
Master’s thesis

Interpolation of suspension
kinematics for the purpose of
vehicle dynamics simulation

Václav Houdek

30.6.2020

Annotation

This thesis aims at the reduction of the computation time during the kinematic solu-
tion of multibody systems. Especially during vehicle simulations, including cornering
test, bump test or moose test, only some parameters of the suspension are optimized,
and the simulation is repeated many times. Suspensions are usually 1 DoF systems.
The expression of the position of a wheel support in terms of some parameter can
be obtained by solving constraints imposed by joints present in a multibody system.
Due to these constraints, kinematic is described by a system of nonlinear algebraic
equations. Its solution is usually ineffective and therefore time-consuming. The in-
terpolation requires much less computation time at the cost of losing accuracy. This
thesis proposes a strategy consisting of solving the kinematic problem at position
and velocity level for particular points and using these points to calculate all other
positions by interpolation. The introduced interpolation is continuous in acceler-
ation level. At the end of this work, computed results are compared with results
obtained by commercial software and code implemented in accordance with common
multibody theory.

Acknowledgement

I cannot express enough thanks to my supervisor Ing. Luboš Smoĺık, Ph.D. and my
consultant doc. Ing. Michal Hajžman, Ph.D. for their continued support, encour-
agement and patience. I would like to express my sincere appreciation to both of
them.
My completion of this project could not have been accomplished without the support
of prof. Olivier Verlinden and the Department of Theoretical Mechanics, Dynamics
and Vibration at the University of Mons.
Finally, I would like to thank my family and my girlfriend for a big support and
understanding during the writing process of this work.

2

Declaration

I, the undersigned, hereby declare that this master’s thesis is my own original work I
have prepared on the basis of consultations with my supervisors and that all sources
have been accurately reported and acknowledged, and that this document has not
been previously, in its entirety or in part, submitted at any university in order to
obtain academic qualifications.

In Pilsen Václav Houdek

3

Contents

1 Introduction 6
1.1 Goals and structure of the thesis . 6
1.2 State of the art . 7

2 Suspension kinematic analysis 12
2.1 Methodology . 12

2.1.1 Transformation matrix . 13
2.1.2 Definition of kinematic constraints 16
2.1.3 Constraint equations evaluation 18
2.1.4 Derivative of constraint equations 18

2.2 Solving equations . 23
2.2.1 Numerical solution . 23
2.2.2 Jacobian matrix . 24

2.3 Application example . 24
2.4 Results and discussion . 26

3 Kinematic interpolation 29
3.1 Input data . 29
3.2 Cubic Hermite splines . 31
3.3 Interpolation of position . 34
3.4 Interpolation of rotation . 35
3.5 Error analysis . 39

3.5.1 Example for the verification of the interpolation 40
3.5.2 Double wishbone suspension 41
3.5.3 McPherson suspension . 44
3.5.4 5 Link suspension . 46

3.6 Conclusion and recommendations . 50

4

4 Implementation of kinematic interpolation under EasyDyn 52
4.1 Approach . 52
4.2 Results . 53
4.3 Conclusion . 55

5 EasyDyn model verification and application on real example 58
5.1 Comparison of motion in gravity field 59
5.2 Comparison of motion with external forces 62
5.3 Discussion . 64

6 Conclusion 67

A 72
A.1 Derivation of constraints . 72

A.1.1 Relation of qk to body i . 72
A.2 Matrix T0,i . 74
A.3 Class and methods for interpolation 75

5

Chapter 1

Introduction

Kinematics is a branch of classical mechanics that describes the motion of points,
bodies and systems of bodies (multibody systems) without considering the forces that
cause them to move [1].
The multibody system is defined to be a collection of subsystems called bodies, com-
ponents or structures. The motion of the subsystems is kinematically constrained
because of different types of joints, and each subsystem or component may undergo
large translations and rotational displacements [2]. The kinematic analysis, which
aims at describing all the possible motions for the mechanism, has two parts [3]:

� Solving, i.e. to find all the sets of values corresponding to real solutions for a
given set of values of the input parameters. It has to be done many times for
a wide range of values of these parameters.

� Following trajectories, by describing how each solution varies when the input
is changing continuously, with particular attention to pay to singular points,
where these trajectories are crossing.

1.1 Goals and structure of the thesis

This thesis is focused on the kinematic solving of the car suspension. The main aim
of this work is a research on this field, a solution of the suspension kinematics and its
interpolation. The final goal is a computer implementation of the proposed methods
and application on a real car model with recommendations for the next work.

6

Structure of this thesis strongly corresponds with its goals and can be described in
the following points:

� state of the art - standard approaches how to solve kinematics of a car suspen-
sion,

� kinematics solving,

� interpolation of the kinematics,

� computer implementation of the kinematics and the interpolation,

� application on a real car suspension and recommendations for the next work.

1.2 State of the art

However, there are many hidden points of view of solving the kinematics, includ-
ing kinematics with imperfect joints, with rigid or deformable components, forward
kinematics and kinematic synthesis.
Raghavan and Roth reviewed three important exact computational methods [15].
They are respectively representative of three families of methods [3]:

� Symbolic Methods compute explicit symbolic expressions of the output pa-
rameters in terms of the input and fixed parameters. This method is not prac-
ticable, even for a simple McPherson mechanism. Gröbner basis or Triangular
set also belong to symbolic methods [3].

� Symbolic-numeric methods have been mostly developed for solving a set
of polynomial equations. Typically a pre-processing of these equations is done,
computing a matrix from the coefficients of the polynomial equations. Using
this matrix, one can transform the solving problem into a linear eigenvalues
computation problem or a univariate polynomial solving problem. These meth-
ods provide a numerical result for each given set of input parameters even if
the intermediate matrix is by construction very large [4].

� Certified Numerical Methods may be used even if the equations are not al-
gebraic, which is advantageous when using the Cartesian coordinate approach.
They are based on a numerical scheme with adaptive steps or a homotopy
algorithm [5].

7

Yves A. Papegay et al. in [3] presented two methods to solve exactly the kinematics of
the suspension a symbolic approach and an interval-based approach. Both methods
allow detecting singularities in the mechanism. However, the symbolic approach has
the advantage that it allows us to determine what parameters have to be changed to
avoid the singularity. It must be noted that both methods are exact in the sense that
the computed trajectories are guaranteed. This guarantee is a large improvement as
undetected jumps between branches may occur when using the usual method based
on an iterative use of Newton-Raphson scheme.
The main aim of the thesis is to solve kinematics and interpolate it, so the following
text is focused on the first part of the kinematic analysis, i.e. Solving.
Many problems in mechanisms analysis and synthesis and robotics lead naturally to
systems of polynomial equations. Typical constraints state that two points on a rigid
body remain a fixed distance apart or that the angle between two lines in a rigid
body must remain constant. Such constraints are generally expressed by vector dot
and cross-products, and they result in polynomial equations usually of the second
degree [15].
In [25], there are another two mathematical approaches based on the Certified
Numerical Methods that can be used to proceed with kinematic solving:

� Algebraic Equations Formulation

In this case, in mathematical terms, the kinematics problem is a system of
coupled nonlinear algebraic equations. If each constraint is a function of the
coordinates p, they can be collected in a vector as:

Φ(p) = 0. (1.1)

Typically, the number of coordinates (the length of the vector p) would be
larger than the number of constraints (the length of the vector Φ) by one,
with the difference corresponding to one degree of freedom associated with the
suspension travel. [25]. A typical double wishbone suspension, as shown in
figure 1.1, can be modelled with five constraints, chosen as follows: pick any
two points that lie on the axis of rotation of the upper arm, e.g., the mounting
points of the arm on the chassis (points A and B in figure 1.1). The distance
from each of these two points to the upper ball joint must be a constant value.
The equations can be written:

Φ =

{
(xA − xC)2 + (yA − yC)2 + (zA − zC)2 − l2AC

(xB − xC)2 + (yB − yC)2 + (zB − zC)2 − l2BC

}
=

{
0
0

}
(1.2)

8

At the end there will be 8 equations between points A−C, B−C, E−G, F−G,
H−D, C−D, G−D and C−G. A value for any of the nine coordinates of points
G, C and D can be chosen [25].

� Differential Equations Formulation

An alternative approach to the suspension kinematics problem is based
on casting the problem as a set of differential equations. Consider the time
derivative of the constraint equations, allowing that the constraints are not
time-dependent, i.e Φ 6= Φ(t).

∂Φ

∂p
ṗ = 0. (1.3)

The differential constraints are effectively statements that the velocities of the
three points on the upright must be perpendicular to the arms themselves, i.e.
the rate of a stretch of the arms is zero. These equations are then combined
with an additional requirement that some point on the upright has a given
velocity, e.g., the point G has a constant vertical speed of 1 m · s−1. The
additional condition is written as a linear function of the velocities:

Ψ(p)ṗ = 1. (1.4)

Combining equations (1.3) and (1.4) gives


∂Φ
∂p

Ψ

 ṗ =


0
...
0
1

 (1.5)

The result is a linear system of equations in ṗ and in fact, it is an ODE, and
so can be solved using a standard routine, e.g. Runge−Kutta. A shortcoming
of this approach is that an initial solution for p must be known, or found using
a recursive method as described previously, to serve as the initial condition of
the ODE solution [25].

9

Fig. 1.1: Double wishbone suspension example

Another part of this thesis is focused on the interpolation of kinematics. The inter-
polation of particle kinematics is just a matter of position, velocity and acceleration
interpolation which can be done in a straightforward way by using, e.g. Hermite
splines and boundary conditions.
While the interpolation of position and its derivatives can be a simple problem, the
interpolation of orientation and its derivatives is more demanding. There are several
methods on how to proceed with this interpolation, however, they could be separated
into two groups:

� Methods using quaternions

– quaternion slerp [13],

– C2-continuous B-spline Quaternion Curve Interpolating a Given Sequence
of Solid Orientations [9],

– Interpolating Solid Orientations with Circular Blending Quaternion Curves
[14].

� Non-quaternion methods

10

– geometric slerp (spherical linear interpolation),

– three-axis interpolation [8],

– method based on axis-angle representation [10].

The bridge between the kinematics and the interpolation is a lookup table. In com-
puter science, a lookup table is an array that replaces runtime computation with
a more straightforward array indexing operation. The savings in terms of process-
ing time can be significant, since retrieving a value from memory is often faster
than undergoing an ”expensive” computation or input/output operation [6]. In the
case of computational dynamics are the lookup tables mostly used as tables with
pre-calculated kinematic data, which are then interpolated [11].

11

Chapter 2

Suspension kinematic analysis

In this chapter, the kinematics of a typical rear and front suspension is solved.
Different types of suspensions exist, McPherson and double wishbone to name a few,
but all correspond to a one degree of freedom mechanism. That means a table of
transformation matrices giving the successive configuration and their first derivatives
of wheel support could be generated in terms of chosen parameter. The suspension
is a set of bodies connected by joints, so the Cartesian coordinates approach under
Matlab can be used to perform the kinematics analysis. Moreover, spatial kinematics
of a body in the Cartesian coordinates, the definition of the transformation matrices
and constraint equations and their derivatives are explained. At the end of the
chapter, the results are included and discussed.

2.1 Methodology

The Cartesian coordinates approach contains two steps. At the first step, all bodies
are considered independently and each body is given an independent set of configu-
ration parameters to let it move freely in space. Here, 6 parameters for each body in
space − three for the position and three for the orientation (e.g. Bryant angles) are
defined. The second step consists of defining joints between bodies using constraint
equations. These equations should be added to the equations of motion of the system
when solving dynamics problems. The kinematic analysis comes down to solving the
system of constraint equation [16].

The configuration of a multibody system can be described using measurable quanti-
ties such as displacements, velocities and accelerations. These are vector quantities
that have to be measured with respect to a proper frame of reference or coordinate

12

system [2]. In this text, the term coordinate system, which can be represented by
three orthogonal axes that are rigidly connected at a point called the origin of this
system, is frequently used.

Generally, two types of coordinate systems are required in dealing with multibody
systems. The first is a coordinate system that is fixed in time and represents a unique
standard for all bodies in the system. This coordinate system will be referred to as a
global coordinate system. In addition to this we assign a body coordinate system to
each component in the system. The body coordinate system translates and rotates
with the body; therefore, its location and orientation develop changes with respect
to the global coordinate system and with time [2].

If the body coordinate system is located in the centre of mass of the body, the
coordinate system is called a centroidal body coordinate system [7].

2.1.1 Transformation matrix

The homogeneous transformation matrix giving the configuration of the coordinate
system of body i with respect to the global coordinate system (denoted as 0) can be
written as

T0,i =

(
R0,i(θi) {ei}0

0 0 0 1

)
, (2.1)

where the columns of R0,i = [xi yi zi] give the orientation of the axes of the coordi-
nate system of body i in the global coordinate system and {ei}0 gives the position
of the coordinate system of the body i in the global coordinate system.

