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Abstrakt
Tato práce se zabývá aplikací isogeometrické analýzy na úlohy nestlačitelného turbulent-
ního proudění. Proudění newtonovské nestlačitelné tekutiny je popsané pomocí Navie-
rových–Stokesových rovnic. Navzdory rychlému vývoji numerickým metod pro přímou
numerickou simulaci (DNS - Direct Numerical Simulation) proudění a zejména simulaci
pohybu velkých vírů (LES - Large Eddy Simulation) jsou středované Navierovy–Stokesovy
rovnice (RANS – Reynolds–Averaged Navier–Stokes) stále základním nástrojem pro num-
erické řešení turbuletního proudění. Důvodem jsou nízké výpočetní nároky. Celé spektrum
turbulentních vírů je totiž modelováno. Soustava středovaných rovnic není ale uzavřená a
musí být doplněna takzvaným modelem turbulence.

Řešení konvektivně dominantních úloh obsahuje mezní vrstvy, což jsou úzké oblasti,
ve kterých se prudce mění hodnota řešení. Tyto mezní vrstvy lze je ovšem velmi obtížně
vyřešit vzhledem k tomu, že je šířka mezní vrstvy často užší než je velikost výpočetní sítě.
Výsledným efektem je značný nárůst numerických (nefyzikálních) oscilací, které způsobují
ztrátu stability a přesnosti diskrétního řešení. Našim cílem je tedy zajistit stabilitu řešení
nestlačitelného proudění při vysokých Reynoldsových číslech, která se vyskytují v reálných
aplikacích.

K redukci numerických oscilací se používají metody jejichž cílem je vylepšení stability
diskrétního řešení, ale bez ztráty přesnosti. Přístupy, které byly původně navržené pro
metodu konečných prvků, využíváme pro isogeometrickou diskretizaci. SUPG (stream-
line upwind/Petrov-Galerkin) a SOLD (spurious oscillations at layers diminishing) metody
jsou standardní přístupy používané pro metody založené na spojité Galerkinově metodě.
Stabilizační metody přidávají umělou vazkost, jejíž množství regulujeme vhodnou volbou
stabilizačního parametru. Přestože existuje mnoho variant stabilizačních parametrů, žádná
z nich není optimální pro obecnou úlohu. V této práci se věnujeme studiu vlivu různých
stabilizačních parametrů na výsledné numerické řešení.

Stabilizační metody nejprve aplikujeme na obyčejnou časově závislou advekčně difúzní
rovnici řešenou na víceplátových oblastech s pravidelnou i nepravidelnou křivočarou sítí.
Závěry a pozorování z této části jsou aplikované na mnohem obtížnější časově závislý
advekčně difúzně reakční turbulentní model s dominantním advekčním a reakčním členem a
nekonstantními koeficienty. Numerické experimenty prokazují vliv zvoleného stabilizačního
parametru a také vliv třídy spojitosti bázových funkcí na výsledné diskrétní řešení.
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Abstract
This doctoral thesis deals with application of isogeometric analysis to incompressible turbu-
lent flow problems. The Navier–Stokes equations are the basis for computational modeling
of the flow of an incompressible Newtonian fluid. Despite the development of the numeri-
cal methods for direct numerical simulation and especially simulation of the large eddies,
Reynolds–Averaged Navier–Stokes (RANS) approach based on the time-averaging of the
Navier–Stokes equations is the most common method to describe turbulent flow so far.
The reason is the lower memory requirements since the whole range of the scales is mod-
eled and only the effect of the turbulence on the mean flow behavior is considered. The
fundamental problem of the solution of the RANS equations is to close the problem by a
model of turbulence.

Since IgA is continuous Galerkin-based method, the numerical solution of advection
dominated problems is usually polluted by spurious (unphysical) oscillations, which causes
loss of accuracy and stability. This type of problems contain sharp layers, where the
solution gradients are very large. These layers usually arise from the discontinuous, non-
smooth or rapidly changing data, which are typical for the turbulent flow, or generally for
advection dominated problems. We focus on keeping the stability of the solution at high
Reynolds numbers, which is significant in practical applications.

The stabilization techniques are investigated which improve the stability, however, with-
out degrading accuracy. The approaches originally intended for the finite element method
are employed for isogeometric discretization including the streamline upwind/Petrov-Galerkin
(SUPG) method and the spurious oscillations at layers diminishing (SOLD) method. The
amount of the added numerical diffusion is controlled by a suitable choice of the stabi-
lization parameter. However, the formulas for the parameters are not optimal for general
problem and hence the influence of various parameters is studied.

We employ the stabilization methods first for a simple time-dependent advection-
diffusion equations on multipatch domains with both regular and irregular curvilinear
meshes. The observations are applied to more complicated advection–reaction dominated
system of unsteady advection–diffusion–reaction turbulence model with non-constant co-
efficients. The rate of stabilization is not affected only by the parameters of the given
stabilization method but also by the choice of the regularity of the basis functions.
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1 Introduction

Fluid mechanics is the study of fluids, motion of the fluid and the forces acting on them.
This science belongs to the most challenging areas of research (in both the theory and the
numerical implementation). The development of the fluid mechanics is influenced by the
requirement of the modern technologies for deeper understanding of the behavior of the
real fluids and the most accurate numerical simulations. Some of the fields of application
are meteorology, biological sciences (e.g. the study of blood flow), mechanical engineering
(e.g. marine and wind/water turbine engineering), astrophysics.

Computational fluid dynamics (CFD) is a branch of fluid mechanics that uses numerical
mathematics to analyze and solve problems that involve fluid flows. Modern engineering
industry requires to improve numerical simulations to achieve as real behavior of the fluid
as possible. Therefore, this provides higher and higher demands on the mathematical re-
search to develop more sophisticated numerical methods with high accuracy and reasonable
computational cost. However, the fluid flow is mostly turbulent in engineering applications,
which is still very difficult to simulate, and special attention has to be invested if we are
interested in turbulent fluid flow.

There is no clear and accurate definition of the turbulence and even the current re-
searchers differ in their description of the turbulence and they follow distinct authors,
[32, 116, 10]. The turbulence is the property of the flow such that the turbulent flow con-
sists of the whole spectrum of the turbulent eddies, [30]. The motion of the fluid particles
is unorganized, the trajectories and eddies intersect each other, which leads to chaotic flow
with rapid variations of the velocity and pressure. Even if the flow is chaotic, the same
structures and flow characteristics of the turbulent flow arise for unchanging boundary
conditions. As a result, the turbulence can be considered as quasi-deterministic process
and the motion of the fluid is supposed to be described by the Navier–Stokes equations
(see e.g. [116, 12, 10, 114, 105, 37]).

The Navier–Stokes equations are used to model wide range of problems such as weather,
water and some air flow and study of blood flow. System of (d+1) equations has to be solved
to simulate fluid flow in d-dimensional space. These equations are intensively studied from
both a numerical and a theoretical point of view. The existence, uniqueness and stability
of weak solution is not complete, because the uniqueness of the weak solution is not proved
for three dimensional nonstationary problem on arbitrarily long time interval for any initial
condition, [37, 17].

The turbulent flow can be simulated by solving directly the Navier–Stokes equations for
the given boundary and initial conditions, which is known as direct numerical simulation
(DNS). However, it means that the whole range of the scales (sizes of the eddies) must
be resolved up to the smallest scales of the flow [116, 84]. Then the number of grid
points in spatial discretization has to be proportional to Re9/4, where Re is the Reynolds
number, otherwise the simulation becomes unstable. The computer storage and runtime
requirements increase with increasing Reynolds number. Thus, the direct approach can be
applied only for low Reynolds number flows in simple geometries.
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Turbulent flow is extensively studied in engineering practice and big effort is made to
produce techniques which describe turbulent flow for a wide range of applications of the
external and internal flows. The most common approaches are RANS (Reynolds Average
Navier–Stokes) and LES (Large Eddy Simulation).

RANS approach is probably the most widely used method for simulation of the tur-
bulent flow. All turbulent scales are modeled using RANS, [32, 82, 116]. It is based on
Reynolds decomposition, i.e. the velocity and pressure variables are decomposed into a
mean (time–averaged/ensemble averaged) component and the fluctuating component and
the Navier–Stokes equations are integrated over a time interval. The attention is focused
only on the mean flow and the effects of the turbulence on the mean flow and the turbu-
lent fluctuations are not resolved in detail, which is often sufficient in practice. The time–
averaging (or ensemble averaging [82]) causes that extra unknown terms appear (Reynolds
stresses).

Boussinesq hypothesis is usually applied to approximate the Reynolds stresses (cf.
[116, 32, 39, 40, 90]), which gives arise to the turbulence models. Various turbulence
models have been proposed to satisfy different types and conditions of the fluid flow. The
improvement and development of new turbulence models are still the subject of extensive
research resulting in increasing accuracy of the turbulent flow predictions, which is closely
related to the development in computer technology. In modern engineering applications,
the commonly used turbulence models are e.g. the one–equation Spalart–Allmaras and
two–equation SST k − ω turbulence models, [116, 71, 96].

The third mathematical model is the LES approach, which can be classified between
DNS and RANS methods considering the memory requirements. The LES equations are
derived from the Navier–Stokes equations such that only the motion of the large eddies
is simulated. Small eddies are filtered and their motion is modeled by some subgrid–scale
model (SGS), [10, 116].

Another approaches have been developed to avoid the problems of the three above
mentioned methods. The grid refinement is required near the walls for, say, more accurate
LES simulations, which makes this approach barely applicable even on the largest super-
computers so far. Therefore, LES remains still very limited in practice. The so called
hybrid DES (Detached eddy simulation) has been developed, [33, 115, 90]. Because of
time consuming LES simulation, RANS approach is employed in near wall regions and the
rest of the flow is simulated by LES. The RANS method enables the use of coarser grid
near the boundary, which reduces the computational cost of DES. However, the difficulty
of DES is to ensure the smooth transition from RANS to LES model.

It was already mentioned that the classical LES is derived by the space filtering of
the Navier–Stokes equations with an explicit SGS model. Then the continuous problem is
discretized using some numerical method. Contrarily, the approach of a relatively new ILES
(Implicit Large Eddy Simulation) method is different, [43, 80]. The numerical method is
applied to the original equations (unfiltered Navier–Stokes) and the truncation error of
the discretization is then used to model the effects of the unresolved scales. Hence, the
additional SGS model is no longer needed. The numerical dissipation resulting from the
discretization scheme is referred to as an implicit SGS model. Although, the approach of
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ILES is simple, and can be applied for general problems, it is not commonly used in the
turbulence modeling community so far, probably because of the lack of understanding of
the relation between the numerical scheme, the SGS model and the LES technique. ILES
approach was applied with a number of different schemes (e.g. finite volume methods, finite
difference methods, spectral methods, discontinuous Galerkin method etc). Simulations
based on ILES give satisfactory results with accurate predictions, but the computational
requirements are high similarly to the classical LES method and hence the application of
ILES is limited to low Reynolds number flows.

Variational MultiScale (VMS) method [51, 10, 11] avoids some problems of LES, e.g.
the definition of the appropriate boundary condition for the large scales, [51, 56]. The
VMS simulation is based on the variational projections of the large scales into appropriate
spaces. The advantage is that the VMS approach covers both turbulence modeling and
stabilization, which has to be added separately in case of RANS or LES if necessary. But
this approach is relatively new and it is still the subject of research.

An important issue is the numerical treatment of the equations in regions near the
boundary for the simulation of the turbulent flow. The wall–functions and the low–
Reynolds number method are two possibilities for the near wall treatment, [14]. The
wall function approach is based on the so called law of the wall, [116, 32]. The idea is to
apply the near wall behavior of the turbulent variables described by algebraic expressions
instead of resolving it. The advantage is that a coarser grid can be used and thus the lower
memory requirements are needed. On the other hand, the equations are solved through
all the boundary layers using low–Reynolds number method and thus a very fine grid is
necessary near the solid walls.

The study of the weak imposition of Dirichlet boundary conditions is introduced in
[7]. The Dirichlet conditions are not satisfied explicitly, but extra terms are added to the
variational formulation to enforce the conditions weakly as Euler–Lagrange conditions. It
has been shown that the weak imposition of Dirichlet boundary conditions gives similar
results to the wall function technique, [7]. The idea was later modified, [8], as a combi-
nation of weakly imposed boundary conditions with residual based turbulence modeling.
Moreover, weakly imposed boundary conditions provide more accurate results compared
to the classical approach, [8]. Another advantage is the ability to reduce the numerical
oscillations, [7, 8].

The development of the numerical discretization methods for the fluid flow simulation is
fundamental in practice. The goal is to find a numerical method, which is the most efficient,
and a numerical solution of the given problem, which is the most accurate. There are many
numerical methods which can be applied to approximate the solution of incompressible fluid
flow, for example finite difference methods, finite volume methods, finite element methods,
spectral methods etc. Finite difference method (FDM) [101, 83] is one of the oldest, it is
simple to implement, but it is rarely applied for fluid flow simulation because of the difficult
employment to the complex geometries. Also, very fine grid usually has to be applied to
get sufficient accuracy.

On the other hand, finite volume method (FVM) is a common approach and it is
frequently used in (commercial) CFD codes because it follows the continuous conservation
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laws of physics, see e.g. [116, 101]. FVM is also easy to implement, it requires only low
memory, even in the case of turbulent simulation where finer grids are used. Further, FVM
is robust and flexible. One of the drawbacks is that too much diffusion can be added using
methods of lower (first and second) order. However, if the high-order FVM is employed,
the size of reconstruction stencils is increasing, which becomes computationally expensive.

