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Abstrakt

Cilem diplomové prace je optimalizace prenosové kapacity vedeni. V teoretické ¢asti
této diplomové prace je popsano propojeni trhu v Evropé, pristup zalozeny na ATC
a Flow-based metodé, optimalizace pomoci zmény topologie a phase-shift trans-
formatoru, metody optimalniho toku v siti, evoluéni algoritmy a analyza citlivosti
distribu¢nich faktoru. Prakticka cast se zabyva implementaci konvenc¢nich a evoluénich
algortimu v programovacim jazyku MATLAB R2018a, kde je vyuzit open-source
soubor MATPOWER. Genetické algoritmy za pouziti roulette wheel selekce a Parti-
cle Swarm optimalizace byly zvoleny a nasledné aplikovany k optimalizaci prenosové
kapacity vedeni. V zavéru kapitol je uvedeno srovnani vysledku poskytnutych témito
algoritmy:.

Klicova slova

elektrické sité, prenos elektrické energie, optimalizace topologii, optimalizace phase-
shift transformatorem, Particle Swarm optimalizace, Genetické algoritmy, MAT-
POWER, Line outage distribution factors (LODF), Remaining available margin

Abstract

The diploma’s thesis focuses on the optimization of the power transfer capacity.
The theoretical part of this diploma’s thesis describes Market coupling in Europe,
ATC and Flow-based approach, Topology and Power Shifting Transformers remedial
actions, Optimal Power Flow methods, Evolutionary algorithms and sensitivity anal-
ysis of distribution factors. In the practical part, the evolutionary and conventional
algorithms were implemented, where MATLAB R2018a was selected as an effective
programming language containing the open-source package called MATPOWER.
The most promising evolutionary algorithms Particle Swarm Optimization and Ge-
netic Algorithms - roulette wheel were utilized. The analysis and performance as-
sessment was performed and included into the end of every remedial action chapter.

Keywords

power network, power transmission, Topology optimization, Phase Shifting Trans-
former (PST) optimization, Particle Swarm Optimization, Genetic algorithm, MAT-
POWER, Line outage distribution factors (LODF), Remaining available margin
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Chapter 1

Introduction

1.1 Motivation

In the beginning, electricity was transferred only over short distances, because power
stations were built near electricity consumption areas. During the electrification era,
the power system of each state was primarily developed separately and operated
independently to surrounding areas. Non-cooperation between individual states was
mainly due to the political situation. As cross-border electricity networks were built
only for security reasons, most of the money was mainly invested in the construction
of a national electricity network. As a result, the power grid was at a good level
within one state and often at a lower level among other states. [39]

The liberalization of the energy sector in Europe brought to the traditionally regu-
lated sector competition and pressure to reduce the price of electricity to end-users.
For this purpose, member states were forced to separate electricity generation from
transmission and distribution. This caused many shutdowns of national energy mo-
nopolies and establishment of state-owned companies. Utility companies acting in
separated states could now extend their offer to other countries. This led to an in-
crease of competitiveness not only on the utility side but on the customer side as
well by significant price differences between states with integrated energy markets.
Electricity trading was, therefore, the same as another classic commodity. The cus-
tomer could choose the best offer in the whole market. Companies able to provide
electricity at lower prices than their competitors had a natural tendency to export
their electricity to countries where spot market prices were higher. [19]

Nowadays, the European electricity market is significantly integrated. The electric-
ity can be provided by different stakeholders such as large utility companies, small
private businesses or even by individual people (i.e. prosumers) for instance. Due
to the power system interconnection, this causes unprecedented power flow across
traditional levels of power systems. Every day is a large volume of electricity trans-
ported over power systems of EU member states, which has strong requirements on
the cross-border transfer capacities of individual power systems.

Therefore the cross border exchanges as well as power system operation (i.e. power



flows) needs to be managed in a secure and reliable way.

1.2 Market coupling

Market coupling is one of possible methods for integrating electricity markets in
different zones. The main goal of market coupling is an effective utilisation of daily
cross-border capacities. The market coupling means that the cross-border flows at
the day-ahead stage are determined by using the price signals in the day-ahead
spot markets in each zone. This enables an efficient European wide price formation
mechanism and optimised use of the transfer power grid through a strong interaction
between price zones. When two or more zones make an agreement, the market is
then coupled. In this case, the electricity from the market with a lower price is sold
to the market with a higher one. This leads to price convergence in both markets. In
a case when a transfer capacity of a power network between two different countries
is sufficient, then the market is completely coupled. It means the prices of electricity
are the same in both countries. [19] The most important advantages are:

e Minimising differences in prices between two or more market areas
e Ensuring convergence of power prices across regions
e Reducing price volatility

e Fair and efficient access to cross-border capacities
The main players involved in the setup of the Market Coupling Solution are:

e Transmission System Operators (TSOs)

Independent entities of the other electricity market players, which are respon-
sible for the mass transfer of electric power on the main high voltage electric
networks. TSOs provide access to the electric network for electricity market
players. The most important market players are companies which generate
electrical power, traders suppliers, distributors and directly connected cus-
tomers. TSOs must follow the non-discriminatory and transparent rules. In
order to ensure the security of supply, they also guarantee the safe operation
and maintenance of the system. In many countries, TSOs are in charge of the
development of the grid infrastructure too. In the Czech Republic, this service
is provided by state-owned company CEPS [11].

e Power Exchanges (PXs)

Entities providing an organized platform for competitive power market. They
allow all market players to buy and sell electricity through an auction mech-
anism. The power exchanges in EU electricity markets include EPEX Spot
(France, Germany, Austria, and Switzerland), APX (the United Kingdom,
Netherlands, and Belgium), Nord Pool Spot (Nordic and Baltic region), OMIE
(Iberian Peninsula), Omel (Spain), IPEX (Italy), and PXE (Central Europe).
4



1.2.1 Price determination between two zones

Price of electricity is determined on a market. Generally, the market is a collection
of buyers and sellers that determine the price of a product. So in this case, the
buyers are consumers of electricity or representatives of such consumers, while sell-
ers are electricity-generating resources, and the product in trade is electricity. The
trade with electricity proceeds as follows. Electricity traders submit their supply
and demand for a certain amount of electricity on the domestic market. All bids
are collected by the electricity market operators. After that, they sort them on the
basis of the so-called merit-order. Where the supply curve meets the demand curve,
the market-clearing price of domestic electricity is determined. This pricing process
is done also in neighbouring markets. [19]

Price
Sell
Aggregated sell
and buy curves
Market Clearing
Price (MCP)
Buy Quantity

Figure 1.1: Clearing price determination [22]

After these steps the clearing price is determined and compared in 2 different mar-
kets. The price will vary depending on the factors. The examples are an energy
mix and consumption of a current country. After these steps, the available transfer
capacity between states is calculated and cross-border coupling market is triggered.
The process of the interconnection of energy markets is shown in the following
pictures, where two countries, A and B, have different prices of electricity on the
market, which are subsequently interconnected. There are two different cases that
may appear during the interconnection [19]:
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e Available transfer capacity(ATC) is large enough

The prices on both markets converge. Because the price of market B is higher
that the price of market A, the electricity will be exported to market B. The
producer, or trader, will export electricity to a neighbouring country as long
as the marginal offer price on its market is lower than the marginal demand
price on the other market (bid). In this case, where ATC is sufficient, the price
is aligned in both markets and the markets are coupled. It is described on the

image 1.2.
P (€ / MWh) P (€ / MWh)
Market A Market B
A
Purchase, _ Purchase, Purchase Vi st

PB [-=""===-"==========m=s

PA* = PB*

Sale, Sale

e T T

Figure 1.2: Clearing price, ATC is large enough [3]

e Available transfer capacity(ATC) is not large enough
The prices on both markets cannot be fully equalized, so it diverge. It can be

seen on image 1.3.

PA

PA*

P (€ / Mih)
A Market A
( Export = ATC)
Purchase,
Purchase,

Price difference
input determination
congestion revenue

QA*

’O (MWh)

( Import = ATC )

Purchase ATC

Sale, Sale

1

Figure 1.3: Clearing price, ATC is not large enough [3]

These options led to the start of cross-border electricity trade. It has many advan-
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tages which include, above all, freedom of trade, so prices are based on supply and
demand. On the other hand, this quick start brings a number of problems. Electric-
ity trade faces technical constraints in the form of limited transmission capacities
between coupled countries. This problem is caused by the low-level cross-border
network that was built in the beginnings and the reason for it is described above.
Transmission capacity is significantly different. Among some countries is the trans-
mission capacity almost unlimited - Benelux countries, other countries that do not
have sufficient cross-border lines can have a lack of this transmission capacity. Be-
cause of economic efficiency and public acceptability of high-voltage power lines,
it is not feasible to install sufficient cross-border capacity. Consequently, in many
cases the transport capacity demanded by market participants exceeds the available
capacity - in this context, it is called cross-border congestion. To prevent these cross-
border congestion, the calculation and allocation of available transmission capacity
is essential. [3].

e Explicit vs allocation

In explicit allocation, the available cross-border transport capacities and the
traded energy are dealt separately from one another. Energy is purchased or
sold in a trading venue, for example, an electricity power exchange or OTC
(Over the counter market). Cross-border capacity is carried out by auction
houses. By trading electricity and capacity separately, one commodity trading
may lack information on the price of another commodity, resulting in inefficient
use of cross-border capacities. For the explicit allocation are especially typical
long-term contracts. They are mostly applied in annual and monthly auctions
on borders in Europe. Short-term daily explicit auctions are made as well,
although to a lesser extent. Cross-border capacity takes place through the
Joint Allocation Office(JAO) that replaced former Central Allocation Office
Freising (CAO) and Capacity Allocating Service Company (CASC) [31].

e Implicit allocation

The second type of capacity allocation is implicit allocation. The biggest dif-
ference is that the electric power and the cross-border capacity are allocated
together. This allocation is mostly used in short-term markets in opposite to
explicit allocation.

There are two different ways used for cross-border capacity calculation in Eu-
rope: the Available Transfer Capacity (ATC) and Flow-Based method. These
methods are in detail described below.

1.2.2 Available Transfer Capacity (ATC)

The ATC method is widespread in many parts of Europe and it is much simpler than
Flow-based method. ATC market coupling takes place on the basis of an implicit
auction, where all input data from the daily market are evaluated simultaneously.
The ATC of a transfer system is a measure of the transfer capability that remains in
the physical transfer network for further commercial activity. This measure depends
on a number of factors. The most important is system generation dispatch, system

12



load level, load distribution in the network, network topology and the limits on
the transfer network. These factors create a set of system conditions which specify
the power network. The ATC is calculated as a maximum amount of power that a
transfer system can transport when power is injected at one place of network and
the same amount of power is extracted on another location.

Therefore is the following terminology presented:

e TTC Total Transmission Capacity

e TRM Security margin

e NTC Net Transmission Capacity

e ATC, Available Transmission Capacity in Base Case
e PF Parallel Flow

o LF Loop Flow

e ATC Available Transmission Capacity

e AAC Already Allocated Capacity

The detail calculation is reviewed in the following equations:

NTC = TTC — TRM
ATC, = NTC — PF — LF (1.1)
ATC = ATC, — AAC

First of all, the NTC is calculated by the difference between TTC and TRM. In the
second step, there is made a calculation of AT'C),. This is done by subtraction of
PF and LF from NTC. It is because of the N-1 criterion which must be complied
in any operational situation. This criterion is very important because it says that
any outage of one element of the power grid does not endanger the operation of the
whole power grid. Then the ATC value is continuously computed with changes of
AAC in yearly, monthly or daily auctions [31].

1.2.3 Flow-based method (FB)

The flow-based (FB) model works essentially on a similar principle as the ATC
model, but takes into account more parameters and optimization conditions for a
better representation of the actual state of the network. The flow-based method
treats power flows as a real flow of energy that respects the Kirchhoff’s laws. This
approach is, therefore, more accurate then ATC. On the other hand, due to the
larger number of parameters describing the power grid, this method is more difficult
to calculate the data.

The flow-based model was chosen as the target model across the EU. In contrast to
the ATC model, this algorithm should ensure more efficient use of transfer capaci-
ties between individual zones. Compared to the ATC model, the flow-based model

13



provides a more realistic view of real flows between neighbouring markets. Unlike
the ATC method, which in its calculation takes into account only the restrictions
on the transfer line between neighbouring markets.