Body position and velocity

The natural parameters describing the position of the rigid body are of course 3
coordinates which define the position of the coordinate system of the body with
respect to the global coordinate system [16]:

{ei}0 = ei =

xiyi
zi

 . (2.2)

Regardless of the choice of the parameters, the velocities of the centroidal coordinate
systems are always a linear function of the time derivatives of the configuration

13

Fig. 2.1: Global coordinate system, centroidal coordinate systems of the bodies (de-
noted as i and j) and intermediate coordinate systems of the bodies (denoted as i.a
and j.b) [7]

.

parameters. The tangent matrix Ji [16] of body i can be for the translation defined
as

{vi}0 = vi = Jiėi =

1 0 0
0 1 0
0 0 1

 ·
ẋiẏi
żi

 , (2.3)

so that the tangent matrix Ji is the identity matrix, ẋi, ẏi, żi are scalars and xi, yi, zi
are directional vectors which are included in matrix R0,i. These vectors are used in
equation (2.1).

Rotation angles and angular velocity

The rotation parameters were made due to the Bryant angles which go from global
frame to local frame by 3 successive rotations about Z, Y’ and X” local axes by
angles classically denoted by ψ, θ and φ respectively, and called yaw, pitch and roll
respectively. The corresponding rotation matrix of body i is obtained in the following

14

way [16].

R0,i =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1


︸ ︷︷ ︸

Tz(ψ)

·

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


︸ ︷︷ ︸

Ty′ (θ)

·

1 0 0
0 cosφ − sinφ
0 sinφ cosφ


︸ ︷︷ ︸

Tx′′ (φ)

= (2.4)

 cosψ cosθ cosψ sinφ sinθ − cosφ sinψ sinφ sinψ + cosφ cosψ sinθ
cosθ sinψ cosφ cosψ + sinφ sinψ sinθ cosφ sinψ sinθ − cosψ sinφ
− sinθ cosθ sinφ cosφ cosθ

 . (2.5)

The angular velocity and the associated tangent matrix Ωi are given by [16]

{ωi}0 = ωi = Ωi · θ̇i =

0 − sinψ cosψ cos θ
0 cosψ sinψ cos θ
1 0 − sin θ

 ·
ψ̇θ̇
φ̇

 . (2.6)

The complete definition of body i configuration in the global coordinate system is
given by [16]

T0,i =


cosψ cosθ cosψ sinφ sinθ − cosφ sinψ sinφ sinψ + cosφ cosψ sinθ x
cosθ sinψ cosφ cosψ + sinφ sinψ sinθ cosφ sinψ sinθ − cosψ sinφ y
− sinθ cosθ sinφ cosφ cosθ z

0 0 0 1

 .

This matrix is written in the same form for all centroidal body coordinate systems,
only a vector of body configuration parameters qi = (xi yi zi φi θi ψi)

T is changing
with respect to the bodies. Another way to get matrix T0,i is described in appendix
[A.2].

The dimension of vector of configuration parameters of all bodies q (called vector of
configuration parameters in the following sections) is ncp = 6× nB in space, where
nB is number of all bodies.

q =



x1
y1
z1
φ1
...

ψnB


=



q1
q2
q3
q4
...

q6×nB


. (2.7)

15

For a better overview the vector of configuration parameters of body i is written as

qi = (xi yi zi φi θi ψi)
T = (q6i−5 q6i−4 q6i−3 q6i−2 q6i−1 q6i)

T . (2.8)

2.1.2 Definition of kinematic constraints

Constraint equations allow to set joints between two arbitrary bodies (body i and
body j). Each joint is defined between two different body coordinate systems. Since
the joint is not necessarily located in the origins of these two body coordinate systems,
two intermediate joint coordinate systems are introduced: the first in body i denoted
as i.a and the second in body j denoted as j.b. A set of constraint equations 1b, 2b,
... ,6b is defined as

1b ≡ xi.a · (ei.a − ej.b) = 0, (2.9)
2b ≡ yi.a · (ei.a − ej.b) = 0, (2.10)
3b ≡ zi.a · (ei.a − ej.b) = 0, (2.11)

4b ≡ yi.a · zj.b = 0, (2.12)
5b ≡ zi.a · xj.b = 0, (2.13)
6b ≡ xi.a · yj.b = 0. (2.14)

The constraint equations relative to the most common joints can be presented as
a subset of the 6 previous generic equations. All of the vectors are usually projected
in the global coordinate system ({ }0). Tables 2.1 − 2.6 summarize the subset of
constraint equations necessary to represent the classical kinematics joints.

Type of prismatic joint Subset
Prismatic joint along X (ξ = x) 2b, 3b, 4b, 5b, 6b
Prismatic joint along Y (ξ = y) 1b, 3b, 4b, 5b, 6b
Prismatic joint along Z (ξ = z) 1b, 2b, 4b, 5b, 6b

Table 2.1: Prismatic (translational) joint [16]

16

Type of revolute joint Subset
Revolute joint about X (ξ = x) 1b, 2b, 3b, 5b, 6b
Revolute joint about Y (ξ = y) 1b, 2b, 3b, 4b, 6b
Revolute joint about Z (ξ = z) 1b, 2b, 3b, 4b, 5b

Table 2.2: Revolute joint [16]

Type of cylindrical joint Subset
Cylindrical joint about X (ξ = x) 2b, 3b, 5b, 6b
Cylindrical joint about Y (ξ = y) 1b, 3b, 4b, 6b
Cylindrical joint about Z (ξ = z) 1b, 2b, 4b, 5b

Table 2.3: Cylindrical joint [16]

Type of universal joint Subset
Universal joint among XY (ξ = x1, η = y2)

1b, 2b, 3b, 6b
Universal joint among ZX (ξ = z1, η = x2)

1b, 2b, 3b, 5b
Universal joint among YZ (ξ = y1, η = z2)

1b, 2b, 3b, 4b

Table 2.4: Universal (Cardan) joint [16]

Type of planar joint Subset
Planar joint perpendicular to X (η = x) 1b, 5b, 6b
Planar joint perpendicular to Y (η = y) 2b, 4b, 6b
Planar joint perpendicular to Z (η = z) 3b, 4b, 5b

Table 2.5: Planar joint [16]

Subset

1b, 2b, 3b

Table 2.6: Spherical joint [16]

17

2.1.3 Constraint equations evaluation

Equations (2.9) − (2.14) are calculated from the vectors projected in the global
coordinate system. To achieve this there is the need to define transformation matrix
Ti,i.a between the centroidal coordinate system of body i and intermediate joint
coordinate system of that body i.a figure 2.1. These matrices are defined as

Ti,i.a =

(
Ri,i.a(θi.a) {ei,i.a}i

0 0 0 1

)
, (2.15)

where {ei,i.a}i is the position of the intermediate joint coordinate system with respect
to the centroidal coordinate system of body i, and Ri,i.a represents the orientation
of the intermediate joint coordinate system given by the Bryant angles

Ri,i.a(θi.a) = Tz(ψi,i.a) ·Ty′ (θi,i.a) ·Tx′′ (φi,i.a). (2.16)

But in this case θi.a and {ei,i.a}i are given values of the orientation and position of the
intermediate joint coordinate systems. These values are expressed in the centroidal
coordinate system of body i.
Final transformation matrix between the global coordinate system and intermediate
joint coordinate system i.a is given by the dot product

T0,i.a = T0,i ·Ti,i.a =

(
xi.a yi.a zi.a ei.a

0 0 0 1

)
, (2.17)

where xi.a, yi.a and zi.a are the unit vectors of the axes of intermediate joint coordi-
nate system i.a, and ei.a is the position of the origin of this coordinate system. All
vectors are written in the global coordinate system. At this moment it is possible to
write down all necessary equations which could be solved. The problem is that the
equations are transcendent and they needed to be solved numerically.

2.1.4 Derivative of constraint equations

For the purpose of numerical solution, it is important to define derivation of con-
straints. At first velocity vi and angular velocity ωi of body i are defined. Let us
consider

T0,i(qi) =


q6i−5

R(q6i−2, q6i−1, q6i) q6i−4
q6i−3

0 0 0 1

 . (2.18)

18

For the velocity of principal frame of body i holds

{vi}0 =

1 0 0 0 0 0
0 1 0 0 0 0
0 0︸︷︷︸

di,2

1 0 0 0

 ·

q̇6i−5
q̇6i−4
q̇6i−3
q̇6i−2
q̇6i−1
q̇6i

 , (2.19)

where vector di,k can be expressed as

di,k =
∂ei

∂qk
=
∂vi

∂q̇k
. (2.20)

Given the previous assumption and eq. (2.6), it is also possible to write

ωi =

0 0 0 cos q6i cos q6i−1 − sin q6i 0
0 0 0 sin q6i cos q6i−1 cos q6i 0
0 0 0 − sin q6i−1︸ ︷︷ ︸

δi,4

0 1

 ·

q̇6i−5
q̇6i−4
q̇6i−3
q̇6i−2
q̇6i−1
q̇6i

 , (2.21)

where vector δi,k can be expressed as

δi,k =
∂ωi

∂q̇k
, (2.22)

It is important to realise, that one constraint is defined always between 2 rigid
bodies in this work. It means that each constraint must be derived with respect to
the configuration parameters of the 2 bodies which are connected.

The consideration of the following equation 2.23 is also crucial for simulation and
numerical solution. Prove of this equation is added in appendix A.1.

∂ib

∂qk
=
∂ iḃ

∂q̇k
(2.23)

19

Derivative with respect to the first body

It is considered that qk relates to body i, then the following relations hold:

1b = xi.a · (ei.a − ej.b), (2.24)

d1b

dt
= 1ḃ =

dxi.a

dt
· (ei.a − ej.b) + xi.a ·

dei.a

dt
− xi.a ·

dej.b

dt
= (ωi.a × xi.a) · (ei.a − ej.b) + xi.a · ėi.a − xi.a · ėj.b. (2.25)

Orientation vector xi.a is composed of sines and cosines which gives only orientation
of the intermediate joint coordinate system. Its derivation is then given by general
known formula

∂xi.a

∂t
= ωi.a × xi.a, (2.26)

∂1ḃ

∂q̇k
=

(
∂ωi.a

∂q̇k
× xi.a

)
· (ei.a − ej.b) + xi.a ·

dėi.a

∂q̇k
+ 0,

= (δi.a,k × xi.a) · (ei.a − ej.b) + xi.a · di.a,k. (2.27)

The frame velocities are given directly by

vi.a = vi + ωi × ri.a, ωi.a = ωi, (2.28)

vj.b = vj + ωj × rj.b, ωj.b = ωj, (2.29)

so

di.a,k =
∂vi.a,k

∂q̇k
=
∂ (vi,k + ωi,k × ri.a)

∂q̇k
= (2.30)

=
∂vi,k

∂q̇k
+
∂ωi,k

∂q̇k
× ri.a = di,k + δi,k × (ei.a − ei) (2.31)

All points on a rigid body experience the same angular velocity at all times. It is
then possible to assume δi.a,k = δi,k, and the previous derivative and derivatives of
2b, 3b with respect to the body i can be written as

∂1ḃ

∂q̇k
= (δi,k × xi.a) · (ei.a − ej.b) + xi.a · di.a,k, (2.32)

∂2ḃ

∂q̇k
= (δi,k × yi.a) · (ei.a − ej.b) + yi.a · di.a,k, (2.33)

∂3ḃ

∂q̇k
= (δi,k × zi.a) · (ei.a − ej.b) + zi.a · di.a,k. (2.34)

20

Derivation of kb can be found analogously:

4b = yi.a · zj.b, (2.35)

d4b

dt
=
dyi.a

dt
· zj.b + yi.a ·

dzj.b

dt
= (ωi.a × yi.a) · zj.b + yi.a · (ωj.b × zj.b), (2.36)

∂ 4ḃ

∂q̇k
=

∂

∂q̇k
[(ωi.a × yi.a) · zj.b + yi.a · (ωj.b × zj.b)] = (δi.a,k × yi.a) · zj.b. (2.37)

With assumption that δi.a,k = δi,k the derivatives of 4b, 5b and 6b with respect to the
body i can be written as

∂ 4ḃ

∂q̇k
= (δi,k × yi.a) · zj.b, (2.38)

∂ 5ḃ

∂q̇k
= (δi,k × zi.a) · xj.b, (2.39)

∂ 6ḃ

∂q̇k
= (δi,k × xi.a) · yj.b. (2.40)

Derivative with respect to the second body

In consideration of qk that relates to body j and with using the same steps as in the
previous section. Let us consider

1b = xi.a · (ei.a − ej.b), (2.41)
1ḃ = ẋi.a · (ei.a − ej.b) + xi.a · (ėi.a − ėj.b), (2.42)

∂1ḃ

∂q̇k
= xi.a ·

(
−∂ėj.b

∂q̇k

)
, (2.43)