The finite element method (FEM) [101, 83] is also commonly used for solving fluid flow
simulation. Nevertheless, this method is not so popular in the CFD community because
of higher memory requirements [104]. FEM is able to deal relatively easily with problems
that are defined on complex geometries. This method is one of the Galerkin approaches
which are based on weak formulation of the problem and polynomial approximation of the
solution is usually used.

The discontinuous Galerkin method (DG) is widely used in practice, e.g. for solving
compressible and incompressible flow with high Reynolds numbers, but also for the shallow
water equations, turbomachinery or magneto–hydrodynamics, [23, 22, 5, 87]. The DG
methods combines features of the Galerkin finite element method and the Riemann solver
based approach (applied to discontinuous piecewise polynomial approximations). Thus, the
solution is represented as a FEM approximation within each element and the advection
terms are resolved similarly to FVM. It results in a high order accurate solution. The
DG method also benefits in its ability to handle with the complicated geometries, hanging
nodes and nonconforming meshes. Besides, the importance of this method is appreciated
in situations with steep gradients or shocks.

Isogeometric analysis is a recently developed spline modification of the finite element
method based on B–spline/NURBS objects (cf. e.g. [50, 27, 54]). The triangular/tetra-
hedral meshes typically used in FEM are replaced by meshes composed of parts of NURBS
surfaces/volumes representing a computational domain. This is suitable for consequent
computations, because it allows to avoid the time–consuming step of generating triangu-
lar/tetrahedral meshes. Moreover, since the discretization of a computational domain is
always exact, this approach reduces errors in the computational analysis and it is also
suitable for formulation of automatic shape optimization algorithms.

Another approaches which offer new possibilities for turbulent flow computations can
be introduced, e.g. Johnson and co-workers [46, 48] use an adaptive finite element method
with a duality–based a posteriori error control to predict drag and lift accurately with slip
boundary conditions. Then the thin boundary layers do not have to be resolved, which
leads to relatively low memory requirements. This theory follows from their resolution of
the d’Alembert’s paradox, which is in contradiction to commonly accepted Prandtl’s sug-
gestions that the drag and lift emanate from viscous boundary layers even with vanishing
viscosity.

The disadvantage of all the mentioned discretization methods is that they suffer from
two main sources of instabilities. One is an incompatibility of pressure and velocity such
that the discretization of velocity and pressure has to satisfy special requirements. Indeed,
the so called inf–sup condition (or Ladyženskaja–Babuška–Brezzi condition (LBB)) has to
be fulfilled to guarantee the stability, [116, 36, 35, 104, 12]. Not satisfied LBB condition
leads to instability which usually appears as oscillations, primarily in the pressure approx-
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imation. In practice, it is common to apply an extension of the classical Taylor–Hood
finite elements (see e.g. [116, 36, 35]) for the isogeometric analysis to satisfy the inf–sup
condition (106), i.e., to choose an unequal order of the spatial discretization for the velocity
and pressure approximations, [15, 89, 17]. If the approximations of the equal order are
rather used, the additional stabilization, the Pressure Stabilized/Petrov–Galerkin (PSPG)
method [110, 12], has to be implemented.

The other source of instability is the possible dominance of the advective term over
the diffusion term in the problem of Navier–Stokes equations, i.e. in case of the turbulent
flow. Also, the system of RANS equations is closed with the turbulence model, which is
the advection dominated system of time–dependent advection–diffusion–reaction equations
with the source term. The reaction term can be also significant in some parts of the domain
and thus the problem becomes reaction dominated, too.

The advection dominated phenomena are characterized by skew-symmetric differential
operators and the numerical solutions of this type of problems contain sharp layers (contact
discontinuities, shock waves, boundary layers). The width of the sharp layers is usually
smaller than the mesh size and thus the layers cannot be resolved properly. If the standard
finite difference method, finite volume method or continuous Galerkin method are used,
it leads to unwanted spurious (nonphysical) oscillations in the numerical solution, which
causes loss of accuracy and stability.

Many stabilization techniques have been proposed to remove (or to diminish) the spu-
rious oscillations without leading to excessive smearing of discontinuities or layers. Linear
and nonlinear schemes are distinguished (we call the scheme linear if it is linear and applied
to a linear partial differential equation).

There are many FD and FV linear approaches, e.g. upwind, QUICK (Quadratic Up-
stream Interpolation for Convective Kinematics) and QUICKEST (QUICK with Estimated
Streaming Terms) schemes (cf. e.g. [116, 88]). Other schemes are based on the continuous
or discontinuous Galerkin methodology (DGFEM, SUPG, GLS, CIP, LPS etc.). Never-
theless, linear schemes are neither monotone nor positive (we recall the Godunov barrier
theorem for the pure advection case).

The nonlinear schemes based on FDM, FVM and DGFEM are adaptive. They are
solution dependent and based on different techniques (flux limited schemes, flux correc-
tion transport, slope limited schemes, TVD schemes, MUSCL scheme, ENO and WENO
schemes [88, 4]). There are also many nonlinear stabilization techniques used within the
continuous Galerkin method. These techniques are called spurious oscillation at layer
diminishing (SOLD) schemes, [59, 60, 57]. The aim of these approaches is to remove
spurious oscillations in the multidimensional case (by adding an stabilization term to a
linear stabilization scheme). These nonlinear stabilizations generally improve solutions ob-
tained by linear methods, but they are not usually able to remove oscillations completely.
A typical representative of the SOLD method is crosswind artificial diffusion (cf. e.g.
[58, 59, 18, 28, 24]).

To obtain an oscillation-free solution, a genuinely nonlinear scheme has to be used (i.e.,
schemes that are adaptive and nonlinear even in one dimension for linear problem), which
is e.g. the flux-corrected transport (FCT) as the most common scheme, see [72, 68, 86, 55].
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Another important issue is the time discretization of the unsteady Navier–Stokes or
RANS problem. However, the turbulent motion of the fluid is very fast and it changes
chaotically together with the eddies of various length scales. Thus, the turbulent simulation
requires very accurate approximation in time. The goal is to apply the time discretization
method which gives solution of certain level of precision in acceptable computational time.

The explicit Euler method is the simplest and fastest time discretization method, which
is however limited by the small time step sizes resulting in high number of iterations.
Moreover, the continuity equation cannot be exactly satisfied using the explicit method,
which leads to increasing error with the number of time steps, [17]. The implicit Euler and
semi-implicit Crank–Nicholson methods are more popular for the practical applications,
[17, 105]. The advantage is a possible choice of the higher time step size. But the resulting
discrete problem is nonlinear. Crank–Nicholson is a second order method which yields the
higher order of convergence, [17].

The so called operator splitting methods have been developed to ensure unconditional
stability and high accuracy (cf. e.g. [17, 34, 29, 35]). The aim of these methods is to de-
couple the problem associated with the nonlinear advective term, into several subproblems
which are easy to solve. The standard operator splitting methods are two–stage scheme
(Peaceman–Rachford scheme), [34], and three–stage scheme (θ–scheme), [17, 105]. The
two–stage scheme is a second order accurate solving one nonlinear problem and one gener-
alized Stokes problem. However, it is not asymptotically stable. The three–stage variant
eliminates this difficulty and it becomes unconditionally stable under certain set of param-
eter θ such that two generalized Stokes problems and only one nonlinear problem have to
be solved.

The spatial and time discretizations of the Navier–Stokes equations usually lead to the
nonlinear system of equations. Newton’s and Picard’s methods are two classical lineariza-
tion procedures, [35, 99, 75]. Solving the Navier–Stokes problem thus requires nonlinear
iteration such that linearized problem is solved at every step. It produces a sequence of
approximate solutions which converge to the solution of the weak formulation. Because the
iteration process is applied, an initial guess has to be chosen. The Newton’s method gives
quadratic convergence, but the disadvantage is that the initial guess needs to be closer and
closer to the exact solution as the Reynolds number increases, [35].

The linearized system of equations can be then solved by direct method in each iteration
step, [99, 75]. However, simulation of turbulent flow implies large number of degrees of
freedom and the system thus involves thousands (or even millions) of equations. Although
direct methods are robust and accurate they are almost not feasible, especially in 3D.

The alternative is to apply iterative methods which approximate the solution with
required accuracy. There are three main classes of iterative methods: stationary itera-
tive methods, nonstationary iterative methods (especially Krylov subspace methods) and
multilevel iterative correction techniques including the multigrid method, [35, 99]. The
stationary iterative methods form simple process which is repeated in each iteration. Al-
though these methods are simple to derive and implement, the convergence is guaranteed
only in the limit case, [99]. The main representatives are the Jacobi method, the Gauss–
Seidel method or the SOR relaxation method, [75].
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On the other hand, Krylov subspace methods are commonly used for turbulent flow
problems. They form special basis (Krylov sequence) as the initial residual times powers
of matrix of the system, [99, 108, 75, 77, 35]. The approximate solution minimize the
residual in appropriate norm according to the formed Krylov subspace basis. The typical
representative is the conjugate gradient method (CG) for symmetric positive definite ma-
trix. Other Krylov methods are the generalized minimal residual method (GMRES) and
the biconjugate gradient method (BiCG) for indefinite problems. The GMRES method
is usually restarted after several iterations such that the last solution from the previous
process is used as a new initial vector. The reason is the increasing storage requirements
and the loss of the orthogonality with the higher number of iterations, [118].

The Navier–Stokes system is solved usually with the Krylov subspace methods which
require a good preconditioner to achieve fast convergence in practice. The reason is the
dependence of the Krylov subspace methods on the spectrum of the system matrix. Be-
cause the discretization of Navier–Stokes equations leads to a system of equations with
nonsymmetric matrix, iterative methods such as preconditioned GMRES need to be used,
[35]. One type of preconditioners are the algebraic preconditioners, based on an ILU fac-
torization, [35, 99]. However, because the absence of the pressure variable in the continuity
equation causes zero block in the complete matrix of the system, special attention has to
be invested to avoid the breakdown of ILU.

The recent research tends to investigate block preconditioners, as another class of pre-
conditioners, which are suitable for Navier– Stokes problem, [100, 66, 99]. In general, the
block preconditioners are based on separation of the velocity and pressure. The conver-
gence depends on the approximation of the Schur complement which arises from the LDU
decomposition of the complete system matrix. The combination of block factorization with
various approximation of the Schur complement leads to methods such as GCR precon-
ditioner, LSC preconditioner and a suitable approximation of Schur matrix provides the
commonly used SIMPLE preconditioner, [35, 99].

To sum up, large system of linear equations must be solved in each iteration of the
linearized Navier–Stokes problem, which leads to time–consuming process. Moreover, the
continuity equation is not dependent on the pressure variable at all. Thus the so called
SIMPLE (Semi–Implicit Method for Pressure–Linked Equations) was developed, originally
for FVM [93], to separate problem for velocity and pressure, [66, 94, 116]. A modified
variant is e.g. SIMPLER (SIMPLE Revised) or MSIMPLER (Modified SIMPLER), [119],
for which the experiments provide better convergence behavior. Finally, PISO (Pressure
Implicit with Splitting of Operator) algorithm is an extension of SIMPLE for nonstationary
problems, [52, 53, 116].

SIMPLE-like algorithms are iterative. First, the momentum equation is solved as a
predictor to compute velocity, where pressure from the previous iteration step is used.
However, velocity field does not satisfy the incompressibility condition. The continuity
equation is rewritten and the so called pressure correction equation is derived to be used
as a correction step. The pressure variable is computed solving the pressure correction
equation which leads to the correction of velocity afterwards, i.e. the correction step makes
the predicted velocity field satisfying the continuity equation. This two step procedure is
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repeated until the solution converges. However, the convergence is often not achieved
and thus the underrelaxation is applied for velocity and pressure which leads to slow
convergence, [66]. The scheme is still popular and is used in many commercial packages.
Nevertheless as mentioned above, the SIMPLE-like methods can be used as preconditioners
for the Krylov methods, which results in faster convergence, [103, 99].

The work of this thesis is motivated by the problem of automatic shape optimization
of runner blades in water turbines in order to improve utility quantities as the turbine
efficiency. The flow in the hydraulic turbine is assumed to be very fast and thus the
turbulent behavior of the flow is expected. Isogeometric analysis is a very powerful tool for
the optimization processes since it gives the possibility to represent the geometry exactly.
Moreover, it allows to avoid the time-consuming step of mesh generation and manual
treatment of the mesh refinement.

RANS equations closed with the SST turbulence model are solved for the numerical
modeling of turbulent incompressible fluid flow. The backward Euler method is applied
for the time discretization and the obtained nonlinear discrete problem is linearized using
the Picard’s method. The resulting linear system of equations is solved by direct method
in each iteration.

If the SST turbulence model is employed, the wall distance (needed for the evaluation
of the coefficients of the SST model) is computed by solving additional Poisson equation
and the wall distance is then approximated using an algebraic expression.

There are not many studies aimed at modeling turbulent incompressible fluid flow using
isogeometric analysis. Most of them are focused on the use of LES or VMS techniques,
[6]. There are few papers devoted to the isogeometric analysis of the RANS equations
supplemented by a two–equation turbulence model, e.g. [92]. More studies devoted to the
turbulent compressible fluid flow deal with the combinations of the RANS equations and
discontinuous Galerkin isogeometric approximation, [5, 64].

The extension of the classical stabilization approaches for finite elements are investi-
gated employing isogeometric analysis with higher order B-spline basis functions on mul-
tipatch domains and irregular curvilinear meshes including local refinement (within the
meaning of tensor product refinement).

The numerical difficulties of the advection dominated problems are introduced for a
simple advection–diffusion (AD) equation. The SUPG and SOLD stabilization methods
are formulated and employed for the AD equation first. Then, the observations are applied
to stabilization of the more complicated advection dominated turbulence model. But the
study has to be extended since the turbulence model is also reaction dominated. The
numerical experiments are presented in two–dimensions, for which the solution of the
RANS equations usually provides satisfactory results (cf. e.g. [40]).