The Flow-based model is developed from the nodal pricing model, where is are
used the power transfer distribution factors (PTDF) to calculate flows. This model
imposes an aggregate PTDF matrix on certain areas or lines in order to limit the
power exchange between price areas. Therefore, the solutions given by the Flow-
based model may still be infeasible in some parts of the network and re-dispatching
may be needed. The FBMC model tries to reduce the explicit limitations to cross-
border trades, which is an indirect way of dealing with individual line constraints
and instead focuses on selected critical branches (CBs) that are the ones most likely
to be influenced by cross-border trading.

The most important concepts of Flow-based method are:

e Generation shift key (GSK)
e Critical branch (CB)
e Power transfer distribution factor (PTDF)

e Remaining available margin (RAM)

Generation shift key (GSK)

It is a factor describing the most probable change in net injection at a node, relative
to a change in the net position of the zone that it belongs to. The set of GSKs is
crucial in the FBMC model. Although the GSKs should be defined before market
clearing, in reality, they cannot be known until the FBMC calculation is completed.
The TSOs calculate the GSKs using a “base case”, anticipating grid topology, net
positions, and corresponding power flow for each hour of the day of delivery. In prac-
tice, a precise procedure to define the GSKs is missing. Generally, it is an estimate
of how a country’s total generation is distributed among the generators within the
country or area [1].

Critical branch (CB)

Critical branches are transmission lines, cables, or devices that can be significantly
affected by cross-border flows. In the beginning, Critical Branches should be chosen
from the whole power network. They are expected to be limiting cross-zonal trades.
Therefore are these branches monitored during the FB capacity allocation. The
determination of CB is based on operational experience of each TSO. The key task
is to assess as many CBs as needed, but in ideal case not too much because the
more CBs, we have the more complicated it is to be solved. On the other hand, a
dismission of CB can lead to invalid results. That is why the significance of CB shall
be computed and supervised [1].
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Power transfer distribution factor (PTDF)

Power Transfer Distribution Factors (PTDF) is a matrix, where its elements indicate
the change of power flows of considered combinations of critical network elements
and contingencies. These values provide a linearized approximation of how the flow
on the transfer lines is changed. This way, it can be monitored which combinations
of cross-zonal exchanges threaten to overload a specific line. There are two types
of PTDF. The first one is nodal PTDF and the second one is called zonal PTDEF.
These matrices are described in the second paragraph [1].

The nodal PTDF matrix is calculated by subsequently varying the injection on each
node of the Common Grid Model (CGM). CGM is defined as a Union-wide data
set agreed between various TSOs describing the main characteristic of the power
system (generation, loads and grid topology) and rules for changing these character-
istics during the capacity calculation process. For every single nodal variation, the
effect on every critical network element is monitored and calculated as a percentage.

Then the GSK translates the nodal PTDFs into zonal PTDFs as it converts the zonal
variation into an increase of generation in specific nodes. The PTDFs characterize
the linearization of the model. In the subsequent process steps, every change in net
positions is translated into changes of the flows on the critical network element with
linear combinations of PTDFs.

Remaining available margin (RAM)

Remaining available margin is the line capacity that can be transferred in a power
grid and plays the same role as available transfer capacity in ATC approach. This
line capacity is used by the day-ahead market.
There are two main steps of RAM calculation:

e The critical branches and critical outages are determined by TSOs.

e The RAM is calculated for these critical branches that are under critical out-
ages.

The RAM value is crucial for maximization power flow in a power grid. Therefore,
the RAM calculation and maximization is described in detail in the following chapter
- Problem formulation [1].

1.2.4 ATC and FB comparison

The flow-based method leads to more efficient use of electricity generation and its
transfer in a power grid. While under ATC, TSOs themselves determine capacity
values based on forecasts and historical data, the FB mechanism allows T'SOs only to
derive the impact that trade will have in terms of physical lows on the network. More
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capacity is offered to the market under FB market coupling, resulting in an overall
welfare gain and increased price convergence. In a table down below is described the

summary of key differences between ATC and FB approach.

Available Transfer Capacity

Flow-based

1) Calculation of
available capacity

T30 coordination

Border-by-border, bilateral
coordination between TSOs

Coordination at regional level with
interaction among all TSOs

Result of copacity calculation

Available commercial capacity
(NTC) values per direction on
each border

A set of critical branches and their
corresponding available physical

capacity

2) Verification

Grain of verification

Two timestamps verified daily

Twenty-four timestamps verified daily

3) Long-term
adjustments

Grain of adjustments

Adjustment on value per
direction on each border

Adjustment applied on each
considered critical branch

4) Allocation of
available capacity

Constraints to MC algorithrm

Constraint for each direction on
each border

Constraint for each considered
critical branch

Capacity allocation

Capacity is already allocated over
borders by TSOs in Step 1)

Market-oriented capacity allocation,
based on market bids and offers

Figure 1.4: Summary of key differences between ATC and FB approach [24]

1.3 Problem formulation

1.3.1 Overarching goal

As mentioned in the previous section, two parameters are needed for FBMC: (i) the
zonal Power Transfer Distribution Factors (PTDF) and (ii) the Remaining Available
Margin (RAM). The FBMC parameter calculation is started two days before the
delivery day and finished the morning day-ahead so that they can be used in the
day-ahead market clearing.

The RAM express line transfer capacity of power network, which can be used for
electricity transfers initiated by realization of market transactions contracted in the
day-ahead market for example. The RAM calculation consists of two main steps:

1. The critical branches and critical outages are determined. The result of this
process is a set of critical network elements (CNE).

2. The RAM is calculated for all CNE under critical outages.

A transfer line is considered to be significantly impacted if the zonal PTDF for that
line is larger than 5%. The critical branches are determined by each TSO for its
own power network. For each critical branch, the maximum allowable power flow is
determined as the physical (thermal) limit of the transmission element. [37]

The RAM differs from the max capacity of the CNE as in the following equation:

RAM(I) = Fraa(l) = Fros() = Fav (D) = Fru() Wi (1.2)
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o [,4:(1) is the maximum allowable power flow on critical branch | in [MW].

o F,..f(1) is the reference flow on critical branch | in [MW] caused by commercial
transactions outside the day-ahead power exchange. These commercial trans-
actions can be internal (within a market zone) or external (between market
zones).

e [y (1) is the Final Adjustment Value on critical branch 1 in [MW]. The FAV
allows TSOs to take account of knowledge and experience that cannot be
introduced in the formal FBMC method, such as an additional margin due to
complex remedial actions.

e ['ry(l) is the Flow Reliability Margin on critical branch 1 in [MW]. The FRM
is a safety margin that needs to compensate for approximations and simpli-
fications made in the FBMC methodology such as the assumptions inherent
to a zonal PTDF, unintentional flow deviations due to load-frequency control,
and the use of a linear grid model with a simplified topology.[37]

As mentioned, the RAM is a key parameter to calculate on critical network elements
in a power grid. This value describes the line capacity of transferable power flow.
For the maximization of transfer capacity of power network and maintaining the
power system stability, it is necessary to optimize RAM under security constrains.

Therefore the goal is to create an optimization algorithm that maximizes the RAM
on selected critical network elements. Thus, the aim is to maximize minimal RAM
of the power network and the objective function is considered as follows:

J = max(lrélci%(RAM(l)) (1.3)

The RAM is unidirectional variable and if also power flow in opposite direction
would be monitored, then another CNE should be added to the optimization model.
Thus, RAM for not overloaded CNE takes values from the following interval

RAM € [0, 2(Fmax — Fry — FAV)]; (14)

where the lower limit corresponds to the situation when the CNE is fully loaded,
ie. F'= (Fu — RM — AV), and the upper limit corresponds to the same loading
but with opposite direction of power flow.

Now, let be a RAM of monitored line [ € C'B under consideration of outage of any
power line k € C'O given as

RAMEEO (1, k) Y Fppo (1) = Fras (1) = Fav (1) = Fres (1) = LODF (L, k) Fyros (k). (1.5)

Generally, it is required that the proposed algorithm has the following features:

e None of CBs will be overloaded due to the actions realized by optimization
algorithm in nominal state or in case of any contingency CO.
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e The solution will not increase loading of already overloaded CBs.

e CO is considered to be an outage of a single CB.

The proposed RAM maximizing algorithm consists of three possible remedial action
types adjusting RAM by changing the Phase Shifting Transformers (PST) tap posi-
tions, Topological RAs and by Generation Redispatch , respectively, see green blocks
of flowchart in figure 1.5. The first two approaches represent non-costly RAs (NC-
RAs), which will be preferred over the costly RA. These actions will be used only in
a situation if any CB is overloaded and none of non-costly RAs can correct it. On
the figure 1.5, simplified workflow for RA optimization algorithm is depicted.

H Data inputs

Critical Branches
Critical Outages

Non-costly actions E

, :gé/'_“'\
E PST Topology i \

Optimization Optimization

Grid Model

____________________

Costly actions |

Generation —
Redispatch

Figure 1.5: Flowchart of Remedial Actions Optimization Algorithm

Phase Shifting Transformers (PST)

Change of tap position of Phase Shifting Transformers (PSTs) is the first non-
costly remedial action, which control of power flows in steady state conditions. To
use this ability efficiently, it is important to install PST in a suitable place and
optimize their operation. The optimal adjustment of PST tap can be considered as
an optimal power flow (OPF) problem, which is of a non-linear nature. The solution
of this problem means the determination of the optimal settings by adjusting control
variables (PSTs’ tap position) in a power system.
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Topological RAs

Another non-costly remedial actions consist in the change of power network topology
in a reasonable way, which change power network transfer capacities and influence
power flows. The aim of the topology optimization is to maximize minimal RAM
though change of power network topology.

Generation Redispatch

The last action stands for a costly remedial action, which is applied, when non-costly
ones are not efficient. This remedial action consists in an adjustment of relevant
power generating unit in order to reduce power flows over critical network elements.
However, the adjusted generation power causes the power imbalance in the power
network, which has to be eliminated through expensive ancillary services.

1.4 Thesis structure

This thesis is divided into 6 chapters including the Introduction and the Conclusion.

In the chapter Introduction, the Market coupling is described. Further, the ATC
and Flow-based approaches are considered and compared. This chapter presents the
cross - border capacity calculation method as well. At the end, the problem formu-
lation for RAM optimization is introduced.

The chapter 2 focuses on the analysis of the current state of the art in the RAM opti-
mization, where the commonly used methods for Optimal Power Flow were analyzed.

In the 3rd chapter, the Topology optimization was performed. The selected evolu-
tionary algorithms were described at sufficient level of detail. Further the impact
analysis of different parameters on the computation performance was presented.

Chapter number 4 is devoted to Power Shifting Transformers optimization, where
modified algorithms from Topology were applied and their computation performance
were analysed under different algorithm configurations.

In the 5th chapter, the sensitivity analysis of line distribution factors is performed,
which are important elements for approximate contingency analysis based on lin-
earized power systems. In this chapter, the accuracy of the approximation were
analyzed and the improvement of the accuracy was proposed.
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Chapter 2

State of the art in the RAM
optimization

As mentioned in the section 1.3, the main goal of the diploma thesis is the RAM
optimization using selected remedial actions. The RAM value calculations are per-
formed under Flow based(FB) method representing the currently used methodology
in power network systems. The FB is a relatively new approach and therefore there
are available only few resources for RAM optimization. On top of that, energy com-
panies (mainly power system operators) dealing with this issue are usually private
and their solutions are under commercial secret. For these reasons, it was needed to
analyse general methods that are commonly used for the well known energy problems
such as the Optimal Power Flow (OPF), which stands for a traditional optimization
problem widely solved in the power system community. OPF problem has a long
history briefly described below in the following section.

2.1 Optimal Power Flow

Over the past half-century, the Optimal Power Flow (OPF) has gained a great at-
tention due to its importance in power system operation. In general, OPF seeks
to optimize the operation of electric power generation, transmission, and distribu-
tion networks subject to system constraints and control limits. The most commonly
used objective is the minimization of the overall cost function including operation as
well as maintenance costs. In addition, several other objectives can be included into
optimization such as minimization of the active power loss, nodal voltage security,
emission of generating units, number of control actions, and load shedding [45]. In
practical power system operation, the OPF problem adjusts the continuous control
variables (e.g. power injections and nodal voltages) and discrete control variables
(e.g. transformer tap setting, phase shifters, and reactive injections on shunts) to
reach the optimal objective function while satisfying a set of physical and opera-
tional constraints. [9]

As mentioned and detailed in the section 1.3, three main remedial actions are con-
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sidered. Each RA works with different state spaces where the required solutions are
sought. Based on the state space, only certain methods can be applied effectively.
The partitioning of selected approaches linked with variable types is shown in the
figure 2.1 further detailed in following sections.