∂1ḃ

∂q̇k
= −xi.a · dj.b,k. (2.44)

Then the derivatives of 1b, 2b and 3b could be for the joint coordinate systems of the
bodies i and j written as

∂1ḃ

∂q̇k
= −xi.a · dj.b,k, (2.45)

∂2ḃ

∂q̇k
= −yi.a · dj.b,k, (2.46)

∂3ḃ

∂q̇k
= −zi.a · dj.b,k, (2.47)

21

where
dj.b,k = dj,k + δj,k × (ej.b − ej). (2.48)

Derivation of kb can be again found analogously:

4b = yi.a · zj.b, (2.49)

4ḃ =
dyi.a

dt
· zj.b + yi.a ·

dzj.b

dt
= (ωi.a × yi.a) · zj.b + yi.a · (ωj.b × zj.b), (2.50)

∂ 4ḃ

∂q̇k
= yi.a ·

(
∂ωj.b,k

∂q̇k
× zj.b

)
= yi.a · (δj.b,k × zj.b). (2.51)

With assumption that δj.b,k = δj,k, the derivatives of 4b, 5b and 6b with respect to
the body j can be written as

∂ 4ḃ

∂q̇k
= yi.a · (δj,k × zj.b), (2.52)

∂ 5ḃ

∂q̇k
= zi.a · (δj,k × xj.b), (2.53)

∂ 6ḃ

∂q̇k
= xi.a · (δj,k × yj.b). (2.54)

22

2.2 Solving equations

It is important to realise that the number of configuration parameters (6 × nB) is
higher than number of constraints except for static and hyperstatic systems. E.g.
a spatial pendulum connected to the ground by a revolute joint has 6 unknown
configuration parameters and only 5 constraint equations, see table 2.2. For this
reason n parameters are optional and have to be selected to solve kinematics of
multibody systems. Then it is possible to write:

n = 6 · nB − nC , (2.55)

where nC is the number of constraints. It is clear that the number of constraints
could be counted as

nC = 5 · (npr + nre) + 4 · (ncy + nun) + 3 · (npl + nsp), (2.56)

where npr, nre, ncy, nun, npl, nsp are numbers of prismatic, revolute, cylindrical,
universal, planar and spherical joints respectively. In fact, the formulas for a quick
calculation of mobility known in the literature and the presented relation 2.55 does
yield correct results for many classical or modern mechanisms [23].

2.2.1 Numerical solution

The non-linear constraint equations can be solved by Newton-Raphson. The demon-
stration of this method consist in consideration of a system of equations F(x) = 0.
If derivative of equations (constraints) exists, than the system F(x) can be expanded
at the point x = xk. With the use of a Taylor series it is possible to write

F(x) = F(xk) + J(xk)(x − xk) +
1

2
F̈(ξ)(x − xk)2, (2.57)

where elements of J(xk) are defined as

Jij =
∂Fi

∂qj
. (2.58)

The system of equations F(x) = 0 can be approximated by a system of linear
equations with x becomes only the next approximation to the root, giving us

F(xk) + J(xk) (xk+1 − xk)︸ ︷︷ ︸
hk

= 0. (2.59)

23

This can be rewritten as
J(xk)hk = −F(xk). (2.60)

The solution of this equation can be expressed as

hk = −J−1(xk) · F(xk), (2.61)

and a new iteration (xk+1) is obtained from the following expression

xk+1 = xk + hk. (2.62)

J(xk) is a Jacobian matrix of the matrix F(x) at the point (xk). The solution ends
when

||xk+1 − xk|| < ε. (2.63)

2.2.2 Jacobian matrix

The system of the constraint equations can be expressed

F(x) =


b1
b2
...
bnC

 = 0, (2.64)

where (jb 6= bj). Than the Jacobian matrix can be expressed as

J = (x) =


∂b1
∂q1

. . . ∂b1
∂qncp

...
. . .

...
∂bnC

∂q1
. . .

∂bnC

∂qncp

 , (2.65)

where ncp and nC are the number of configuration parameters and the number of
constraints respectively. At the end of this chapter necessary methods needed to
solve kinematics of multibody systems with introduced joints are defined.

2.3 Application example

The system of double wishbone suspension was chosen to demonstrate kinematics
solving. All necessary data are in figure 2.2 ([17], p. 177, 203).

24

Fig. 2.2: Double wishbone suspension example geometry data [17]. The underlined
letters are fixed in space.

The system of car suspension has two degrees of freedom. Rotation of the wheel and
its position and orientation which depend on the geometry of the suspension. The
centroidal coordinate system of a car is located between the front wheels with the
same orientation as in fig. 2.2. Every part of suspension (body 1 - 6, where body 1
is the origin and body 6 is the wheel) has at least one intermediate joint coordinate
system.

E.g. for body 1 three intermediate joint coordinate systems are defined. First is
located in point B, second in point F and third in point J. There is no need to define
secondary frames in points A and E, because it is enough to define only one revolute
joint for each wishbone support (see fig. 2.2).

For example the coordinate system of body 3 is located in point D. Its configuration
in space is given by the transformation matrix T1,3 which depends on q13 − q18. For
example transformation matrix of the intermediate joint coordinate system in point

25

B, which is used to define revolute joint for upper arm, is defined

T1,3.B = T1,3 ·T3.B = T1,3 ·T(B,0) ·Ty(θ), (2.66)

where B = (B(1), B(2), B(3)), 0 = (0, 0, 0) and θ is the direction of vector
~AB = [230 0 14], which is given by

θ = arctan
14

230
. (2.67)

Transformation matrix between coordinate system of body 3 and intermediate joint
coordinate system of body 3 in point B is defined as

T3.B =


1 0 0 ~DB(1)

0 1 0 ~DB(2)

0 0 1 ~DB(3)
0 0 0 1

 ·


cos θ 0 sin θ 0
0 1 0 0

− sin θ 0 cos θ 0
0 0 0 1

 , (2.68)

where ~DB = B − D. The two revolute joints and the only one universal joint are
fixed to the car chassis or fixed in space. Due to this scheme and formulas (2.55)
and (2.56) we got

nB = 5 · (npr + nre) + 4 · (ncy + nun) + 3 · (npl + nsp) (2.69)

2.4 Results and discussion

The two given parameters are the angle of the wheel rotation (about Y axis see fig.
2.2) and its z coordinate (vertical), which were evaluated from -170 to 240 mm with
a step of 10 mm. All higher or lower positions did not converge because the solution
does not exist due to the limitations of the suspension geometry. Orientation of
an arbitrary body is the same for all points of that body in case of rigid bodies.
Rotations ψ, θ and φ are given as rotations around Z,Y’ and X” axis due to Bryant
angles.

All of the coordinates of point K are continuous due to given coordinate z and all of
the calculated points converged quickly (6 to 10 iterations). With ε = 10−13. The
numerical solution is stable and results can be used in the next work. The Matlab
program is written universally and can be use for different types of suspensions.

Figure 2.3 shows the position of point K from figure 2.2. Figures 2.4a − 2.7 show
the dependence of x, y, φ, θ and ψ on given parameter z.

26

-10

-5

x [mm]

-200
0

-100

450

0

y [mm]

500

z
 [
m

m
]

100

550

200

600 5

300

650 460440

x
 [
m

m
]

6

4

2

0

-2

-4

-6

-8

540

y [mm]
620600580560520500480

Fig. 2.3: Position of the wheel support (point K - fig. 2.2) in 3D [mm]

-200 -150 -100 -50 0 50 100 150 200 250

z [mm]

-8

-6

-4

-2

0

2

4

6

x
 [
m

m
]

(a) x coordinate on z

-200 -150 -100 -50 0 50 100 150 200 250

z [mm]

440

460

480

500

520

540

560

580

600

620

y
 [
m

m
]

(b) y coordinate on z

Fig. 2.4: Free coordinates of the point K (fig. 2.2) depending on the z coordinate

27

-200 -150 -100 -50 0 50 100 150 200 250

z [mm]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

φ
 [
ra

d
]

Fig. 2.5: φ coordinate on z

-200 -150 -100 -50 0 50 100 150 200 250

z [mm]

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

θ
 [
ra

d
]

Fig. 2.6: θ coordinate on z

-200 -150 -100 -50 0 50 100 150 200 250

z [mm]

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

ψ
 [
ra

d
]

Fig. 2.7: ψ coordinate on z

28

Chapter 3

Kinematic interpolation

This chapter aim is to produce interpolated kinematics from a table created in the
previous chapter on the level of position, velocity and acceleration in terms of the
chosen parameter (one of six parameters which are defined for each body). A pro-
posed method ensures smoothness on the velocity level and continuity on the level
of acceleration. Hermite splines are used for interpolation terms; the interpolation
is used for the evaluation of translations and rotations and their derivatives. The
interpolation for rotations is implemented through successive rotations about specific
axes. Error analysis, which discusses the norm of the differences between interpolated
and exactly computed values, is also presented.

3.1 Input data

The data which are counted in the previous chapter are important for the interpola-
tion. The interpolation assumes that the evolution of homogeneous transformation
matrix T0,A and its derivatives dA,u and δA,u have been calculated for some values
of a parameter u, where vectors dA,u and δA,u are defined as [16]

dA,u =
∂eA

∂u
=
∂vA

∂u̇
, δA,u =

∂ωA

∂u̇
. (3.1)

First, it is useful to store the data into the table in terms of a series of values u
(u0, u1, u2, ..., uN)

29

u0, T0,A(u0), {dA,u(u0)}0, {δA,u(u0)}0,
u1, T0,A(u1), {dA,u(u1)}0, {δA,u(u1)}0,
u2, T0,A(u2), {dA,u(u2)}0, {δA,u(u2)}0,
...

...
...

...
uN , T0,A(uN), {dA,u(uN)}0, {δA,u(uN)}0.

with

{vA}0 = {dA}0 · u̇ =

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

 ·


q̇A1

q̇A2

q̇A3

q̇A4

q̇A5

q̇A6


, (3.2)

and

{ωA}0 = {δA}0 · u̇ =

0 0 0 cos(qA6) cos(qA5) − sin(qA6) 0
0 0 0 sin(qA6) cos(qA5) cos(qA6) 0
0 0 0 − sin(qA6) 0 1

 ·


q̇A1

q̇A2

q̇A3

q̇A4

q̇A5

q̇A6


, (3.3)

where qA is a vector which was counted in the previous chapter as a result of Newton-
Raphson method.

To get vector q̇A, it is necessary to compute

B · q̇ = 0, (3.4)

u̇ = 1, (3.5)

where u, u̇ is given parameter and its time derivative and B is the Jacobian matrix
of the constraint equation system. It is also important to place u̇ in the right place in
the system of equations, because it substitutes the velocity of the chosen parameter.

30

If u replaces qi, it is possible to rewrite previous two equations to

b11 b12 . . . b1(i−1) b1(i+1) . . . b1,n 0
b21 b22 . . . b2(i−1) b2(i+1) . . . b2,n 0
...

...
...

...
... 0

...
...

...
...

... 0
...

...
...

...
... 0

bn1 bn2 . . . bn(i−1) bn(i+1) . . . bn,n 0
0 0 . . . 0 0 . . . 0 1


·



q̇1
q̇2
...

q̇i−1
q̇i+1

...
q̇n
u̇


=


0
...
1

 (3.6)

Because we assume that u̇ = 1, then

{vA}0 = {dA}0, (3.7)

{ωA}0 = {δA}0. (3.8)

3.2 Cubic Hermite splines

Cubic Hermite splines are typically used for interpolation of discrete numeric data
specified at given argument values, u0, u1, u2, , . . . , uN , to obtain a smooth continuous
function. The splines are also used as shape functions to model beams in finite
element methods, where they pass through specified points of the plane or three-
dimensional space. The spline functions are

h00(ξ) = 2ξ3 − 3ξ2 + 1, (3.9)

h01(ξ) = −2ξ3 + 3ξ2, (3.10)

h10(ξ) = ξ3 − 2ξ2 + ξ, (3.11)

h11(ξ) = ξ3 − ξ2 (3.12)

and they are plotted in figure 3.1. The first and second derivatives with respect to ξ
can be expressed

31

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Interpolated interval

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
F

u
n
c
ti
o
n
 v

a
lu

e
 o

f
s
p
lin

e
s

h
00

h
01

h
10

h
11

Fig. 3.1: Cubic Hermite splines

h
′

00(ξ) =
dh00
dξ

= 6ξ2 − 6ξ,

h
′

01(ξ) =
dh01
dξ

= −6ξ2 + 6ξ,

h
′

10(ξ) =
dh10
dξ

= 3ξ2 − 4ξ + 1,

h
′

11(ξ) =
dh11
dξ

= 3ξ2 − 2ξ,

h
′′

00(ξ) =
d2h00
dξ2

= 12ξ − 6,

h
′′

01(ξ) =
d2h01
dξ2

= −12ξ + 6,

h
′′

10(ξ) =
d2h10
dξ2

= 6ξ − 4,

h
′′

11(ξ) =
d2h11
dξ2

= 6ξ − 2. (3.13)

After substituting of ξ = 0 and ξ = 1

32

h00(0) = 1, h00(1) = 0, h′00(0) = 0, h
′
00(1) = 0,

h01(0) = 0, h01(1) = 1, h′01(0) = 0, h
′
01(1) = 0,

h10(0) = 0, h10(1) = 0, h′10(0) = 1, h
′
10(1) = 0,

h11(0) = 0, h11(1) = 0, h′11(0) = 0, h
′
11(1) = 1.