The fluid flow simulation is obtained from an in-house isogeometric incompressible
flow solver implemented in a framework of the G+Smo (Geometry + Simulation modules)
library for both 2D and 3D problems. G+Smo is an open source, object-oriented, templated
C++ library.

8



2 Incompressible fluid dynamics

Liquids, gases and plasmas are the states of matter which are referred as fluids. Fluids
do not have their own permanent shape because of their large particle motions, but they
deform (flow) under any applied forces. Shape of liquids is dependent on the container in
which they are located, compared to the gasses, which fill the entire space of any container.

Fluid flow is concerned by a discipline called fluid dynamics, which describes the proper-
ties of the fluid flow, such as velocity, pressure, density and temperature, through empirical
laws of conservation. The mentioned fluid flow properties are generally functions of space
and time, i.e. consider a fluid moving in a domain Ω ⊂ Rd with boundary ∂Ω during
any time interval [0, t̄], where d is dimension of the domain and t̄ > 0 is an upper bound
of the time interval of interest. Then u = u(x, t) = (u1(x, t), . . . , ud(x, t)), p = p(x, t),
ρ = ρ(x, t), T = T (x, t) denotes the velocity, pressure, density and temperature of the
fluid flow at every position x = (x1, . . . , xd) ∈ Ω and time t ∈ (0, t̄).

The flow velocity u of a fluid is a vector field, which describes the motion of the fluid
in the direction of each axis of the coordinate system. The flow speed is then the length
of the flow velocity vector ‖u‖.

The density of the fluid ρ is defined as its mass per unit volume. As considered above,
the fluid density is generally function of space and time, because the density of any fluid
varies with changes in pressure or temperature. In this context, we are talking about
compressibility of the fluids, which is a measure of relative volume changes, i.e. changes of
density ρ of the fluid. All fluids are to some extent compressible, [116, 20]. Gasses can be
easily compressed, however, the compressibility of liquids is so small that the changes in
density are negligible at a particular temperature and thus liquids are generally considered
as incompressible fluids with constant density. The flow of any incompressible fluid is then
considered as the incompressible flow. On the other hand, the flow of the compressible
fluids (gasses in our considerations) is not always compressible. If the speed of the fluid is
low enough, the density of the fluid remains nearly constant and the flow of the compressible
fluid can be also considered as the incompressible flow. But for higher speeds, the density
of the fluid locally changes, the flow becomes more complicated and the compressible flow
is observed.

The compressibility of a flow is usually related to the value of the so called Mach num-
ber, [116]. Mach number is a dimensionless quantity representing the ratio of the flow
velocity to the local speed of sound. The flow of a compressible fluid can be approximated
as incompressible at low Mach numbers, whereas compressible flow is considered at higher
Mach numbers. The limit of the Mach number between the compressible and incompress-
ible flow is not easy to determine, because the limit varies with temperature for example
and thus the limit must be determined for every case separately. However, we restrict to
the incompressible fluids in the rest of the thesis as our aim is to study the flow of the
liquids and thus more details about the compressible flow can be found e.g. in [116, 17].

The so called Bernoulli’s principle is valid for incompressible flows. It describes the
change of the fluid pressure p in response to the change of the flow speed. Specifically, the
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fluid pressure decreases when the flow speed increases, which is mathematically expressed
by

1

2
ρv2 + hρg + p = constant, (1)

where v is the fluid flow speed at a point, h is the elevation of the point of a reference
plane and g is the gravity acceleration. In other words, the conservation of energy holds,
i.e. the sum of the kinetic energy, potential energy and pressure energy remains constant.
The Bernoulli’s equation can be modified for the compressible flow. For more details about
the Bernoulli’s principle, the reader is referred to [116, 47].

Another important property of fluids is the viscosity (specifically, the dynamic viscosity
denoted by µ), which represents the resistance of the fluids to deformation caused by the
shear stress denoted by τ . The shear stress acts tangentially to the surface and it arises
when some particle layers of the fluid are moving at different velocities than another layers
of the fluid. An obvious example is the slower movement of the fluid particles near a wall
of the domain, compared to the faster fluid flow far from the wall. Thus, the viscosity
can be simply expressed as friction between the particles of the fluid and the shear stress
is needed to overcome the friction between the particle layers to keep the fluid moving.
Informally, we talk about the thickness of the fluid, e.g. honey is thicker than the water,
thus honey has higher viscosity than water.

Fluids with nonzero viscosity are called viscous, on the other hand, a fluid with zero
viscosity is called inviscid (also known as non-viscous or ideal) fluid that has no resistance
to the shear stress. Inviscid fluids are usually known as superfluids. The concept of
the superfluids was created at the theoretical level, but this state was relatively recently
discovered for helium cooled below a certain temperature.

In fluid dynamics, it is common to work with a dynamic viscosity which is defined as
the ratio of the dynamic viscosity ν to the density ρ

ν =
µ

ρ
. (2)

A fluid is said to be Newtonian fluid if it behaves according to the Newton’s law of viscosity,
which describes linear relation between the shear stress τ and the strain rate denoted as e
and defined by

e =
1

2

(
∇u + (∇u)T

)
. (3)

Strain rate describes the rate of the deformation of the fluid over time, see [20, 90, 116].
Note that the strain rate is usually defined as tensor by

eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (4)

Then the Newton’s law of viscosity of the incompressible fluid is written in the tensor form
as

τij = 2µeij (5)
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and the matrix form
τ = 2µe = µ

(
∇u + (∇u)T

)
, (6)

where viscosity µ is the proportionality constant. An example of the Newtonian fluid is the
water with a constant viscosity. The second group of fluids are non-Newtonian fluids, which
does not follow the linear Newton’s law of viscosity, but the shear stress is dependent on the
strain rate non-linearly. Thus, the viscosity of the non-Newtonian fluids is not constant,
but non-linear or it is dependent on deformation history or even on time, see [116, 47].

Generally, we assume unsteady flow, i.e., the quantities of the fluid are time dependent,
whereas they do not depend on time at any point in the steady flow. In practice, most of
the flows are unsteady. But the cyclic behavior can be often observed and the steady flow
can be usually assumed after initial unsteady flow development, if the boundary conditions
and source term are steady.

Assume a fluid with high viscosity that flows with very low speed. If the trajectories
of the fluid particles are well ordered and they move in parallel layers without mixing, a
laminar flow is observed. In the fluid dynamics, the laminar flow occurs when the viscous
(or friction) forces dominate the inertial forces. The ratio of the inertial and viscous forces
is know as the Reynolds number, which is expressed by, see e.g. [35, 10, 17],

Re =
UL

ν
, (7)

where L is a characteristic length scale of the domain Ω and U is the characteristic velocity
scale (mean velocity). The characteristic length scale is size of the geometry also called
as a characteristic dimension. The characteristic length scale is usually determined as the
internal diameter. For example of the flow in the pipe, it is the pitch of the pipe walls and
for the flow over an obstacle, L is the width of the obstacle. Certain rules are also applied
for more complicated shapes of the geometry.

The Reynolds number is thus a dimensionless quantity of the flow that is used to predict
the behavior of the fluid flow. Low Reynolds numbers, where viscous forces are dominant,
characterize laminar flow. If the inertial forces acting on the fluid are big enough compared
to the viscous forces that dampen the disturbances and instabilities of the flow and the
so called critical Reynolds number is exceeded, the laminar flow becomes a turbulent flow,
[32, 37], which is the result of the random swirls, the turbulent eddies.

However, no universal limits of the critical Reynolds number exist. For instance, the
flow in the pipe is laminar for Re < 2100 and it becomes turbulent with the Reynolds
number greater than 4000. The critical Reynolds number that characterize the transition
between the laminar and turbulent flow thus occurs at 2100 < Re < 4000 for the pipe
flow. Another example is the flow over an obstacle, for which the laminar flow exists up
to Re ≈ 20.

The majority of the flows are turbulent in the nature or in the engineering applications,
and the turbulent behavior occurs in all the fluids if the inertial forces dominate over the
viscous forces as already mentioned. The turbulence is the property of the flow (not of the
fluid) such that the turbulent flow consists of the whole spectrum of the turbulent eddies
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[30] whose sizes are known as the turbulent scales. The motion of the fluid particles is
unorganized, the trajectories and eddies intersect each other, which leads to chaotic flow
with rapid variations of the velocity and pressure.

A number of experiments of the laminar and turbulent flows in simple geometries were
illustrated in the literature, see e.g. [30]. It was shown according to the experiments
that the averaged velocity distributions of the turbulent flow highly correspond to the
laminar steady case. The averaged variables are called mean component of the turbulent
flow. Moreover, a chaotic part of motion was found, called fluctuating component. Thus
in general, the turbulent flow is considered as the sum of the mean ū(x) and fluctuating
u′(x, t) components, i.e.,

u(x, t) = ū(x) + u′(x, t). (8)

This way of decomposition of the flow variables is known as a statistical approach, which
is a natural way as the turbulence is unsteady, chaotic (random) and extremely sensitive
to the perturbation in the initial data. A statistical measure is an average, which can be
understood in two ways. First way is the time–averaging over a sufficiently large time
interval [t0, t0 + T ], where t0 ≥ 0. The mean quantity is then defined by

Ū(x) = lim
T→∞

1

T

∫ t0+T

t0

U(x, t) dt, (9)

where Ū = [ū, p̄]T are the mean components and U′ = [u′, p′]T are the fluctuating com-
ponents. Note that t0 can be assumed to be equal to zero, because the turbulence repeats
itself over a period of time with the invariant boundary conditions. Substituting the de-
composition of the velocity and pressure (8) into the definition of the mean component (9)
implies that the averaging of the fluctuating component equals to zero, i.e.,

Ū(x) = lim
T→∞

1

T

∫ T

0

U(x, t) dt

= lim
T→∞

1

T

∫ T

0

[
Ū(x) + U′(x, t)

]
dt

= lim
T→∞

1

T

∫ T

0

Ū(x) dt+ lim
T→∞

1

T

∫ T

0

U′(x, t) dt

= Ū(x) + lim
T→∞

1

T

∫ T

0

U′(x, t) dt

= Ū(x) + U′(x, t)

and thus U′(x, t) = 0. Note that the mean component is no longer a function of time
and it follows that all time derivatives of Ū(x) are zero. However, if the turbulent flow is
unsteady, time–averaging cannot be used and it has to be replaced by ensemble averaging
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(where the notation is used identical for simplicity, because the unsteady flow is assumed
in the subsequent interpretation)

Ū(x, t) = lim
N→∞

1

N

N∑
n=1

Un(x, t). (10)

The concept is to imagine a sequence of flow realizations Un(x, t) for which the problem
is identical (e.g. boundary conditions, geometry). The realizations create flows that vary
considerably from each other. An average over a large set of such realizations is an ensemble
average, which based on the ergodic hypothesis, see e.g. [82, 30, 32, 116, 85] for more details.

A basic properties of the fluid flow were mentioned above, however, no clear and ac-
curate definition of the turbulence exists. There is a long list of attempts at a definition
by the researchers in turbulence, but some of them are controversial or incomplete. Even
the current researchers differ in their description of the turbulence and they follow distinct
authors. One of the most accurate definitions can be attributed to Bradshaw [13]: “Tur-
bulence is a three–dimensional time–dependent motion in which vortex stretching causes
velocity fluctuations to spread to all wavelengths between a minimum determined by vis-
cous forces and a maximum determined by the boundary conditions of the flow."

Indeed, the largest scales are of the order of the flow geometry and they transfer the
kinetic energy k from the mean flow, where the kinetic energy is produced. Because the
viscous forces are negligible in the large scales, the kinetic energy increases (which follows
from the fluid deformation - rotation and translation - similarly to solids) and the smaller
scale is then necessarily generated such that the kinetic energy is transferred from the
larger eddies to the smaller ones. The process is continuously repeated until the motion
of the smallest eddies (molecular or the so called Kolmogorov scales) is stable, where the
viscous forces become larger than the inertial forces and the energy is dissipated into the
thermal energy (heat, but it does not play any essential role). The dissipation (amount
of energy that is dissipated or the rate of destruction of the turbulent kinetic energy) is
denoted by ε. The described process is called the energy cascade and is analyzed in details
in [13, 32, 30].

Near–wall behavior

Most of the flows in the nature and engineering practice are influenced by an adjacent wall.
The velocity of the fluid flow equals zero at the wall, but it is nonzero at any distance from
the wall. The free stream velocity is assumed far from the wall and the transitional part
between the zero and free stream velocity is known as a boundary layer or near-wall region,
where the variation of the flow is usually intensive and hence the gradients and velocity
changes are the largest here.

The near-wall region is divided into three areas, the viscous sub–layer closest to the
wall, next the buffer layer and the logarithmic layer, [116, 117, 14]. The non–dimensional
wall distance y+ is traditionally used in the boundary layer theory to divide the boundary
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layers and it is for the wall bounded flows defined in the following way

y+ =
uτy

ν
, (11)

where uτ is the friction velocity defined below and y is the distance to the nearest wall.
Then the width of the inner layers are usually considered according to, see e.g. [14],

• viscous sub–layer 0 < y+ < 5

• buffer layer 5 < y+ < 30

• logarithmic layer 30 < y+ < 200

In the viscous sub–layer, the velocity profile increases linearly with the wall distance (i.e.
u+ = y+) and the behavior of the fluid is dominated by the viscous effects. Moreover, the
advection and pressure gradients are almost negligible. In the buffer layer, the viscous and
turbulent effects are both important and the pressure gradient and advection cannot be
neglected. Moreover, the production of the turbulent quantities gain maximum value in
the buffer layer. Hence, the modelling of the velocity behavior is very difficult in this area.
In the last logarithmic layer, the turbulent effects are dominant and the velocity profiles
show a logarithmic variation, [90, 116, 20, 123, 121], which is given by the so called law
of the wall (or logarithmic law) which estimates the velocity profile as

u+ =
1

κ
ln (y+) +B, (12)

where κ ≈ 0.41, B ≈ 5.1 and u+ is dimensionless velocity defined by the shear (friction)
velocity uτ , [20, 123], as

u+ =
ū

uτ
, uτ =

√
τw
ρ
, (13)

where ρ is density of the fluid, τw is the wall shear stress and ū is the velocity parallel to
the wall. The derivation of the logarithmic law can be found e.g. in [65, 14].

