcing the filter to yield trajectory estimates can be done [66, 67, 68] but it

is rather heuristic13. From the very recent theory of filtering with sets of trajectories, it is

possible to form the trajectory PHD filter [69, 70], as an approximate propagation of the

so-called multi-trajectory density through (an appropriate) BRRs.

Other Notes on Intensity/PHD Filter

Now we discuss how i.i.d. approximation to the objects might be poor. First, consider

sampling. Imagine taking two independent samples from a multi-modal PDF with two local

maxima. If the peaks represent targets, then from the independent property, the two samples

can happen to be generated both near one of those peaks. Such situation cannot happen

e.g. in case of modeling with multi-Bernoulli distribution. Second, consider the Poisson

cardinality distribution. In case of having a known number of targets present, for example

one, then even if the expected number of the targets was equal to one, the probability of

having exactly one target is pN(1) = e−111

1!
= e−1 ≈ 0.37, which is considerably low value.

Assume, that exactly one object is present. From the additional weighting of each mea-

surement, it is obvious that even in case of setting the expected number of targets to one,

the PHD filter behaves differently, than the single-target filters discussed in previous chap-

ters. However, it can be shown that all the presented filters (at least with respect to their

behavior) can be straightly derived from the CPHD filter [4, pp. 641-642] [54, 71].

Other drawbacks and notes about the PHD filter can be found e.g. in [4]

13PHD filter, especially with its particle implementation, can be combined with other MTT filters as a
”declutter” algorithm (followed by clustering), or to perform ”global gating”, see [68],[4, pp. 596-599].
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CHAPTER 6

Practical Comparison

The previous chapters dealt with the theoretical basis of the presented filtering algorithms

including their theoretical comparison. Since each of the presented algorithms is designed

for different scenario and outputs various kinds of estimate, precise numerical comparison

is meaningless. This chapter is thus devoted to a practical comparison only. Particularly,

we address a specific real-world application, which is tracking of moving objects from video

data (visual tracking), illustrated in Fig. 6.1.

Fig. 6.1: Illustration of tracking a moving object from video data.

In the computer learning community, various techniques are used for such task [72, 73],

largely involving ad-hoc non-Bayesian methods, focusing on different kinds of objectives and

concrete applications, such as video surveillance and autonomous driving. In this thesis,

we consider especially tracking of pedestrians and cars. Using a few easy-to-understand

examples, we compare the presented algorithms with respect to their general behavior and

practical use, rather than numerical performance.

In the following, we first discuss how the measurement-sets are created. Then we form a

motion and measurement models, followed by the results and discussion.

6.1 Data Acquisition

The video data consist of a time-sequence of images (or frames), where each image consists of

pixels. Since the presented algorithms assume to be given a set (or tuple) of measurements,

that are points in some vector space Z at a time, we must use an additional algorithm,
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that takes each image as its input, and returns such measurements at its output. Such

additional algorithm is commonly addressed as image object detector and comes from the

area of computer vision, see [74, 75] for a survey. There are various types of detectors, such

as those focusing on detecting features, contours, faces, body parts, cars, or other objects,

as well as those focusing on detection of multiple classes of objects at once. We chose to use

the so-called you only look once version 3 (YOLOv3) image detector [76] with the Darknet

implementation in C [77, 78]. This algorithm makes the use of neural networks [73] and is

known especially for its good ratio of time demands and accuracy. To push our examples

closer to real-world computational constraints, we use an alternative set of weights for the

neural network, referred to as tiny weights, which are especially designed for constrained

environments. Therefore, the algorithm output is worse than that commonly claimed for

YOLOv3, but the algorithm works much faster, being ready for constrained (e.g. on-line)

use. We used the value 0.1 for the detection threshold.

For a given video frame, YOLOv3 outputs a set of so-called bounding boxes with each one

being associated with some class of objects, such that there is e.g. a person, a car or a horse,

inside the bounding box. For simplicity, we use only the center of each bounding box to fill

in the measurement-set for the tracking algorithms. In another words, each measurement zk

represents a two-dimensional position [xk, yk]
T of the object within the image coordinates (in

pixels). No information about the object width, height, or a class to which it belongs to, is

used for tracking the object. Therefore, the following results are rather illustrative, leaving

any improvements to a possible consequent work. Since we focus on a general behavior of

the tracking algorithms, we do not present any specific evaluation metrics, used to compare

tracking performance numerically. It should be noted, that there exist various evaluation

techniques, specific for either the visual object tracking field (see e.g. [73, pp. 64-65][79,

pp. 4-5]), and the general MTT [80, 81].

Above we discussed how the measurements are generated from the image observation.

We now make an assumption about the dynamic model of the objects, i.e. the Markov

transition density ψk|k−1(xk|xk−1) and the measurement likelihood function l(zk|xk).

6.2 Model of the Objects

For simplicity, we model the individual targets to be 4-dimensional random vectors xk =

[x, vx, y, vy]
T , such that both their position x, y and velocity vx, vy are 2D as if they moved
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on the surface of the images, rather than ”inside them” in 3D. Therefore, the measurements

zk are position observations. In order to use the GM implementation without any further

approximations, we use the almost constant velocity model [82], which is linear. It can be

written in terms of (2.11,2.12), where the state transition matrix F, state noise covariance

matrix Q, measurement matrix H and the measurement noise covariance matrix R are

F =


1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1

 Q = q


T 3

3
T 2

2
0 0

T 2

2
T 0 0

0 0 T 3

3
T 2

2

0 0 T 2

2
T

 (6.1)

H =

[
1 0 0 0

0 0 1 0

]
R = R

[
1 0

0 1

]
(6.2)

where T > 0 is the sampling period, and q > 0, R > 0 are parameters of the process and

measurement noises. The values of these parameters differ within the following examples.

6.3 Demonstrations

There are many datasets for the video detection and tracking algorithms, see e.g. [79]. The

videos used in this thesis were chosen from several different datasets, that are outlined in the

following text. The complete results are saved as video files or figures on a CD attached to

this thesis, and also can be found at [83]. Overall results are discussed here, providing a few

sample photos and graphs to get an intuition. Note, that for the sake of clarity, some axes

are omitted in the following figures. The trajectories, and state estimates are depicted in red,

with contours of posterior spatial PDF for a given time step in red and green. In the figures

presenting the estimated positions with respect to time k, the measurements are depicted

in gray. The algorithm names have been abbreviated with simple NN, PDA, MHT, B

(for Bernoulli filter), and PHD (for intensity/PHD filter). Note that MHT stands for the

single-target MHT as presented in Section 3. For the MHT and Bernoulli filters, both the

MMSE and MPH estimates were obtained, but only the results concerning the MMSE are

presented in the following samples. For the Bernoulli filter, the trajectory estimate was drawn

if qk|k ≥ 0.5, and for the PHD filter, the estimates of the states are means of components

with the largest weights, and their number is rounded Nk|k.
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Fig. 6.2: Samples from boulevard video: YOLOv3, NN, Bernoulli, and PHD filters.

The values common for all the cases are as follows. The gating was performed with the

gate G = 22. For the MHT, Bernoulli, and PHD filters, the pruning threshold was taken to

be 0.01 and the capping maximum number of components was 100. The probability of birth

PB = 0.01 and of survival PS = 0.98. The clutter was assumed to be uniformly distributed

over the whole picture. The birth process was modeled as a single Gaussian, placed in the

middle of the area with a ”large” covariance. No spawning was modeled. The initial PDF

was chosen heuristically. The algorithms were implemented in MATLAB R© R2019a.

6.3.1 Tracking of a Car With a Static Camera

The video boulevard is taken from the SBMnet dataset [84]. A car passing a road is unde-

tected for a considerably large number of frames when being in the middle of the scene. For

the algorithms, following parameters were used: the process and measurement noise coeffi-
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Fig. 6.3: Estimated values for a part of boulevard video: NN, Bernoulli, and PHD filters.

cients q = 202, R = 102, the probability of detection PD = 0.6, the expected number of birth

NB = 0.02, and of clutter measurements λ = 0.1. Sample frames and resulting estimates

from some of the algorithms are in Fig. 6.2 and 6.3, respectively.