RAM optimization

_________ T e Y ____ oo __
| | | | | |
! Discrete | ! Discretized | ! Continuous |
: l : l : l
! | ! | ! . |
! Topology | ! PST i ' Generation |
| .. . ! | . . . ! | . !
: optimization ! ! optimization : ! redispatch !
: l : l : l
| | | ) | |
| ,_______________________l' S PR |
i K \\i Ak A "
Tree search
Brute . Genetic/ Linear/quadratic Dynamic Mixed integer limnear
force LELEHE (OFs, BF_S’ Evolutionary programming programming programming
Backtracking)

Figure 2.1: The detailed division of RA

2.1.1 Topology optimization

Topology optimization (TO) is a remedial action based on the change of power
network topology, where the size of optimized power network is crucial. As shown in
the figure 2.1, TO works with the discrete state space. There are different methods
than can be used, which especially depends on the size of the state space. In a real
case, the number of lines and other elements in a power network is usually huge
(more than 15 000 in a merged EU power system). The state space is created by
binary vectors representing every single topology change (i.e. power lines operation
status). The size of the state space grows exponentially depending on the amount
of changeable lines. In this thesis, two main approaches for topology optimization
are considered.

e Conventional methods

e Artificial Intelligence methods
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Conventional methods

Conventional methods embraces relatively simple methods used for the state space
search. They usually achieve very good results, when the state space is small. For
these cases, the main advantage is a guarantee of finding the maximum. On the other
hand, the major disadvantages are the large demands on memory and computation
time. In the case of a large network optimization, these disadvantages make it ab-
solutely impossible to use and it is necessary to find other more suitable algorithms
(e.g. Artificial Intelligence methods). The most well-known methods are described
in the following itemization.

e Brute force (BF)

BF is an optimization technique which examines every possible alternative in
the solution space to find the best one [44]. Brute force can be used for a small
group of issues containing a low number of total possible solutions, while the
cases, where the state space is large, this approach is extremely inefficient and
often inapplicable due to huge time and memory requirements. Precisely for
these reasons, the BF will be used only as a baseline for result validation in
our case.

e Heuristic approaches
Methods using an additional knowledge about the problem being solved, can
be, for example, the approximate location of the global maximum. It is sig-
nificantly better than the brute force technique because the whole state space
does not have to be searched.

e Decision tree search
A data structure representing a whole group of possible solutions. Individual
elements (nodes) are arranged so that it is possible to quickly search for a
given value in this tree. There are 3 main principles considered:

— Breadth First Search (BFS)
BFS algorithm traverses nodes in tree by levels. It starts at the tree root
and explores all of the neighbor nodes at the present depth prior move
on to the nodes at the next depth level. [43]

— Depth First Search (DFS)
An opposite algorithm to BFS prior move on to the nodes at the deeper
level.

— Backtracking
This is an improvement in the search for brute force solutions in that
a large number of potential solutions can be ruled out without direct
testing. The algorithm is based on DF'S algorithm.

Artificial Intelligence methods

Artificial Intelligence (AI) methods is another type of algorithms primarily
applied to solving problems, where conventional optimization methods can
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not be used. The heuristic search has become a very popular technique in
searching the global or near-global optimal solution. One of the subgroups
of AT methods are Evolutionary algorithms mostly involving meta-heuristic
optimizations [10] such as:

— genetic algorithm (GA)

— particle swarm optimization(PSO)
— evolutionary programming (EP)
— evolution strategy (ES)

— genetic programming (GP)

— learning classifier systems (LCS)

2.1.2 Phase Shifting Transformers optimization

The next step is to analyse methods used for Phase Shifting Transformers (PST)
optimization. In the diploma thesis, the PST optimization focuses on the the meth-
ods to the problem of optimizing transformer tap ratio settings. This issue contains
controllable variables, which create a subset of the state variables. Control variables
are of discrete nature, which can be considered as continuous in some optimization
approaches (e.g. linear programming). In our case, tap changer positions are consid-
ered as discretized, which led to a problem similar to the topological one. The main
differences were the size of a state space and optimized variables(Topology - binary,
PST - discrete).

Methods for the PST optimization can be divided into two groups as in the case of
topology optimization, which area:

e Conventional methods

e Artificial Intelligence(AI) methods

The AI methods used for PST optimization are the same as in topology, where
they are described in detail. On the other hand, the Conventional methods for PST
are very different caused by continuous variables of a state space, which is often
considered as well. The Conventional methods are described in the following section.

Conventional methods

e Linear programming (LP)
LP allow the use of well-developed LP solution methods, such as the Sim-
plex Method. Such methods are highly desirable for many reasons: efficient
handling of inequality constraints, quick recognition of problem infeasibility,
speed, reliability, and (especially) excellent convergence properties. In addi-
tion, LP formulations are convex, and therefore guarantee a global optimal
solution. 9]
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e Quadratic programming (QP)
QP is a special form of nonlinear programming in which the objective function

1
is quadratic of the form §ZBTQ$ +¢" and all constraints are linear. QP-based

OPF was introduced as alternative to LP for cases where LP formulations
perform poorly, such as for loss minimization.[9]

e Dynamic programming
Dynamic Programming (DP) is an algorithmic technique for solving an opti-
mization problem by breaking it down into simpler subproblems and utilizing
the fact that the optimal solution to the overall problem depends upon the
optimal solution to its subproblems. DP is often efficiently applied in the prob-
lems of energy storage operation.[6]

e Mixed Integer Linear Programming (MILP)
Continuous LP, QP, and NLP formulations cannot accurately model discrete
control elements, such as transformer tap ratios or switched capacitor banks.
Discrete variables present one of the most challenging aspects of OPF. MILP
is another option for OPF optimization, where the linearization of the system
is needed. MILP retains many of the benefits of LP while also accommodating
discrete variables. [9]

2.1.3 Selected artificial intelligence methods

For solution of the Topology and Phase Shifting Transformers optimization, two
meta-heuristic approaches were selected. Already before the analysis there was a
tendency to choose methods using Al especially Evolutionary algorithms (EAs).
The analysis confirmed that this approach is very suitable for the RAM optimiza-
tion, as they can work with a huge state space containing binary(Topology) or
discrete(PST) variables and have the ability to find the global maximum. EAs con-
tains many different algorithms where the two most popular ones for optimization
in power network systems were selected: Genetic Algorithms(GA) - Roulette Wheel
and Particle Swarm Optimization(PSO). For comparison, conventional methods were
chosen, namely DFS and BFS. Effective applications of GA and PSO are mentioned
from following articles:

Genetic algorithms

Po-Hung Chen [5] presented a large scale economic dispatch problem by GA. He
designed new encoding technique where in, the chromosome has only an encoding
normalized incremental cost. There is no correlation between total number of bits in
the chromosome and number of units. The unique characteristic of Genetic Approach
is significant in big and intricate systems which other approaches fails to accomplish.

M. Younes and M. Rahl [28] presented hybrid Genetic Algorithm (combination of
GA and Mat power) that was used to solve OPF including active and reactive power
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dispatches. The method uses GA to get a close to global solution and the package
of MATLAB — m files for solving power flow and optimal power flow problem (mat
power) to decide the optimal global solution. Mat power is employed to adjust the
control variables to attain the global solution. The method was validated on the
modified IEEE 57-bus system and the results show that the hybrid approach pro-
vides a good solution as compared to GA or Mat power alone.

Walters et al.[41] applied a Genetic Algorithm (GA) to solve an economic dispatch
problem for valve point discontinuities.

Particle swarm optimization

T. Saravanan [33] presented the application of PSO technique to solve OPF with
inequality constraints on line flow. Algorithm is implemented on a six-bus three-unit
system and the results are compared with linear programming method.

J. Praveen and B. Srinivasa Rao [29] presented optimization problem solved by
PSO with power injection model of the FACTS device. The proposed methodology
is tested on standard IEEE 30-bus test system and the results are compared for
single objective optimization with and without FACTS device.

M.Saravanan et al. [32] proposed the application of Particle Swarm Optimization to
find the optimal location, settings, type and number of FACTS devices to minimize
their cost of installation and to improve system loadability for single and multi-type
FACTS devices. While finding the optimal location, the thermal limit for the lines
and voltage limit for the buses are taken as constraints.
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Chapter 3
Topology optimization

This chapter focuses on Topological Remedial Actions, where particular steps are
detailed. This chapter is divided into 5 sections captured in the figure 3.1.

1. Topology problem

statement
2. Analysis of currently 3. Application of genetic
used methods algorithms

* Theoretical Framework

o Depth-first search (DFS) * Genetic algorithm - Roulette

o Breadth-first search (BFS) wheel selection

* Particle swarm optimization

4. Validation & testing 5. Evaluation of results

* Design of experiments

* Depth-first search (DFS)

* Breadth-first search (BFS) * Results assessment
* Particle swarm optimization

* GA - Roulette wheel selection

Figure 3.1: Methodology of Topological Remedial Action
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3.1 Topology problem statement

This section is devoted to the Topological Remedial Actions (RA). This is one of
three RA that were considered to solve the problem detailed in the section 1.3.

Topological RA approach is focused on changes in a power network. The change can
be generally following [7]:

e opening/closing of one or more network elements
e node reconfiguration

e cancellation of outages

In case of our topology statement, the option opening/closing of one or more net-
work elements was only considered. For example, network elements can be branches,
cables, transformers, bus bar couplers, etc. [7] In our case, only branches in a power
network were considered.

Topological RA are usually made by TSOs. TSOs must consider only network el-
ements that may be changed. If topological actions are not correctly taken into
account, many simulation results can be affected (e.g. operational security, redis-
patching costs, market coupling results, etc.) [8]

3.2 Analysis of currently used methods

There are lots of ways for for realization of switching strategies, which can be con-
sidered as exploring nodes in a state-space. The most intuitive ones are Depth First
Search (DFS) and Breadth First Search (BFS). The reason is primarily simplicity and
quality. They are detailed in the next sections 3.2.1, 3.2.2

3.2.1 Breadth First Search (BFS)

BF'S principle traverses nodes in a progressive and ordered way, by levels. It starts
at the initial node or at random node of a search-space(graph) and explores all of
the neighbour nodes at the present depth prior to moving on to the nodes at the
next depth level. [12]

There are two main steps required to traverse the graph breadthwise as follows:

1. First move horizontally and visit all the nodes of the current layer

2. Move to the next layer

The figure 3.2 illustrates BF'S principle applied to our case. In our Test Case a node
represents a certain topology and the whole graph specify a search-space containing

27



all possible topologies. In the figure 3.2, the node marked with a number 1-6 repre-
sents a binary search-space of length: n = 186. Each parameter S; can contain value
0 (branch OFF) or 1 (branch ON) representing the branch status.

Breadth
First
Search

[S1, 82, -, Sql

[S1, 52, ., Sil [S$1, 82, -, Shl [S1, 52, - » Snl [S1, 82, -, Sql

Figure 3.2: BFS principle [27]

The number of searched nodes in the graph at BF'S principle is determined by the
following equation:
<2, (3.1)

where ¢ is the amount of changeable parameters(i.e. branch status) on nodes and
d is the depth level of searched graph. The number can never exceed the value 2
representing the total possible topology combinations.

This principle was not used due to a huge memory and computational requirements,
but the exact calculations are presented in the section 3.4.

3.2.2 Depth First Search (DFS)

The DFS stands for an another principle that traverses nodes in a more recursive
way that uses the idea of backtracking. This principle goes to the deepest level from
neighbour to neighbour before backtracking. DFS starts the traversal from the root
node and visits nodes as far as possible from the root node. It generally requires less
memory than BFS. The principle could be used for our Test Case and it is detailed
in the section 3.4.2. The figure 3.3 generally shows the DFS principle. [13].
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In our case, the DFS principle due to a huge state space was changed. Only the
best topologies of each depth of the graph was chosen and further searched at the
following depths. A graphical representation is shown in the figure 3.3, where the
nodes 0, 1 and 4 marked in green represents the best nodes of every depth. Due to a
huge memory and computational requirements, the changed algorithm went directly
through the graph with out backtracking.

set maximum depth
set initial search space
loop through depth and search space
compute RAM on CB
choose the best result
remember the best result for next loop
stop if required RAM value found or maximum depth reached

N O Ul W N

Sl

[S1,S2, ., Snl [S1, 82, -, Sql [S1, S5, - Shl [S1,S2, ., Snl

Figure 3.3: DFS principle [27]

The number of searched nodes in the graph at DFS principle is determined by this
equation:

td, (3.2)

where t is the amount of changeable parameters on nodes and d is the depth level
of searched graph.