The shear stress is caused by movement of the boundary layers in any fluid, where
the velocity losses its speed because of the viscous forces dominating close to the wall.
Then the shear velocity uτ represents a rate of deceleration of the free stream velocity far
from the boundary towards the boundary. Here the shear velocity also acts as a scaling
parameter to get dimensionless law of the wall. The wall shear stress τw is defined by

τw = µ
∂u

∂y

∣∣∣∣
y=0

. (14)

But it can be approximated by

τw =
1

2
CfρU

2, (15)

where U is the free stream velocity (usually taken outside the boundary layer or at inlet)
and Cf is the skin shear coefficient. In our case, the skin shear coefficient is considered as
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Cf = 0.079 · Re− 1
4 for internal flows and Re is Reynolds number for the given problem,

[121].
The fluid flow near the boundary is quite sensitive to the influence of the changes of

the geometry or the magnitude of the pressure gradient (e.g. the backward facing step,
wing of the aircraft, blade of the turbine, where the flows from the suction and pressure
sides encounter), which can lead to the detachment of the flow from the surface and the
eddies are formed. Such a behaviour of the flow is called flow separation. Specifically, the
separation occurs in the viscous layer, where the velocity is close to zero and the pressure
gradient is positive and increases in the direction of the flow, which is said to be the
adverse pressure gradient. As the speed of the flow in the viscous layer decelerates, the
adverse pressure gradient can affect the layer more significantly. If the pressure gradient
is large enough, the velocity becomes zero and then reverses its direction, which leads to
the separation of the flow from the wall. The location where the velocity equals zero in
the boundary layer is called the point of separation.

The flow separation has importance in the engineering practice, since it can result in
increased pressure drag. Hence, the effort of the research of hydrodynamics and aerody-
namics is to optimize the shape in order to delay the flow separation and preserve the flow
attached as long as possible. For more details and discussion about the flow separation,
the reader is referred to [47, 90, 39].

Because of the difficult chaotic (often also termed as random) behaviour of the turbu-
lent flow, special attention has to be invested if we are interested in turbulent fluid flow
simulation. Even if the flow is chaotic, the same structures and flow characteristics of the
turbulent flow arise if the boundary conditions do not change. As a result, the turbulence
can be considered as quasi-deterministic processes and the mean flow of the fluid can be
described with the help of the statistical laws. Moreover, the fluid flow is considered as con-
tinuum and thus the motion of the fluid is supposed to be described by the Navier–Stokes
equations, [20, 30, 13], which is also validated by the results of the numerical simulation.
The Navier–Stokes equations are based on the physical principles, which are introduced in
the following section 2.1.

2.1 Governing equations

The governing equations are based on the conservation laws of fluid mechanics together with
the constitutive relations, [30]. We restrict ourselves to the incompressible and Newtonian
fluids, thus the physical principles necessary for the derivation are

• conservation of mass, i.e., continuity equation,

• Newton’s second law, i.e., conservation of the momentum,

• Newton’s law of viscosity (6), which is the constitutive law.

The instantaneous state of the fluid of the infinitesimal volume δV (fluid element) is con-
sidered in the rectangular element (control volume or control element) with edges dx, dy,
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dz in the three coordinate directions. As the density of the incompressible fluid is constant,
the mass of the fluid in the control element is supposed to be constant at the given moment
in time. The conservation of mass then states that the rate of change of mass in a control
volume equals to the amount of fluid flowing across its boundary of the control volume
over time. Which is mathematically expressed as

d

dt

∫
δV

ρ dV = −
∫
∂V

ρu · n dΓ, (16)

where n is a unit outward normal to the boundary of the control volume ∂V . If we apply
the divergence theorem to the right–hand side, we get

d

dt

∫
δV

ρ dV = −
∫
δV

ρ∇ · u dV. (17)

As the density of the incompressible fluid is constant in the space and time, the left-hand
side of mass conservation (17) equals zero, i.e.,

0 = −ρ
∫
δV

∇ · u dV, (18)

from which follows the continuity equation for the incompressible fluid

∇ · u = 0, (19)

which is therefore valid whether the flow is changing in time or not. The derivation of the
conservation of momentum is more difficult and can be found e.g. in [30, 13] in details.
In this work, only reduced steps are provided. The conservation of momentum states that
the rate of change of momentum of the fluid in the control volume equals to the sum of
forces acting on the fluid. The rate of change of momentum is the product of the mass and
acceleration of the fluid ∫

δV

ρ

(
∂u

∂t
+ u · ∇u

)
dV. (20)

The forces acting on the incompressible Newtonian viscous fluid are the external forces
f = f(x) (e.g. magnetic field or gravity), pressure forces (in the direction of the inward
normal) and shear forces (stress gradients caused by the deformation of the fluid)∫

δV

ρf dV +

∫
∂V

p(−n) dΓ +

∫
δV

µ∆u dV, (21)

where p = p(x, t) is a scalar function describing pressure of the fluid. Note that the pressure
term can be modified using the divergence theorem as∫

∂V

p(−n) dΓ = −
∫
δV

∇p dV
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and represents the normal stresses. The last shear term follows from the shear stresses
(representing tangential stresses or viscous forces) acting in any direction at every point
on the surface ∂V ∫

∂V

τ · n dΓ =

∫
δV

∇ · τ dV,

where τ is the shear stress tensor defined by (6). Then the shear forces are given by

∇ · τ = ∇ · (2µε)
= µ∇ ·

(
∇u + (∇u)T

)
= µ

(
∇ · ∇u +∇ · (∇u)T

)
(22)

= µ

∇2u +

(
∂

∂x
,
∂

∂y

)T
(∇ · u)︸ ︷︷ ︸

=0


= µ∆u.

Taking into account the previous relations, the conservation of momentum has the form∫
δV

ρ

(
∂u

∂t
+ u · ∇u

)
dV =

∫
δV

ρf dV −
∫
δV

∇p dV +

∫
δV

µ∆u dV. (23)

Since δV is any volume, the previous form results in the nonstationary Navier–Stokes
equations together with the continuity equation that complete the system of equations for
the four variables u = (u1, u2, u3) and p such that

ρ

(
∂u

∂t
+ u · ∇u

)
= ρf −∇p+ µ∆u in Ω× (0, T ),

(24)
∇ · u = 0 in Ω× (0, T ).

As already mentioned, the equations describe both laminar and turbulent motion. Al-
though the system of equations (24) is a closed system of equations in the case of the
laminar flow, the turbulent flow is much more complicated and the velocity and pressure
variables in (24) should be understood as instantaneous values of the chaotic (random)
non-stationary variables.

3 Mathematical modeling

The mathematical model of the fluid flow is based on the conservation laws (24). The first
and natural approach is to formulate the mathematical problem as the system of equations
representing the conservation laws (24) together with an appropriate boundary and initial
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conditions, i.e.,

∂u

∂t
+ u · ∇u = f −∇p+ ν∆u in Ω× (0, T ),

(25)
∇ · u = 0 in Ω× (0, T ),

where ν = µ/ρ is kinematic viscosity and p = p(x, t) is kinematic pressure given as dynamic
pressure p divided by density ρ of the fluid p/ρ, but again denoted by p for simplicity. The
initial boundary value Navier–Stokes problem is given as a system of d+ 1 equations (25)
together with initial and mixed boundary conditions

u(x, 0) = u0(x), x ∈ Ω,

u = g, in ∂ΩD × [0, T ], (26)

ν
∂u

∂n
− np = 0, in ∂ΩN × [0, T ].

The boundary condition at the boundary part ∂ΩN is known as the “do-nothing" condi-
tion. Note that the boundary condition for velocity on any stationary solid surface is zero
Dirichlet boundary condition u = 0, which is known as the no-slip condition. A couple
(u, p) is called a classical solution of the nonstationary Navier–Stokes problem with the
nonhomogeneous boundary conditions, if

u ∈ C2
(
Ω̄× [0, T ]

)
, p ∈ C1

(
Ω̄× [0, T ]

)
(27)

satisfying (25) - (26).
Sometimes it is convenient to consider a simplification of the Navier–Stokes equations

(e.g. for the computation of the initial condition or simulation of the laminar flow), which
is presented in the paragraphs below. First assume stationary case, i.e. the time derivative
∂u
∂t

is zero. Moreover, if the fluid viscosity is sufficiently large and the velocity small, the
diffusion term ν∆u dominates over the advective term u · ∇u in Navier–Stokes equations,
then the advective term can be neglected. This implies simplified linear problem, which
together with continuity equation and boundary conditions form Stokes problem, [35],

−ν∆u +∇p = f , in Ω,

∇ · u = 0, in Ω,

u = g, on ∂ΩD, (28)

ν
∂u

∂n
− np = 0, on ∂ΩN .

Stokes problem describes slow flow of very viscous fluid. For example, the flow of blood in
some parts of the body or flow of lava can be simulated by Stokes problem. The classical
solution of the Stokes problem are functions u and p such that

u ∈ C2
(
Ω̄
)
, p ∈ C1

(
Ω̄
)
, (29)
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which satisfy (28). The solution of the Stokes problem is often used as initial condition for
nonstationary case.

The stationary Stokes problem was assumed to simulate very viscous flow of the fluid
such that the advective term was neglected. If the stationary case is still assumed but the
viscous term does not dominate over the advective term, the advective term cannot be
ignored and the stationary Navier–Stokes problem [35, 37] is considered

−ν∆u + u · ∇u +∇p = f , in Ω,

∇ · u = 0, in Ω,

u = g, on ∂ΩD, (30)

ν
∂u

∂n
− np = 0, on ∂ΩN .

The classical solution (u, p) satisfy (29) and (30). Navier–Stokes problem (30) is a system
of nonlinear equations which can cause certain difficulties using numerical methods. To
avoid the nonlinearity, Navier–Stokes equations can be linearized which leads to the so
called Oseen problem

−ν∆u + w · ∇u +∇p = f , in Ω,

∇ · u = 0, in Ω,

u = g, on ∂ΩD, (31)

ν
∂u

∂n
− np = 0, on ∂ΩN ,

where w is a given function such that ∇ · w = 0 is fulfilled in Ω, [37]. Classical solution
must satisfy again (29) and (31).

Neumann condition was assumed on part of the boundary for all the flow problems.
However, Dirichlet boundary condition could be considered everywhere on the boundary,
e.g. for flow in cavity. In such a case, necessary condition must be satisfied for solvability of
the problems, i.e. integrating the continuity equation over Ω and using divergence theorem
gives

0 =

∫
Ω

∇ · u dΩ =

∫
∂Ω

u · n dΓ−
∫
Ω

u · ∇1︸︷︷︸
=0

dΩ =

∫
∂Ω

g · n dΓ.

Then assuming inflow ∂Ω+ and outflow ∂Ω− part of the boundary gives a compatibility
condition ∫

∂Ω+

g · n dΓ +

∫
∂Ω−

g · n dΓ = 0. (32)

It means that the volume of the incompressible fluid flowing in the domain must be equal to
the volume of the fluid leaving the domain. In this thesis, flow problems of inflow/outflow
type are considered, thus (32) is automatically satisfied assuming the Neumann condition
(26) on the outflow part and the mass is conserved. It is the reason why the Neumann
condition in (26) is also called natural outflow. Moreover, pressure solution is unique in
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such a case, otherwise pressure is unique up to a hydrostatic constant assuming Dirichlet
condition everywhere on the boundary.

Sometimes it is convenient to imagine a fluid with zero viscosity, the so called ideal or
inviscid fluid (discussed already in the Section 2), which has no resistance between the fluid
layers, thus there are no shear stresses and the Navier–Stokes equations lose the viscous
term and they become the Euler equations

∂u

∂t
+ u · ∇u = f −∇p, in Ω× (0, T ),

(33)
∇ · u = 0, in Ω× (0, T ).

Formally, the Euler equations are obtained by setting ν = 0 in (25). However, Navier–
Stokes equations simulate viscous flow and the Euler equations simulate inviscid flow which
satisfy different boundary conditions as no boundary layer arises with zero viscosity. Thus,
there is no friction and the fluid can slide along the boundaries. Then, the so called slip
boundary condition is imposed

u · n = 0, on ∂Ω, (34)

where n denotes the outer normal to the boundary. In the past, the Euler equations
were mostly solved because of their lower memory requirements, which are much higher
for solving Navier–Stokes problem. The reason is that the Euler equations are simpler
for numerical simulation as no boundary layers remain with zero viscosity. Certainly, this
approach does not give physically satisfactory results in many cases. An example is the flow
around the air profile, where the friction losses could not be evaluated from the velocity
and pressure fields computed from the Euler equations, however, the lift coefficient was
able to determine quite reliably from the pressure distribution on the air profile.

Because of the nonlinear character of the partial differential equations, which produces
the turbulent behaviour, no general solution of the Navier–Stokes problem was found so
far. More precisely, the existence and uniqueness of the solution of the Navier–Stokes
problem in two dimensions was already proved, however, the proof is incomplete for the
three-dimensional unsteady case so far. The fundamental question, whether the three-
dimensional solution exists on arbitrarily long time interval for any initial condition, re-
mains unresolved. However, the theory about the existence of the solution is not the
objective of the thesis, thus the reader is referred to [37].