The main differences among the algorithms can readily be seen, such as there are gaps

within the estimated trajectory from the Bernoulli filter corresponding to time instants

when q < 0.5. Due to occasional multiple detections, the PHD filter sometimes results into

estimating multiple objects being present.

It can be noted, how the birth process influences the posterior spatial PDF especially for

the PHD filter. The contours that tracked the object vanish after multiple undetections in a

row (the birth process simultaneously gains large weight) and soon become even pruned off,

i.e. there is only the birth PDF left in the middle of the frame, and the estimated expected

number of objects is close to zero at time k = 30. Similar performance holds for the Bernoulli

filter, but the vanishing process is slower. Since we know the car was present for the whole

time horizon, we would naturally choose NN, PDA, or MHT. However, when looking solely

at the measurements in Fig. 6.3 (gray circles in position subplots), one could guess the target

was switching off/on, and so the Bernoulli filter might be more appropriate.
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Fig. 6.4: Sample frames from OneStopEnter1front v1 video: YOLOv3, NN, Bernoulli, and
PHD filters.

6.3.2 Tracking of a Customer in a Shopping Mall

The video OneStopEnter1front v1 is taken from the CAVIAR dataset [85]. A human passes

by a shop in a shopping mall. Other objects that are not to be tracked were detected by the

YOLOv3, and so the clutter does not behave according to its model (uniform distribution).

For the algorithms, the same parameters were used as for the boulevard video. Sample frames

and resulting estimates from some of the algorithms are in Fig. 6.4 and 6.5, respectively.

The performance of the NN filter seems to be superior. For the Bernoulli filter, when

the target is undetected a few times in a row (around k = 90)1, the birth process gives rise

1Note the gap around that time step in the estimated probability of existence, due to which there is a
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Fig. 6.5: Estimated values for a part of OneStopEnter1front v1 video: NN, Bernoulli, and
PHD filters.

to track the static object behind the shop’s window, which has been detected by YOLOv3,

and hence the Bernoulli filter looses a track of the human.

Since the clutter measurements are actually not from clutter, but from static objects, the

PHD filter tracks them (or finds their states). They behave according to the almost constant

velocity motion model, with velocity being around zero.

gap in the estimated trajectory.
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Fig. 6.6: Sample frames from car3 video: YOLOv3, PDA, MHT, and PHD filters.

6.3.3 Automotive Tracking From Blurred and Tremulous Video

The video car3 is taken from the BLUT dataset [86] and is also included in the visual tracker

benchmark [87] dataset [88]. A camera, loosely attached probably to a windshield, shoots

other cars while passing by a crossroad. For the algorithms, the following parameters were

used: the process and measurement noise coefficients q = 602, R = 352, the probability of

detection PD = 0.8, the expected number of birth NB = 0.03, and of clutter measurements

λ = 0.1. Sample frames and resulting estimates from some of the algorithms are in Fig. 6.6

and 6.7, respectively.

If we consider tracking of the car, which rides in front of the windshield, we can say
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Fig. 6.7: Estimated values for a part of car3 video: PDA, MHT, and PHD filters.

that the PDA filter significantly outperforms the other filters. When watching the resulting

videos, the merging procedure can be straightforwardly seen as effective, while the MHT

(and also both NN and Bernoulli filters) looses track of the car. The PHD filter can be used

in case of tracking (or estimating actual states of) multiple existing objects, but it yields no

trajectories at all.
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Fig. 6.8: Samples from O SM 04 video: YOLOv3, PDA, Bernoulli, and PHD filters.

6.3.4 Tracking of Pedestrians

The video O SM 04 is taken from the SBMnet dataset [84]. A pedestrian walks up a street

and right before the end of the video, another pedestrian enters the scene. For the algorithms,

the same parameters were used as for the boulevard video. The sample frames and resulting

estimates from some of the algorithms are in Fig. 6.8 and 6.9, respectively.

If only the first pedestrian is to be tracked, since it is known to be present for the whole

tracking time horizon, the NN, PDA, and MHT filters can be used efficiently. The Bernoulli

filter might produce unwanted gaps in the trajectory estimates.
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Fig. 6.9: Estimated values for a part of O SM 04 video for PDA, Bernoulli, and PHD filters.

For the PHD filter, an interesting behavior can be seen at the end of the video. When

another pedestrian enters the scene, the filter ”finds”him. However, even though the rounded

Nk|k is equal to 2, resulting estimates are near to either one of the objects at a time. This

phenomenon is closely related to an ambiguous state extraction from the posterior spatial

PDF. If means of components with the largest weights are extracted (this case), the resulting

estimated states are not necessarily the arguments of the highest peaks of the PDF, because

the maximum of a Gaussian PDF depends on its covariance matrix. Therefore, we could

say that the authoritative output from the PHD filter should be understood to be the whole

posterior spatial PDF with the (not rounded) estimated expected number of components,

not just the final estimated states themselves.
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Fig. 6.10: Samples from Jogging video: YOLOv3, MHT, Bernoulli and PHD filters.

The video Jogging is taken from the dataset [88]. Two humans jogging on a sidewalk

are captured by a moving camera. There is an occlusion of the jogging people caused by a

traffic light pole, in the middle of the video. For the algorithms, the same parameters were

used as for the boulevard video. The sample frames and resulting estimates from some of

the algorithms are in Fig. 6.10 and 6.11, respectively.

If only the person on the right is to be tracked, then the MHT approach seems reasonable.

However, strictly speaking, the person is nonexistent in the video during the frames when it

is occluded by the traffic light pole. Therefore, the object is rather Bernoulli in fact.

If we realize that there is another person not being occluded by the time the other is, it
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Fig. 6.11: Estimated values for a part of Jogging video: MHT, Bernoulli and PHD filters.

is natural that the Bernoulli filter tracks it. Therefore, we can say that the Bernoulli filter

performs as expected.

For the PHD filter, the effect of ambiguous state extraction can be seen again e.g. at

time step k = 78, when traffic lights gave rise to a GM component with large both the

covariance and weight. Again, we should rely on the whole PHD filter output, rather than

on the estimated states themselves.
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Fig. 6.12: Sample frames from View 006 T12-T34 video: YOLOv3, Bernoulli and PHD
filters.

The video View 006 T12-T34 is taken from PETS 2009 dataset [89]. Multiple walking

pedestrians are captured by a static camera. For the algorithms, the same parameters were

used as for the boulevard video, except λ = 0.2. The sample frames and resulting estimates

from some of the algorithms are in Fig. 6.12 and 6.13, respectively.

For single target tracking algorithms, consider tracking of the pedestrian that enters the

scene on the right, follows to the left, then makes two switchbacks and walks out of the scene.

All the single-target algorithms, such as the shown case of using the Bernoulli filter, track the

mentioned pedestrian with considerable precision, even in the heavily cluttered environment,

where the clutter obviously does not obey its model (which is a uniform distribution), but

is rather generated from other real objects which are not considered to be tracked. Note,

that such performance heavily depends on the chosen parameters, and also on the initial

conditions. For instance, the initial condition was such that the moving object (pedestrian)

has zero velocity. Since there are two static cars, parked in the right upper corner of the
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Fig. 6.13: Estimated values for a part of View 006 T12-T34 video: Bernoulli and PHD
filters.

scene next to the target’s initial position, the filters could start tracking them instead of the

pedestrian, since they have zero velocity (as the initial condition). However, this did not

happen in the examples, mainly because of the performed gating.

In the case of the PHD filter, states of many objects are estimated, as they behave

according to the single-target motion model. Again, the ambiguity of state extraction makes

it harder to deduce the final states of the targets, hence the whole intensity function should

be understood as the authoritative result.
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Fig. 6.14: Sample frames from Panda video: YOLOv3, MHT, and Bernoulli filters.

6.3.5 Tracking With Very Dense Measurements

The video Panda is taken from the dataset [88]. A panda takes a walk around a tree,

probably in a zoo, and is captured by an occasionally moving camera. For the algorithms,

the following parameters were used: the process and measurement noise coefficients q = 202,

R = 102, the probability of detection PD = 0.3, the expected number of birth NB = 0.02,

and of clutter measurements λ = 0.1. The sample frames and resulting estimates from some

of the algorithms are in Fig. 6.14 and 6.15, respectively.