(3.14)

Now it is possible to interpolate an arbitrary function f = f(x) between x0 and x1
with respect to boundary conditions

f(x0) = f0, f(x1) = f1, f ′(x0) = m0, f ′(x1) = m1

by

f(x) = f0 h00

(
x− x0
x1 − x0

)
+ f1 h01

(
x− x0
x1 − x0

)
+

+m0 h10

(
x− x0
x1 − x0

)
· (x1 − x0) +m1 h11

(
x− x0
x1 − x0

)
· (x1 − x0)

(3.15)

from which it is easy to verify that the value of f(x) is equal to f0 when x = x0 and
to f1 when x = x1.

The first derivative of the interpolant 3.15 with respect to x of the interpolation is
defined consequently by

f ′(x) = f0 h
′
00

(
x− x0
x1 − x0

)
· 1

x1 − x0
+ f1 h

′
01

(
x− x0
x1 − x0

)
· 1

x1 − x0
+

+m0 h
′
10

(
x− x0
x1 − x0

)
+m1 h

′
11

(
x− x0
x1 − x0

)
,

(3.16)

from which it is easy to verify that the value of f
′
(x) is equal to m0 when x = x0

and to m1 when x = x1.
It is also possible to write the second derivative with respect to x as

f ′′(x) = f0 h
′′
00

(
x− x0
x1 − x0

)
· 1

(x1 − x0)2
+ f1 h

′′
01

(
x− x0
x1 − x0

)
· 1

(x1 − x0)2
+

+m0 h
′′
10

(
x− x0
x1 − x0

)
· 1

x1 − x0
+m1 h

′′
11

(
x− x0
x1 − x0

)
· 1

x1 − x0
.

(3.17)

33

3.3 Interpolation of position

If we assume that ui ≤ u ≤ ui+1 and if we define ξ by

ξ =
u− ui
ui+1 − ui

, (3.18)

then cubic Hermite splines can be used straightforward, to interpolate the position
part of the homogeneous transformation matrix:

eA(u) = eA(ui)h00(ξ) + eA(ui+1)h01(ξ) + dA,u(ui)h10(ξ) · (ui+1 − ui)
+ dA,u(ui+1)h11(ξ) · (ui+1 − ui).

(3.19)

The derivative of the position with respect to u is given by

deA

du
(u) = dA,u(u) = eA(ui)h

′

00(ξ) ·
1

ui+1 − ui
+ eA(ui+1)h

′

01(ξ)
1

ui+1 − ui
+ dA,u(ui)h

′

10(ξ) + dA,u(ui+1)h
′

11(ξ).

(3.20)

When u = ui than

eA(u) = eA(ui), (3.21)

dA,u(u) = dA,u(ui), (3.22)

and when u = ui+1 than

eA(u) = eA(ui+1) (3.23)

dA,u(u) = dA,u(ui+1). (3.24)

Practically, the first derivative is used to compute the velocity of point A

vA =
deA

dt
=
∂eA

∂u

du

dt
= dA,u(u)u̇. (3.25)

The second time derivative of the position with respect to u can be calculated as
well

∂2eA

∂u2
=
∂dA,u

∂u
(u) = eA(ui)h

′′

00(ξ) ·
1

(ui+1 − ui)2
+ eA(ui+1)h

′′

01(ξ)
1

(ui+1 − ui)2

+ dA,u(ui)h
′′

10(ξ) ·
1

ui+1 − ui
+ dA,u(ui+1)h

′′

11(ξ) ·
1

ui+1 − ui
.

(3.26)

and is used to compute the acceleration of point A:

aA =
dvA

dt
=
∂eA

∂u

d2u

dt2
+
∂2eA

∂u2

(
du

dt

)2

= dA,u
d2u

dt2
+
∂dA,u

∂u

(
du

dt

)2

= dA,uü+
∂dA,u

∂u
u̇2.

(3.27)

34

3.4 Interpolation of rotation

The purpose of this section is to interpolate the rotation matrix. Although the rota-
tions cannot be summed, it is possible to find the interpolation of rotation between
two steps (ui and ui+1). The rotation matrices in two successive configurations i and
i + 1 be R0,A(ui) and R0,A(ui+1), respectively. These matrices fulfil the following
relation:

R0,A(ui+1) = R0,A(ui) ·Ri,i+1
0,A . (3.28)

First, it is necessary to isolate the relative rotation matrix Ri,i+1
0,A between the two

configurations so that

Ri,i+1
0,A = R−10,A(ui) ·R0,A(ui+1) = RT

0,A(ui) ·R0,A(ui+1). (3.29)

The interpolation of rotation is then based on the relative rotation matrix Rint
0,A,

where
R0,A(u) = R0,A(ui) ·Rint

0,A(u), (3.30)

so in respect of the boundary conditions

R0,A(ui) = R0,A(ui) → Rint
0,A(ui) = I, (3.31)

R0,A(ui+1) = R0,A(ui+1) → Rint
0,A(ui+1) = Ri,i+1

0,A . (3.32)

but also[
δ̃A,u(ui)

]
0

=
dR0,A

du
(ui) RT

0,A(ui) →
[
δ̃A,u(ui)

]
i

=
dRint

0,A

du
(ui) RintT

0,A (ui), (3.33)[
δ̃A,u(ui)

]
0

=
dR0,A

du
(ui+1) RT

0,A(ui+1)→
[
δ̃A,u(ui+1)

]
i+1

=
dRint

0,A

du
(ui+1) RintT

0,A (ui+1),

(3.34)

with

[ã]0 =

 0 −az ay
az 0 −ax
−ay ax 0

 if {a}0 =


ax
ay
az

 . (3.35)

It is possible to express every spatial rotation as the rotation of the angle θ around
a unit vector n which define Rrotaxis(n, θ) that is given by

Rrotaxis(n, θ) =

 n2
xV + C nxnyV − nzS NxnzV + nyS

nxnyV + nzS n2
yV + C nynzV − nxS

nxnzV − nyS nynzV + nxS n2
zV + C

 , (3.36)

35

where C = cos(θ), S = sin(θ) and V = 1− cos(θ). In latter expression, n can be
projected indifferently in the departure coordinate system (T0,A(ui)) or the arrival
coordinate system (T0,A(ui+1)) and even in any intermediary coordinate system dur-
ing the rotation (T0,A(u), where ui ≤ u ≤ ui+1). The direction of the rotation axis
is invariant during the rotation and has the same projection in both frames.

Similarly, any rotation matrix (Ri,i+1
0,A) can be used to establish the axis and the angle

to which it corresponds. The angle is given directly by

θ = arccos

(
r11 + r22 + r33 − 1

2

)
, (3.37)

which assumes that 0 < θ < π.
The unit vector parallel to the axis can then be obtained by (if sin θ 6= 0),

{ni,i+1}i =
1

2 sin θ
·


r32 − r23
r13 − r31
r21 − r12

 . (3.38)

This information contained in eigenvalues and eigenvectors of Ri,i+1
0,A . An orthonormal

rotation matrix (Ri,i+1
0,A) will always have one real eigenvalue λ1 = 1 and one complex

pair λ2,3 = cos θ ± i sin θ, where θ is the rotation angle. From the definition of
eigenvalues and eigenvectors we recall that

Rvi = λiv, (3.39)

where vi is the eigenvector corresponding to λi. For case λ1 = 1 then

Rv1 = v1, (3.40)

which implies that the corresponding eigenvector v is unchanged by the rotation.
There is only one such vector and that is the one about which the rotation occurs
[20]. In other words, the direction of the rotation axis is the eigenvector of the
rotation matrix corresponding to the eigenvalue λ1 = 1.
In addition, it is important to remark that:

� if θ = 0, the unit axis vector is arbitrary,

� if θ = π, the formula for n can be retrieved easily from the matrix; its sense is
arbitrary and

� the same rotation matrix is obtained with −θ and the opposite axis.

36

For the practical application, the relative rotation matrix is defined by the axis and
angle corresponding to the rotation from the configuration when u = ui to the one
when u = ui+1:

Ri,i+1
0,A = Rrotaxis({ni,i+1}i, θi,i+1). (3.41)

It means the rotation from i to i + 1 corresponds to a rotation through angle θi,i+1

about axis {ni,i+1}i. The axis unit vector {ni,i+1}i has been projected in coordinate
system i but could have been projected into i+ 1 as well.

As it was written in the previous section, ξ is still defined by

ξ =
u− ui
ui+1 − ui

, (3.42)

hence it is possible to calculate Rint
0,A(u) from the following expression

Rint
0,A(u) = R1(u) ·R2(u) ·R3(u), (3.43)

where matrices R1(u), R2(u) and R3(u) correspond to

R1(ξ(u)) = Rrotaxis(
{δA,u(ui)}i
‖δA,u(ui)‖

, ‖δA,u(ui)‖ · h10(ξ) · (ui+1 − ui)), (3.44)

R2(ξ(u)) = Rrotaxis({ni,i+1
A,u)}i, θi,i+1 · h01(ξ)), (3.45)

R3(ξ(u)) = Rrotaxis(
{δA,u(ui+1)}i+1

‖δA,u(ui+1)‖
, ‖δA,u(ui+1)‖ · h11(ξ) · (ui+1 − ui)). (3.46)

However, vectors {δA,u(ui)}0 and {δA,u(ui+1)}0 vectors are given from their coordi-
nates in the global coordinate system ({δA,u(u0)}0). In the latter expressions, some
δ vectors have to be transferred to other coordinate systems

{δA,u(ui)}i = RT
0,A(ui) · {δA,u(ui)}0, (3.47)

{δA,u(ui+1)}i+1 = RT
0,A(ui+1) · {δA,u(ui+1)}0. (3.48)

To sum up briefly, the full orientation matrix will then be calculated from

R0,A(u) = R0,A(ui) ·Rint
0,A(u) = R0,A(ui) ·R1(u) ·R2(u) ·R3(u). (3.49)

The angular velocity is given by summation of the contributions of the 3 successive
rotations

ωA = δA,u(u) u̇, (3.50)

37

with

{δA(u)}0 = {δ1}0 h
′

10(ξ) + {δ2(u)}0 h
′

01(ξ)
θi,i+1

ui+1 − ui
+ {δ3(u)}0 h

′

11(ξ), (3.51)

where

{δ1}0 = {δA,u(ui)}0, (3.52)

{δ2(u)}0 = R0,A(ui) ·R1(u) · {ni,i+1}i, (3.53)

{δ3(u)}0 = R0,A(ui) ·R1(u) ·R2(u) · {δA,u(ui+1)}i+1. (3.54)

Finally, the angular acceleration, as the translational one, will consist of 2 contribu-
tions

dωA

dt
= δA,u(u) ü+

dδA,u(u)

du
u̇2, (3.55)

where δA,u is defined in eq. 3.51 and
dδA,u(u)

du
is given by

dδA,u(u)

du
=
dδ1(u)

du
+
dδ2(u)

du
+
dδ3(u)

du
. (3.56)

The latter are written{
dδ1(u)

du

}
0

= {δA,u(ui)}0 h
′′

10(ξ)
1

ui+1 − ui
, (3.57){

dδ2(u)

du

}
0

= R0,A(ui) ·R1(u) ·
{
ni,i+i

}
i
h

′′

01(ξ)
θi,i+1

(ui+1 − ui)2
(3.58)

+ {δ1 × δ2}0 ,{
dδ3(u)

du

}
0

= R0,A(ui) ·R1(u) ·R2(u) · {δA,u(ui+1)}i+1 h
′′

11(ξ)
1

ui+1 − ui
(3.59)

+ {(δ1 + δ2)× δ3}0 ,

in which term
{(δ1 + δ2)× δ3}0 (3.60)

corresponds to the complementary (or Résal) angular acceleration that results from
the variation of the direction of the rotation axis.

38

3.5 Error analysis

There are compared the exact position (of a wheel or a sample for verifying the
interpolation method) with the interpolated one in the following sections. The most
important to compare in terms of errors is the evolution of:

� the absolute error in translation (norm of the distance vector between exact
position (eex) and interpolated one (eint),

ee = ||eex − eint||, (3.61)

� the norm of the vector difference between the dA,u vectors,

de = ||dex − dint||, (3.62)

� the norm of the vector difference between the δA,u vectors,

δe = ||δex − δint||, (3.63)

� the error in rotation θe.