29



3.3 Application of evolutionary algorithms

3.3.1 Theoretical framework

Evolutionary algorithms (EAs) are a family of biologically-inspired algorithms. They
are primarily applied to solving problems, where conventional optimization methods
can not be used. The main constraints can be a huge number of dimensions or
complexity of the problem. do not work well or they can not be used at all due to
huge time requirements. Solving these problems would require exceeding the available
resources. In other words, given infinite resources and infinite compute capability
it could be possible for a traditional exploitative or stochastic algorithm to reach a
conclusion.[34]

EAs are based on an a population of entities(potential solutions) that evolves. This
evolving process taking place on these entities consist of three main actions shows
in the figure 3.4:

e Replication: Action, where a completely new generation is created. The gen-
eration can be either absolutely random or a some specific (especially good
individuals) would be combine.

e Variation: In this part, the created population mutates or combines(crossover).
The reason for it is creation a diversity of individuals within a population.
Crossover, creates new entities by combining parts of other entities. Mutation
may be defined as a small random change, to get a new solution.

e Selection: Selection is based on Darwin’s natural selection, or Survival Of The
Fittest, where selected entities that show the most promise are carried forward,
with variation on the selection being used to create the children of the next
generation [34].

Replication

EVOLUTION ----°" °

Figure 3.4: Idealized Darwinian Evolution [34]
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As a recap, digital evolution is one which a population of entities goes through gen-
erational changes. Fach change starts with a selection from the previous generation.
Each entity is evaluated against a known specific goal i.e. the fitness is established
and used as input to the selection algorithm. Once a selection is made, replication
occurs with different degrees of variation. The variation is either by some form of
recombination from the parent selection and/or some stochastic mutation.

When these actions are transferred into a digital form processed by a computing
unit, the actions of EAs shown in the figure 3.5 are sorted as follows. Digital evolu-
tion 1s one which a population of entities goes through generational changes. Fach
change starts with a selection from the previous generation. Fach entity is evaluated
against a known specific goal i.e. the fitness is established and used as input to the
selection algorithm. Once a selection is made, replication occurs with different de-
grees of variation. The variation is either by some form of recombination from the
parent selection and/or some stochastic mutation. [34]

MUTATION
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CROSSOVER
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SELECTION

T

EVALUATION —» SOLUTION
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INITIALIZE
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Figure 3.5: Basic Digital Process [34]

3.3.2 Genetic algorithms - Roulette wheel selection (GA -
RW)

Genetic Algorithms(GAs) are adaptive heuristic search algorithms that belong to
the larger part of evolutionary algorithms. Genetic algorithms are based on the
ideas of natural selection and genetics. These are intelligent exploitation of random
search provided with historical data to direct the search into the region of better
performance in solution space. They are commonly used to generate high-quality
solutions for optimization problems and search problems. GAs handle optimization
and configuration problems where there are too many variables or parameters for a
traditional method to succeed. [21]

For GA are the most important following elements, which are shown in a figure 3.7
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e Population - contains all individuals (chromosomes) which can be either a
parent or an offspring

e Chromosome - an individual in a current population consisting of N Genes

e Gene - the smallest element having a single value

NEREEE EEEEER EEEEEE

Gene chromosome

population

Figure 3.6: Search space [21]

GA algorithms differs from each other according to the applied Genetic operators.
There are three considered operators:

1. Selection Operator
The idea of selection is to give preference to the individuals with good fitness
values and allow them to pass there genes to the successive generations. If an
individuals are selected, they become parents and they move to the crossover
part.
There exist many different algorithms used for a selection:

e Roulette wheel selection

(u + \) selection
e Tournament selection

Truncation selection

e Elitist selection
e Ranking and scaling
e Sharing
2. Crossover Operator
This represents mating between individuals. During this phase, the individuals
selected in the previous phase are crossed or mixed. That is, the genes of the

two parents are mixed together to give rise to the different children. There are
several methods of crossing, but the most used are the following:

e One Point Crossover

e Multi Point Crossover

e Uniform Crossover
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3. Mutation Operator
The key idea is to insert random genes in offspring to maintain the diversity
in population to avoid the premature convergence. The most used operators
are:

e Bit Flip Mutation
e Swap Mutation

e Scramble Mutation

From the previous description, there exists a huge amount of possible combinations.
For our Test case were used GA with these operators:

e Sclection:

— Roulette wheel selection

— Improved roulette wheel selection
e Crossover:

— One Point Crossover

— Multi Point Crossover
e Mutation:

— Bit Flip

Roulette wheel

Roulette wheel selection, proposed by Holland [14], is the best known selection type.
The basic idea is to determine selection probability or survival probability for each
chromosome proportional to the fitness value. Then a model roulette wheel can
be made displaying these probabilities. The selection process is based on spinning
the wheel the number of times equal to population size, each selecting a single
chromosome for the new procedure. The algorithm is graphically shown below:
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Figure 3.7: Roulette wheel principle [15]

In the roulette wheel algorithm, following steps were used: These steps were used:

1. Calculate S = the sum of a finesses
2. Generate a random number between 0 and S.

3. Starting from the top of the population, keep adding the finesses to the partial
sum P, till P < S

4. The individual for which P exceeds S is the chosen individual

During the validation, the original algorithm provided required results, however
some problems were occurred.

e the achievement of an acceptable solution took a very long time (more then
1000 generations)

e huge range of provided results
e non-still improving

e the best found parents/offsprings do not continue to the next generation

Due to these disadvantages, the original algorithm was improved, which is described
in the next subsection.

Roulette wheel + Best parents
The biggest problem of the previous method was that the best found parents/off-

springs do not continue to the next generation. To solve this problem was this
algorithm improved by following steps:
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e Calculate S = the sum of a finesses
e Generate a random number between 0 and S.

e Starting from the top of the population, keep adding the finesses to the partial
sum P, till P < §

e The individual for which P exceeds S is the chosen individual
e Save the best N offsprings for the next generation

e Remove the worst N offsprings and replace them by the best offpsrings from
previous one

The modification provided a big improvement in computation performance shown
in the section Validating & testing.

3.3.3 Particle swarm optimization

The another algorithm of genetic algorithms is a Particle swarm optimization (PSO).
It was chosen due to many good references when using this method for any opti-
mization in power networks.

PSO is an optimization method that is population-based and was first developed in
1995 by Dr. James Kennedy and Dr. Russell Eberhart.[16] The main idea of this
method is using population of particles creating a swarms. Within them is search he
optimal solution of current problem. The search starts by considering each particle
as the candidate solution. The PSO algorithm is inspired by the behaviour of hu-
mans, fish, insects, or flock of birds, where the individuals look for the best solution
in a problem dimensional space. The key terms used in this method are: Particle,
Swarm, Fitness,ppest and gpese. They are similar to the terms from previous genetic
algorithm and they are described below.

e Particle: An individual within the swarm. In comparison to previous methods
of genetic algorithms, the particle is like an individual /chromosome.

e Swarm: Total population of particles. A swarm is like the whole generation
containing N numbers of particles.

e Fitness: A function that gives the interface between the optimization problem
and that physical problem, and amplifies the accuracy of the solution within
the position in the solution space. In our case, this value represented the RAM
value calculated on CB.

e Position: A particle’s dimensional coordinates representing the solution to the
problem. For our case, the Position was specified by a matrix:
Xsp, where s = size of a swarm, p = length of a particle
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e Velocity: This value represents a positional change of a particle. In out case
velocity is specified by a matrix V;, with same dimensions as at Position

e P.: The position in the parameter space of the best fitness returned for a
specific particle.

e (pese: The position in the parameter space of the best fitness returned for the
entire swarm.

Because of the nature of our problem, where the Particle stands for a binary vec-
tor the PSO algorithm had to be changed to Binary Particle Swarm optimiza-
tion(BPSO). Therefore we get the particles ordered in Position matrix X, con-
taining only discrete values[0, 1].

The most important calculations of BPSO are:

1. Inertia weight calculation

Wmaz — Wmin .
wW=Wnezr — ————————————* Zt, (33)
Ztmaa:

where w4, and wy,;, are the maximum and minimum inertia weights, it,,,.
is the maximum iteration count and ¢t is the current iteration.

2. Velocity calculation
V;'?—l =w - sz + Clmij . [Pbest - thj] + CthQj : [Gbest - Xitj]v (34)

where

ij is the particle’s position

Vii is the particle’s velocity

c1 is the cognitive parameter ¢y us the social parameter my, ms are the random
values from the interval [0, 1];

3. Position calculation

1 {1, if uj; < si; (3.5)
" 0, ifuj; > s,
where
u; is the randomly selected value from a uniform distribution in (0,1)
s;; is the sigmoid function calculated:
1
ng = 14 e_Vitj+1 (36>

Algorithm

The most important steps of PSO algorithm are shown in the fig 3.8, which has
been taken from [23].
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Figure 3.8: Flowchart of the Particle Swarm Optimization algorithm

3.4 Validation & testing

3.4.1 Design of experiments

As mentioned the BPSO and GA methods belong to the group of Evolutionary al-
gorithms, which are characterized by uncertainty of convergence time over multiple
executions. The time and a general quality of a single run depends on a deployment
of randomly generated initial population in the state space and particular algo-
rithms loops improving an objective function in a nondeterministic way. Therefore
these aspects need to be considered during the validation phase. Moreover, heuristic
algorithms (i.e. evolutionary) strongly depend on the initial configuration of tuning
parameters, which stands for significant degree of freedom for overall computation
performance.

Convergence properties of algorithms presented in previous sections will be assessed
in this part. The validation will focuses on the assessment of convergence properties
and algorithm performance under various initial configuration and under considera-
tion of nondeterministic character of evolutionary algorithms. During experiments,
evolutionary algorithms (BPSO and GA) will be run twenty times with different
initial population in order to assess the convergence properties robustly. For the
acceleration of experiments, the Parallel Computing Toolbox(PCT) detailed in the
section 3.4.1 will be used. Both algorithms (BPSO and GA) contains several config-
uration parameters, where three most significant ones will be analyzed and detailed
in relevant sections below.
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Software environment

For the implementation of software solution, the MATLAB R2018a programming
language was used, where following toolboxes were used:

¢ MATPOWER
A free package of M-files initially developed by Ray D. Zimmerman, Carlos E.
Murillo Sanchez and Deqgiang Gan of PSERC at Cornell University under the
direction of Robert J. Thomas. MATPOWER is used for solving power flow,
continuation power flow and optimal power flow problems. [30]

e Parallel Computing Toolbox (PCT)
PCT allows to run many calculations simultaneously and solve computationally
and data-intensive problems using multicore processors, GPUs, and computer
clusters. [26]

Hardware environment

All methods were calculated on a desktop computer HP Pavilion Gaming 690-0015nc
with following parameters:

e Processor: Intel Core i7 8700 Coffee Lake 4.6 GHz, 6 cores, 12 threads

e Installed memory (RAM): 16 GB

During experiments, all six cores were used in parallel calculations.

Test Case

The test case stands for a power network with real electrical properties and relevant
size reflecting typical use of the remedial action optimizer. The test case contains
these parameters:

e Number of buses: 846
e Number of generators: 216
e Number of all branches: 1634

e Number of selected branches for topology actions: 186

In the case of Topology optimization (TO), only topological actions related to branches
in a power network were considered. Every branch contained many parameters,
e.g. from bus number, to bus number, resistance, reactance, flow limits and branch
status. In TO, the binary branch status (1 - in service, 0 - out of service) is the
most important parameter, which change the power network topology. Changing
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the topology in a desired (i.e. optimal) way stands for a complex problem depend-
ing on the size of a simulated power network. Simulation of topological actions is a
big challenge specially when large areas are simulated. In these cases is a set of pos-
sible solutions huge, which requires large computation effort. In following sections,
the computation performance of particular algorithms will be analyzed.