The neural network inside YOLOv3 was not probably trained to detect objects such

as pandas, and thus struggles with detecting the panda. Only very few, and erroneously

attributed detections are present. However, the tracking can be performed, but as it can be

seen, the performance is considerably reduced.

According to the measurements, it is understandable that the MHT-based algorithms

output trajectory with a few ”jumps”. When watching the video with the results for the

Bernoulli filter, one can observe how the data-driven estimates of the panda vanishes when

there are no measurements in a row and how the birth process takes place instead. Note,
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Fig. 6.15: Estimated values for a part of Panda video: MHT, and Bernoulli filters.

that qk|k does not become zero even if there is no measurement for a while, because the

probability of birth is nonzero. To see this, assume there is no measurement at time k. Since

PD is constant, we get ∆HT = PD, and then from the Bayes-update Eq. (4.13) we get

qk|k =
1− PD

1− qk|k−1PD
qk|k−1 (6.3)

From the time-update Eq. (4.7), it then follows that

qk|k =
1− PD

1−
(
PB(1− qk−1|k−1) + PSqk−1|k−1

)
PD

(
PB(1− qk−1|k−1) + PSqk−1|k−1

)
(6.4)

and in case there is no measurement for long time span enough, such that all the data-driven

estimates are pruned out, a ”steady state” of the probability of existence q = qk|k = qk−1|k−1

exists, such that it is a solution to the quadratic equation

(PDPB + PDPS)q2 +
(
1− PDPB + (1− PD)PB − (1− PD)PS

)
q − (1− PD)PB = 0 (6.5)

whose admissible solution for PD = 0.3, PB = 0.01, and PS = 0.98 is approximately q ≈
0.022, which is the value that can be seen in Fig. 6.15. This concludes the examples.
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CHAPTER 7

Conclusion

This thesis dealt with the tracking of moving object, focusing especially on fundamentals of

the multi-target tracking (MTT) research direction. The assumptions of the classic filtering

theory were being gradually relaxed starting with addition of an extraneous clutter mea-

surements and the possibility of the target undetection. Then, a probability of the existence

was introduced to model a possible nonexistence of the target for the whole tracking time

horizon. Finally, the possibility of having multiple targets to track was discussed.

Three conceptually different approaches have been investigated. That is, the hypothesis-

based approach that lead to the nearest neighbor (NN) filter, probabilistic data association

(PDA) filter, and the special case of multiple hypothesis tracking (MHT) algorithm. Then,

the random finite set (RFS) approach was studied, that lead to the Bernoulli filter and

probability hypothesis density (PHD) filter (derived in Appendix B). Finally, especially for

the multi-target case, the Poisson point processes approach was investigated, that lead to

the intensity filter, which is known to be similar to the PHD filter without target spawning.

The algorithms were carefully derived, reviewed, implemented with the Gaussian mixture

filter technique, and both theoretically and practically compared.

A novel improvements to a derivation of a part of the Bayes-update in the intensity filter

using a newly proven result and also using a continuous version of EM method was proposed.

The practical comparison pointed out various practical situations occurring in the real

world problems of visual tracking, and showed how the filters behave in those situations,

especially when their assumptions are not met. Since the algorithms provide different es-

timated values, such as probability of existence in the case of the Bernoulli filter or the

expected number of objects in the case of the PHD filter, a precise numerical comparison

was omitted.

Further theoretical aspects of modeling targets as sets, and also a more detailed version

of the original derivation of the PHD filter were given in an appendix.

For the author’s future work, emerging multi-target algorithms such as PMBM filter could

be studied and implemented for further comparison. In general, the MTT is still under de-
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velopment. Overall future work in this field may include further investigation of modeling

with sets of trajectories, measure-theoretic approaches, or some other approximation strate-

gies to the multi-target Bayesian recursive relations or applying the theory to other practical

situations. Also taking an inspiration from another fields, such as form quantum theory [90]

was shown to be interesting. There are also many largely unexplored fields in MTT theory,

such as adaptive filtering, identification, control, or tracking of continuously evolving targets.
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APPENDIX A

Notes on Finite Set Modeling

In Section 2.2, we modeled both the moving objects and measurements as time-sequences

of random finite sets (RFSs) or finite point processes. For the purpose of this thesis, the

RFSs are viewed as a subclass of general point processes, that model the physical reality

of unknown number of multiple targets as sets. Following the original construction of the

RFSs with FISST theory [21, 4], they can be viewed as random variables, described by non-

additive measures. In this chapter, we will give useful notes especially for the RFSs and

FISST, providing a connection with the conventional probabilistic concepts that are used

to deal with point processes. It should be noted, that the following steps might be slightly

informal for the sake of analogy with the single-target case. For authoritative texts, see e.g.

[91, 92, 93, 21, 4].

A.1 Deeper Introduction to the Modeling

Before introducing a probability measure, we discuss the underlying state space. For the

point processes which are used to model targets, it can be defined as E ,
⋃+∞
n=0X (n) [46],

where X (n) denotes the space of sets of a cardinality n with distinct members, with the

notation X (0) , ∅. The space E can be called the abstract topological hyperspace [4,

pp. 713], which is rather intractable to work with. Let X ∈ E denote a realization and

omitting technical details, S ∈ E a measurable set. The probability Pr(Ξ ∈ S), can then be

computed from the probability measure1 PΞ(S) using the formula

Pr(Ξ ∈ S) = PΞ(S) =

∫
S

dPΞ(X) =

∫
S

pΞ(X)v(dX) (A.1)

where v is the Lebesgue measure on E. The Radon-Nikodým derivative pΞ(X), assuming it

exists, can be called the multi-target PDF. In the case of the FISST, its direct analogy can

be constructed from the belief mass measure using the set derivatives of a set integral [21,

1Note that this measure PΞ(S) is additive, as in the single-target case.
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pp. 144-151].

To make things less abstract, we now introduce the set functions

pΞ|N(X|n) , pΞ|N({x1, . . .xn}|n) = n! pX|N(x1, . . .xn|n) (A.2)

which for a given cardinality n are joint PDFs of the single-target states. A probability mass

function (PMF) of a cardinality distribution N , |Ξ| can be defined as pN(n) = Pr(N = n).

Then we can write the PDF of Ξ as

pΞ(X) , pΞ(X,n) = pΞ({x1, . . . ,xn}, n) = pN(n) · pΞ(X|n) (A.3)

Now we can view the PDF as

pΞ(X) =



pN(0) ·
=1︷ ︸︸ ︷

pΞ|N(∅|0), if X = ∅

pN(1) · pΞ|N({x1}|1), if X = {x1}

pN(2) · pΞ|N({x1,x2}|2), if X = {x1,x2}
...

...

pN(n) · pΞ|N({x1, . . . ,xn}|n), if X = {x1, . . . ,xn}
...

...

(A.4)

It should be noted, that there exist other mathematical concepts used to deal with the

point processes, such as Janossy and counting measures [91, 92, 46]. However, these are not

essentially needed in this thesis. We have defined only the main concepts, which resemble

the single-target case, especially its measure-theoretic fundamentals.

As well as in the single-target case, we need to be able to compute integrals, such as

in the Chapman-Kolomogorov equation (2.9). The straightforward generalization into the

multi-target case would involve the Lebesgue integral such as in Eq. (A.1), over the whole

abstract space E. Now, we shall investigate the integral.
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A.1.1 Connection Between Point Processes and FISST

To motivate the definition of the set integral and to comment on the correctness of modeling

with the RFSs, we discuss the integral (A.1). Since S can be general, the measure v in (A.1)

is counterintuitive. We could, however, take the integral with respect to some other measure,

to be easier to understand [4, pp. 714-715],[37]. Define a generalized Lebesgue measure2

µK(S) ,
+∞∑
i=0

vi(S ∩ X i)

Ki · i!
(A.5)

where vi is the Lebesgue measure on the space of ordered realizations X i and K is the unit

of measurement in X . Note that K is introduced in order to guarantee that each summand

in (A.5) is unitless and thus the sum is well defined.