The error in rotation (angle of the relative rotation) is computed from the formula
given for the transformation from rotation matrix to axis-angle representation.

Ri,e = RT
i ·Re, (3.64)

where Ri,e is the relative rotation matrix between interpolated and exact position,
Ri and Re are interpolated and exact rotation matrices. Error in rotation is then
given by formula (3.37), applied to Ri,e.
In cases of suspensions we also study:

� the norm in translation between two steps

En(ui, ui+1) = ||e(ui)− e(ui+1)||, (3.65)

� the rotation angle between two steps Θn,

Ra(ui, ui+1) = RT (ui) ·R(ui+1), (3.66)

where Ra(ui, ui+1) is the relative rotation matrix between position at point ui and
ui+1. Rotation angle is then given by formula (3.37), applied to Ra(ui, ui+1).

39

3.5.1 Example for the verification of the interpolation

We make a simple sample for verifying the interpolation method in 3D space. It
consists of a base and a rod that are connected by the revolute joint in space. It
means it is a mechanism with one degree of freedom − angle φ as shown in figure
3.2. The angle φ was chosen as the given parameter u (u̇ = 1). Its value incremented
from 0 rad to π/2 and was calculated with the step of 0.01 rad. The results of this
simulation were compared with the interpolated values. The interpolated values were
based on the values which were calculated with the step of 0.3 rad, it means that
every 0.3 rad the errors should equal to zero.

Fig. 3.2: A system for verification

40

0 0.5 1 1.5

z coordinate of the wheel [m]

0

0.5

1

1.5

2

2.5
e

e
 [
m

]
×10

-3

Fig. 3.3: Error in position

0 0.5 1 1.5

z coordinate of the wheel [m]

0

0.5

1

1.5

2

2.5

θ
e
 [

ra
d

]

×10
-8

Fig. 3.4: Error in rotation

0 0.5 1 1.5

Φ [rad]

0

0.005

0.01

0.015

0.02

0.025

d
e

[m
/s

]

Fig. 3.5: Error of dA,u

0 0.5 1 1.5

Φ [rad]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

δ
e
 [

ra
d

/s
]

×10
-15

Fig. 3.6: Error of δA,u

3.5.2 Double wishbone suspension

The z-coordinate of the wheel was chosen as the given parameter u (u̇ = 1). Its value
incremented from -190 mm (less is not possible due to the geometry of suspension)
to 210 mm and was calculated with the step of 1 mm. The results of this simulation
were compared with the interpolated values. The interpolated values were based on
the values which were calculated with the step of 10 mm, it means that every 10 mm
the errors should equal to zero. The norm between two successive steps is shown in
figures 3.28 and 3.13.

41

Fig. 3.7: Double wishbone suspension example geometry data [17]

42

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

z coordinate of the wheel [m]

0

0.5

1

1.5

2

2.5

3

3.5

4
e

e
 [

m
]

×10
-6

Fig. 3.8: Error in position

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

z coordinate of the wheel [m]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

θ
e
 [

ra
d

]

×10
-4

Fig. 3.9: Error in rotation

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

z coordinate of the wheel [m]

0

0.2

0.4

0.6

0.8

1

1.2

d
e

[m
/s

]

×10
-3

Fig. 3.10: Error of dA,u

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

z coordinate of the wheel [m]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

δ
e
 [

ra
d

/s
]

Fig. 3.11: Error of δA,u

43

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

z coordinate of a wheel [m]

0.01

0.011

0.012

0.013

0.014

0.015

0.016

E
n
 [

m
]

Fig. 3.12: Norm of the displacement
between e(ui) and e(ui+1)

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

z coordinate of a wheel [m]

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Θ
n
 [

ra
d

]

Fig. 3.13: Angle between R(ui) and
R(ui+1)

3.5.3 McPherson suspension

The z-coordinate of the wheel was chosen as the given parameter u (u̇ = 1). Its
value incremented from -200 mm to 200 mm and was calculated with the step of 1
mm. The results of this simulation were compared with the interpolated values. The
interpolated values were based on the values which were calculated with the step
of 10 mm, it means that every 10 mm the errors should equal to zero. The norm
between two successive steps is shown in figures 3.19 and 3.20.

44

Fig. 3.14: McPherson suspension example geometry data [17]

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

z coordinate of the wheel [m]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

e
e
 [

m
]

×10
-6

Fig. 3.15: Error in position

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

z coordinate of the wheel [m]

0

0.2

0.4

0.6

0.8

1

1.2

θ
e
 [

ra
d

]

×10
-5

Fig. 3.16: Error in rotation

45

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

z coordinate of the wheel [m]

0

0.5

1

1.5

2

2.5

3

3.5
d

e

[m
/s

]
×10

-4

Fig. 3.17: Error of dA,u

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

z coordinate of the wheel [m]

0

0.5

1

1.5

2

2.5

3

3.5

4

δ
e
 [

ra
d

/s
]

×10
-3

Fig. 3.18: Error of δA,u

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

z coordinate of a wheel [m]

0.01

0.0105

0.011

0.0115

0.012

0.0125

0.013

0.0135

0.014

0.0145

0.015

E
n
 [

m
]

Fig. 3.19: Norm of displacement be-
tween two successive steps

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

z coordinate of a wheel [m]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Θ
n
 [

ra
d

]

Fig. 3.20: Norm of rotation between two
successive steps

3.5.4 5 Link suspension

The z-coordinate of the wheel was chosen as the given parameter u (u̇ = 1). Its
value incremented from -200 mm to 200 mm and was calculated with the step of 1
mm. The results of this simulation were compared with the interpolated values. The
interpolated values were based on the values which were calculated with the step
of 10 mm, it means that every 10 mm the errors should equal to zero. The norm
between two successive steps is shown in figures 3.26 and 3.27.

46

Fig. 3.21: McPherson suspension example geometry data [21]

Description x y z

end of rod 1 P1x -64.0 413.0 327.0
end of rod 2 P2x -303.0 432.0 295.0
end of rod 3 P3x -93.0 366.0 4.0
end of rod 4 P4x -236.0 388.0 -109.0
end of rod 5 P5x 211.5 384.5 -100.0
end of the spring FE 90.0 525.0 170.0
end of the damper DE 90 525.0 170.0

Table 3.1: Points fixed to the chassis

47

Description x y z

end of rod 1 X1 -64.0 636.0 345.0
end of rod 2 X2 -117.0 636.0 338.0
end of rod 3 X3 -188.0 647.0 -23.0
end of rod 4 X4 -5.0 737.0 -130.0
end of rod 5 X5 2.5 737.0 -134.0
end of the spring M1 -103.0 463.0 87.0
end of the damper B 0 786.0 0

BS 0 686.0 -1.0

Table 3.2: Points fixed to the chassis

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

z coordinate of the wheel [m]

0

1

2

3

4

5

6

7

8

9

e
e
 [

m
]

×10
-6

Fig. 3.22: Error in position

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

z coordinate of the wheel [m]

0

1

2

3

4

5

6

7

8

θ
e
 [

ra
d

]

×10
-5

Fig. 3.23: Error in rotation

48

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

z coordinate of the wheel [m]

0

0.5

1

1.5

2

2.5

3
d

e

[m
/s

]
×10

-3

Fig. 3.24: Error of dA,u

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

z coordinate of the wheel [m]

0

0.005

0.01

0.015

0.02

0.025

0.03

δ
e
 [

ra
d

/s
]

Fig. 3.25: Error of δA,u

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

z coordinate of a wheel [m]

0.01

0.0105

0.011

0.0115

0.012

0.0125

0.013

0.0135

0.014

0.0145

0.015

E
n
 [

m
]

Fig. 3.26: Norm of displacement be-
tween two successive steps

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

z coordinate of a wheel [m]

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Θ
n
 [

ra
d

]

Fig. 3.27: Norm of rotation between two
successive steps

49

3.6 Conclusion and recommendations

The presented results show that the accuracy depends strongly on the magnitude of
En − the norm in translation between two steps. Next, we discuss the behaviour of
ee − the error in translation on the step size (figure 3.28). After some research on
the suspensions we find out that the maximum of ee depends on the step value with
exponential growth (figure 3.29). In conclusion, it is essential to monitor not only
step size but also the norm in translation between two successive steps − En, because
bigger step size does not necessarily lead to bigger En and vice versa. Besides, the
biggest error is usually in the middle of the interpolated interval, which can be seen
in figures 3.3 and 3.5. Errors plotted in figures 3.4 and 3.6 are much lower because
the given parameter is angle and the motion is circular, which is easy to interpolate
from the view of angles. The reader may notice, the errors in suspension position and
d vectors are lower than the errors in rotation angles and δ vectors. It is probably
because the motion of the suspension is more sliding motion than rotary motion.

We have found that the dependence between the step size and the interpolation error
is exponential. Therefore, we recommend performing an error analysis before the
proposed interpolation method is implemented because the accuracy of the method
can be poor if the step size is large.

The times needed to compute the exact solution and the interpolated one from the
precomputed table are approx. 1000 s and approx. 3 s. This difference is clear proof
of the main advantage of the proposed interpolation method.

In the next figures we can see the dependence of value ee on the step size and the z
coordinate of the wheel support − figure 3.28 and the maximum value of ee on the
step value − 3.29.

50

0.06

0.04

step size [m]

0

2

0.5

0.021

×10
-4

z coordinate [m]

1

×10
-4

e
e
 [

m
]

0

1.5

-1 0

2

-2

Fig. 3.28: Translation error on interpo-
lation step size - double wishbone

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055

step size [m]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

m
a

x
(e

e
)

[m
]

×10
-4

Fig. 3.29: Translation error on step size
- double wishbone

51

Chapter 4

Implementation of kinematic
interpolation under EasyDyn

The purpose of this chapter is to reproduce in C++ the interpolation performed under
Matlab in the previous chapter at position, velocity and acceleration levels. The next
goal of this chapter is to compare all results computed in Matlab with results obtained
by C++.
EasyDyn [24] is a C++ library for the simulation of multibody systems and problems
represented by the first-order or second-order differential equations. The library is
organized in 4 modules [24]

� the vec module, introducing classes related to vector calculus: vectors, rotation
tensors, inertia tensors and homogeneous transformation matrices;

� the sim module to integrate second-order differential equations;

� the mbs module, a fronted to sim which automatically builds the differential
equations of motion of a multibody systems from the kinematics and the applied
forces;

� the visu module, allowing to build object-oriented scenes composed of moving
objects.

4.1 Approach

First, we rewrote Matlab codes for the interpolation at position, velocity and accel-
eration levels in C++ (example in appendix A.3. So that the C++ code does not have

52

to include a kinematics solver, the computed data from Matlab were stored into the
table in terms of series of values u0, u1, u2, ..., uN .

N
u0 T0,A(u0) {dA,u(u0)}0 {δA,u(u0)}0
u1 T0,A(u1) {dA,u(u1)}0 {δA,u(u1)}0
u2 T0,A(u2) {dA,u(u2)}0 {δA,u(u2)}0
...

...
...

...
uN T0,A(uN) {dA,u(uN)}0 {δA,u(uN)}0,

where N is a number of rows and in which each matrix T0,A(ui) is divided into three
parts

T0,A(ui)(1, 1 : 4) T0,A(ui)(2, 1 : 4) T0,A(ui)(3, 1 : 4)

to make writing and reading of the data easier. The values from C++ were exported
with the precision of 23 decimal places.