Currently, the solution of the fluid flow is based on numerical solution of the Navier–
Stokes equations. The most common approaches are Direct Numerical Simulation (DNS),
Reynolds–Averaged Navier–Stokes equations (RANS) and Large Eddy Simulation (LES).
The first clear choice is the direct numerical simulation in which the Navier–Stokes equa-
tions (25) are directly numerically solved for the given boundary and initial conditions.
However, it means that the whole range of the scales must be resolved till the smallest
scales of the flow [116, 84]. Then the number of grid points in spatial discretization has to
be proportional to Re9/4, i.e. the grid spacing has to be smaller than the smallest turbulent
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length scale, otherwise the simulation becomes unstable. Moreover, the time step has to be
sufficiently small to resolve the movement of the fastest fluctuations. Thus, the computer
storage and runtime requirements increase with increasing Reynolds number. Despite the
rapid progress of the computers, we are still not able to cover high memory requirements
of DNS. Thus, the direct approach is possible to apply only for the low Reynolds num-
ber flows in simple geometries and the complex technical applications will not be able to
simulate for some time.

An alternative to the refinement of the spatial and temporal discretization for fluid
flow simulation with higher Reynolds number are stabilization methods. The advection
term dominates over the diffusion term in the Navier–Stokes equations with increasing
Reynolds number. Thus, stabilization techniques were developed to improve the stability
of the advection dominated problems. Nevertheless, they are usually not sufficient in
engineering problems if the Reynolds number is too high. The problem of stabilization is
discussed later in the thesis in Section 4.3. On the other hand, if the employed stabilization
is sufficient, it is not clear how to interpret the resulting numerical solution. Some of the
researchers follow the concept of the ILES/MILES methods based on the analogy of the
numerical dissipation resulting from the numerical scheme and SGS model in the LES
technique, [43, 80].

Nevertheless, for many engineering applications and for the comparison of the simula-
tions with the real measurements, the smallest scales and fluctuations are not the point of
interest. Thus in the case of a fully developed turbulent flow, certain simplifications can be
involved. The Reynolds-Averaged Navier-Stokes approach (so called statistical approach)
is based on the Reynolds decomposition (8) and solving of the equations of the fluid mo-
tion for the mean variables. RANS equations have become a basic tool for the numerical
solution of the turbulent flow. Also, this thesis is devoted to the turbulent flow simulated
by the RANS equations, which are introduced in the following section in more details.

The third mathematical model for turbulence is the LES approach, [10, 116, 123],
which can be classified between DNS and RANS methods considering the memory require-
ments. The LES equations are derived from the Navier–Stokes equations such that only
the motion of the larger eddies is simulated whereas the rest of the small eddies is filtered
and their motion is modeled by the so called subgrid model. Note that the small eddies
are filtered according to the size of the grid cells, i.e. those that are smaller than the width
of the grid cell (width of the filter).

3.1 Reynolds–Averaged Navier–Stokes equations

Despite the development of the numerical methods for direct numerical simulation and
especially simulation of the large eddies, Reynolds–Averaged Navier–Stokes approach based
on the averaging of the Navier–Stokes equations is the most common method to describe
turbulent flow so far. The reason is the lower memory requirements as the whole range of
the scales is modeled and only the effect of the turbulence on the mean flow behaviour is
considered, [32, 82, 116, 123, 20].

As already mentioned in the previous section, RANS equations are time–averaged (or
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ensemble averaged, see above) equations of motion of the fluid. The idea is to separate
the flow variables into the mean component and the fluctuating component, which is the
Reynolds decomposition. Thus, the velocity and pressure solution U(x, t) = [u(x, t), p(x, t)]T

of the nonstationary Navier–Stokes problem is expressed as

U(x, t) = Ū(x) + U′(x, t), (35)

where Ū = [ū, p̄]T are the mean components and U′ = [u′, p′]T are the fluctuating compo-
nents. The mean component was already defined in Section 2 by the time–averaging (9)
in the case of flow whose mean values are stationary or by the ensemble averaging (10) in
the case of nonstationary mean flow. As we are interested in the time dependent process,
the ensemble averaging is considered.

Note that the continuity equation was used during the derivation of the momentum
equation and the diffusion term ∇ · τ representing shear forces was rewritten as µ∆u.
However, it is necessary to derive the RANS equations with the whole shear stress, i.e. let
us consider the Navier–Stokes equations in the form

∂u

∂t
+ u · ∇u = −∇p+

1

ρ
∇ · τ,

(36)
∇ · u = 0.

Now we substitute the decomposition (35) into the nonstationary Navier–Stokes equations
(36) and after the ensemble averaging, it yields

∂ū

∂t
+ ū · ∇ū = −∇p̄+

1

ρ
∇ · τ − u′ · ∇u′,

(37)
∇ · ū = 0.

Detailed derivation can be found in [30, 116, 32, 39, 82]. As already mentioned, the
turbulent fluctuations u′, p′ are not resolved anymore, but the attention is focused only
on the mean flow ū, p̄ and the effects of the turbulence on the mean flow. Compared to
the system of Navier–Stokes equations with the continuity equation, the averaged Navier–
Stokes equations (37) includes new unknown term

u′ · ∇u′, (38)

which is writen in the tensor notation as

u′ · ∇u′i = ∇ · u′u′i =
∂

∂xj
u′ju

′
i

applying the continuity equation, where

−u′iu′j (39)
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are the so called Reynolds stresses acting on the fluid. Then, the averaged Navier–Stokes
equations can be rewritten in the tensor notation as

∂ūi
∂t

+
∂

∂xj
(ūiūj) = − ∂p̄

∂xi
+

∂

∂xj

(
1

ρ
τij − u′iu′j

)
,

(40)
∂ūi
∂xi

= 0.

Thus, we can observe that the momentum of the fluid depends not only on the shear stress,
but also on the Reynolds stresses, which represent the transfer of the momentum influenced
by the turbulent fluctuations, for more details see e.g. [30].

The Reynolds stress tensor is symmetric, i.e., 3 terms (u′1u′1, u′2u′1 and u′2u
′
2) in 2D

and six terms in 3D are unknown. Thus, the fundamental problem of the solution of the
averaged Navier–Stokes equations is to close the momentum equations. In this context,
we talk about models of turbulence closing the system. One approach is to express the
equations for the Reynolds stresses, which results in the time–consuming solution of three
equations in 2D or six equations in 3D in addition. The derivation of the Reynolds stress
equations follows from the Navier–Stokes equations and can be found e.g. in [32, 20].
However, the exact Reynolds stress equations cannot be directly used to close the averaged
Navier–Stokes equations (40), because they includes another unknown terms (dependent on
the velocity and pressure fluctuations). Thus, the unknown terms must be approximated
if the transport Reynolds stress equations are used to close the RANS system.

Nevertheless, the second group of the turbulence models is still the most commonly
applied. The idea of these models is based on the assumption that the Reynolds stress
tensor is proportional to the strain rate tensor, Sij

Sij =
1

2

(
∂ūi
∂xj

+
∂ūj
∂xi

)
. (41)

Then, the so called Boussinesq hypothesis is applied

−u′i · u′j = 2νTSij −
2

3
δijk, (42)

i.e.
−u′i · u′j = νT

(
∂ūi
∂xj

+
∂ūj
∂xi

)
− 2

3
δijk, (43)

where νT is the proportionality constant called eddy viscosity or turbulent viscosity, δij is
Kronecker delta and k is turbulent kinetic energy (see more e.g. in [32, 39, 40, 90, 116]).
Note that the strain rate tensor Sij defined by (41) corresponds to the definition (4) of the
tensor eij. However, the strain rate of the mean flow is commonly denoted by Sij in the
literature. The unknown term u′ · ∇u′ is then expressed as

−u′ · ∇u′ = ∇ ·
(
νT
(
∇ū + (∇ū)T

)
− 2

3
kI

)
, (44)
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where I is an identity matrix. The Boussinesq hypothesis was the first approach that
reduced the modeling process from searching the six Reynolds stress terms needed to
determine the eddy viscosity and turbulent kinetic energy. The Boussinesq eddy viscosity
concept was developed as an analogy to the viscous stresses acting in the laminar flows,
i.e. the molecular viscosity creates the momentum transfer caused by molecular diffusion,
then the eddy viscosity acts as a quantity modeling the transfer of momentum caused by
turbulent eddies. Thus, the eddy viscosity represents the fluid resistence in the turbulent
flows and then it varies significantly from one point to another in the flow. [40, 20]

Applying the Boussinesq hypothesis into the equations (40), the final form of the
Reynolds–Averaged Navier–Stokes equations is written

∂ū

∂t
+ ū · ∇ū = −2

3
∇k −∇p̄+∇ ·

[
(ν + νT )(∇ū +∇ūT )

]
,

(45)
∇ · ū = 0.

Boussinesq approach provides simplification which allows to simulate the effects of the
turbulence to the mean flow with relatively low memory requirements. Let us notice
also the weakness of the Boussinesq assumption. The Reynolds stresses are not generally
co–linear with the mean velocity gradients and thus the Boussinesq assumption is not
valid in general, such as in case of flows with strong curvature, rapidly accelerated or
decelerated. In spite of this weakness, the eddy viscosity models are commonly used since
more accurate approaches are still too time consuming. But one should be aware and
take it into consideration while deciding on an appropriate turbulence model for a given
problem.

Note that the Boussinesq hypothesis does not close the averaged equations (45), but
the turbulent viscosity and turbulent kinetic energy are needed to compute to close the
system. A wide range of the approaches have been developed to approximate the unknown
quantities νT and k, which lead to different turbulence models, also known as eddy viscosity
models. The turbulence models vary from relatively simple algebraic models to more
complex models, e.g. the one equation models and two equation models. However, the
eddy viscosity models are only linear models, since the Boussinesq hypothesis assumes the
co–linearity of the Reynolds stresses and the strain rate. A brief introduction is shown in
the following sections, but the two equation models are discussed in more details, because
they are used in the numerical experiments in the thesis.

3.2 Eddy viscosity turbulence models

The following is a brief overview of commonly employed models in modern engineering
applications. The turbulence model categories consist of the number of additional equations
solved to compute the eddy viscosity and to close the RANS equations.
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3.2.1 Algebraic models

The simplest turbulence models, also referred as zero–equation models, are models that do
not require the solution of any additional equations, [123, 116, 20]. The eddy viscosity is
calculated directly from the averaged flow variables.

The algebraic models are based on an additional Prandtl’s mixing length concept, such
that in the simplest wall–bounded flow problems, the eddy viscosity is given by

νT = l2m

∣∣∣∣∂ū

∂y

∣∣∣∣ , (46)

where y is the wall normal direction and lm is the so called mixing length. The mixing
length is referred as a distance that the turbulent vortex travels across the boundary layer
before the vortex vanishes by mixing.

The mixing length is usually difficult to determine for individual problem. In case of
the free shear flows, i.e., the flow is not bounded by any solid surface, the mixing length
is constant across a layer and proportional to the width of the layer. However, it is not
valid for the flows near a solid surface. The mixing length is consistent with the law of
the wall (12), but the law of the wall has a good estimate only in the logarithmic layer.
Then, the mixing length varies in the viscous sublayer or in the outer layer. The Baldwin-
Lomax model and Cebeci-Smith model provide modification such that the mixing length
is specified over the entire layers, read more details e.g. in [20, 17, 85].

On account of the mentioned simplicity of the model, algebraic turbulence models yield
reasonable results for flows such as the fully developed pipe and channel flow or boundary
layer flow with reasonable pressure gradients. The algebraic models can also be used for
simulation in domains with simple geometries or in initial phase of simulation where no
difficulties are expected in the flow and where more complicated turbulence models would
take more computational time. However, the algebraic models are applicable only for
planar problems and the flow should not include separated regions where the algebraic
models are unable to take the flow history effects into account. Moreover, algebraic model
requires fine grid near the walls (the first grid point from the wall should be located for
y+ ≤ 1).

Several modifications have been proposed to improve the weakness of the models, e.g.
the Johnson–King model improves the algebraic models in case of separated flows by solving
an extra ordinary differential equation (sometimes called a half–equation model). For more
details and discussion of the algebraic turbulence models the reader is referred e.g. to [116].

3.2.2 One–equation models

As the engineering applications required higher accuracy with increasing capacity of the
computers, the algebraic models lost their popularity and thus the one equation models
were developed to improve the turbulent flow predictions by solving one additional trans-
port partial differential equation such that the latest one equation models are still widely
applied.
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Almost all of the one–equation models are based on solving the transport equation for
the turbulent kinetic energy k, from which the eddy viscosity is approximated as a square
root of the kinetic energy times a length scale l

νT = l
√
k. (47)

The drawback of the one equation models are the empirical relations needed to approximate
the turbulent length scale l. The turbulent length scale is a quantity describing the size
of the large eddies in the turbulent flow and thus it was usually intuitively estimated as a
size smaller than the dimension of the geometry.

However, new turbulence models were developed such that the turbulent length scale
may not be explicitly derived, e.g. Baldwin-Barth model or Spalart-Allmaras model. The
Spalart–Allmaras model has become very popular in engineering practice, because it pro-
vides good results even in the boundary layers. Although the Spalart–Allmaras model is
still pretty dependent on the empirical relations, it is numerically stable with reasonable
accuracy.

A drawback of the Spalart–Allmaras model can be the requirement to calculate the
wall distance, primarily in the 3D geometry. Usually, an additional differential equation
is solved to approximate the distance to the nearest wall rather than search algorithms,
which can be difficult to apply in complex geometries. The three well known differential
equations used to compute wall distance are the Eikonal, Hamilton–Jacobi and Poisson
equations. More details about wall distance theory is discussed in the following section
or can be found e.g. in [113]. The Spalart–Allmaras model was developed for flow of the
compressible fluid around the profile of the wing of the aircraft, thus it is not an appropriate
model for our purposes of the incompressible fluid flow in the bounded domains.