The generalized Lebesgue integral, in order to motivate the definition3 of set integral,

will be taken over the whole E =
⋃+∞
n=0X (n). It is

∫
E

pΞ(X)µK(dX) =
+∞∑
n=0

∫
X (n)

pΞ({x1, . . . ,xn})µK(d{x1, . . . ,xn}) (A.6)

=
+∞∑
n=0

∫
X (n)

pΞ({x1, . . . ,xn})
+∞∑
i=0

vi
(
d(x1, . . . ,xn) ∩ X i

)
Ki · i!

(A.7)

The set d(x1, . . . ,xn) ∩ X i is nonempty and so its measure is nonzero only if i = n. Then,

∫
E

pΞ(X)µK(dX) = . . . =
+∞∑
n=0

1

Kn · n!

∫
Xn
pΞ({x1, . . . ,xn})vn

(
d(x1, . . . ,xn) ∩ X n

)
(A.8)

=
+∞∑
n=0

1

Kn · n!

∫
Xn
pΞ({x1, . . . ,xn})dx1 · · · dxn (A.9)

Now, by comparing the set integral of the set-valued function f(X) over S ⊆ X [4, 21]

∫
S
f(X)δX ,

+∞∑
n=0

1

n!

∫
Sn
f({x1, . . . ,xn})dx1 · · · dxn (A.10)

2A mapping between tuples (x1, . . . ,xn) ∈ Xn and sets {x1, . . . ,xn} ∈ X (n) is for simplicity taken for
granted and not written, i.e., whether S ∈ X (n) or S ∈ Xn is assumed to be clear from the context.

3Note that usually the set integral is not defined through the classic probability theory, but rather using
non-additive measures [21].
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with the integral defined using the generalized Lebesgue measure (A.9), one can see that

the set integral (A.10) is ”obtained” when integrating over S = ]+∞
n=0S(n), with S ⊆ X , and

omitting the unit of measurements K. Therefore, the set integral is not a measure theoretic

integral but it is much more intuitive and tractable for engineers.

In Section 2.2, the belief mass measure was defined in order to describe RFSs. We now

observe its connection to the probability measure [94],

βΞ(S) = Pr(Ξ ∈ ]+∞
n=0S(n)) = PΞ(]+∞

n=0S(n)) (A.11)

Since the set integral (A.10) is defined to integrate only over the regions in the single-target

state space4, the belief mass measure is not additive. However, omitting the unit of measure-

ment, the densities used in the FISST p”FISST”(X), resulting from the belief mass measures

and the (measure-theoretic) true probability densities p”true”(X) are the same almost every-

where and they relate to each other such that

p”true”(X) = K |X| · p”FISST”(X) (A.12)

Therefore, they are ”in essence” the same thing5. Assuming K = 1, they are equal and hence

as descriptions of targets they can be used interchangeably6. Without this notion, one may

object the use of the multi-target BRRs with FISST (2.25-2.26) to be rather heuristic.

To sum up, using the FISST brings some tractability to the modeling. Note, that in

general, the RFSs with FISST can be used to model concepts such as fuzzy sets, and others

[4]. For further information on the connection between the approaches to RFSs, see [26].

A.2 Expectations

Defining expectations and statistical moments for the multi-target case cannot be straight-

forward generalization of the single-target case since the state space E, is not a vector space.

The operations of adding (integrating) and scaling sets are undefined. Hence, to define

the expectation it is required to find another structure having some ”nice” features. The

4More precisely speaking, over sets from E, that are constructed based only on a given set S from X .
5For more discussion and references, see [37, 46].
6The PHD computation using the newly proven result (2.30) then applies to the conventionally modeled

RFSs. Hence the proposed derivation of the detected process update in the intensity filter 5.2.2.
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expectations can be defined indirectly for functions of set arguments γ(X) as

E[γ(X)] ,
∫
X
γ(X) pΞ(X)δX (A.13)

Choosing a particular function γ(X) results in different structures.

A.3 Cardinality Distribution

The cardinality distribution pN(n) = Pr(|Ξ| = n) can be computed as an expectation

pN(n) = E[δKron
n (|Ξ|)] =

∫
X
δKron
n (|X|) pΞ(X)δX (A.14)

=
+∞∑
i=1

1

i!

∫
X i
δKron
n (i) pΞ({x1, . . . ,xn})dx1 · · · dxn (A.15)

=
1

n!

∫
Xn
pN(n) · pΞ|N({x1, . . . ,xn}|n)dx1 · · · dxn (A.16)

where δKron
n is the Kronecker delta centered at n ∈ N. The expected number of targets in

the whole single-target state space X is then

EN [N ] = EΞ[|Ξ|] =
+∞∑
n=0

n pN(n) (A.17a)

=
+∞∑
n=0

1

n!

∫
Xn
n pΞ({x1, . . . ,xn})dx1 · · · dxn (A.17b)

=
+∞∑
n=1

1

(n− 1)!

∫
Xn
pΞ({x1, . . . ,xn})dx1 · · · dxn (A.17c)

=
+∞∑
i=0

1

i!

∫
X i+1

pΞ({x1, . . . ,xi+1})dx1 · · · dxi+1 (A.17d)

=
+∞∑
i=0

1

i!

∫
X

∫
X i
pΞ({x1, . . . ,xi,w})dx1 · · · dxidw (A.17e)

=

∫
X

( +∞∑
i=0

1

i!

∫
X i
pΞ({x1, . . . ,xi} ∪ {w})dx1 · · · dxi

)
dw (A.17f)

=

∫
X

(∫
X
pΞ(X ∪ {w})δX

)
dw (A.17g)
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With a little effort, Eq. (A.17f) can be also expanded using the sum of Dirac deltas δw(Y )

centered at w, as defined in (2.29),

EN [N ] = . . . =

∫
X

( +∞∑
i=0

1

i!

∫
X i

(∑
y∈Y

δw(y)

)
pΞ({y1, . . . ,yi})dy1 · · · dyi

)
dw (A.18a)

=

∫
X

(∫
X
δw(X)pΞ(X)δX

)
dw (A.18b)

This idea can be generalized for S ⊆ X , i.e. the expected number of targets in a region S,

E[|Ξ ∩ S|] with S = ]+∞
n=0S(n) is

E[|Ξ ∩ S|] , E[|Ξ ∩ S|] = E[|Ξ| · 1Ξ
S ] =

∫
S

(∫
S
pΞ(X ∪ {w})δX

)
dw (A.19a)

=

∫
S

(∫
S
δw(X)pΞ(X)δX

)
dw (A.19b)

where the exponential notation (here used for 1XS ) is taken from Eq. (2.32). The particular

results of (A.19a) and (A.19b) leads to clever definition of the statistical moments.

A.4 Statistical Moments

Statistical moments cannot be generalized straightforwardly. Thus we define them as set-

valued functions

DΞ(X) ,
∫
X
pΞ(X ∪W )δW (A.20)

and call those the multi-target moment densities. For a fixed order n (the cardinality of X),

we get

DΞ({x1, . . . ,xn}) =

∫
X
pΞ({x1, . . . ,xn} ∪W )δW (A.21)

An intuitive interpretation of the moment densities is such that they represent the probability

density of n vectors in Ξ having the realizations x1, . . . ,xn [38]. Fixing n = 1 we call DΞ({x})
the first moment density. From Eq. (A.19a), we can straightforwardly see its relationship

with the expected number of targets and thus we can see that it is equal to the PHD (defined

in Section 2.2) almost everywhere.
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A.5 Notes on the PHD

A.5.1 Proof of Eq. (2.30)

In Section 2.2.4, it was stated that a PHD can be written as a product of the expected

number of targets N and some PDF p(x). We are about to rigorously specify the function

p(x), and prove the statement. Note, that this result should establish a connection between

the PHD and the corresponding PDF given every single set of states.

DΞ(x) =

∫
X
pΞ({x} ∪W )δW (A.22a)

=
+∞∑
n=0

1

n!

∫
Xn
pΞ({x,w1, . . . ,wn})dw1 · · · dwn (A.22b)

=
+∞∑
n=0

n+ 1

n+ 1
· 1

n!