4.2 Results

In this section we compared interpolated data from Matlab file and from C++ file
for McPherson, 5-link and double wishbone (DW) suspensions. It means the vectors
given by Matlab:

eM(ui), dM(ui), δM(ui), {dd/du}M(ui), {dδ/du}M(ui)

were subtracted from the vectors given by C++:

eC(ui), dC(ui), δC(ui), {dd/du}C(ui), {dδ/du}C(ui)

and the result (error) was normalized for each value of u. The quantities depicted in
figures 4.1 − 4.15 are defined as:

ed(ui) = ‖eC(ui)− eM(ui)‖, (4.1)

dd(ui) = ‖dC(ui)− dM(ui)‖, (4.2)

δd(ui) = ‖δC(ui)− δM(ui)‖, (4.3)

{dd/du}d(ui) = ‖{dd/du}C(ui)− {dd/du}M(ui)‖, (4.4)

{dδ/du}d(ui) = ‖{dδ/du}C(ui)− {dδ/du}M(ui)‖. (4.5)

53

-200 -100 0 100 200 300

Interpolated value (u)

0

2

4

6

e
d

×10
-16

Fig. 4.1: Error of e(ui) of
DW suspension - [m]

-0.2 -0.1 0 0.1 0.2

Interpolated value (u)

0

2

4

6

e
d

×10
-16

Fig. 4.2: Error of e(ui)
of McPherson suspension -
[m]

-0.2 -0.1 0 0.1 0.2

Interpolated value (u)

0

2

4

e
d

×10
-16

Fig. 4.3: Difference of vec-
tors e(ui) of 5 link suspen-
sion - [m]

-200 -100 0 100 200 300

Interpolated value (u)

0

1

2

3

d
d

×10
-14

Fig. 4.4: Difference of vec-
tors d(ui) of DW suspen-
sion - [m]

-0.2 -0.1 0 0.1 0.2

Interpolated value (u)

0

1

2

3

4

d
d

×10
-14

Fig. 4.5: Difference of vec-
tors d(ui) of McPherson
suspension - [m]

-0.2 -0.1 0 0.1 0.2

Interpolated value (u)

0

2

4

d
d

×10
-14

Fig. 4.6: Difference of vec-
tors d(ui) of 5 link suspen-
sion - [m]

-200 -100 0 100 200 300

Interpolated value (u)

0

0.5

1

1.5

2

δ
d

×10
-14

Fig. 4.7: Error of δ(ui) of
DW suspension - [m]

-0.2 -0.1 0 0.1 0.2

Interpolated value (u)

0

2

4

6

δ
d

×10
-14

Fig. 4.8: Error of δ(ui)
of McPherson suspension -
[m]

-0.2 -0.1 0 0.1 0.2

Interpolated value (u)

0

2

4

6

8

δ
d

×10
-15

Fig. 4.9: Error of δ(ui) of
5 link suspension - [m]

54

-200 -100 0 100 200 300

Interpolated value (u)

0

0.5

1

1.5

{d
d
/d

u
} d

×10
-11

Fig. 4.10: Error of
{dd/du}(ui) of DW
suspension - [m]

-0.2 -0.1 0 0.1 0.2

Interpolated value (u)

0

0.5

1

1.5

{d
d
/d

u
} d

×10
-11

Fig. 4.11: Error of
{dd/du}(ui) of McPherson
suspension - [m]

-0.2 -0.1 0 0.1 0.2

Interpolated value (u)

0

0.5

1

1.5

{d
d
/d

u
} d

×10
-11

Fig. 4.12: Error of
{dd/du}(ui) of 5 link
suspension - [m]

-200 -100 0 100 200 300

Interpolated value (u)

0

0.5

1

1.5

{d
δ
/d

u
} d

×10
-11

Fig. 4.13: Error of
{dδ/du}(ui) of DW
suspension - [m]

-0.2 -0.1 0 0.1 0.2

Interpolated value (u)

0

2

4

{d
δ
/d

u
} d

×10
-11

Fig. 4.14: Error of
{dδ/du}(ui) of McPherson
suspension - [m]

-0.2 -0.1 0 0.1 0.2

Interpolated value (u)

0

1

2

3

4

{d
δ
/d

u
} d

×10
-12

Fig. 4.15: Error of
{dδ/du}(ui) of 5 link
suspension - [m]

4.3 Conclusion

The largest difference over all compared quantities given by C++ and Matlab was
approximately 10−10 which is negligible value despite the fact that input values were
exported with the precision of 10−23.
The errors should reach 0 value at each value ui, because it should be the exact
value, but it does not. On the other hand errors are low in comparison with real
values of the quantities. I also tried to offset compared values but results of errors
were higher, so the right values of ui are compared.

We can conclude that the errors are negligible and are caused by different computer
number formats in Matlab and C++, so the computation in meters is precise enough
and can be used for the next work.

55

To prove that the errors are caused by different computer number formats in Matlab
and C++, we proceed the computation in millimetres. We obtain following results
(figure 4.16 − figure 4.30), which are more accurate and even reach zero at each
value ui.

To sum up we proved that the errors obtained from the computation in meters are
numerical errors and are still low enough for the next usage.

-200 -100 0 100 200 300

Interpolated value (u)

0

0.5

1

1.5

e
d

×10
-13

Fig. 4.16: Error of e(ui) of
DW suspension - [mm]

-200 -100 0 100 200

Interpolated value (u)

0

0.5

1

1.5

e
d

×10
-13

Fig. 4.17: Error of e(ui)
of McPherson suspension -
[mm]

-200 -100 0 100 200

Interpolated value (u)

0

0.5

1

1.5

e
d

×10
-13

Fig. 4.18: Error of e(ui) of
5 link suspension - [mm]

-200 -100 0 100 200 300

Interpolated value (u)

0

1

2

3

d
d

×10
-14

Fig. 4.19: Difference of vec-
tors d(ui) of DW suspen-
sion - [mm]

-200 -100 0 100 200

Interpolated value (u)

0

1

2

3

d
d

×10
-14

Fig. 4.20: Difference of vec-
tors d(ui) of McPherson
suspension - [mm]

-200 -100 0 100 200

Interpolated value (u)

0

2

4

d
d

×10
-14

Fig. 4.21: Difference of vec-
tors d(ui) of 5 link suspen-
sion - [mm]

56

-200 -100 0 100 200 300

Interpolated value (u)

0

0.5

1

δ
d

×10
-18

Fig. 4.22: Difference of vec-
tors δ(ui) of DW suspen-
sion - [mm]

-200 -100 0 100 200

Interpolated value (u)

0

1

2

3

4

δ
d

×10
-18

Fig. 4.23: Difference of vec-
tors δ(ui) of McPherson
suspension - [mm]

-200 -100 0 100 200

Interpolated value (u)

0

2

4

6

8

δ
d

×10
-19

Fig. 4.24: Error of δ(ui) of
5 link suspension - [mm]

-200 -100 0 100 200 300

Interpolated value (u)

-1

-0.5

0

0.5

1

{d
d
/d

u
} d

Fig. 4.25: Error of
{dd/du}(ui) of DW
suspension - [mm]

-200 -100 0 100 200

Interpolated value (u)

-1

-0.5

0

0.5

1

{d
d
/d

u
} d

Fig. 4.26: Error of
{dd/du}(ui) of McPherson
suspension - [mm]

-200 -100 0 100 200

Interpolated value (u)

-1

-0.5

0

0.5

1

{d
d
/d

u
} d

Fig. 4.27: Error of
{dd/du}(ui) of 5 link
suspension - [mm]

-200 -100 0 100 200 300

Interpolated value (u)

0

2

4

6

8

{d
δ
/d

u
} d

×10
-19

Fig. 4.28: Error of
{dδ/du}(ui) of DW
suspension - [mm]

-200 -100 0 100 200

Interpolated value (u)

0

0.5

1

1.5

2

{d
δ
/d

u
} d

×10
-18

Fig. 4.29: Error of
{dδ/du}(ui) of McPherson
suspension - [mm]

-200 -100 0 100 200

Interpolated value (u)

0

2

4

6

{d
δ
/d

u
} d

×10
-19

Fig. 4.30: Error of
{dδ/du}(ui) of 5 link
suspension - [mm]

57

Chapter 5

EasyDyn model verification and
application on real example

The proposed interpolation method is verified in this chapter. The verification is
proceeded on the level of dynamics. For the verification, three approaches to model
suspension from the formula car of the UWB Racing are chosen:

� the proposed approach implemented in EasyDyn,

� a model in Ansys Mechanical 2020 r1 [19], and

� a model implemented in Matlab in accordance with Shabana [18].

First, a model of the suspension used in a formula car of the UWB Racing Team
Pilsen is developed in EasyDyn. Then we compare the results of the proposed ap-
proach executed in EasyDyn with the results obtained in commercial software Ansys
Mechanical 2020 r1 [19]. We further implemented a model based on the approach
proposed by Shabana [18] and used the results for the verification. We verify the
kinematics and dynamic by using two states:

� The model where the external force is only gravity.

This model verifies accuracy of kinematics and dynamic.

� The model where a spring and damper are included.

EasyDyn allows using springs and dampers as well as Ansys Mechanical.
By this simulation we can compare the equilibrium states.

58

All components of all models are massless to achieve similarity, only one mass point
is placed into the centre of wheel support (point K - figure 5.2), where is also placed
interpolated coordinate system in EasyDyn.

Point x [m] y [m] z [m]

A 0.9650 -6.8969e-02 0.46817
B 0.9650 -0.23987 0.46236
C 0.9650 -0.2350 0.3800
D 0.9650 -0.26802 0.4301
E 0.77129 -0.25058 0.15827
F 1.0589 -0.24167 0.18498
G 0.76463 -0.25083 6.0576e-02

Point x [m] y [m] z [m]

H 1.0404 -0.22648 5.2443e-02
I 1.0923 -0.24551 7.00e-02
J 0.9850 -0.5500 8.25e-02
K 0.98503 -0.56317 0.16499
L 1.0330 -0.56672 0.10572
M 0.96643 -0.52541 0.2575
N 0.9659 -0.48461 0.26819

Fig. 5.1: Coordinates of points where joints or coordinate systems are placed

Fig. 5.2: Detail of the modelled suspension

5.1 Comparison of motion in gravity field

In this section, we compare the simulation results of the proposed model in Easy-
Dyn with results from Ansys Mechanical and from the method presented in [18].
We let the wheel support fall in a gravity field with gravitational acceleration g =
(0, 0,−9.81) m · s2.
We compare position components for all three models and the angular velocity com-
ponents only between Ansys Mechanical model and EasyDyn model. We do not

59

compare orientation of the wheel support because Ansys Mechanical does not sup-
port that.
EasyDyn model consists of two bodies. The interpolated one which represents the
wheel support and which weights 10 kg, and chassis. The initial condition of z co-
ordinate of wheel support is set to z = 0.1 m. Velocity initial conditions are set to
zero.

Fig. 5.3: Model visualisation in Ansys Mechanical

Fig. 5.4: Model visualisation with tyre in EasyDyn

Ansys Mechanical model consists of the upper and lower arm, steering rod and
the wheel support. The initial condition is set the same as to EasyDyn model. The
mass point is placed into the centre of wheel support, and its mass is 10 kg.
Model implemented in accordance with [18] has three bodies: upper and lower arm
and wheel support. Initial conditions and weight properties are set the same as for

60

the previous examples. The following figures show models implemented in Ansys
Mechanical and EasyDyn. The wheel support centre of Ansys Mechanical model has
the same coordinates as the wheel centre of EasyDyn model.

-0.05 0 0.05 0.1 0.15 0.2 0.25

time [s]

0.98

0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

x
 c

o
o

rd
in

a
te

 [
m

]

proposed approach

Ansys Mechanical

approach acc. Shabana

Fig. 5.5: Comparison of x component of
position vector

-0.05 0 0.05 0.1 0.15 0.2 0.25

time [s]

-0.57

-0.565

-0.56

-0.555

-0.55

-0.545

-0.54

-0.535

-0.53

-0.525

y
 c

o
o

rd
in

a
te

 [
m

]

proposed approach

Ansys Mechanical

approach acc. Shabana

Fig. 5.6: Comparison of y component of
position vector

-0.05 0 0.05 0.1 0.15 0.2 0.25

time [s]

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

z
 c

o
o

rd
in

a
te

 [
m

]

proposed approach

Ansys Mechanical

approach acc. Shabana

Fig. 5.7: Comparison of z component of
position vector

-0.05 0 0.05 0.1 0.15 0.2 0.25

time [s]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ω
x
 -

 a
n

g
u

la
r

v
e

lo
c
it
y
 [

ra
d

/s
]

proposed approach

Ansys Mechanical

Fig. 5.8: Comparison of x component of
angular velocity vector

61

-0.05 0 0.05 0.1 0.15 0.2 0.25

time [s]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
ω

y
 -

 a
n

g
u

la
r

v
e

lo
c
it
y
 [

ra
d

/s
]

proposed approach

Ansys Mechanical

Fig. 5.9: Comparison of y component of
angular velocity vector

-0.05 0 0.05 0.1 0.15 0.2 0.25

time [s]

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

ω
z
 -

 a
n

g
u

la
r

v
e

lo
c
it
y
 [

ra
d

/s
]

proposed approach

Ansys Mechanical

Fig. 5.10: Comparison of z component
of angular velocity vector

5.2 Comparison of motion with external forces

In this section, we compare the behaviour of the Formula student suspension where
forces from spring and damper are included. Spring and damper locate between
points A and B, see figure 5.2. EasyDyn model consists of three bodies. The in-
terpolated one which represents the wheel support and which weights 10 kg, chassis
and crank. The crank body is defined by points B,C and D (figure 5.2). The initial
condition of z coordinate of wheel support is set to z = 0.0 m. Velocity initial con-
ditions are set to zero.
Ansys Mechanical model consists of the upper and lower arm, steering rod, the wheel
support, crank, rod between crank and wheel support, damper and spring. The ini-
tial condition is set the same as to EasyDyn model. The mass point is placed into
the centre of wheel support, its mass is 10 kg. It is important to define the right
joint at point N (figure 5.2), because in reality there is the spherical joint between
the upper arm and the rod. But in EasyDyn model there are only three bodies:
wheel support, chassis and crank. It means that spherical joint is defined at point
N, but it is defined between the rod and wheel support.