3.4.2 DFS

As mentioned earlier, the DFS principle is more less deterministic and provides
always the same values at the exact times due to an algorithm that is not affected
by randomness. However, the computation time can be affected bu the operation
system processes, therefore DFS was run 20 times in parallel to achieve the same
robust result set eliminating the randomness. Results obtained from testing can be
summarized as:

e The average time of 1 iteration: 0.5172 s.
e The number of iterations: 15
e The total time: 15 - 0.5172 = 7.7576
The values of the objective function (RAM) and computation times in particular

steps are written in the table 3.1 and graphically represented in the figure 3.9 and
3.10.

92.68 (0.5172s)
123.95 (1.0344s)
133.49 (1.5516s)
136.65 (2.0688s)
138.43 (2.5860s)

139.66 (3.1032s)
140.89 (3.6204s)
141.88 (4.1376s)
143.14 (4.6548s)
143.64 (5.1720s)

143.92 (5.6892s)
143.95 (6.2064s)
143.97 (6.7236s)
143.98 (7.2408s)
144.13 (7.7576s)

Table 3.1: Values in time of DFS algorithm

DF'S iterations

In the figure 3.9, the stair graph representing evolution of the RAM value per itera-
tion is shown. The X-axis represents number of iterations and the Y-axis stands for
the RAM value. Based on the achieved results, DFS algorithm provides very good
results, specially at the initial phase of the algorithm. In the first iteration, 186
topologies were applied and the only 1 branch was switch on, the DFS algorithm
improved the result up to 64.36 % of the required value. In the second iteration,
where additional branch was turned on, the improvement of RAM value was signif-
icant as well (additional 33.74% improvement). The last perceptible improvement
was achieved in third iteration, where the final RAM value was equal to 133.49MW
representing 92.70 % of desired quality level. From the fifth to the ninth iteration,
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there is a relatively small improvement in range 1 - 2 MW. The last 5 iterations
shows a very small but growing improvement.
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Figure 3.9: The evolution of RAM value over DFS iterations

DFS time

Although, the number of iterations is low, it does not represent the results precisely.
To compare the DFS with EAs, compare values over time is needed as shown in the

figure 3.10, where time aspects are shown.
The final comparison of DFS algorithm with EAs is described in the section 3.5.
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Figure 3.10: The evolution of RAM value over DFS time

It can be seen, from the figure, the computation time is demanding because of high
number of evaluation of the objective function per iteration.

3.4.3 BFS

As mentioned in the section 3.2.1, this approach will be not used due to the high
time and huge memory requirements. There is an exponential growth of loops needed
to search in the binary space, were is amount can be expressed as

t < 2f (3.7)

where ¢ = 186 is the amount of changeable parameters on nodes and d is the depth
level of searched graph. The number can never exceed the value 2! representing the
total possible searches. If the depth is set to 3, the total number of objective function
evaluation! would be equal to

186% = 6434856. (3.8)

The total time to search the entire state space of the test case can be expressed
from DFS assessment mentioned in the previous section, where time demanded for
one iteration is equal to 0.5172 s on the hardware specified in the section 3.4.1. The
total computation time of BFS execution with depth three can be expressed as

0.5172 - 6434856 = 3328107.52s = 924.47h (3.9)

Therefore this method is practically non-applicable for real world applications and
will not be compared with other methods.

Load flow computation and RAM evaluation.

41



3.4.4 Binary particle swarm optimization

Binary particle swarm optimization(BPSO) method contains several configuration
parameters, where three most influencing ones were analyzed in this section. The
tested values of BPSO parameters mentioned in the section 3.3.3 were:

e N - size of a swarm: [5 20]
e ¢ - social acceleration coefficient: [1 2 5 10 50 100 500 1000 5000 10000]
e ¢y - cognitive acceleration coefficient: [1 2 5 10 50 100 500 1000 5000 10000]

First, the BPSO algorithm was tested on a smaller number of particles in a swarm
(N = 5), where the main advantage compared to size equal to 20 is the higher speed
of one iteration. On the other hand, the disadvantage is the lower aggressiveness
of the state space search compared to the size N = 20, because the state space is
searched in a smaller number of directions. Which of the mentioned advantages is
stronger and thus better results are achieved is analyzed.

Number of particles N = 5

The figure 3.11 represented by a table shows the comparison of the average number
of iterations under consideration of different configuration parameters. For a better
measurability, the number of iterations was converted to the average total time
displayed in the right figure 3.12. On the x and y axes, the coefficients ¢; and
co are shown. It can be seen from both tables that the dominant parameter is
co representing the aggressive behaviour throughout the whole state space. The
extreme values on both sides of ¢y parameter had bad results, where the absolute
worst configurations were found with parameters c,co = 1 or 2. In that case, the
BPSO algorithm did not ever find the required RAM value in any of the 20 parallel
runs, as the maximum number of iterations was set to 500. The results can be seen
more clearly from the graph 3.12, where configurations containing the parameter c,
equal to 50 generally reached the shortest time. Absolutely the best time = 1.314s
had the configuration ¢; = 10, co = 50. The average 1 iteration time of all runs
containing the number of particles equal to 5 was 0.0422 seconds.
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Figure 3.11: Average number of itera- Figure 3.12: Average computation
tions for N =5 time for N = 5
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Number of particles N = 20

In this case, the number of particles in a swarm was increased to 20, which resulted
in an increase in the time of one iteration. The average time of 1 iteration was 0.1666
seconds. From the figure 3.13, an obvious presumed decrease of all iterations can
be seen. This is caused by exploring larger area of the state space with the higher
number of particles. On the other hand, the higher number of particles increases
computation time as drafted in the figure 3.14. Configurations with number of par-
ticles equal to 20 have similar tendencies as in the previous case for N equal 5. The
best solutions were located in the approximately in the middle of the table, where
the ¢y parameter again proved to be the best one.
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Figure 3.13: Average number of itera-

) Figure 3.14: Average computation
tions

time

The comparison between two executions with different number of particles is shown
in the following figures 3.15, 3.16 and 3.17.

Performance comparison of various configurations

Average time comparison

In this section, the computation performance of the BPSO algorithm is assessed for
various configurations. The figure 3.15 displays 20 configurations with best compu-
tation performance sorted by average time. Based on results, better performance
were achieved by the number of particles equal 5. The top 13 solutions were only for
N = 5. The biggest time difference was registered between the first and the second
coefficients configuration. Coefficients at the position 6 to 11 had almost the same
time. For a better overview, in the figure 3.16, the values are displayed in percent.
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Figure 3.15: The best 20 configura- Figure 3.16: The best 20 configura-
tions sorted by time (seconds) tions sorted by time (percent)

Boundary computation time comparison

In this part, boundary computation time are analyzed, whose 20 configuration with
best performing computation time are depicted in the next figure 3.17. In this bar
chart, the boundary values (minimum and maximum) are displayed. The MIN value
represents the fastest solution recorded form the 20 parallel loops. The MAX values
stands for the solution with the worst time. The attention should be focused specially
on the MAX values. Based on the figure, the worst time (longer than 4s) appears
always for the configurations with N equal to 20.
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Figure 3.17: The best 20 configura- Figure 3.18: Objective function evolu-
tions with boundary values (seconds) tion for all realizations

BPSO Realizations

On the last figure 3.18, objective function evolutions are displayed for all 20 real-
izations under consideration of the best configurations. There are depicted all 20
parallel loops for each configuration (in total 400 graphs). These 400 executions are
grey colored. The black colored edges represent the boundary values of all loops,
while the red colored line shows the progress over time of the average value. The
last yellow dashed line specify the required RAM value equal to 144 MW.
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3.4.5 Genetic algorithms - Roulette wheel selection (GA -
RW)

In this section, roulette wheel selection algorithm and its modifications are analyzed
in the similar was BPSO in the previous section. Here, genetic algorithm were tested
for different sizes of populations, which strongly depends on number of best parents
proceeding to next generation (npp) and various crossover methods. Two types of
the crossover methods were analyzed: One Point Crossover, Multi Point Crossover.
The overall amount of configurations was reduced to 25 due to higher computation
requirements and considered configuration can be summarized as

e N - size of a population: 6

— npp - number of Best parents: [0 1 2 3 4]

— neo - number of Crossover: [1 2 3 5 10]
e N - size of a population: 20

— npgp - number of Best parents: [0 4 8 12 16]

— neo - number of Crossover: [1 2 3 5 10]

Population size N = 6

The chart on the figure 3.19 shows the comparison of the average amount of itera-
tions. On the x and y axis, coefficients ngp and nco are displayed. On the x axis,
results from the original roulette wheel algorithm are located in the first column
(ngp = 0) and results from modified methods are located in other columns. The
lowest number of iterations for the population N = 6 was found for the parameters
ngp = 1 and nco = 3. The maximum number of iterations was set to 500. As can
be seen, the original GA method did not found the required solution in 500 iter-
ations. Because the convergence performance is crucial for practical solutions, the
original method was improved by propagation of best parents to next generation,
which significantly improved the convergence rate.

500

number of CrossOver
w
8
3
number of CrossOver

0 1 2 3 4
number of BestParents

number of BestParents

Figure 3.20: Average computation

Figure 3.19: Average number of itera- .
time

tions
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The average computation time of GA under consideration of various configuration
are displayed in the figure 3.20. The longest computation time values are as expected
located in the first column = 0 Best Parents, which relates to the original algorithm.
Generally, there are not significant differences between various configurations. The
best found configuration - ngp = 1 and nco = 3 had the lowest average computation
time 6.708s. The average 1 iteration time of all runs containing the number of
particles equal to 5 was 0.0237 seconds.

Population size N = 20

The analysis of computation performance with increased population equal to 20
is depicted on the figure 3.21. As can be seen, the lowest value of iteration has
the configuration - nBO = 12 and ngo = 5. As similarly to BPSO method, the
increase of population size led to significant reduction of iterations, while increases
the computation time on the other hand. In order to find out the best population
size , it is necessary to convert numbers of iterations to computation time.

19.16 21.07

18.64 18.33 30

24.45 18.52

number of CrossOver
number of CrossOver

4.208 12.19 15

16.11 2461

0 4 8 12 16
number of BestParents number of BestParents

Figure 3.21: Average number of itera- Figure 3.22: Average computation
tions time

The next chart in the figure 3.22 shows time values. There are clear differences from
the previous chart in the figure 3.20. The column representing 0 Best Parents is
also the worst one, the time of the maximum iteration has supposedly increased
due to higher time requirements of 1 loop. Since the number of CrossOver is greatly
affected by chance, the values according to the individual columns are especially
noteworthy interesting. If the values in individual columns are summed, following
results depending on Number of Best Parents are obtained.

e ngp=0 — NOT FOUND

e ngp =4 — total time &~ 42 seconds
e ngp =8 — total time = 71 seconds
e npp =12 —  total time =~ 82 seconds

e ngp =16 —  total time ~ 95 seconds
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As can seen from previous calculations, the increase of computation time depends
on raising number of best parents for next generation ngp. The best computation
performance is with ngp = 4. In comparison to ngp = 12 (the best computation
time), the configuration with ngp = 4 ended in much better average time. Therefore,
the GA with configuration ngp = 12 and ccp = 5 was probably affected by very
suitable initial conditions.

Performance comparison of various configurations

Average time comparison

Similar to BPSPO algorithm, the next charts in the figures 3.23 and 3.24 shows the
top 20 average time values sorted from best to worst. On the left side, configurations
with specific parameters are labeled. The fastest time of finding the required RAM
value was reached by the configuration: population N = 20, nBO = 12 and n¢o = 5.
The largest difference of 58.83 % was found between the first and second value shown
in the figure 3.24.
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Figure 3.23: The best 20 configura- Figure 3.24: The best 20 configura-
tions sorted by time (seconds) tions sorted by time (percent)

Boundary computation time comparison

The figure 3.25 shows the bar chart sorted by the average time as in the previous
figures 3.23 and 3.24. For detailed information, there are additionally displayed the
MAX and MIN values. As seen, among top 20 configurations are only 5 with the
population N = 20. All 5 configurations with population N = 20 except the first one
have significantly higher maximum of maximal computation time, which represents
the performance inconsistency between MIN and MAX solution. All configurations
having the population equal to 6 were much more consistent in computation time.
Another interesting sign of the population 20 is that all of them have ngp = 4 (equal
to 20% of the population). In the case of population size N = 20, better performing
configurations are achieved when the ngp is low. Therefore the best configuration
for N = 12, where ngp = 12, stands for an outlier strongly influenced by initial
conditions. Due to mentioned facts, the best configuration in terms of consistency
is the 3rd one - N = 6, ngp = 1, nco= 5.