3.2.3 Two–equation models

The two–equation models are an extension of the one–equation models, where the algebraic
computation of the turbulent length scale dependent on the wall distance is a drawback.
Most of the two equation models solve a transport equation for the turbulent kinetic energy
k and the purpose of the second transport equation is to replace the calculation of the
turbulent length scale l by another turbulent quantity, usually the dissipation ε, turbulent
specific dissipation ω or some equivalent quantity, which is related to the length scale. The
two equation models became standard models in engineering practice and research, thus a
large number of two equation models have been derived and development of new models
or improvements of the current models are still the subjects of extensive research.

The variety of the models give us an opportunity to choose the most appropriate model
for a wide range of the flows. However, the fluid flow behavior is necessary to predict
properly and thus to understand the formulation of the two equation models and their
assumptions. For example, some turbulence models are valid in the boundary layer (low
Reynolds number (LRN) models) and other are valid in the outer regions (high Reynolds
number (HRN) models) etc. Thus, it is essential to predict if the separation region can
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appear in the flow, if the flow near the walls is important to simulate in details or other
characteristics of the flow.

Since the averaged flow is simulated solving RANS equations, the basic assumption is
that the turbulence scales are proportional to the mean flow scales (i.e. the Boussinesq
approximation (43), where the eddy viscosity νT is the proportionality constant between
the Reynolds stresses and the mean strain rate), which is also important for derivation of
the turbulence models. The validity of the Boussinesq assumption was briefly discussed in
Section 3.1, from which it follows that the turbulence models have difficulties to predict
rapidly accelerated or decelerated flows, like fast rotating flows, stagnation flows or flows
significantly affected by the curvature of the geometry. Therefore, the assumptions should
not be strongly violated. Despite the assumptions for the Boussinesq hypothesis, other
assumptions are also considered for two–equation models, which are not mentioned here,
but these assumptions are described in detail in [116, 20]. The most popular k–ε, k–ω and
SST models are introduced in the following.

k − ε turbulence model

The motivation to derive the two–equation models is to improve the mixing length model
and thus to eliminate the algebraic prescription of the turbulent length scale, as already
mentioned. The k–ε model was the first turbulence model which closed the RANS equa-
tions by solving two additional transport equations for the turbulent kinetic energy k and
turbulent dissipation ε.

Obviously, the first variable k describes the energy of the eddies in the turbulent flow
and it is quantified by average of the normal Reynolds stresses (i.e. trace of the Reynolds
stress tensor)

k =
1

2
u′iu
′
i, (48)

which is in 3D
k =

1

2

(
u′1u

′
1 + u′2u

′
2 + u′3u

′
3

)
.

As already mentioned in Section 2, the turbulent kinetic energy is produced from the
mean flow, it is transferred through the energy cascade and dissipated in the smallest
eddies. The exact equation for turbulent kinetic energy corresponding to the described
process is derived from the equations for the Reynolds stresses assuming i = j to satisfy
(48). Then, the exact equation for k, which is derived in detail in [20, 32], is expressed as

∂k

∂t
+

∂

∂xj
(ūjk) = −u′iu′j

∂ūi
∂xj
− ∂

∂xj

(
1

2
u′iu
′
iu
′
j + δijp′u′i

)
+

∂

∂xj

(
ν
∂k

∂xj

)
− ν ∂u

′
i

∂xj

∂u′i
∂xj

, (49)

where the left hand side represents the change in time and advection as the transport of
the turbulent kinetic energy through the mean flow. The terms on the right hand side
represents:
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• production Pk, i.e., amount of the turbulent kinetic energy generated by the mean
velocity gradients (interaction with the mean flow)

Pk = −u′iu′j
∂ūi
∂xj

, (50)

• turbulent diffusion caused by the motion of the turbulence energy influenced by the
velocity and pressure fluctuations

− ∂

∂xj

(
1

2
u′iu
′
iu
′
j + δijp′u′i

)
, (51)

• viscous diffusion caused by the molecular motion of the turbulent kinetic energy

∂

∂xj

(
ν
∂k

∂xj

)
, (52)

which affects only the motion in the vicinity of the walls.

• dissipation ε of the turbulent kinetic energy caused by the viscous forces, i.e., the
mean rate of transfer of the kinetic energy of the smallest eddies into the thermal
energy

ε = ν
∂u′i
∂xj

∂u′i
∂xj

. (53)

Larger amount of the energy transferred into the thermal energy implies the larger
velocity gradients.

However, several terms on the right hand side of k equation (49) are unknown. These terms
need to be approximated, which is based on the physical or experimental knowledge. First,
note that the production term includes the Reynolds stresses. According to the Boussinesq
hypothesis, the production term of the turbulent kinetic energy of the incompressible fluid
is given by the relation

Pk = −u′iu′j
∂ūi
∂xj

= νT

(
∂ūi
∂xj

+
∂ūj
∂xi

)
∂ūi
∂xj
− 2

3
δijk

∂ūi
∂xj

. (54)

The incompressible fluid is considered in this thesis, for which holds the continuity equation
and δij = 0 for i 6= j, then the relation for the production term can be simplified

Pk = νT

(
∂ūi
∂xj

+
∂ūj
∂xi

)
∂ūi
∂xj

. (55)

The assumptions for the approximation of the turbulent diffusion term are more compli-
cated and can be found e.g. in [20, 116]. But the approximation is based on the gradient
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diffusion transport mechanism, according to which the diffusion increases with the in-
creasing gradient of the quantity. Moreover, the analogy to the viscous diffusion term is
considered, which leads to the modeled relation for the turbulent diffusion

Dk =
∂

∂xj

(
νT
σk

∂k

∂xj

)
, (56)

where σk is a model constant called Prandtl–Schmidt number. The last dissipation term
is approximated by an algebraic relation, if the one–equation turbulence model is used.
However, if the two–equation turbulence model is chosen, the dissipation ε of the kinetic
energy is computed by solving an additional transport equation. In the case of k–ε turbu-
lence models, the second transport equation is derived just for the dissipation ε. Then, the
modeled k-equation can be written in the matrix notation as

∂k

∂t
+ ū · ∇k = P +∇ ·

[(
ν +

νT
σk

)
∇k
]
− ε. (57)

The exact transport equation for the dissipation ε can be derived similarly to the turbulent
kinetic energy from the Navier–Stokes equations, which is described e.g. in [121]. However,
this ε-equation is far more complicated than the exact equation for the turbulent kinetic
energy and involves multiple correlations of the fluctuating quantities that are very difficult
or even impossible to measure and approximate. Therefore, a modeled transport equation
for the dissipation ε was proposed based on physical reasoning and similarity to the k
equation and is written as

∂ε

∂t
+ ū · ∇ε = Cε1

ε

k
Pk +∇ ·

[(
ν +

νT
σε

)
∇ε
]
− Cε2

ε2

k
, (58)

where Pk is the production of the turbulent energy k given by (55). The system of k–
ε equations (57)-(58) is known as the standard k–ε turbulence model with the model
constants

σk = 1.0, σε = 1.3, Cε1 = 1.44, Cε2 = 1.92. (59)

The turbulent viscosity νT needs to be expressed to close the RANS equations using the
Boussinesq approximation. In the case of one–equation turbulence model, the turbulent
viscosity was determined by the relation (47), i.e., νT = k1/2l with the turbulent length
scale l. As already mentioned, the one–equation turbulence models are usually solved for
the turbulent kinetic energy k such that the same transport equation (57) is solved as in
the case of two–equation turbulence models. Thus, the dissipation ε is approximated by
an algebraic relation to close the k equation. Usually, it is given by

ε = Cµ
k

3
2

l
. (60)

This relation is used in two–equation turbulence model to approximate the eddy viscosity
as

νT = k
1
2 l = Cµ

k2

ε
, (61)
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where Cµ = 0.09. It should be noted that the model constants in the k–ε turbulence
model (59) and Cµ were determined based on a simple flow cases, empirical procedure
or by the numerical optimization. The numerical optimization approach means that the
constant is changing until the turbulence model obtains reasonable agreement with an
experiment. Also, certain assumptions are necessary to include, e.g., validity of the law
of the wall, where the advection and viscous diffusion can be neglected or the equilibrium
of the turbulent energy (the production of the turbulent kinetic energy equals dissipation
rate). More details about the determination of the model constants can be found in [20, 32].

Note that various two–equation models were developed and thus various coefficients
were determined depending on which application was considered for the given turbulence
model. Thus, a usual source of numerical difficulties is the application of the turbulence
model on another type of the turbulent flow than the model was derived.

The mentioned standard k − ε turbulence model is applicable only in the sufficient
distance from the wall. The modification of the standard model has to be included or the
so called wall functions have to be used, when applied to a wall bounded flow. The wall
function approach is based on the law of the wall introduced in Section 2. The idea is to
apply the near wall behaviour of the turbulent variables instead of resolve it. The first
computational cell is then placed outside the walls in the logarithmic layer, see [116, 31, 14].

Also, it has been shown that the k − ε model is useful for flows with relatively small
pressure gradients. In the opposite case, the behaviour of turbulent dissipation ε causes
certain problems near the boundary of the domain. The discussion about the validity of
the standard k − ε turbulence model can be found in [20, 32, 121].

k − ω turbulence model

Numerical problems appear by solving k–ε turbulence model (57)-(58) in the boundary
layer. Thus, the Wilcox’s k–ω model 1988 was proposed [121], where the so called specific
dissipation ω is used to approximate the length scale l instead of the dissipation ε. The
specific dissipation represents the rate at which the dissipation occurs and is expressed as

ω =
ε

k
. (62)

The original k–ω turbulence model is given by

∂k

∂t
+ ū · ∇k = Pk +∇ · [(ν + σ∗νT )∇k]− β∗kω,

(63)
∂ω

∂t
+ ū · ∇ω = α

ω

k
Pk +∇ · [(ν + σνT )∇ω]− βω2,

where the production of the turbulent energy Pk is defined by the same relation (55) as
for the k–ε model. The constants were estimated similarly to the k–ε model and they are
usually determined as σ∗ = 0.5, σ = 0.5, β∗ = 0.09, α = 5

9
and β = 3

40
, see [121], and the
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eddy viscosity is given by the relation

νT =
k

ω
. (64)

Note that the source term in the ω equation includes the fraction with the turbulent kinetic
energy in the denominator. However, the source term can be modified as

α
ω

k
Pk = α

ω

k
νT

(
∂ūi
∂xj

+
∂ūj
∂xi

)
∂ūi
∂xj

= α
ω

k

k

ω

(
∂ūi
∂xj

+
∂ūj
∂xi

)
∂ūi
∂xj

= (65)

= α

(
∂ūi
∂xj

+
∂ūj
∂xi

)
∂ūi
∂xj

.

Generally, the k − ω model provides better predictions contrarily to the k − ε turbulence
model for the wall bounded flows with adverse pressure gradient, because the k–ω model
behaves as the law of the wall in the boundary layer. Then, there is no need to apply
the wall functions. But the model is sensitive to the boundary conditions for ω which can
negatively influence the flow behavior in the outer layer.

Several modifications of the k–ω turbulence model were developed to improve the pre-
dictions of the turbulent quantities and their behavior in the outer layer, [123, 14]. The
Wilcox k–ω variant (specifically derived for the computations in the whole domain up to
the walls) is used for the numerical computations in this thesis and is written as

∂k

∂t
+ ū · ∇k = Pk − β∗ωk +∇ ·

[(
ν + σkα

∗ k

ω

)
∇k
]
,

(66)
∂ω

∂t
+ ū · ∇ω = γ

ω

k
Pk − βω2 +∇ ·

[(
ν + σωα

∗ k

ω

)
∇ω
]

+
σd
ω
∇k · ∇ω,

where the source term Pk is again defined by (55), but the eddy viscosity is expressed for
this k–ω variant as

νT = α∗
k

ω̂
, (67)

where

ω̂ = max

(
ω,Clim

√
α∗

2SijSij
β∗0

)
. (68)

The source term in the ω-equation can be modified similarly to (65), but with the eddy
viscosity (67)

γ
ω

k
P = 2γ

ω

k
νTSij

∂ūi
∂xj

= 2γα∗
ω

k

k

ω̂
Sij

∂ūi
∂xj

= 2γα∗Sij
ω

ω̂

∂ūi
∂xj

(69)
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Thus, the fraction ω
k
completely vanishes only if the maximum value of the relation (68)

equals to the specific turbulent dissipation ω. The coefficients needed for the LRN k–ω
equation (66), eddy viscosity (67) and ω̂ (68) are given by

α∗ =
α∗0 + ReT

Rk

1 + ReT
Rk

β∗ = β∗0

 100
27
β∗0 +

(
ReT
Rβ

)4

1 +
(
ReT
Rβ

)4

 γ =
13

25

1

α∗

(
α0 + ReT

Rω

1 + ReT
Rω

)

ReT =
1

ν

k

ω
β = β0fβ fβ =

1 + 85χω
1 + 100χω

χω =

∣∣∣∣ΩijΩjkSki

(β∗ω)3

∣∣∣∣

Ωij =
1

2

(
∂ūi
∂xj
− ∂ūj
∂xi

)
σd =


0, for (∇k · ∇ω ≤ 0)

1
8
, for (∇k · ∇ω > 0)

The strain rate Sij defined by (41) (whose magnitude is the largest near the wall and it
is close to zero in the core of the vortex), Ωij is the vorticity (whose magnitude is the
largest in the core of the vortex or in the boundary layer) and the remaining constants are
determined for the LRN case as

σk = 0.6 σω = 0.5 Clim =
7

8

Rβ = 8 Rk = 6 Rω = 2.61

α0 =
1

9
α∗0 =

1

3
β0 β0 = 0.0708 β∗0 = 0.09

Although the two–equation models perform well for a wide range of the flows in engineering
practice, these models should be used with caution in case of coarser grids and their
application is still limited, e.g., flows with sudden changes or separation. The advantages
and disadvantages of the k − ε and k − ω models are discussed for example in [20, 14] in
details.