Additional parameters:

� spring stiffness = 3500 N/m,

� damping = 50 N·s/m,

� weight of mass point/ weight of wheel support in EasyDyn = 10 kg,

62

� integration step = 0.0005 s,

� integration type EasyDyn−Newmark Integration; Ansys Mechanical− Runge-
Kutta 4.

Fig. 5.11: Model visualisation in Ansys
Mechanical, see here

Fig. 5.12: Model visualisation with tyre
in EasyDyn, see here

0 0.5 1 1.5 2 2.5

time [s]

0.985

0.9852

0.9854

0.9856

0.9858

0.986

0.9862

0.9864

0.9866

x
 c

o
o

rd
in

a
te

 [
m

]

proposed approach

Ansys Mechanical

Fig. 5.13: Comparison of x component
of position vector

0 0.5 1 1.5 2 2.5

time [s]

-0.568

-0.5675

-0.567

-0.5665

-0.566

-0.5655

-0.565

-0.5645

-0.564

-0.5635

-0.563

y
 c

o
o

rd
in

a
te

 [
m

]

proposed approach

Ansys Mechanical

Fig. 5.14: Comparison of y component
of position vector

63

https://drive.google.com/drive/folders/1i_Acl4tWf-bSNrqnwWXPH5GGjeVpL8Jx?usp=sharing
https://drive.google.com/drive/folders/1i_Acl4tWf-bSNrqnwWXPH5GGjeVpL8Jx?usp=sharing

0 0.5 1 1.5 2 2.5

time [s]

-0.05

-0.045

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

z
 c

o
o

rd
in

a
te

 [
m

]

proposed approach

Ansys Mechanical

Fig. 5.15: Comparison of z component
of position vector

0 0.5 1 1.5 2 2.5

time [s]

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

ω
x
 -

 a
n

g
u

la
r

v
e

lo
c
it
y
 [

ra
d

/s
]

proposed approach

Ansys Mechanical

Fig. 5.16: Comparison of x component
of angular velocity vector

0 0.5 1 1.5 2 2.5

time [s]

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

ω
y
 -

 a
n

g
u

la
r

v
e

lo
c
it
y
 [

ra
d

/s
]

proposed approach

Ansys Mechanical

Fig. 5.17: Comparison of y component
of angular velocity vector

0 0.5 1 1.5 2 2.5

time [s]

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

ω
z
 -

 a
n

g
u

la
r

v
e

lo
c
it
y
 [

ra
d

/s
]

proposed approach

Ansys Mechanical

Fig. 5.18: Comparison of z component
of angular velocity vector

5.3 Discussion

In the case of gravity field Ansys Mechanical and EasyDyn model are almost the
same. The maximum difference is 7 · 10−4 mm and 10−2 rad · s−1 (figures 5.19 −
5.20) which is negligible in comparison with the values of position and angular veloc-
ity. The model based on prof. Shabana approach [18] is not included in the figures,
because the differences between this model and Ansys Mechanical model or EasyDyn
model were much higher − around 0.7 mm.

64

In the case of the example with external forces, the differences between results ob-
tained with EasyDyn and Ansys Mechanical model are even lower. This behaviour
was given by uncertainty of initial conditions because it is not possible to set remote
displacement at a particular time in Ansys Mechanical. The differences between po-
sition and angular velocity are in figures 5.21 − 5.22. The most significant difference
in position can be seen in z coordinate. It is probably caused by the biggest motion
in this direction. The z coordinate difference value tend to 1.5 ·10−4 m as the system
tends to its equilibrium position. The differences in angular velocities are similar to
each other, and their values reach 10−3 rad · s−1 and tend to zero because the motion
is damped.
To conclude the weakness of EasyDyn model is the inability to connect the spring
or damper to a body other than the wheel support. This connection is possible in
case of McPherson or 5 link suspension where the spring and the damper are usually
connected directly to the wheel support. However, if we assume a spherical joint
between the upper arm and the rod at point N, we get different results shown in
figure 5.23. The discrepancy is caused by the different setting of the kinematics.
On the other hand, EasyDyn model gives very similar results as the same model
implemented in commercial software Ansys Mechanical.

0 0.05 0.1 0.15 0.2 0.25

time [s]

-20

-15

-10

-5

0

5

[r
a

d
/s

]

×10
-3

∆ ω
z

∆ ω
x

∆ ω
y

Fig. 5.19: Gravity field case - differences
in components of angular velocity

0 0.05 0.1 0.15 0.2 0.25

time [s]

-8

-6

-4

-2

0

2

4

6

[m
]

×10
-4

∆ z

∆ x

∆ y

Fig. 5.20: Gravity field case - differences
in components of position

65

0 0.5 1 1.5 2 2.5

time [s]

-8

-6

-4

-2

0

2

4

6

8

10
[r

a
d

/s
]

×10
-4

∆ ω
z

∆ ω
x

∆ ω
y

Fig. 5.21: Spring and damper case - in
components of angular velocity

0 0.5 1 1.5 2 2.5

time [s]

-5

0

5

10

15

20

[m
]

×10
-5

∆ z

∆ x

∆ y

Fig. 5.22: Spring and damper case -
differences in components of position

0 0.5 1 1.5 2 2.5

time [s]

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

z
 c

o
o

rd
in

a
te

 [
m

]

proposed approach

Ansys Mechanical

Fig. 5.23: Difference when spherical
joint is at point N

66

Chapter 6

Conclusion

This work has provided an overview of kinematic interpolation in multibody systems
with perfect joints for multibody dynamics simulation. The kinematics interpolation
has a significant advantage of saving computational time, primarily when a kinematic
chain consists of many parts and has a limited number of end effectors. It is because
the interpolation process with searching in a lookup table is far less demanding than
solving nonlinear constraint equations at each integration step during the dynamic
solution. On the other side, the precision of the interpolated motion is limited, and
the lookup table has to be evaluated beforehand.

The work is focused mainly on the kinematics of automotive suspension systems
and the interpolation employing cubic Hermite splines. A thorough search of the
relevant literature yielded only a limited number of works focused on the kinematic
interpolation using the cubic Hermite splines [26] with no work dealing with the
automotive suspension systems. An interpolation method, which gives the body
configuration on the level of position/orientation, velocity and acceleration, has been
introduced. The method is based on the cubic Hermite splines mentioned earlier
and provides smoothness on the position/orientation and the velocity levels and
continuity on the acceleration level. These characteristics are present because the
second derivative of a cubic polynomial is a linear function.

The evaluation of the input lookup tables has been demonstrated for the most
common types of suspension systems including a double wishbone, McPherson and
five link suspension. The lookup tables have been evaluated in the Cartesian coor-
dinates using a code written in Matlab. The interpolation for all three suspension
systems was firstly implemented under Matlab and then successfully reproduced in
C++ with using EasyDyn library. It has been shown that the data transfer between

67

Matlab and C++ can cause numerical errors due to different computer number for-
mats in these two programming languages. However, the numerical errors due to the
finite precision of the digital number are usually negligible in comparison with the
numerical errors due to the interpolation.

At the end of the work, the proposed method has been applied to the real ex-
ample of a Formula SAE student suspension. The results from EasyDyn have been
compared with the results obtained using Ansys Mechanical and using a code im-
plemented in accordance with reference [18]. Firstly the models have been analysed
only in a gravity field and then with acting external forces in spring and damper.
The results obtained with EasyDyn and Ansys Mechanical are almost identical in
the gravity field, and the differences are low also in a case with the external forces.
The maximum difference in position is less than 2 · 10−4 m, and the difference in
angular velocity reached 10−3 rad.s−1, the relative errors are less than 0.4 % and
0.3 %, respectively. Therefore, the proposed method is suitable for computationally-
demanding problems, including optimization. The proposed method allows to build
the whole car in EasyDyn and optimize, e.g. time of cornering or even time of one
race lap because EasyDyn allows using torques and forces needed for power train
and cornering, or compute eigenvectors and eigenvalues of the whole drivetrain.

Recommendation for the next work is to achieve smoothness also on the level of
acceleration which could be possible by using quartic splines or splines of even higher
orders and to implement this method into EasyDyn.

68

Bibliography

[1] WRIGHT, Thomas Wallace. Elements of Mechanics Including Kinematics, Ki-
netics and Statics. E and FN Spon (1896). Chapter 1.

[2] SHABANA, Ahmed A. Dynamics of multibody systems. Cambridge: University
Press, 1998. Print.

[3] PAPEGAY, Yves A., Jean-Pierre MERLET a David DANEY. Exact kinemat-
ics analysis of Car’s suspension mechanisms using symbolic computation and
interval analysis. Mechanism and Machine Theory [online]. 2005, 40(4), 395-413
[cit. 2020-07-03]. DOI: 10.1016/j.mechmachtheory.2003.07.003. ISSN 0094114X.
Dostupné z: https://linkinghub.elsevier.com/retrieve/pii/S0094114X04001338

[4] CHEN, Zhen-Yu. Computer aided design in control systems 1988: selected pa-
pers from the 4th IFAC Symposium, Beijing, PRC, 23-25 August 1988. New
York: Published for the International Federation of Automatic Control by Perg-
amon Press, 1989. ISBN 0080357385

[5] JAZAR, Reza N. Numerical Methods in Kinematics. JAZAR, Reza N. Theory
of Applied Robotics [online]. Boston, MA: Springer US, 2007, 2007, s. 375-415
[cit. 2020-07-06]. DOI: 10.1007/978-0-387-68964-7 9. ISBN 978-0-387-32475-3.
Dostupné z: http://link.springer.com/10.1007/978-0-387-68964-7 9

[6] MCNAMEE, Paul. Automated Memoization in C++ [online]. August, 1998 [cit.
2020-07-06]. Dostupné z: http://pmcnamee.net/c++-memoization.html

[7] SHABANA, Ahmed A. Computational dynamics. 2nd. ed. New York: John
Wiley, 2001. ISBN 0471371440.

[8] WEIHAI CHEN, ZHAOJIN WEN, ZHIYUE XU a JINGMENG LIU. Im-
plementation of 3-axis linear interpolation in a FPGA-based 4-axis mo-
tion controller. In: 2008 3rd IEEE Conference on Industrial Electronics

69

and Applications [online]. IEEE, 2008, 2008, s. 1308-1313 [cit. 2020-07-
06]. DOI: 10.1109/ICIEA.2008.4582729. ISBN 978-1-4244-1717-9. Dostupné z:
http://ieeexplore.ieee.org/document/4582729/

[9] MYOUNG-JUN KIM, MYUNG-SOO KIM a SUNG YONG SHIN. A C/sup
2/-continuous B-spline quaternion curve interpolating a given sequence of solid
orientations. In: Proceedings Computer Animation’95 [online]. IEEE Comput.
Soc. Press, 1995, s. 72-81 [cit. 2020-07-06]. DOI: 10.1109/CA.1995.393545. ISBN
0-8186-7062-2. Dostupné z: http://ieeexplore.ieee.org/document/393545/

[10] EBERLY, David. Geometric Tools: Rotation Representations
[online]. Redmond WA 98052 [cit. 2020-07-06]. Dostupné z:
https://www.geometrictools.com/Documentation/RotationRepresentations.pdf

[11] ESCALONA, José L. a Javier F. ACEITUNO. Multibody simula-
tion of railway vehicles with contact lookup tables. International Jour-
nal of Mechanical Sciences [online]. 2019, 155, 571-582 [cit. 2020-
07-06]. DOI: 10.1016/j.ijmecsci.2018.01.020. ISSN 00207403. Dostupné z:
https://linkinghub.elsevier.com/retrieve/pii/S0020740317302485

[12] SCHIEHLEN, W. Multibody System Dynamics [online]. 1(2), 149-188 [cit.
2020-07-06]. DOI: 10.1023/A:1009745432698. ISSN 13845640. Dostupné z:
http://link.springer.com/10.1023/A:1009745432698

[13] MULLINEUX, Glen, Robert J. CRIPPS a Ben CROSS. Fitting a planar
quadratic slerp motion. Computer Aided Geometric Design [online]. 2020 [cit.
2020-07-06]. DOI: 10.1016/j.cagd.2020.101911. ISSN 01678396. Dostupné z:
https://linkinghub.elsevier.com/retrieve/pii/S0167839620300984

[14] KIM, Myung-Soo a Kee-Won NAM. Interpolating solid orientations with cir-
cular blending quaternion curves. Computer-Aided Design [online]. 1995, 27(5),
385-398 [cit. 2020-07-06]. DOI: 10.1016/0010-4485(95)96802-S. ISSN 00104485.
Dostupné z: https://linkinghub.elsevier.com/retrieve/pii/001044859596802S

[15] RAGHAVAN, M. a B. ROTH. Solving Polynomial Systems for the Kinematic
Analysis and Synthesis of Mechanisms and Robot Manipulators. Journal of
Vibration and Acoustics [online]. 1995, 117(B), 71-79 [cit. 2020-07-06]. DOI:
10.1115/1.2838679. ISSN 1048-9002. Dostupné z: https://asmedigitalcollection.
asme.org/vibrationacoustics/article/117/B/71/439056/Solving-Polynomial-
Systems-for-the-Kinematic

70

[16] VERLINDEN, Olivier. Computer-Aided Analysis of Mechanical Systems. 1. Fac-
ulté Polytechnique de Mons, Service de Mécanique Rationnelle, 31 Bd Dolez,
B-7000 Mons (Belgium): Faculé Polytechnique de Mons, 2016.