47



= 20| nBP = 12| nCO =
=20| nBP = 4| nCO =

= 6| nBP = 1| nCO =
= 6| nBP = 1| nCO =
= 6|/ nBP = 1|nCO =1
=20| nBP = 4| nCO =
= 6| nBP = 1| nCO =

= 6| nBP = 2| nCO =
=20| nBP = 4| nCO =
= 6| nBP = 1| nCO =
= 6| nBP = 2| nCO =
= 6| nBP = 2| nCO =
= 6| nBP = 3| nCO =
= 6| nBP = 4| nCO =
=20| nBP = 4| nCO =
= 6| nBP = 3|nCO =
= 6| nBP = 2| nCO =
= 6| nBP = 3| nCO =
= 6| nBP = 2| nCO =
= 6| nBP = 4| nCO =

RAM [MW]

SN WANSAO A WUNODOUND =GO

min

[
[ average
[ E—

30

Z2zzzzzzzzzzzzzzzzz2z2

max

0 10 20
Time[s]

Time [s]

Figure 3.25: The best 20 configura- Figure 3.26: Objective function evolu-
tions with boundary values (seconds) tion for all realizations

GA Realizations

In the last figure 3.18, the best 20 configuration with 20 realization are shown.
All 400 executions are grey colored. The black colored edges represent the extreme
values of all loops, while the red colored line shows the progress over time of the
average value. The last yellow dashed line specify the required RAM value equal to
144 MW.

In this case, the average value was not found in 11 seconds due to the high number
of bad configurations.

3.5 Results assessment

In the previous section, particular aspects of selected methods were analyzed. Here,
the results for best configuration of selected methods will be compared. The best
found configurations of selected methods are

e DFS: Without parameters
e BPSO: N =5, ¢ =10, ¢ = 50
[ GA(RW + BP) N = 20, npp = 12, nNco = 5

For these best configuration (except DFS), twenty realization were executed and the
results were stored for further assessment, which is graphically shown on figures 3.27
and 3.28. For the assessment, following metrics were taken into account

e best possible time (thin line ending in a circle)
e average time (thick line ending in a cross)

e worst possible time (thin line ending in a circle)
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These values were then compared with the simple DFS method, where only one line
is displayed due to zero variability. The overall comparison of all the methods used
is shown in the figures 3.27 and 3.28. BPSO and GA (RW +BP) method contains
three lines displayed in the figure: Each methods is display in a different color: BPSO
(green), GA (RW +BP) (blue) and DFS (red).The more detailed view is shown in
the figure 3.28.
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Figure 3.27: Comparison of all meth- Figure 3.28: Detailed comparison of
ods all methods

Based on the figures 3.27 and 3.28, the BPSO method has the best computation
performance even the worst case is considered. The roulette wheel algorithm has
significantly lower performance and DFS was the worst one. The exact values of
results for all methods are shown in the table 3.2.

average 1.57s (41 iter) 5.54s (77 iter) 7.24s (15 iter)
best 0.39s (11 iter) 1.68s (24 iter) 7.24s (15 iter)
worst 2.08s (54 iter) 8.39s (116 iter) 7.24s (15 iter)

Table 3.2: Comparison of all 3 methods by time

The achieved results can be summarized in a following way.
BPSO - time

e the average time is 3.53x faster than GA and 4.61x faster than DFS

e the worst time is 2.66x faster than the GA average time and 3.59x faster than
DFS
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e the best time is 4.30x faster than the GA best time and 18.56x faster than
DFS

GA - time

e the average time is 1.30x faster than DFS
e the best time is just by 11 seconds slower than the BPSO average time

e the worst time is by 75 seconds slower than the DFS
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Chapter 4

Phase Shifting Transformers
optimization

4.1 PST problem statement

As written in the introduction, one of the problems that can occur in a power
network is the uneven loading of parallel transfer lines. The distribution of the
power flow between two parallel lines is dictated by their impedances [35]. The line
with the smallest reactance carries the largest part of the load causing the situation,
when one of the two lines will be operating well below its nominal rating because
otherwise the parallel line would be overloaded. Due to that, power flow has to
be controlled. One of the possible solution methods is the technology called Phase
Shifting Transformers (PSTs), which is relatively old but it is a valuable and popular
currently used solution.[40]

4.1.1 Power flow control using PSTs

The active power flow through the transmission line is given by the following equa-
tion [25]:
ViV
P = ;(L 2 . sind, (4.1)

where Vi and V5 are the voltage modules at the sending and receiving ends of the
line, respectively, 0 is the power angle (the phase angle difference between V; and
V5), and X7, is the line reactance. The equation 4.1 shows that the active power flow
through the line can be controlled by changing voltage levels V; and V5, reactance
X, and power angle 6. However, the full extent of active power flow in the line can
be changed by adjusting power angle §. By controlling angle §, not only the value
of the power flow but also the direction of flow can be changed [17]. In practice this
can be done by using PSTs.[18]
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Figure 4.1: Circuit diagram using PST

In the figure 4.1 is shown a PST connected in a serious in a transfer line, where a
booster voltage AV perpendicular to voltage Vi. The resultant voltage V3 behinds
PST is shifted in phase by angle o and the resultant power angle of the line is equal
to 0 + a shown in th figure 4.2. The changed power P, using PST that flows on the
Line 2 is expressed as the following equation [38]:

V3N
Xz + Xpsr
where Xpgr is the PST reactance, « is the PST angle.

0 -sin(d + «), (4.2)

AV

-
B A

Figure 4.2: Phasor diagram for a line with a PST

The value AV changes the angle o causing a change of the resulting power flow P,.
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The wvoltage AV can be controlled within a range from negative values to positive
values, resulting in an increase or decrease in the power angle, respectively, and thus
the power Py [18].

For any desired angle range, the tap positions can be provided and represented in
vector containing discrete values. All tap position options create a state space, where
the goal is finding the maximum RAM. Due to the similarity of the state space used
for Topology optimization, the same optimization methods (GA - Roulette wheel and
PSO) were applied. The only change was that the state space was discrete compared
to the binary one from the Topology optimization. This resulted in adjustments
in both methods. The PSO algorithm was changed to an algorithm working with
continuous variables, which was finally rounded. More changes have been made at
GA - RW algorithm briefly detailed in the section 4.2.4. The theoretical framework
is due to the equality of used methods not described again. The final optimized state
space for our problem is detailed in the following section 4.2.

4.2 Validation & testing

4.2.1 Design of experiments

This section focuses on the general information about the PST optimization. The
subsections Software environment, Hardware environment are completely same as
in the case of Topology optimization (TO). Some changes were considered in the
subsection Test Case detailed in the next section.

Test Case

The Test case contains the same properties as in TO but it was extended by 3
Phase Shifting Transformers in 3 different transfer lines in a power network. As
briefly mentioned in the section 4.1, the major change from TO was the state space
converted from binary to discrete variables. The second big change was the size of
the state space, which depends on the number of PSTs in a power network and on
the selected range of tap positions. In our case, the range of the tap positions was
set from -25 to 25 with the step of 1 (in total 51 tap positions). The total number
of all PSTs configuration creating the whole state space is given by the following
equation:

npp ™ = S, (4.3)

where Sy is the state space, nyp is the number of tap position options and npgr is
the amount of PSTs. In our case the equation was equal to:

51° = 132651 (4.4)

Due to the smaller state space, every RAM value of PST configuration computed
and shown in the figure 4.3. As seen, The RAM values create non linear layers
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depending on the configuration of PSTs, where the dominant Phase Shifter is the
PST;. The global maximum was found for the configuration PST; = 22 and PST5,
PST; = —25 represented in the figure 4.3 by a red cross. The worst values were
found in the layer containing the PST; = —7. The another important layer is the
one for PST3; = 10 representing the local maximum causing big issues for DFS
algorithm detailed in the following section 4.2.2.

PST3
RAM value

Figure 4.3: All RAM values representing the whole state space

In following sections, the computation performance of particular algorithms is ana-
lyzed.

4.2.2 DFS

The DFS algorithm was selected in the case of PST optimization as well. The algo-
rithm consists of same steps as in the Topology and started with the configuration
PST, = 0,PST, = 0, PST; = 0 and from every depth the configuration with the
highest RAM was selected. If the RAM value was the same as in the previous depth,
the DF'S moved 0 to 3 steps, which was given by random chance.
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Figure 4.4: DFS algorithm

The figure 4.4 shows 100 iterations of the DFS algorithm, which does not converge
to the global maximum. Because of not suitable initial conditions, the algorithm
stops in the area of the local maximum. Therefore, the DFS does not meet the
requirement of finding a global maximum shown with a red cross. Therefore the
DFS is only applicable in the near area of the global optimum, otherwise there is a
high probability of reach a local maximum.

4.2.3 PSO

Similar to Topology optimization, three most influencing parameters were analyzed.
The range of the analyzed parameters was changed to fit the PST Optimization,
where the state space is much smaller and the variables are discrete. The tested
values of PSO parameters mentioned in the section 3.3.3 were:

e N - size of a swarm: [10 20]

e ¢ - social acceleration coefficient: [0.1 0.4 0.7 1 1.5 2 5 10 50 100]

e ¢y - cognitive acceleration coefficient: [0.1 0.4 0.7 1 1.5 2 5 10 50 100]

The figures 4.5, 4.6, 4.7 and 4.8 represents tables each containing 100 values that
specify the influence of the selected parameters. In the left tables, the average num-
ber of iterations are displayed, where the better results are expected for the bigger
swarm N = 20. The very important sign is shown by all tables, which is the clear
dominance of the parameter ¢y representing the aggressive behaviour throughout
the whole state space. The extreme values on both sides of ¢, represented a bad
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configuration represented, where the absolute worst configuration, where the algo-
rithm with parameters ¢; = 0.1, ¢ = 100 and N = 10 did not ever converge to the
global maximum by any of the 20 parallel calculations.

Number of particles N = 10

RN 182.4 173.3

50| 4.819 | 5.364 | 4.132 | 5363 | 5569 | 4.217 | 5.763 | 4.908 | 5.284 | 5.284

QN 200 181.1 17563 194 1733 177.8
100 | 5.716 | 5.493 | 4.707 | 5,577 | 5.432 | 5.399 | 5.489 | 5.626 | 5.639 | 4.333

cl 01 04 07 1 15 2 5 10 50 100

Figure 4.5: Average number of itera-

i Figure 4.6: Average computation time
tions

In the case of the dominant parameter ¢, = 50, the behaviour of swarm particles
was too aggressive, which resulted in an immediate move to the extreme limits of
the state space, where the swarm stayed throughout the all iterations. The opposite
extreme values of co = 0.1 are very ineffective as well, which is caused by a very calm
behaviour meaning a very small improve. The number of iterations represented in
the tables on the left side is not an accurate indicator due to a different size popu-
lation and therefore the particular configurations were converted to values over time.

Number of particles N = 20

ol

@ 3
X . 154 | 4.659 4.937 3975
9.53 10.5

o7 o v S |

176.3
170.6 170.7 169.8 178.4

10.36

Figure 4.7: Average number of itera-

i Figure 4.8: Average computation time
tions
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Performance comparison of various configurations

Average time comparison

In this section, the computation performance of the PSO algorithm is assessed for
various configurations. The figure 4.9 displays the best 20 configurations sorted by
average time. The results show that the best RAM values were achieved with the
parameters ¢ = 2, which provides the ideal global aggressiveness of the swarm.
The second best parameter ¢y equal to 1.5 forming together with the best ¢y = 2
dominant values guaranteeing the best configurations, which is recorded at the best
12 ones in a row. Another very key parameter is the size of a swarm N, where 9 of
the 11 best solutions were for size N = 20. The least essential parameter is the ci,
where the range of values was the largest. In general, it can be said that the best
setting of ¢; is in the range of 0.1 to 5. The absolute best solution was with the
configuration N = 20, ¢; = 1.5 and ¢, = 2. For a better overview, in the figure 4.10,
the values are displayed in percent.
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= 20/cl= 1]c2= = 20/cl= 1]c2=
= 20/cl= 2|c2= = 20cl= 2|c2=
= 10cl= 5|c2= = 10]cl= 5|c2=
= 20|cl= 5[c2= = 20/cl= 5|c2=
= 20|cl=01]c2= = 20|cl=01]c2=
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= 10| cl = 5]|c2=1l
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= 20]cl=07]c2= = 20]cl= 07]c2=
= 10]cl = 10]c2 = 0. = 10| ¢l = 10| c2 = 0.
= 20| cl= 10]c2 = 1. = 20| cl= 10]c2 = 1.
= 10]cl= 10]c2= = 10]cl= 10]c2=
= 10]cl= 5|c2=0. = 10]cl= 5|c2=0.