∫
Xn
pN(n+ 1) · pΞ|N+1({x,w1, . . . ,wn}|n+ 1)dw1 · · · dwn (A.22c)

=
+∞∑
n=0

(n+ 1) · pN(n+ 1)

∫
Xn
pX|N+1(x,w1, . . . ,wn|n+ 1)dw1 · · · dwn (A.22d)

=
+∞∑
n=1

n · pN(n)

∫
Xn
pX|N(x,w1, . . . ,wn−1|n)dw1 · · · dwn−1 (A.22e)

=
+∞∑
n=1

n · pN(n) · pX|N(x|n)︸ ︷︷ ︸
this is a PDF ∀n

(A.22f)

and from here we get two following results,

DΞ(x) = EN [N · pX|N(x|N)] (A.23)

DΞ(x) = EN [N ]︸ ︷︷ ︸
N

·
∑+∞

n=1 n · pN(n) · pX|N(x|n)∑+∞
n=1 n · pN(n)︸ ︷︷ ︸

the PDF p(x),

= N · p(x) (A.24)

where we see that p(x) is the normalized (by N) marginal PDF of the ordered Ξ for X being

a singleton set. If the elements of Ξ were i.i.d, then pX|N(x|n) would not depend on the

number of the targets. For the Poisson RFS (PPP), the PDF p(x) is the spatial distribution.

93



A.5.2 Proof of Eq. (2.39), Recovery of the PHD

To see why Eq. (2.39) holds, expand it using linearity7 of expectation

DΞ(x) = DΞ({x}) =

[
δGΞ[h]

δx

]
h=1

=

∫
X

[
δ

δx
hW
]
h=1

pΞ(W )δW (A.25)

where hW is also a functional. Therefore we can expand this term for every fixed W =

{w1, . . . ,wn} using the product rule as[
δ

δx
hW
]
h=1

=

[
δ

δx

(
h(w1) · · ·h(wn)

)]
h=1

(A.26a)

=

[
n∑
i=1

h(w1) · · ·
(
δ

δx
h(wi)

)
· · ·h(wn)

]
h=1

(A.26b)

=

[
n∑
i=1

h(w1) · · · δx(wi) · · ·h(wn)

]
h=1

(A.26c)

=
n∑
i=1

δx(wi) =
∑
w∈W

δx(w) = δx(W ) (A.26d)

where δx(W ) is from the notation of Eq. (2.29). Thus we obtain∫
X

[
δ

δx
hW
]
h=1

pΞ(W )δW =

∫
X
δx(W )pΞ(W )δW (A.27)

which is the alternative definition of the first moment density and therefore the PHD. Also

the higher order moment densities can be derived from the PGFL in a similar manner. For

the general proof see [56, 38].

7Strictly speaking, the Leibniz integration rule was used to interchange the integral and derivative.
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A.5.3 Examples of PHD

In case of having exactly one object to describe, i.e. p(X) = 0 for |X| 6= 1, the PHD is

DΞ(x) =

∫
X
pΞ({x} ∪W )δW = pΞ({x}) +

∫
X

0 dw1 + · · · = pΞ({x}) (A.28)

In case of having exactly two objects, the PHD is

DΞ(x) = 0 +

∫
X
pΞ({x,w1})dw1 +

1

2!

∫
X 2

0 dw1dw2 + . . . (A.29a)

= pN(2)︸ ︷︷ ︸
1

·2
∫
X
pX|N(x,w1|2)dw1 = 2 · pX|N(x|2)︸ ︷︷ ︸

p(x),

= 2 · p(x) (A.29b)

If for example, pΞ({x1, x2}|2) = 1
2

(
N (x1, 0, 1)N (x2, 1, 2) + N (x2, 0, 1)N (x1, 1, 2)

)
and zero

otherwise is a PDF of some RFS on a real line, its PHD is

DΞ(x) =

1︷ ︸︸ ︷
pN(2) ·2

∫
X

1

2

(
N (x, 0, 1)N (w1, 1, 2) +N (w1, 0, 1)N (x, 1, 2)

)
dw1 (A.30a)

= N (x, 0, 1)

∫
X
N (w1, 1, 2)dw1 +N (x, 1, 2)

∫
X
N (w1, 0, 1)dw1 (A.30b)

= N (x, 0, 1) +N (x, 1, 2) = 2︸︷︷︸
N

·
(

1

2
N (x, 0, 1) +

1

2
N (x, 1, 2)

)
︸ ︷︷ ︸

p(x)

(A.30c)

In case of having maximally two objects, the PHD is

DΞ(x) = pΞ({x}) +

∫
X
pΞ({x,w1})dw1 +

1

2!

∫
X 2

0 dw1dw2 + . . . (A.31a)

= pN(1) · pX|N(x|1) + pN(2) · 2
∫
X
pX|N(x,w1|2)dw1 (A.31b)

= pN(1) · p(x) + pN(2) · 2p(x) = (pN(1) + 2 · pN(1))︸ ︷︷ ︸
EN [N ]=N

·p(x) (A.31c)
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If for example,

pΞ(X) =



0.2, if X = ∅

0.5N (x1; 2, 3), if X = {x1}

0.3
(
N (x1, 0, 1)N (x2, 1, 2) +N (x2, 0, 1)N (x1, 1, 2)

)
, if X = {x1, x2}

0, otherwise

(A.32)

is a PDF of some RFS on a real line, then, using the above results, its PHD is

DΞ(x) =

0.5︷ ︸︸ ︷
pN(1) ·pX|N(x|1) +

0.3︷ ︸︸ ︷
pN(2) ·2

∫
X
pX|N(x,w1|2)dw1 (A.33a)

= 0.5N (x; 2, 3) + 0.3
(
N (x, 0, 1) +N (x, 1, 2)

)
(A.33b)

= 1.1︸︷︷︸
N

·
(

0.5

1.1
N (x; 2, 3) +

0.3

1.1
N (x, 0, 1) +

0.3

1.1
N (x, 1, 2)

)
︸ ︷︷ ︸

p(x)

(A.33c)
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APPENDIX B

The PHD Filter Derivation Using

PGFLs

In section 5.2, a rather intuitive paraphrase of the original derivation of the intensity filter

(or iFilter) from [23] was shown. In this appendix, the aim is to derive the classic PHD

filter as it was originally done in [38], using probability generating functionals (PGFLs,

see Section 2.2.5). The PGFLs find its use in derivation of filters involving moment-based

approximations of multi-target densities, such as PHD, CPHD, or PMBM filters. If a reader

considers a more detailed treatment of such filters, we recommend reading the following

derivation, as it is a simple basis for the more advanced filters.

In the rest of this appendix, the goal is to derive the two formulas

Dk|k−1(xk) = DB(xk) +

∫
X

(
PS(xk−1)ψk|k−1(xk|xk−1)+

+DSp(xk|xk−1)
)
Dk−1|k−1(xk−1)dxk−1 (B.1)

Dk|k(xk) =

(
1− PD(xk) +

∑
z∈Zk

l(z|xk)PD(xk)

λc(z) +Dk|k−1[l(z)PD]

)
Dk|k−1(xk) (B.2)

which are the general case of the time-update and (approximate) Bayes-update of the PHD

filter, respectively, where DB(xk) , NB · pB(xk) is the birth process intensity, DSp(xk|xk−1)

is the intensity of spawning, PS(xk) is the state-dependent probability of survival and the

rest is as defined in Section 5.2.