[17] BLUNDELL, M. and HARTY, D. Multibody systems approach to vehicle dy-
namics. Oxford: Elsevier Butterworth-Heinemann, 2004.

[18] SHABANA, Ahmed A. Dynamics of multibody systems. Cambridge, United
Kingdom New York, NY: Cambridge University Press, 2020. Print.

[19] Ansys® [Ansys Mechanical Premium], 2020 R1, ANSYS Help 2020 R1, , AN-
SYS, Inc.

[20] CORKE, Peter I. Robotics, vision and control: fundamental algorithms in MAT-
LAB. Berlin: Springer, 2011. Springer tracts in advanced robotics, v. 73. ISBN
9783642201431.

[21] KORTÜM, W., R.S. SHARP a A.D. DE PATER. Application of Multibody
Computer Codes to Vehicle System Dynamics: Progress Report to the 12th
IAVSD Symposium on a workshop and Resulting Activities. Society for Engi-
neering and Scientific Education. Oberpfaffenhofen, Cranfield, Delft, 1991.

[22] VERLINDEN, Olivier a Georges KOUROUSSIS. EasyDyn 1.2.4: C++ library
for the easy simulation of dynamic problems. Boulevard Dolez 31, 7000 Mons,
BELGIQUE, 2008.

[23] GOGU, Grigore. Mobility of mechanisms: a critical review. Mechanism
and Machine Theory [online]. 2005, 40(9), 1068-1097 [cit. 2020-05-12]. DOI:
10.1016/j.mechmachtheory.2004.12.014. ISSN 0094114X.

[24] VERLINDEN, Olivier. EasyDyn: Easy Simula-
tion of Dynamic Problems [online]. [cit. 2020-07-01].
https://hosting.umons.ac.be/html/mecara/EasyDyn/index.html

[25] MINAKER, B., n.d. Fundamentals Of Vehicle Dynamics And Modelling :B A
Textbook For Engineers With Illustrations And Examples.

[26] WAGNER, Petr, Jan KORDAS, Viktor MICHNA a Jiri KOTZIAN. Mo-
tion control for robots based on cubic Hermite splines in real-time.
IFAC Proceedings Volumes [online]. 2010, 43(24), 150-155 [cit. 2020-07-
06]. DOI: 10.3182/20101006-2-PL-4019.00029. ISSN 14746670. Dostupné z:
https://linkinghub.elsevier.com/retrieve/pii/S1474667015310041

71

Appendix A

A.1 Derivation of constraints

In this section the following relation is proved:

∂ib

∂qk
=
∂ iḃ

∂q̇k
. (A.1)

A.1.1 Relation of qk to body i

It is considered that qk relates to body i, then the following relations hold:

1b = xi.a · (ei.a − ej.b) /
∂

∂qk
, (A.2)

∂1b

∂qk
=

∂xi.a

∂qk
· (ei.a − ej.b) + xi.a ·

∂ei.a

∂qk
− xi.a ·

∂ej.b

∂qk︸ ︷︷ ︸
=0

,

=
∂xi.a

∂qk
· (ei.a − ej.b) + xi.a ·

∂ei.a

∂qk
, (A.3)

(A.4)

From the chapter 1 equation (2.27), the following relation also holds:

∂1ḃ

∂q̇k
= (δi.a,k × xi.a) · (ei.a − ej.b) + xi.a · di.a,k. (A.5)

72

Now it is a matter of proving two equations

∂xi.a

∂qk
= (δi.a,k × xi.a) , (A.6)

di.a,k =
∂ei.a

∂qk
. (A.7)

Equation (A.7) is directly fulfilled by (2.20). Equation (A.6) must be multiplied by
dqk
dt

:

∂xi.a

∂qk
= (δi.a,k × xi.a) / · dqk

dt
, (A.8)

∂xi.a

∂qk
· dqk
dt

=

(
δi.a,k ·

dqk
dt
× xi.a

)
. (A.9)

Using equations (2.26) and (2.22) and assuming that xi.a and ωi.a depend only on
the orientation angles then it is possible to write

∂xi.a

∂t
= ωi.a × xi.a, (A.10)(

∂xi.a

q6i−2

∂xi.a

q6i−1

∂xi.a

q6i

)
·

q̇6i−2q̇6i−1
q̇6i

 =

=
(
δi.a, 6i−2 δi.a, 6i−1 δi.a, 6i

)
·

q̇6i−2q̇6i−1
q̇6i

× xi.a. (A.11)

The previous equation must be met for each row,

∂xi.a

∂qk
· dqk
dt

=

(
δi.a,k ·

dqk
dt
× xi.a

)
. (A.12)

By the previous expression the prove is finished for constraints 1b, 2b and 3b, because
xi.a can be substituted by yi.a or zi.a.
It is still considered that qk relates to body i, then the followng relations hold:

4b = yi.a · zj.b /
∂

∂qk
, (A.13)

∂4b

∂qk
=
∂yi.a

∂qk
· zj.b + yi.a ·

∂zj.b

∂qk︸ ︷︷ ︸
=0

, (A.14)

73

which is with using the previous prove

∂4b

∂qk
= (δi.a,k × yi.a) · zj.b, (A.15)

which is directly equal to
∂ 4ḃ

∂q̇k
.

A.2 Matrix T0,i

It is also possible to get this matrix by a dot product

T0,i = Tdisp0,i ·Trotz0,i ·Troty0,i ·Trotx0,i, (A.16)

where matrices with overlines are defined as

Tdisp0,i =


1 0 0 x
0 1 0 y
0 0 1 z
0 0 0 1

 , (A.17)

(A.18)

Trotz0,i =


cosψ − sinψ 0 0
sinψ cosψ 0 0

0 0 1 0
0 0 0 1

 , (A.19)

(A.20)

Troty0,i =


cos θ 0 sin θ 0

0 1 0 0
− sin θ 0 cos θ 0

0 0 0 1

 , (A.21)

(A.22)

Trotx0,i =


1 0 0 0
0 cosφ − sinφ 0
0 sinφ cosφ 0
0 0 0 1

 . (A.23)

74

A.3 Class and methods for interpolation

#ifndef TABMOTIONINTERPOLATEH
#define TABMOTIONINTERPOLATEH

#include <iostream>
#include <iomanip>
#include <math . h>
#include <s t d l i b . h>
#include <EasyDyn/vec . h>

using namespace std ;

/**/
/* */
/* De f i n i t i on o f the c l a s s TabMotionInterpo la te */
/* */
/**/

// De f i n i t i on o f c l a s s vec (3D vec to r)
class TabMotionInterpolate {

private :
int NPointsTab ;
double *uTab ;
mth *T0ATab ;
vec *dATab , *deltaATab ;

public :
// Constructor : the t a b l e i s i n i t i a t e d from data s t o r ed in t e x t f i l e
// DataFi le . Other t ype s o f c on s t ru c t o r s cou ld be de f ined as w e l l
TabMotionInterpolate (const char* DataFileName) ;
// Des t ruc tor : so as to r e l e a s e a l l o c a t e d memory
˜TabMotionInterpolate () ;
// Function to ge t i n t e r p o l a t e d q u a n t i t i e s
void Get In t e rpo l a t edQuant i t i e s (double u , mth &Tout , vec &dout ,
vec &del taout , vec &ddoutdu , vec &ddeltaoutdu) ;

} ;
/***/

/* d e f i n i n g o f
doub le ui , ui1 ;
mth Ti , Ti1 ;
vec di , d i1 ;
vec d e l t a i , d e l t a i 1 ;

*/

/********************−−− i n t e r p o l a t i o n −−−********************/

75

// i n t e r p o l a t i o n o f ro ta t i on , d e l t a and dde l t a /du

t r o t Ri = Ti .R;
t r o t R1i = Ti1 .R;

t r o t Ri f = Ri . inv ()*R1i ; // t ranspose (Ri)*R1i ;

double theta = acos ((Ri f . r11+Ri f . r22+Ri f . r33 −1)/2) ;

vec r ;
r . x = 1/(2* s i n (theta))* (Ri f . r32−Rif . r23) ;

r . y = 1/(2* s i n (theta))* (Ri f . r13−Rif . r31) ;

r . z = 1/(2* s i n (theta))* (Ri f . r21−Rif . r12) ;

double k s i = (u−ui)/ (ui1−ui) ;

vec d e l t a i i = Ri . inv ()* d e l t a i ;
vec d e l t a i 1 i 1 = R1i . inv ()* d e l t a i 1 ;

t r o t Rrotaxis1 , Rrotaxis2 , Rrotax i s3 ;

fRro tax i s (d e l t a i i / d e l t a i i . l ength () ,
d e l t a i i . l ength ()* h10 (k s i)* (ui1−ui) , Rrotax i s1) ;
t r o t R1 = Rrotax i s1 ;

fRro tax i s (r , theta *h01 (k s i) , Rrotax i s2) ;
t r o t R2 = Rrotax i s2 ;

fRro tax i s (d e l t a i 1 i 1 / d e l t a i 1 i 1 . l ength () ,
d e l t a i 1 i 1 . l ength ()* h11 (k s i)* (ui1−ui) , Rrotax i s3) ;
t r o t R3 = Rrotax i s3 ;

t r o t R = Ri*R1*R2*R3 ;
Tout .R = R;

vec de l ta10 = d e l t a i ; // t ranspose (d e l t a i) but i t shou ld be co r r e c t
vec de l ta20 = Ri*R1* r ;
vec de l ta30 = Ri*R1*R2* d e l t a i 1 i 1 ;

de l t aout = de l ta10 *dh10 (k s i)+de l ta20 *dh01 (k s i)* theta /(ui1−ui)
+de l ta30 *dh11 (k s i) ;

76

vec dde l ta10 = de l taout *ddh10 (k s i)*1/(ui1−ui) ;
vec dde l ta20 = Ri*R1* r *ddh01 (k s i)* theta / ((ui1−ui)* (ui1−ui))+
(de l ta10 ˆ de l ta20) ;
vec dde l ta30 = Ri*R1*R2* d e l t a i 1 i 1 *ddh11 (k s i)*1/(ui1−ui)+
((de l ta10+de l ta20)ˆ de l ta30) ;

ddeltaoutdu = dde l ta10+dde l ta20+dde l ta30 ;

// i n t e r p o l a t i o n o f po s i t i on , d and dd/du

vec eAi = Ti . e ;
vec eAi1 = Ti1 . e ;

vec e = eAi*h00 (k s i)+eAi1*h01 (k s i)+di *h10 (k s i)* (ui1−ui)
+di1 *h11 (k s i)* (ui1−ui) ;
Tout . e = e ;

dout = eAi*dh00 (k s i)*1/(ui1−ui)+eAi1*dh01 (k s i)*1/(ui1−ui)+
di *dh10 (k s i)+di1 *dh11 (k s i) ;

ddoutdu = eAi*ddh00 (k s i)*1/ ((ui1−ui)* (ui1−ui))
+eAi1*ddh01 (k s i)*1/ ((ui1−ui)* (ui1−ui))
+di *ddh10 (k s i)*1/(ui1−ui)+di1 *ddh11 (k s i)*1/(ui1−ui) ;

77

	Introduction
	Goals and structure of the thesis
	State of the art

	Suspension kinematic analysis
	Methodology
	Transformation matrix
	Definition of kinematic constraints
	Constraint equations evaluation
	Derivative of constraint equations

	Solving equations
	Numerical solution
	Jacobian matrix

	Application example
	Results and discussion

	Kinematic interpolation
	Input data
	Cubic Hermite splines
	Interpolation of position
	Interpolation of rotation
	Error analysis
	Example for the verification of the interpolation
	Double wishbone suspension
	McPherson suspension
	5 Link suspension

	Conclusion and recommendations

	Implementation of kinematic interpolation under EasyDyn
	Approach
	Results
	Conclusion

	EasyDyn model verification and application on real example
	Comparison of motion in gravity field
	Comparison of motion with external forces
	Discussion

	Conclusion
	
	Derivation of constraints
	Relation of qk to body i

	Matrix T0,i
	Class and methods for interpolation