Figure 4.9: The best 20 configurations Figure 4.10: The best 20 configura-
sorted by time (seconds) tions sorted by time (percent)

Boundary computation time comparison

In this part, boundary computation time are analyzed, whose 20 configuration with
best performing computation time are depicted in the next figure 4.11. In this bar
chart, the boundary values (minimum and maximum) are displayed. The MIN value
represents the fastest solution recorded form the 20 parallel loops. The MAX values
stands for the solution with the worst time. The attention should be focused specially
on the MAX values. Based on the figure, the worst time (longer than 1.5s) appears
once for the configurations with N equal to 20 and once for the configurations N =
10. Therefore, it cannot be said, as at a Topology optimization, that the size of the
swarm N affects the maximum time.

57



= 20|cl=15]c2= 2
= 20]cl= 1]c2= 2
= 20/cl= 2/c2= 2
= 10]cl= 5]c2= 2
5
2

= 20[cl= 5[c2=1.
= 20|cl=01]¢c2=

= 20]ct= 1]c2=15
= 20|cl= 5]c2= 2
= 10]cl= 5/c2=15
= 20| cl=01]c2=15
= 20|cl= 2[c2=15
= 10]ct= 1]c2= 2
= 10]ct= 5[c2= 1
= 10]cl= 2]c2=07

= 20|cl= 10]c2= 2
= 20|cl=07]c2= 1
= 10| ¢l = 10| c2 = 04
= 20| cl= 10]c2=15
= 10]ct= 10]c2= 1
= 10]cl= 5]c2=07

Z2zzzzzzzzzzzzzzzzz2z2

0 0.5 1 1.5 2
Time[s]

1 15 2 25
Time [s]

Figure 4.11: The best 20 configura- Figure 4.12: Objective function evolu-
tions with boundary values (seconds) tion for all realizations

PSO Realizations

On the last figure 4.12, objective function evolutions are displayed for all 20 real-
izations under consideration of the best 20 configurations. There are depicted all 20
parallel loops for each configuration (in total 400 graphs). These 400 executions are
grey colored. The black colored edges represent the boundary values of all loops,
while the red colored line shows the progress over time of the average value. The
global maximum (max RAM) is represented by the red cross at the end. According
to the average value and individual executions, it is obvious that except for some
extremes, most of the runs were very fast ending approximately in 0.7s. The zone
of the most runs is very narrow as well.

4.2.4 Genetic algorithms - Roulette wheel selection (GA -
RW)

As briefly mentioned in the section 4.1.1, the Genetic algorithm using the Roulette
wheel selection had to be changed due to the 3 main reasons:

1. Different variables in a state space
The PST optimization works with in a state space containing discrete variables,
while the topology uses the binary ones.

2. Smaller state space (population) size
The PST optimization searches a state space containing 132651 states, which
is a huge difference from the topological one, where the number of states was
equal to 2186,

3. Smaller size of individuals with in a population
The PST optimization uses an individual of length equal to number of Phase
Shifting Transformers(3 in our case), which is very different from the length
186 used for Topology.
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The major changes are:

1. Crossover: All selected best parents were combined with each other(individual
Phase Shifters separately). The conventional Crossovers (i.e One Point Crossover,
Multi Point Crossover) provide very bad results due to the small size of an
individual in a population. The Crossover was the same for all tested runs.

2. Mutation: The aggressivity was increased by higher random change(positive
or negative direction) and range mutation

Number of best parents ngp and the size of a population N were considered for
the testing. The overall amount of configurations was reduced to 25 due to higher
computation requirements and considered configuration can be summarized as:

e N - size of a population: [30 40 50 60 100]

e npp - number of Best parents: [1 2 3 5 10]

The computation performance of the GA - RW algorithm is assessed for various

configurations. The range of the parameters was set to best describe the quality
range of this algorithm. The figures 4.13 and 4.14 display the best 20 configurations
sorted by average time represented in two tables side by side. The left one shows
the average number of iterations, while in the right one, the average time is shown.
As seen from the figure 4.13, the higher number of Population, the lower number
of iterations. Dependence of the ngp is seen clearer from the right table. The worst
values were represented by the extreme values of ngp. In the case of ngp = 1 focuses
the algorithm only on 1 parent, which prevents diversity of solutions and only the
way of the best parent is searched. On the other hand, the computed RAM values for
configurations, where the ngp includes more that 20% of the number of Population,
were very week as well. The absolute worst average time equal to 6.366s had the
configuration N = 30, ngp = 10, where every third individual was the Best Parent.
The ideal number of best parents was the number 3, where even the absolute best
average time having the population equal to 50 was found.

number of BestParents
number of BestParents

15 4.635

30 40 50 60 100

30 40 50 60 100 number of Population

number of Population

Figure 4.14: Average computation

Figure 4.13: Average number of itera- .
time

tions
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Performance comparison of various configurations

Average time comparison
Similar to PSO algorithm, the next charts in the

figures 4.15 and 4.16 shows all 25 average time values sorted from best to worst.
It can be seen from the graphs that the top 6 configurations have reached a very
similar time, where the exact percentage difference is displayed in the right chart.
The size of a population ranged between 40-60 and the best 2 configurations had the
size equal to 50. The quality of ngp varied depending on the number of population.
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Figure 4.15: All 25 configurations Figure 4.16: All 25 configurations
sorted by time (seconds) sorted by time (percent)

Boundary computation time comparison

The figure 4.17 shows the bar chart sorted by the average time as in the previous
figures 4.15 and 4.16. For detailed information, there are additionally displayed
the MAX and MIN values. The MIN value represents the fastest solution recorded
form the 20 parallel loops. The MAX values stands for the solution with the worst
time. The attention should be focused specially on the MAX values. Based on the
figure, the worst time (longer than 10s) appears always for the configurations either
containing the lowest size of a population equal to 30 and/or the ngp = 10 (highest
value). For all other cases, the MAX time was in the narrow range approximately
between 4 and 8 seconds.
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Figure 4.17: All 25 Conﬁgurations Figure 4.18: Objective function evolu-
with boundary values (seconds) tion for all realizations

GA - RW Realizations

On the last figure 4.18, objective function evolutions are displayed for all 25 real-
izations. There are depicted all 20 parallel loops for each configuration (in total 500
graphs). These 500 executions are grey colored. The black colored edges represent
the boundary values of all loops, while the red colored line shows the progress over
time of the average value. The global maximum (max RAM) is represented by the
red cross at the end. According to the average value and individual executions, it
is obvious that except for some extremes, most of the runs were very fast ending
approximately in 2.2s. The zone of the most runs is very narrow as well.

4.2.5 Results assessment

In this section, the results for best configurations of selected methods will be com-
pared. The best found configurations are:

e DFS: Not finding a global maximum
e PSO: N =20,cl =15,c2=2

e GA(RW + BP): N = 50, nBP = 3

For these best configuration of EAs, twenty realization were executed and the results
were stored for further assessment, which is graphically shown on figures 4.19 and
4.20. For the assessment, following metrics were taken into account:

e best possible time (dashed thin line ending in a circle)
e average time (thick line ending in a cross)

e worst possible time (dashed thin line ending in a cross)
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The comparison of GA + RW and PSO algorithm is shown in the figure 4.19 and
4.20, where the same colors as in Topology optimization were used (PSO - green,
GA RW - blue). The DFS could not be compared due to failure to meet the required
RAM value. From the figure 4.19 it can be seen that the average value absolutely
depends on the worst result computed from 20 parallel runs, which is shown on the
values in the table 4.1. The detailed run with the worst time of GA + RW can be
seen in the figure 4.20, where the value stops at the 12th iteration with the RAM
of 238.9561 representing 99.96% of the required value 239.0419 (global maximum).
The PSO algorithm has significantly better performance. The PSO average time of
1 iteration was only 0.0716s, while for the GA (RW) + BP algorithm was 0.1451s,
which is more than 2x faster. In both cases, the global maximum was found after the
first iteration., where the resulting time is equal to the average value of 1 iteration.
Even the average number of iterations was almost 3x lower at the PSO algorithm
(9 iter) compared to GA (RW) + BP (26 iter). The average amount of iteration.
Another big difference was the range of all parallel computations. All PSO runs were
in range from 0.0716 to 0.5720 seconds, while the GA (RW) + BP values were in
range from 0.1459 to 3.6265 seconds, which almost 7x bigger. The PSO algorithm
achieves better results in all aspects and therefore the PSO is a better optimization
algorithm for Phase Shifting Transformers as well.

239.5

239.15
239 w __________________________ =g
" |
238.5 :\ _ 1 4 239.1 |
1 -1
238 H| i ] 1
[N == 239.05 [ 4 s
L | 4
5 2375 ]

I
= HY
s 237 |

i |
RAM [MW]
N
8
2

& 2365 238.95 [

I

I

| i

I 2389
2355 :
I

235 |- — 1 238.85

0 0.5 1 15 2 25 3 3.5
Time [s] Time [s]

Figure 4.19: Comparison of PSO and Figure 4.20: Detailed comparison of
GA (RW) + BP PSO and GA (RW) + BP

The exact results are presented in table 4.1 for a better general overview.
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average 0.5725s (9 iter) 3.7726s (26 iter)

best 0.0716s (1 iter) 0.1451s (1 iter)

worst 0.5725s (9 iter) 3.7726s (26 iter)

Table 4.1: Comparison of PSO and GA(RW) + BP by time
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Chapter 5

Sensitivity analysis of distribution
factors

5.1 Overview of power system security assessment

Power lines are crucial elements in power network, where some unpredictable failures
(e.g. lightening or system faults) can occur. The consequence may be tripped a power
line, which may cause a huge interruption to the whole power system and causes
damage. In this case, the power flow from the tripped line is redistributed to the other
lines in a power network, which may results in overloading of other power lines. In the
worst cases, a cascading failure and system collapse can happen. A single line outage
do not endanger all other lines in the system but only some specific ones. Certain
lines can be very affected, while some other lines can not. Therefore the T'SOs have
to know the line impact distribution. Since the power network usually consists of a
huge number of lines, the problem of studying thousands of possible outages becomes
very difficult to solve if it is desired to present the results quickly [2]. For the security
assessment of power lines outages , so called contingency analysis is calculated, which
consists of security assessment of the post-contingency state of the power network.
The assessment relies on the multiple calculation of load flow problem, which can be
time demanding for large power networks. In some application, therefore a simplified
contingency analysis based on an approximate solution is performed. In this case, a
post contingency state is evaluated as a linear projection of the state of linearized
power network model (DC power network model), line outage distribution factors
(LODF) and nominal power flows [42].

5.1.1 Line Outage Distribution Factor

LODF is proposed to estimate the steady-state active power flow redistribution after
a line outage. The major advantage is the high calculation speed. On the other hand,
the post contingency state includes an approximation error, because of linearized
estimation. LODF is a percentage value which indicates the proportion between the
change of active power flow on one line and the active power flow on the outage line
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before it tripped [18].

The power flow redistribution after a line outage is shown in the figure 5.1, which
has been taken from [36].

() ®
9

Figure 5.1: (a) Power flow before line 1-3 outage (b) Power flow after line 1-3 outage

White arrows indicate the flow of power before the outage, while purple arrows in
(b) show the variation of power flow on the rest of system due to the outage of line
1-3. If line k is tripped, the active power flow on [ is

fi=f + LODFy; - f, (5.1)

where f? is an active power flow in line k before line [ outage, f is an active power
flow on line [ before [ outage and LODF;, is a line outage distribution factor mon-
itoring line [ after an outage on line k. [42]

5.2 Methodology

As mentioned earlier, the LODF provides only estimated values describing the power
network state prediction. The major goal of this chapter is to analyze the quality
of LODF results compared to real Alternating Current (AC) flow, which calculates
accurate power network state based on full nonlinear power network model. The
methodology consists of 3 main parts (Inputs, Calculation, Outputs) detailed in the
relevant subsections. For a better overview, these parts performed in the methodol-
ogy are shown in the figure 5.2 as well.
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Figure 5.2: Sensitivity analysis of LODF

5.2.1 Inputs

In this part, the Topology and Power injection were considered as inputs.

e Topology - includes the basic power network topology and contingency cases

e Power injections - represents active and reactive power inputs producing by
power injection units (i.e. generation, consumption)

e Voltage magnitude setpoints - nodal voltage magnitude setpoints on selected
buses (PV buses)

5.2.2 Calculation

It is a main part, where the power network with current parameters changed by
inputs were computed.

e Power network state computation - calculates actual power network state based

on AC load flow

e Power network state prediction - calculates prediction of power network state
based on current state and LODF application

5.2.3 Outputs

The final part, where the data describing the real and estimated state of power
network were obtained.

e Real state - actual power network state based on AC load flow

e Estimated state - prediction of power network state based on LODF

The real and estimated state data were then analysed and compared detailed in the
section 5.3.
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5.3 Analysis

5.3.1 Design of experiments

This section describes the application of previously mentioned parts of methodology.
First, the software and hardware environment and the test case are specified. In the
second part, the results of LODF method are evaluated. At the end, the method for
improving the results is proposed.