B.1 Time-update

For the sake of simplicity, the time indices, and conditioning on measurement will be omitted

for the derivation. Let Ξ denote the former posterior RFS, and Ψ the predicted RFS, then

DΞ(x) , Dk−1|k−1(xk−1), DΨ(y) , Dk|k−1(xk), ψ(y|x) , ψk|k−1(xk|xk−1) (B.3)
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We are now to prove Eq. (B.1), which in notation defined in (B.3) simplifies to

DΨ(y) = DB(y) +

∫
X

(
PS(x)ψ(y|x) +DSp(y|x)

)
DΞ(x)dx (B.4)

B.1.1 PGFL of the Predicted RFS

Let X = {x1, . . . ,xn} denote a realization of Ξ, and let Y = {y1, . . . ,ym} denote a real-

ization of Ψ. In the simplified notation, the multi-target prediction given by the Chapman-

Kolomogorov Eq. (2.25) can be written as

pΨ(Y ) =

∫
X
pΨ|Ξ(Y |X)pΞ(X)δX (B.5)

The PGFL of Ψ is then given by

GΨ[h] =

∫
X
hY pΨ(Y )δY (B.6a)

=

∫
X
hY
(∫
X
pΨ|Ξ(Y |X)pΞ(X)δX

)
δY (B.6b)

=

∫
X

(∫
X
hY pΨ|Ξ(Y |X)δY

)
︸ ︷︷ ︸

GΨ|Ξ[h|X],

pΞ(X)δX (B.6c)

=

∫
X
GΨ|Ξ[h|X]pΞ(X)δX (B.6d)

where GΨ|Ξ[h|X] is the conditional PGFL of the transition process. The desired PHD can

be recovered from GΨ[h] using Eq. (2.39) as, (see section 2.2.8)

DΨ(y) =

[
δ

δy
GΨ[h]

]
h=1

(B.7)

In order to take the derivative, we first need to find the formula for GΨ[h]. For this purpose,

we first describe the motion model and find its PGFL.
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B.1.2 Motion Model

The transition process (an RFS), is assumed to contain independent random vectors, which

are formed according to the model

Ψ|Ξ =

(⋃
x∈Ξ

ΨS|x

)
︸ ︷︷ ︸
survived targets

∪

(⋃
x∈Ξ

ΨSp|x

)
︸ ︷︷ ︸
spawned targets

∪ ΨB︸︷︷︸
born targets

(B.8)

where ΨS|x is a set that is empty, or contains the transitioned target x, ΨSp|x is a set

containing targets that were spawned from (generated due to) x, and ΨB is a set of the

newly born targets that are independent of Ξ. In particular, the following is assumed.

• The RFS ΨS|x is Bernoulli with the PDF, PHD and PGFL, respectively

pΨS |x(Y |x) =


1− PS(x), if Y = ∅

PS(x) · ψ(y|x), if Y = {y}

0, otherwise

(B.9)

DS(y) = PS(x)ψ(y|x) (B.10)

GS[h](x) = 1− PS(x) + PS(x)

∫
X
h(y)ψ(y|x)dy (B.11)

where GS[h](x) is a functional transformation, which for a given x ∈ X is a functional.

• The RFS ΨSp|x has a PHD DSp(y|x) and PFGL GSp[h](x).

• The RFS ΨB has a PHD DB(y) and PFGL GB[h].

The PFGL of the transition process Ψ|Ξ is then given by the product formula (2.34),

GΨ|Ξ[h|X] =

(∏
x∈X

GS[h](x)

)(∏
x∈X

GSp[h](x)

)
GB[h] (B.12a)

= GS[h]XGSp[h]XGB[h] (B.12b)

=
(
GS[h]GSp[h]

)X
GB[h] (B.12c)

where the exponential notation from (2.32) was used. It is now useful to define the functional

transformation Φ[h](x) , GS[h](x)GSp[h](x).
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B.1.3 Deriving the Time-updated PHD

Now, we can turn to the Eq. (B.7) and the derivative therein. Substitute the conditional

PFGL of the transition process (B.12c) into the PGFL of the predicted process (B.6d),

GΨ[h] =

∫
X
GΨ|Ξ[h|X]pΞ(X)δX (B.13a)

=

∫
X

Φ[h]XGB[h]pΞ(X)δX (B.13b)

= GB[h]

∫
X

Φ[h]XpΞ(X)δX (B.13c)

= GB[h]GΞ

[
Φ[h]

]
(B.13d)

Now, the task is to take the functional derivative of (B.13d) and set h = 1. For the following,

note that for any PFGL, G[1] =
∫
X 1Xp(X)δX = 1. Substituting (B.13d) into (B.7) results

into

DΨ(y) =

[
δ

δy
GΨ[h]

]
h=1

(B.14a)

=

[
δ

δy

(
GB[h]GΞ

[
Φ[h]

])]
h=1

(B.14b)

=

[(
δ

δy
GB[h]

)
GΞ

[
Φ[h]

]
+GB[h]

(
δ

δy
GΞ

[
Φ[h]

])]
h=1

(B.14c)

=

[
δ

δy
GB[h]

]
h=1︸ ︷︷ ︸

DB(y)

GΞ

[
Φ[1]

]︸ ︷︷ ︸
1

+GB[1]︸ ︷︷ ︸
1

[
δ

δy
GΞ

[
Φ[h]

]]
h=1

(B.14d)

= DB(y) +

[
δ

δy
GΞ

[
Φ[h]

]]
h=1

(B.14e)
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Noting that a PGFL can be rewritten as an expectation, the second term in (B.14e) can be

rewritten using ”linearity” (Leibniz integration rule) of the expectation as

DΨ(y) = . . . = DB(y) +

[
δ

δy
EΞ

[
Φ[h]Ξ

]]
h=1

(B.15a)

= DB(y) + EΞ

[ [
δ

δy
Φ[h]Ξ

]
h=1

]
(B.15b)

= DB(y) +

∫
X

[
δ

δy

∏
x∈X

Φ[h](x)

]
h=1

pΞ(X)δX (B.15c)

using the product rule for derivatives we get

DΨ(y) = . . . = DB(y) +

∫
X

∑
x∈X

(
δ

δy
Φ[h](x)

) ∏
w∈X
w 6=x

Φ[h](w)


h=1

pΞ(X)δX (B.16a)

= DB(y) +

∫
X

∑
x∈X

[
δ

δy
Φ[h](x)

]
h=1

pΞ(X)δX (B.16b)

For every fixed x and for any valid h, the term Φ[h](x) is a PGFL of the union of survived

and spawned targets. Therefore, by the recovery of PHDs using PGFLs Eq. (2.39), we get

DS∪Sp(y|x) ,

[
δ

δy
Φ[h](x)

]
h=1

(B.17a)

=

[
δ

δy
(GS[h](x)GSp[h](x))

]
h=1

(B.17b)

=

[(
δ

δy
GS[h](x)

)(
GSp[h](x)

)
+
(
GS[h](x)

)( δ

δy
GSp[h](x)

)]
h=1

(B.17c)

=

[
δ

δy
GS[h](x)

]
h=1︸ ︷︷ ︸

DS(y|x)

GSp[1](x)︸ ︷︷ ︸
1

+GS[1](x)︸ ︷︷ ︸
1

[
δ

δy
GSp[h](x)

]
h=1︸ ︷︷ ︸

DSp(y|x)

(B.17d)

= PS(x)ψ(y|x) +DSp(y|x) (B.17e)
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The second term in Eq. (B.16b) could be viewed as an expectation of the co-called random

sum1 that simplify dramatically. Assume the PHD DΞ(x) of Ξ is known, then

DΨ(y) = · · · = DB(y) +

∫
X

∑
x∈X

DS∪Sp(y|x)pΞ(X)δX (B.18a)

= DB(y) +

+∞∑
n=1

1

n!

∫
Xn

(
DS∪Sp(y|x1) + · · ·+DS∪Sp(y|xn)

)
pΞ({x1, . . . ,xn})dx1 · · · dxn

(B.18b)

= DB(y) +
+∞∑
n=1

1

n!

n∑
i=1

∫
Xn

DS∪Sp(y|xi)pΞ({x1, . . . ,xi, . . . ,xn})dx1 · · · dxi · · · dxn (B.18c)

= DB(y) +

+∞∑
n=1

�n

�n(n− 1)!

∫
Xn

DS∪Sp(y|w)pΞ({x1, . . . ,xn−1,w})dx1 · · · dxn−1dw (B.18d)

= DB(y) +

∫
X
DS∪Sp(y|w)

(
+∞∑
n=1

1

(n− 1)!

∫
Xn−1

pΞ({x1, . . . ,xn−1,w})dx1 · · · dxn−1

)
dw

(B.18e)

= DB(y) +

∫
X
DS∪Sp(y|w)

(
+∞∑
n=0

1

n!