According to the mentioned properties of k − ω and k − ε turbulence models, we can
summarize that the k − ε model usually causes problems near the boundary and gives
reasonable behaviour in the outer layer. On the other hand, k−ω model is usable through
all the layers near the walls. Thus, the shear stress transport (SST) model was developed
to combine the mentioned two equation models, which tends to be satisfactory. The near
wall layers are modeled by k − ω and it switches to k − ε turbulence model in the outer
region to avoid sensitivity problems of k − ω model, see e.g. [90, 123].

The wall distance y (i.e. the normal distance to the nearest wall) of a given point is
used to decide when the SST model switches to k−ω model near the walls or to k−ε model
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far from the walls. Using the distance y, it is possible to formulate the SST turbulence
model as a system of two equations again, i.e.

∂k
∂t

+ ū · ∇k = Pk +∇ · [(σkνT + ν)∇k]− β∗kω,

∂ω
∂t

+ ū · ∇ω = αS2 +∇ · [(σωνT + ν)∇ω]− βω2 + 2 (1− F1)σω2
1
ω
∇k · ∇ω,

(70)

where
F1 = tanh

([
min

[
max

( √
k

β∗ωy
, 500ν
y2ω

)
, 4σω2k
CDkωy2

]]4
)
,

CDkω = max
(
2ρσω2

1
ω
∇k · ∇ω, 10−10

)
,

Pk = min (νTf, 10β∗kω),

(71)

the constant ν is the given kinematic viscosity, β∗ = 9
100

, σω2 = 0.856. The values of the
remaining parameters σk, σω, α and β are dependent on the wall distance y. Let φ1 and
φ2 be two given parameters. Then define a parameter φ, whose value depend on the wall
distance y, such that it varies between the given parameters φ1, φ2 as

φ = φ1F1 + φ2 (1− F1) . (72)

This relation is applied to calculate appropriate values of the parameters σk, σω, α and β
using

σk1 = 0.85, σk2 = 1,

σω1 = 0.5, σω2 = 0.856,

α1 = 5
9
, α2 = 0.44,

β1 = 3
40
, β2 = 0.0828,

(73)

where the parameter σω2 was already given above. Since the two equation model switches
according to the wall distance y, the eddy viscosity has to be dependent on the wall distance
too. The form of the eddy viscosity is given by

νT = k
max (ω,SF2)

, (74)

where
F2 = tanh

([
max

(
2
√
k

β∗ωy
, 500ν
y2ω

)]2
)
. (75)

4 Numerical solution

The following paragraphs are devoted to the numerical solution of the stationary Navier–
Stokes equations. Isogeometric analysis is considered in the experiments, which is based
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on Galerkin approach of discretization. However, the discrete spaces cannot be chosen
arbitrarily to keep the stability of numerical solution. The discretization leads to nonlin-
ear system for Navier–Stokes problem, which is solved iteratively applying linearization
methods introduced later in the chapter.

4.1 Galerkin approach

The Galerkin type methods are based on approximation of the solution of the boundary
value problem by a finite combination of linearly independent functions, known as basis
functions, i.e. the continuous problem (more exactly weak formulation) is converted to a
discrete problem, whose solution is a function of a finite dimensional subspace generated
by the basis functions. Certainly, the appropriate choice of the basis functions and the
way of determination of the coefficients of the linear combination are crucial and lead to
different Galerkin type methods. The most common is finite element method (FEM) which
is based on division of the computational domain into a finite number of non-overlapping
subdomains that are called finite elements, over which the solution of any problem is
approximated by local basis functions, typically polynomials for FEM. However, instead of
the finite element method, isogeometric analysis is applied in the numerical experiments,
which is usually understood as a modification to FEM. The detailed introduction to the
isogeometric analysis is given in Section 4.2.

The Galerkin method is based on the weak formulation of the problem. In evolutionary
case, the weak formulation is considered in the semi-discrete form with respect to the
spatial variable. In the following paragraphs, the weak formulation is derived and the
discretization is applied for the stationary Navier–Stokes problem. The weak formulation
and Galerkin approximation of the Reynolds-averaged Navier–Stokes problem closed with
the k–ω turbulence model is written in Appendices A and B due to long and complicated
formulations. The weak formulation and numerical treatment of the Stokes problem, Oseen
problem and unsteady Navier–Stokes problem is not included in the thesis, because its weak
and discrete formulation is straightforward considering the derivation of the discrete steady
Navier–Stokes and RANS problem.

4.1.1 Weak formulation

Let us remind the stationary boundary Navier–Stokes problem

−ν∆u + u · ∇u +∇p = f in Ω,

∇ · u = 0 in Ω,

u = gD on ∂ΩD, (76)

ν
∂u

∂n
− np = gN on ∂ΩN .

As already mentioned in Section 3, the classical solution of the steady Navier–Stokes prob-
lem are vector function u(x, t) : Ω̄ → Rd and scalar function p(x, t) : Ω̄ → R satisfying
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(76) and
u ∈ C2

(
Ω̄
)
, p ∈ C1

(
Ω̄
)
. (77)

To derive a weak formulation, the method of weighted residuals is usually used, i.e. the
momentum equation in (76) is multiplied by a weighting function v and the equation of
continuity by a weighting function q from appropriate spaces known as test functions. By
integrating over the domain Ω, we have∫

Ω

(−ν∆u + u · ∇u +∇p− f) · v = 0,∫
Ω

q∇ · u = 0.
(78)

This formulation exists provided that the integrals are well defined and the proof can be
found e.g. in [35, 37]. If (u, p) is a classical solution, then (78) is satisfied and equiv-
alent to the strong formulation (76). If the test functions are sufficiently smooth, then
the smoothness requirements for (u, p) can be reduced by using Green’s and divergence
theorem,

ν

∫
Ω

∇u : ∇v +

∫
Ω

(u · ∇u)v −
∫
Ω

p∇ · v =

∫
Ω

f · v + ν

∫
∂Ω

(n · ∇u) · v −
∫
∂Ω

pn · v,

(79)∫
Ω

q∇ · u = 0,

where ∇u : ∇v represents the componentwise scalar product, i.e. ∇u1 · ∇v1 + ∇u2 ·
∇v2 in two dimensions. The boundary integrals can be rewritten assuming the boundary
conditions in (76)

ν

∫
∂Ω

(n · ∇u) · v −
∫
∂Ω

pn · v =

∫
∂ΩD∪ΩN

(
ν
∂u

∂n
− np

)
· v

(80)

=

∫
∂ΩD

(
ν
∂u

∂n
− np

)
· v +

∫
∂ΩN

gN · v.

The integrals in (79)-(80) exist if the corresponding gradients and f are in the Lebesgue
space L2(Ω). It leads to the following velocity solution space V and test function space V0

V = {u ∈ H1(Ω)d |u = gD on ∂ΩD},
V0 = {v ∈ H1(Ω)d |v = 0 on ∂ΩD},

(81)

where d is the spatial dimension. Considering that the test function v is from the space
V0, the boundary integral over the Dirichlet part ∂ΩD in (80) equals zero. The appropriate
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space for pressure p is L2(Ω), since there are no pressure derivatives in (79). Moreover,
choosing the pressure test function q from the Lebesgue space L2(Ω) leads to the following
weak formulation. Let ν > 0, functions u and p are a weak solution of problem (30) if
u ∈ V , p ∈ L2(Ω) satisfying

ν

∫
Ω

∇u : ∇v +

∫
Ω

(u · ∇u)v −
∫
Ω

p∇ · v =

∫
Ω

f · v + ν

∫
∂ΩN

gN · v,

(82)∫
Ω

q∇ · u = 0.

for all v ∈ V0 and q ∈ L2(Ω) In the rest of the thesis, we assume gN = 0 and thus the
boundary integral in (82) equals to zero. As already mentioned, if (u, p) is a classical
solution of (76), it also satisfies the weak form (82). The proof of existence and uniqueness
of the weak solution is very technical including deep knowledge of the mathematical analysis
and thus it is beyond the scope of this thesis, however, the reader is referred to [37] for
details.

4.1.2 Linearization

Solving nonlinear Navier–Stokes equations requires linearization, such that the iteration
process is used and a linearized problem is then solved at every iteration. The derivation
is given for the steady case for simplicity, but it is identically applied for unsteady case in
every time step, which is written for the RANS equations in Appendix A.

Newton’s and Picard’s methods are the classical approaches applied for the nonlinear
iteration, [35, 99]. Consider an initial guess (u0, p0) ∈ V ×L2(Ω) and a sequence of iterates
(u1, p1), (u2, p2), . . ., (uk, pk) ∈ V × L2(Ω). Now, let (uk, pk) be known from the previous
iteration step. Then the residuals of the weak formulation (82) fulfill

Rk =

∫
Ω

f · v − ν
∫
Ω

∇uk : ∇v −
∫
Ω

(uk · ∇uk)v +

∫
Ω

pk∇ · v,

(83)

rk = −
∫
Ω

q∇ · uk dΩ,

for all v ∈ V0, q ∈ L2(Ω). Now assume u and p be the exact solution of the weak form,
which is given by the sum of solution of the k-th iteration and the correction

u = uk + δuk, p = pk + δpk. (84)

Substituting (84) into the weak formulation (82) and using equalities (83), the deviation
of the solution (δuk, δpk) ∈ V0 × L2(Ω) must satisfy

−ν
∫
Ω

∇δuk : ∇v −
∫
Ω

(uk · ∇δuk)v −
∫
Ω

(δuk · ∇uk)v −
∫
Ω

(δuk · ∇δuk)v+
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+

∫
Ω

δpk∇ · v = Rk, (85)

−
∫
Ω

q∇ · δuk dΩ = rk, (86)

for all v ∈ V0, q ∈ L2(Ω). Now, we assume that the term quadratic in velocity corrections∫
Ω

(δuk · ∇δuk)v is negligible and thus it can be omitted. This implies the linear problem
for the corrections δuk ∈ V0 and δpk ∈ L2(Ω), the so called Newton correction,

−ν
∫
Ω

∇δuk : ∇v −
∫
Ω

(uk · ∇δuk)v −
∫
Ω

(δuk · ∇uk)v +

∫
Ω

δpk∇ · v = Rk,

−
∫
Ω

q∇ · δuk = rk,

for all v ∈ V0, q ∈ L2(Ω). After solving this problem, the approximation of the weak
solution from the previous iteration can be updated, which defines the next iterate in the
sequence, i.e.

uk+1 = uk + δuk, pk+1 = pk + δpk. (87)

The consistency of the iteration process is discussed in [35]. One disadvantage of the
linearization is the choice of the initial guess. Although the Newton method gives quadratic
convergence, the initial guess needs to be closer and closer to the exact solution as the
Reynolds number increases, [35]. The solution of the linear Stokes problem is possible to
choose as the initial guess.

Second approach is the Picard’s method [99, 75, 35], which will be applied for solving
nonlinear problem in this thesis. Compared to the Newton’s method, the term

∫
Ω

(δuk ·
∇uk)v in (85) is also dropped. The nonlinear term is thus linearized using the approximate
solution (uk, pk) from the previous iteration step. Then we look for uk+1 ∈ V and pk+1 ∈
L2(Ω), k = 0, 1, . . ., such that for all v ∈ V0 and q ∈ L2(Ω) it holds

ν

∫
Ω

∇uk+1 : ∇v +

∫
Ω

(uk · ∇uk+1)v −
∫
Ω

pk+1∇ · v =

∫
Ω

f · v,

(88)∫
Ω

q∇ · uk+1 = 0.

Note that each Picard’s iteration (88) is the weak formulation of the Oseen problem (31)
with w = uk. The solution of the Stokes problem (28) is usually chosen to be the initial
condition (u0, p0) of the Picard’s iteration (88).