Software environment

Similarly to evolutionary algorithms, the MATLAB R2018a programming language
was used. The main reason was the open source programming package called MAT-
POWER detailed in the section 3.4.1. Due to the smaller power network represented
by a test case detailed below and therefore the smaller computational requirements
was the Parallel Computing Toolbox not run.

Hardware environment

All computations ran on the same computer detailed in the section 3.4.1.

Test Case

For the sake of clarity, the small power network represented by a 30-bus case, based
on IEEE 30-bus case [30] was selected. It is very suitable for the simulations due to
the size. The test case contains these parameters:

e Number of buses: 30
e Number of generators: 6

e Number of all branches: 41

Application

e Topology input
This part was similar to the Topology optimization in the section 3. The binary
parameter - branch status (1 - in service, 0 - out of service) was gradually
changed (only one branch was switched off to simulate a network outage at a
time).

e Power injection input
It simulates the actual loading of the power network, which affects volume of
power injections in two parts:
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— Consumption - real and reactive power demand is multiplied by the se-
lected loading factor

— Generation - real and reactive power output is multiplied by the selected
loading factor

The following set of loading factor was considered: : [0.1 0.4 0.7 1 1.3 1.6]

e Power network real state computation
The calculations were performed with with specific input parameters by call-
ing a MATPOW ER runpf function, which returns the exact power flow on
branches (i.e. power lines, transformers).

e Power network state prediction
The LODF matrix was calculated, where two MATPOWER functions were
applied - makePT DF and makeLODF'. The makePT DF function returns
the PTDF matrix for a given choice of slack. Based on the calculated PTDF
matrix the make LODF function forms the LODF matrix. LODF matrix is
N X Mgy, Where ng, is the number of branches [30]. In our case the LODF
matrix is 41 x 41.

e Output results
The comparison of real and predicted power network state is done by sub-
traction the power flows on specific branches. The error of the predicted state
compared to the real one is further analyzed.

5.3.2 Error analysis
In this section, the precision of LODF estimation in comparison to actual power sys-
tem state was analyze. The analysis is based on the estimaiton error analysis, which

consists in the difference between the current and estimated power flow on selected
power lines. In the analysis, mainly a visual and statistic analyses were conducted.

For the calculation, the following notation can be introduced:

e Absolute error:

Apl = Preal,pl - Pest,pl (52)

e Relative error: p P
5 _ real — 1 est 5.3
pl Pq"eal ) ( )

where P, is the real active power and P, is the estimated active power for power
line pl.

Let us assume that the absolute and relative errors are depended on the power
system loading, then the error equations can be rewritten as
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e Absolute error:
Ap(l) = Preatpi(l) = Pestpi(1) (5.4)

e Relative error:
Preal(l) - Pest(l)

Preal(l) 7

(1) = (5.5)

where [ stands for a power system loading in terms of multiplication of the values
of nominal state power injections.

At fist , dependencies of absolute and relative error depending on the given system
loading were analyzed. This is depicted on following histograms, where the error is
marked on the x-axis and the frequency on the y-axis. In the figure 5.3, the absolute
error was considered, while the figure 5.4 represents a relative error.

As seen from the figure 5.3, the error distribution depends on the power network
load. As the load increases, the frequency of values near zero decreases and the
variance of error increases. The total number of values for each load was 1681. The
relative error shown in the figure 5.4 is very similar for each load.
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Figure 5.3: Absolute error distribu-

" Figure 5.4: Relative error distribution
ion

For the histograms, however, the correlations between absolute and relative errors
are not fully clear. Therefore, special scatter plot were designed in order to link sev-
eral aspects of errors. In the following figure 5.5, the individual percentage errors!
(y-axis) are displayed for whole set of power system loading (x-axis). The size of
circles as well as their color represents absolute errors. The percentage error of most
network configurations is between 0 and -200% (0 and -2 in relative error confirmed
by the histogram in the figure 5.4). The maximum absolute error equal to 81.9 MW
was measured on line 40 at outage of line 10, which is highlighted by the red cir-
cles. From the figure can be seen, the absolute error is rising with increasing power

1Relative errors multiplied by 100.
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system loading. Further, the high relative error are not always necessary caused by
relative small actual power flows. Further, the errors are mostly of monotonic na-
ture and can be approximed by a suitable polynom as discussed in the following text.

The next figure 5.6 shows the dependency of the line outages to absolute errors
and links they with the power lines. On the figure, detailed analysis of the absolute
error for only one load. As nominal loading, the largest loading values 1.6 was
selected, where the error is most significant. As seen, the the most frequently line
with high absolute error over most of contingencies is the line number 15, which can
be considered as a bottleneck.
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Figure 5.5: Dependence of absolute Figure 5.6: Load of individual lines af-
and percentage error on load ter an outage (load 1.6)

The bottleneck power line is further visually detailed in the figure 5.7, where the
absolute error depending on the load is displayed. There are 41 charts, each rep-
resenting the absolute error for each line outage. As expected, individual values
increase based on a larger load.

The polynomial behaviour of the absolute error can be utilized for the reduction of
the estimation error for selected branches?. This can be achieved by a polynomial
approximation of the error shown in the example of bottleneck in the figure 5.8.
For the approximation, the poly fit MATLAB function of degree n = 2 was applied,
from which the correction factor (CF) was calculated. Finally, the CF represented
by 41 x 41 matrix was added to the LODF estimation. For every power line, the
equation 5.1 of active power flow f,; can be defined as follows:

for = fy + LODFy - [ + CFy(l), (5.6)

where f]?l is the nominal active power flow over powerline pl, k represents k—th
contingency (outage) and C'F}, (1) is the polynomial correction factor for pl-th power
line, k-th outage and system loading (.

2The bottlenect power line in our case
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Histograms in the figure 5.9 and 5.10 were again used to compare the final absolute
and relative error before and after the application of the correction factor. After
application, there has been a significant improvement, which can be seen on the
x-axis, where the absolute or relative error is displayed. The absolute error shown in
the figure 5.9 is now mostly between -5 and 5 kW, while before the application, the
error was in range of -500 and 500 kW. The relative error compared to the absolute
error is even smaller. Of interest is the relative error at the lowest network load of
0.1, where the variance is the largest. This is probably due to a bad approximation
of degree 2 for the very low irregular values.
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Figure 5.9: Distribution of reduced Figure 5.10: Distribution of reduced
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Chapter 6

Conclusion

Interconnection of individual European markets called a Market Coupling is a top-
ical issue. Its importance grows along with the growing demand for efficient use of
the power transfer network system between European countries. Market Coupling
has a long history, as the beginnings are determined by the liberalization of the
energy sector. Nowadays, transmission system operators (TSOs) work with complex
algorithms calculating the transmission capacity between two neighbouring markets.
Most European countries, including the Czech Republic, use a traditional approach
called ATC for the capacity calculation. On the other hand, in the Benelux coun-
tries, a new approach called Flow-based (FB) is applied. The FB method works
essentially on a similar principle as the ATC, but it contains a higher amount of
parameters representing the actual state of the power network [20]. One of the main
advantages over the ATC approach are that the FB uses critical network elements,
especially critical branches (CBs). CBs are transfer lines, cables, or devices that can
be significantly affected by cross-border flows. Therefore, they have to be monitored,
and the most important value called Remaining Available Margin (RAM) must be
calculated and controlled on these selected CBs. RAM represents the remaining ca-
pacity that can be given to the market taking into account the already allocated
capacity [20]. RAM value needs to be optimized for the most efficient use of the
transfer network, which is the main goal of this diploma thesis. The first chapter
is devoted to these mentioned issues and explanation of the most important ATC
and Flow-based method parameters. At the end of this chapter, the remedial ac-
tions (RAs) for RAM optimization are presented, where the Topological RAs, Phase
Shifting Transformers RAs and Generation Redispatch RAs were considered.

In the second chapter, the state of the art in RAM optimization was analyzed. Be-
cause FB is a relatively new approach, the commonly used methods for Optimal
Power Flow (OPF) issues were researched. Many different algorithms for particular
RAs were analyzed, and then the two best rated evolutionary algorithms were se-
lected: Particles Swarm Optimization (PSO) and Genetic Algorithms (GA) - roulette
wheel selection. Both algorithms are suitable for Topological and Phase Shifting
Transformers RAs. To evaluate the quality of these algorithms, conventional meth-
ods of decision tree search - Breadth-First Search (BFS) and Depth First Search
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(DFS) were considered.

In the third chapter, Topology optimization is detailed. The Topological RA con-
sisted of opening or closing of one or more lines in a power network. All possible
topology combinations formed a binary state-space of the size equal to 2'¥, where
186 is the number of changeable lines from a simulated Test Case and 2 represents
two states of the branch status (1 - in service, 0 - out of service). First, an analysis
of conventional methods was performed. Subsequently selected evolutionary algo-
rithms are described. In the next part, the previously mentioned algorithms were
implemented in the MATLAB programming language. In conclusion, the individual
algorithms were compared with different parameters. For optimizing RAM on CB
using Topological RA, PSO algorithm with the average time equal to 1.57 seconds
achieved the best results. The average time 5.54 seconds of the algorithm GA - the
roulette wheel finished in the second place. The DF'S algorithm was with the average
time of 7.24 seconds the worst one. The BFS algorithm could not be used due to
the high time and huge memory requirements.

The fourth chapter describes the optimization using PSTs, which can redistribute
the power flow between two parallel lines. For PSTs, the tap position representing
the given angle was changed. The ranged was between -25 and 25 and the number
of PSTs in the power network was 3. The RAM calculations on CB were simulated
on the same Test Case as the topology optimization. All combinations of these pa-
rameters formed a discrete state space of the size 513, where the 51 is the number
of tap positions and 3 is the amount of PSTs. Slightly modified algorithms used for
the topology were applied for PST RAM optimization as well. The comparison of
particular methods turned out very similarly to topology optimization. The PSO al-
gorithm with the average time of 0.5725 seconds was the best. The GA - the roulette
wheel finished in second place with the average time of 3.7726 seconds. The DF'S al-
gorithm did not find the required RAM value due to a local maximum in state space.

In the last chapter, the sensitivity analysis of distribution factors was performed due
to the security assessment of power line outages. The assessment relies on the multi-
ple calculations of load flow problem, which can be time demanding for large power
networks. In some application, therefore a simplified contingency analysis based on
an approximate solution is performed. In this case, a post contingency state is evalu-
ated as a linear projection of the state of linearized power network model (DC power
network model), line outage distribution factors (LODF) and nominal power flow
[42]. LODF is proposed to estimate the steady-state active power flow redistribution
after a line outage. The major advantage is the high calculation speed. On the other
hand, the post contingency state includes an approximation error, because of lin-
earized estimation. The individual calculations were simulated on a smaller 30-bus
case, based on the IEEE 30-bus case. For the implementation, the Matlab pro-
gramming language was used, where the open-source programming package called
MATPOWER was used. On the test case, the network topology was changed (only
one branch was switched off to simulate a network outage at a time). The second
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parameter was the power injection input simulating the increased real and reactive
power flow in a network. At the end of this chapter, the absolute, relative and per-
centage error obtained after subtracting estimated power from the real power was
analyzed. First, the absolute active error was evaluated using a histogram. Subse-
quently, the most frequently loaded line called a bottleneck was selected from the
network, where the absolute active power was polynomial approximated. Finally,
this value was added to the estimated value, which significantly reduced the error.

The diploma thesis showed that evolutionary algorithms are very suitable for solving
selected aspects of the RAM optimization. Especially, the PSO algorithm used at
Topology and PST optimization achieved excellent results. The LODF provides
very good estimates in a short time as well. All set goals of this diploma thesis were
achieved.
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