∫
Xn

pΞ({x1, . . . ,xn} ∪ {w})dx1 · · · dxn
)

︸ ︷︷ ︸
DΞ(w)

dw (B.18f)

= DB(y) +

∫
X
DS∪Sp(y|w)DΞ(w)dw (B.18g)

Finally, substituting (B.17e) into (B.18g) yields the final expression

DΨ(y) = . . . = DB(y) +

∫
X

(
PS(x)ψ(y|x) +DSp(y|x)

)
DΞ(w)dw (B.19)

Rewriting this expression with appropriate symbols defined in (B.3) yield the desired time-

update equation (B.1), which finishes the proof. Note, that no approximations were needed

during the derivation, an thus the time-update of PHD hold generally, for the given motion

model, for any posterior distribution. In case of no spawning and constant PS, we can

observe that the result is equivalent to that of the intensity filter (Section 5.2), where it was

explicitly assumed, that the former posterior is a PPP on the augmented space XA.

1Note, that in the following set integral, X must be at least singleton (and so n > 0), since∑
x∈X DS∪Sp(y|x) for X = ∅ is undefined.
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B.2 Bayes-update

Similarly to the time-update, time indices will be omitted for the derivation, introducing

Ψ denoting the predicted RFS, Ξ denoting the posterior RFS, and Σ denoting the newly-

arriving measurement RFS thus

DΞ(x) := Dk|k(xk), DΨ(x) := Dk|k−1(xk), Z = Zk, l(z|x) = l(zk|xk) (B.20)

Explicit conditioning on the whole measurement sequence will be omitted for simplicity. We

are now to prove Eq. (B.2), which in notation defined in (B.20) simplifies to

DΞ(x) =

(
1− PD(x) +

∑
z∈Z

l(z|x)PD(x)

λc(z) +DΨ[l(z)PD]

)
DΨ(x) (B.21)

with l(z) , l(z|·) suppressing the entry vector x to denote the entire function.

B.2.1 PFGL of the Posterior RFS

In the simplified notation, the multi-target measurement-update given by the Bayes rule

(2.26), can be written as

pΞ(X) =
l(Z|X)pΨ(X)∫

X l(Z|X)pΨ(X)δX
=
l(Z|X)pΨ(X)

pΣ(Z)
(B.22)

The PGFL of Ξ is then given by

GΞ[h] =

∫
X
hXpΞ(X)δX =

∫
X h

X l(Z|X)pΨ(X)δX

pΣ(Z)
(B.23)

Similarly to the time-update, the desired PHD can be recovered from GΞ[h] as

DΞ(x) =

[
δ

δx
GΞ[h]

]
h=1

=
1

pΣ(Z)

[
δ

δx

∫
X
hX l(Z|X)pΨ(X)δX

]
h=1

(B.24)

The expression is naturally different than the one of the time-update. The Bayes-update

is harder to derive. We have to determine an expression for both the numerator, and the

denominator. To continue, we have to determine the measurement model.
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B.2.2 Measurement Model

The measurement process (an RFS), is assumed to contain independent random vectors,

which are formed according to the model

Σ|Ξ =

(⋃
x∈Ξ

O|x

)
︸ ︷︷ ︸
object-generated

∪ C︸︷︷︸
clutter

(B.25)

where O|x is a set that is either empty, or it contains a measurement generated by the target

x, and C is a set containing the clutter. In particular, the following is assumed.

• The RFS O|x is Bernoulli with the PDF, PHD, and PGFL, respectively

pO|x(Z|x) =


1− PD(x), if X = ∅

PD(x) · l(z|x), if X = {x}

0, otherwise

(B.26)

DO(y) = PD(x)l(z|x) (B.27)

GO[g](x) = 1− PD(x) + PD(x)

∫
X
g(z)l(z|x)dz = 1− PD(x) + PD(x)l[g](x) (B.28)

where l[g](x) ,
∫
X g(z)l(z|x)dz is a functional transformation.

• The RFS C is Poisson with the PDF, PHD, and PFGL, respectively

pC(Z) = e−λ
∏
z∈Z

λc(z) (B.29)

DC(z) = λc(z) (B.30)

GC [g] = exp

(∫
X
g(z)λc(z)dz− λ

)
= eλc[g]−λ (B.31)

where c[g] ,
∫
X g(z)c(z)dz is a functional transformation.

The PFGL of the measurement process Ψ|Ξ is then given by the product formula (2.34),

GΣ|Ξ[g|X] =

(∏
x∈X

GO[g](x)

)
GC [g] = GO[g]XGC [g] (B.32a)
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B.2.3 Deriving the Bayes-updated PHD

Now we can turn back to (B.24). For tractability, define the two-variable PGFL as

F [g, h] ,
∫
X

∫
X
hXgZ l(Z|X)pΨ(X)δXδZ (B.33)

Both the numerator and denominator of (B.24) can be expressed in terms of this PGFL.

Since the constant pΣ(Z) is a PDF of the multi-target measurement process (evaluated at

the arrived measurement-set Z), it can be recovered from its PGFL GΣ(Z) using (2.38) as

pΣ(Z) =

[
δ

δZ
GΣ[g]

]
g=0

(B.34a)

=

[
δ

δZ

∫
X
gZpΣ(Z)δZ

]
g=0

(B.34b)

=

[
δ

δZ

∫
X
gZ
∫
X
l(Z|X)pΨ(X)δXδZ

]
g=0

(B.34c)

=

[
δ

δZ

∫
X

∫
X

1XgZ l(Z|X)pΨ(X)δXδZ

]
g=0

(B.34d)

=

[
δm

δzm . . . δz1
F [g, 1]

]
g=0

(B.34e)

The numerator of (B.24) can be expanded, noting that the multi-target PDF of the measure-

ment process (measurement likelihood) l(Z|X) can be recovered from its PGFL GΣ|Ξ[g|X].

The expression for the desired PHD then becomes

DΞ(x) = . . . =
1

pΣ(Z)

[
δ

δx

∫
X
hX l(Z|X)pΨ(X)δX

]
h=1

(B.35a)

=
1

pΣ(Z)

[
δ

δx

∫
X
hX
[
δ

δZ
GΣ|Ξ[g|X]

]
g=0

pΨ(X)δX

]
h=1

(B.35b)

=
1

pΣ(Z)

[
δ

δZ

[
δ

δx

∫
X
hXGΣ|Ξ[g|X]pΨ(X)δX

]
h=1

]
g=0

(B.35c)

=
1

pΣ(Z)

[
δ

δZ

[
δ

δx

∫
X
hX
(∫
X
gZ l(Z|X)δZ

)
pΨ(X)δX

]
h=1

]
g=0

(B.35d)

=
1

pΣ(Z)

[
δm

δzm . . . δz1

[
δ

δx
F [g, h]

]
h=1

]
g=0

(B.35e)

105



In the literature, this relation can be found in a simplified form, expressed as

DΞ(x) = · · · =

([
δ

δZ
F [g, 1]

]
g=0

)−1 [
δ

δZ

[
δ

δx
F [g, h]

]
h=1

]
g=0

=
δm+1F

δzm...δz1δx
[0, 1]

δmF
δzm...δz1 [0, 1]

(B.36)

To continue, expand the two-variable PGFL,

F [g, h] =

∫
X

∫
X
hXgZ l(Z|X)pΨ(X)δXδZ (B.37a)

=

∫
X
hX
(∫
X
gZ l(Z|X)δZ

)
︸ ︷︷ ︸

GΣ|Ξ[g|X]

pΨ(X)δX (B.37b)

=

∫
X
hX
(
GO[g]XGC [g]

)
pΨ(X)δX (B.37c)

= GC [g]

∫
X

(h ·GO[g])X pΨ(X)δX︸ ︷︷ ︸
GΞ

[
h·GO[g]

] (B.37d)

= GC [g]GΨ

[
h ·GO[g]

]
(B.37e)

In order to derive a closed-form expression, assume that Ψ is Poisson RFS. Since we know

its PHD, we can form its PDF, and especially PGFL as

pΨ(X) ≈ e−NΨ

∏
x∈X

DΨ(x), with NΨ =

∫
X
DΨ(x)dx (B.38)

GΨ[h] ≈ eDΨ[h]−NΨ , with DΨ[h] =

∫
X
h(x)DΨ(x)dx (B.39)

Then F [g, h] simplifies into

F [g, h] = . . . = GC [g]GΨ

[
h ·GO[g]

]
(B.40a)

= eλc[g]−λeDΨ

[
h·GO[g]

]
−NΨ (B.40b)

= exp
(
λc[g]− λ+DΨ

[
h ·
(
1− PD + PDl[g]

)]
−NΨ

)
(B.40c)

Now, we can reveal the expression for the PHD (B.36) step by step.
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The Denominator

First, set h = 1,

F [g, 1] = exp
(
λc[g]− λ+DΨ

[
1− PD + PDl[g]

]
−NΨ

)
(B.41a)

= exp
(
λc[g]− λ+����DΨ[1]−DΨ[PD] +DΨ

[
PDl[g]

]
−�

�NΨ

)
(B.41b)

= exp
(
λc[g]− λ−DΨ[PD] +DΨ

[
PDl[g]

])
(B.41c)

Second, take the functional derivative

δm

δzm . . . δz1
F [g, 1] =

δm−1

δzm . . . δz2

(
δ

δz1
F [g, 1]

)
(B.42a)

=
δm−1

δzm . . . δz2

(
δ

δz1
exp

(
λc[g]− λ−DΨ[PD] +DΨ

[
PDl[g]

]))
(B.42b)∣∣∣∣derivative of

exponential
functional

∣∣∣∣ =
δm−1

δzm . . . δz2

(
F [g, 1] · δ

δz1

(
λc[g]− λ−DΨ[PD] +DΨ

[
PDl[g]

]))
(B.42c)

=
δm−1

δzm . . . δz2

(
F [g, 1] ·

(
λc(z1) +DΨ

[
PDl(z

1)
]))

(B.42d)

=
δm−2

δzm . . . δz3

(
δ

δz2

[
F [g, 1] ·

(
λc(z1) +DΨ

[
PDl(z

1)
]) ])

(B.42e)

=
δm−2

δzm . . . δz3

( analogous as for z1︷ ︸︸ ︷[
δ

δz2
F [g, 1]

] (
λc(z1) +DΨ

[
PDl(z

1)
])

+

+ F [g, 1]

[
δ

δz2

(
λc(z1) +DΨ

[
PDl(z

1)
]) ]

︸ ︷︷ ︸
0

)
(B.42f)

=
δm−2

δzm . . . δz3

(
F [g, 1]

∏
z∈{z1,z2}

(
λc(z) +DΨ

[
PDl(z)

]))
(B.42g)

∣∣∣∣by induction
= ... =

∣∣∣∣ = F [g, 1]
∏
z∈Z

(
λc(z) +DΨ

[
PDl(z)

])
(B.42h)

Finally, set g = 0, (compare this result with the PDF (5.14c) from Section 5.2 )

pΣ(Z) =

[
δm

δzm . . . δz1
F [g, 1]

]
g=0

= F [0, 1]
∏
z∈Z

(
λc(z) +DΨ

[
PDl(z)

])
(B.43a)

= e−λ−DΨ[PD]
∏
z∈Z

(
λc(z) +DΨ

[
PDl(z)

])
(B.43b)
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The Numerator

First, take the functional derivative of F [g, h] assuming g is constant,

δ

δx
F [g, h] = F [g, h]

δ

δx

(
λc[g]− λ+DΨ

[
h ·
(
1− PD + PDl[g]

)]
−NΨ

)
(B.44a)

= F [g, h]

(
0− 0 +

δ

δx

∫
X
h(x)

(
1− PD(x) + PD(x)l[g](x)

)
DΨ(x)dx− 0

)
(B.44b)

= F [g, h]
(
1− PD(x) + PD(x)l[g](x)

)
DΨ(x)︸ ︷︷ ︸

f [g](x),

(B.44c)

= F [g, h]f [g](x) (B.44d)

where f [g](x) is a functional transformation. Second, set h = 1 and take the derivative with

respect to Z. Using the product rule (for functional derivatives [4, pp. 389]), we get

δ

δZ

[
δ

δx
F [g, h]

]
h=1

=
δ

δZ

(
f [g](x) · F [g, 1]

)
=
∑
W⊆Z

δf [g](x)

δW
· δF [g, 1]

δ(Z \W )
(B.45)

Take a look at the expression δf [g](x)
δW

. One can deduce that

a) if W = ∅ ⇒ δf [g](x)

δ∅
= f [g](x) (B.46)

b) if W = {zi}, i ∈ (1, . . . ,m) ⇒ δf [g](x)

δzi
= 0 + PD(x)

(
δ

δzi
l[g](x)

)
DΨ(x)

= PD(x)l(zi|x)DΨ(x) (B.47)

c) if W = {zi, zj}, i 6= j ∈ (1, . . . ,m) ⇒ δf [g](x)

δzjδzi
=

δ

δzj

(
δf [g](x)

δzi

)
= 0 (B.48)

and so if |W | ≥ 2 ⇒ δf [g](x)

δW
= 0 (B.49)

The summation in (B.45) then simplifies into

δ

δZ

[
δ

δx
F [g, h]

]
h=1

= . . . =
δf [g](x)

δ∅
· δF [g, 1]

δZ
+
∑
{z}⊆Z

δf [g](x)

δ{z}
· δF [g, 1]

δ(Z \ {z})
+ 0 (B.50)

= f [g](x) · δF [g, 1]

δZ︸ ︷︷ ︸
derived before

+
∑
z∈Z

δf [g](x)

δz
· δF [g, 1]

δ(Z \ {z})
(B.51)
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The term δF [g,1]
δ(Z\{z}) can be determined from the already derived δF [g,1]

δZ
, Eq. (B.42h). One can

deduce it can be expressed as

δF [g, 1]

δ(Z \ {z})
=
F [g, 1]

∏
w∈Z

(
λc(w) +DΨ

[
PDl(w)

])
λc(z) +DΨ

[
PDl(z)

] (B.52)

Therefore, Eq. (B.51) becomes

δ

δZ

[
δ

δx
F [g, h]

]
h=1

=

f [g](x)︷ ︸︸ ︷(
1− PD(x) + PD(x)l[g](x)

)
DΨ(x)

δF [g,1]
δZ︷ ︸︸ ︷

F [g, 1]
∏
w∈Z

(
λc(w) +DΨ

[
PDl(w)

])
+

+
∑
z∈Z

PD(x)l(z|x)DΨ(x)︸ ︷︷ ︸
δf [g](x)
δz

F [g, 1]
∏

w∈Z
(
λc(w) +DΨ

[
PDl(w)

])
λc(z) +DΨ

[
PDl(z)

]︸ ︷︷ ︸
δF [g,1]
δ(Z\{z})

(B.53)

= F [g, 1]
∏
w∈Z

(
λc(w) +DΨ

[
PDl(w)

])
DΨ(x)× (B.54)

×

(
1− PD(x) + PD(x)l[g](x) +

∑
z∈Z

PD(x)l(z|x)

λc(z) +DΨ[PDl(z)]

)
(B.55)

Finally, set g = 0. Noting that pΣ(Z) = F [0, 1]
∏

z∈Z
(
λc(z) +DΨ

[
PDl(z)

])
, we can simplify

the expression as

[
δ

δZ

[
δ

δx
F [g, h]

]
h=1

]
g=0

= pΣ(Z)DΨ(x)

(
1− PD(x) + 0 +

∑
z∈Z

PD(x)l(z|x)

λc(z) +DΨ[PDl(z)]

)
(B.56a)

The Final Bayes-update

Now, substitute the denominator (B.43b) and numerator (B.56a) into (B.36) to get

DΞ(x) = . . . =

([
δ

δZ
F [g, 1]

]
g=0

)−1 [
δ

δZ

[
δ

δx
F [g, h]

]
h=1

]
g=0

(B.57)

=

(
1− PD(x) +

∑
z∈Z

PD(x)l(z|x)

λc(z) +DΨ[PDl(z)]

)
DΨ(x) (B.58)

Rewriting this expression with appropriate symbols defined in (B.20) yields the desired

Bayes-update equation (B.2), which finishes the proof. Note, that Ψ was assumed to be

Poisson, but Ξ was not. Its true distribution is like (5.17d), and stays for the time-update.
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