As mentioned above, the solution of the Stokes problem can be chosen as an initial
guess of the Newton method, but preferable is to solve several iterations using Picard’s
method and then the Newton’s linearization proceeds, because Picard’s iterations give
closer approximation to the exact solution.
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4.1.3 Discrete problem

In the following, we look for an approximation of the weak solution (u, p) by taking a
finite dimensional subspaces of the solution spaces V h

0 ⊂ V0 and W h ⊂ L2(Ω) such that
an arbitrary function in the solution space can be approximated as linear combination of
sufficient number of the basis functions with arbitrary accuracy, i.e. the finite dimensional
subspaces are vector spaces generated by a basis ϕui , i = 1, . . . , nu and ϕpi , i = 1, . . . , np,
[104, 101, 83, 37]. Because the function spaces for velocity and pressure are approximated
independently, we talk about a mixed approximation. Recall that the Dirichlet boundary
condition is assumed for the velocity (76). To ensure the Dirichlet condition, the set
of velocity basis is extended by defining additional functions ϕui , i = nu + 1, . . . , nuD,
which leads to the final velocity finite dimensional vector space V h ⊂ V . The Galerkin
approximations uh ∈ V h, ph ∈ W h are then given as a linear combination of the appropriate
basis functions

uh =
nu∑
j=1

ujϕ
u
i +

nuD∑
j=nu+1

u∗jϕ
u
j ,

(89)

ph =
np∑
j=1

pjϕ
p
j .

with the unknown coefficients uj ∈ Rd, j = 1, . . . , nu, pj ∈ R, j = 1, . . . , np and fixed
coefficients u∗j , j = nu + 1, . . . , nuD corresponding to basis functions ϕuj , j = nu + 1, . . . , nuD
such that the second term in (89) interpolates the Dirichlet boundary condition on ∂ΩD.
The first summation term is an element of the vector subspace V h

0 , i.e. the basis functions
ϕu1 , . . . , ϕ

u
nu are zero at Dirichlet part of the boundary. The approximation of the velocity

field for the three dimensional flow is

uh =
nu∑
j=1

(u1j, u2j, u3j)
Tϕui +

nuD∑
j=nu+1

(u∗1j, u
∗
2j, u

∗
3j)

Tϕuj . (90)

Analogously, function f can be written as a linear combination of velocity basis functions
by

fh =

nuD∑
i=1

(f1i, f2i, f3i)
Tϕui . (91)

For general f , fh can be obtained by L2 projection to the linear space spanned by basis
functions {ϕui }1≤i≤nuD . To discretize the linearized weak formulation (88) by means of the
Galerkin method, the discrete solution and test basis functions are chosen to be identical,
i.e. vh ∈ V h

0 and qh ∈ W h. Assume that the discrete solution in k–th Picard’s iteration ukh
is known, then we look for uk+1

h ∈ V h and pk+1
h ∈ W h satisfying

ν

∫
Ω

∇uk+1
h : ∇vh +

∫
Ω

(ukh · ∇uk+1
h )vh −

∫
Ω

pk+1
h ∇ · vh =

∫
Ω

fh · vh,

38



(92)∫
Ω

qh∇ · uk+1
h = 0,

for all vh ∈ V h
0 and qh ∈ W h. Because the velocity and pressure approximations satisfy

(89) and (92) holds for all test functions, it must be satisfied for all basis functions from the
corresponding finite dimensional subspaces ϕui ∈ V h

0 and ϕpi ∈ W h. Then it follows that
(92) is equivalent to finding coefficients uk+1

j , j = 1, 2, . . . , nu at every Picard’s iteration
k = 0, 1, . . . (remember that unu+1, . . . ,unu+nuD

are known coefficients corresponding to the
Dirichlet condition) and pj, j = 1, 2, . . . , np such that

nu∑
j=1

uk+1
j ν

∫
Ω

∇ϕuj · ∇ϕui︸ ︷︷ ︸
Aij

+

∫
Ω

ϕui

(
nu∑
m=1

ukmϕ
u
m

)
· ∇ϕuj︸ ︷︷ ︸

Nij(uk)

−
np∑
j=1

pk+1
j

∫
Ω

ϕpj∇ · ϕui︸ ︷︷ ︸
−B1ji,...,−Bdji

=

nuD∑
i=1

fc,i

∫
Ω

ϕui ϕ
u
j︸ ︷︷ ︸

Cij

−

−
nuD∑

j=nu+1

u∗j(Aij +Nij)

,
nu∑
j=1

uk+1
j

∫
Ω

ϕpl∇ · ϕ
u
j︸ ︷︷ ︸

B1lj ,...,Bdlj

= bc4,

where i = 1, . . . , nu, l = 1, . . . , np and d is the space dimension. This can be written in the
matrix form as the linear system of equations, e.g. in three space dimension d = 3,

A + N(uk) 0 0 −BT
1

0 A + N(uk) 0 −BT
2

0 0 A + N(uk) −BT
3

B1 B2 B3 0




uk+1
1

uk+1
2

uk+1
3

pk+1

 =


fc1

fc2

fc3

0

−


bc1

bc2

bc3

bc4

 , (93)

where 
bc1

bc2

bc3

bc4

 =


(A∗ + N∗(uk)) · u∗1
(A∗ + N∗(uk)) · u∗2
(A∗ + N∗(uk)) · u∗3

(B∗1 · u∗1 + B∗2 · u∗2 + B∗3 · u∗3)


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and
A = [Aij]1≤i≤nu,1≤j≤nu , A∗ = [Aij]1≤i≤nu,nu+1≤j≤nuD

,

N(u) = [Nij(u)]1≤i≤nu,1≤j≤nu , N∗(u) = [Nij(u)]1≤i≤nu,nu+1≤j≤nuD
,

Bm = [Bmij]1≤i≤np,1≤j≤nu , B∗m = [Bmij]1≤i≤np,nu+1≤j≤nuD
,

C = [Cij]1≤i≤nu,1≤j≤nu , C∗ = [Cij]1≤i≤nu,nu+1≤j≤nuD
,

fcm = [C|C∗] · [fmi]1≤i≤nuD ,

(94)

and m = 1, . . . , d. Note that the Neumann outflow boundary condition (26) for velocity
and pressure is chosen to be zero in this work. The system of (d ·nu +np) linear equations
for (d · nu + np) unknowns is called Galerkin system. It should be noted that similarly to
continuous case, velocity coefficient vector is unique, but solvability with respect to the
pressure is problematic. Detailed discussion about solvability of the matrix system can be
found in [35]. In our case, where the Neumann outflow condition is applied and so the
volume of the fluid flowing in the domain is equal to the volume of the fluid flowing out,
the solvability is unique.

Another important issue is to find appropriate finite dimentional spaces to guarantee
the stability of the numerical solution, which is discussed in the following section.

In the case of unsteady Navier–Stokes and RANS problems, the Galerkin approach
is used identically to the steady Navier–Stokes problem with additional term which rep-
resents approximation of the time derivative. Similarly to the weak formulation of the
unsteady Navier–Stokes and RANS problems, the discrete form of the RANS problem is
given in Appendix B from which the derivation of the discrete Navier–Stokes problem is
straightforward and thus it is not included in this thesis.

Solution of the discrete problem

In this paragraph, we briefly introduce the approaches of solving system of equations
resulting from the Galerkin discretization of the flow problem. Note that the spatial
discretization of all flow problems mentioned above (steady and unsteady Navier–Stokes,
Reynolds–Averaged Navier–Stokes problems) using an implicit time discretization result in
nonsymmetric linear systems of saddle-point type. A lot of attention has been devoted to
the solution of the large saddle-point linear systems, see e.g. [9]. Since the saddle-point
problem does not arise only in the context of the incompressible fluid flow, researchers
from various fields (e.g. linear elasticity and constrained optimization) are interested in
the solution methods for this problem.

Generally, two approaches were developed for the solution of the saddle-point problems,
coupled and decoupled (segregated). A straightforward way is to assemble the whole linear
system computed for coefficients of both velocity and pressure approximations. On the
other hand, decoupled methods compute the velocity and pressure solution separately.
Thanks to decoupling, we solve several smaller systems instead of one large system in the
particular steps. An example of such method is the class of pressure–correction methods
(cf. e.g. [104]), where the momentum equations are solved first to obtain an intermediate
velocity field using the pressure approximation from the previous step. However, this
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velocity field does not fulfill the condition of incompressibility. Next, the pressure correction
is computed from a Poisson equation and the intermediate velocity field is projected onto
the space of divergence-free vector fields. SIMPLE algorithm [94] is an well known example
of the pressure–correction scheme. Although the smaller and thus less time and memory
consuming systems are solved, the convergence of the decoupled methods is often very
slow.

The coupled approach is applied for solving the linear systems in this thesis. Direct and
iterative methods are two groups of the solution methods for systems of linear algebraic
equations. Direct methods [99, 75] are based on a factorization of the system matrix. They
are robust, give the exact solution of the system of equations in exact arithmetic, but they
are very computational consuming. Thus, solving linear system of equations using direct
methods is almost not feasible for large system matrices.

On the other hand, iterative methods are less robust, give usually less accurate solution
than direct solvers and main disadvantage is that they require many iterations to converge.
The major classes are the stationary, nonstationary and multilevel methods. The stationary
methods are very simple to implement, they are fast, but their convergence is usually very
slow and moreover it is not guaranteed for general matrices. The stationary methods are
expressed by a simple scheme, which does not change from iteration to iteration. The
four main stationary methods are the Jacobi method, Gauss–Seidel method and SOR
(successive overrelaxation) method [75], which are nowadays used only as preconditioners
or smoothers for the other classes of iterative methods in practical computations.

The most typical representatives of the nonstationary iterative methods are Krylov
subspace methods, [101, 77, 99]. They belong to the most commonly used iterative methods
in practice. Krylov subspace methods were constructed such that they converge to the
exact solution of the system of linear algebraic equations in finite number of iterations (so
called finite termination property), however, only in exact arithmetic. In finite arithmetic,
the convergence behavior is much more complicated and thus Krylov methods generally
converge after an infinite number of iterations. Actually, the distribution of spectrum
of the system matrix strongly affects the convergence rate. To achieve fast convergence,
it is necessary to use some preconditioning technique, [100, 66, 99]. The preconditioner
should be easy to construct and the linear system with the preconditioned matrix should
be effectively solvable.

The preconditioner can be either algebraic, e.g. incomplete LU factorization, or based
on knowledge of the problem origin, discretization, matrix structure etc. The latter class
of preconditioners, including the so called block preconditioners, is the most suitable for
solving linear systems associated with the incompressible Navier–Stokes equations. Exam-
ples of the block preconditioner are LSC (least-squares commutator) and AL (augmented
Lagrangian), see [33].

The study and implementation of the iterative methods with a good choice of the
preconditioner is not a trivial task and thus it is beyond the scope of this thesis. Then,
the direct solver with LU decomposition is employed for the time being.
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4.2 Isogeometric analysis

The continuous Galerkin method was introduced to discretize the system of partial dif-
ferential equations. It approximates the unknown functions of the boundary (or initial-
boundary) value problem over the computational domain as defined in Section 4.1.3, i.e.,

uh =
nu∑
j=1

(u1j, u2j, u3j)
Tϕui +

nuD∑
j=nu+1

(u∗1j, u
∗
2j, u

∗
3j)

Tϕuj , (95)

ph =
np∑
j=1

pjϕ
p
j . (96)

Then, the discrete Galerkin formulation resulted in a system of algebraic equations (93)
for the unknown coefficients uj, j = 1, . . . , nu of the velocity approximation and pj, j =
1, . . . , np of the pressure approximation. The bases of the discrete spaces V h, V h

0 and W h

have not been specified so far. Different choice of the basis functions leads to a different
Galerkin type method. Finite element method (FEM) is the most common Galerkin type
method that was developed to solve complex elasticity and structural analysis problems
related to aerospace and civil engineering and the earliest paper on FEM was proposed
by Richard Courant. Nowadays, FEM benefits in solving fluid structure interaction, heat
transfer and other engineering disciplines.

Finite element method is based on a partition of the computational domain into a
finite number of smaller parts, called finite elements. If the computational domain is an
interval Ω = (a, b), then the elements are subintervals Ki = (xi−1, xi), i = 1, . . . , N with
a = x0 < x1 < . . . < xN−1 < xN = b, such that Ω =

⋃N
i=1Ki. Then the basis functions

ϕuj , ϕ
p
j of the solution spaces are piecewise polynomial functions on a partition of the domain

Ω, which equals to 1 at the given point xi and equals to zero at the rest of the points. The
advantage is that the basis functions have narrow support which leads to sparse matrix of
the algebraic system. The finite element basis functions are generally C0 continuous, since
the higher order regularity is achieved only in the interior points of the elements, but it
is violated at the boundary of every element. In 2D case, we can generalize the previous
idea such that polygons represent finite elements (usually triangles or rectangles) and the
number of piecewise polynomial basis functions corresponds to the number of vertices of
the partition of the computational domain.

However, the numerical modeling of the fluid flow is based on isogeometric analysis
(IgA) in this thesis, which is a recently developed Galerkin type approach in [50]. IgA
shares a lot of features with FEM and it is even usually understood as the modification
of FEM such that another basis functions are chosen in the Galerkin approximation (95).
Contrarily to FEM, IgA is closely related to the description of geometry and takes inspi-
ration from Computer Aided Design (CAD), which allows exact geometry representation.
Indeed, the computational domain with boundary represented as B-spline/NURBS objects
(i.e. polynomial/rational parametric objects introduced in the following paragraph) can
be discretized exactly and then the isoparametric approach is applied, that is, the solution
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spaces of the velocity and pressure approximation are generated by the same basis func-
tions which represent the geometry. This is the main advantage of IgA, which cannot be
reached by FEM polynomial description of the boundaries.

NURBS objects

In the following, we introduce the B-spline/NURBS generation of a geometry, which is
the core of the isogeometric analysis, since the same basis functions are used for geometry
representation and approximation of a problem solution. This is only a brief introduc-
tion to the NURBS object theory, which is necessary to understand their relation to the
isogeometric analysis, but the reader is referred to [97, 50] for the geometry details.

The basis for understanding B-spline curves (surfaces) are splines, which are piecewise
polynomial functions with high continuity. In the NURBS theory, this is extended to even
piecewise rational functions. Both, B-spline and NURBS objects are defined by the B-
spline basis functions. Let us consider n be the number of basis functions and consider a
knot vector A = (α1, α2, . . . , αn+q+1), such that

α1 ≤ α2 ≤ . . . ≤ αn+q+1 (97)

then the B-spline basis functions of the degree q are defined recursively by

N q
i (α) =

α− αi
αi+q − αi

N q−1
i (α) +

αi+q+1 − α
αi+q+1 − αi+1

N q−1
i+1 (α) (98)

starting with piecewise constants

N0
i (α) =

{
1 αi ≤ α < αi+1

0 otherwise. (99)

Considering (97), a denominator in B-spline basis definition (98) can be zero. In this case,
the appropriate fraction is set to zero. Knot vector is a non-decreasing sequence of real num-
bers which determines the distribution of a parameter on the corresponding curve/surface.
The knots can be located uniformly or non-uniformly in the interval [α1, αn+q+1]. B-spline
basis functions of degree q are Cq−1 continuous in general. Knot repeated k times in
the knot vector decreases the continuity of B-spline basis functions by k − 1. Support
of B-spline basis functions is local. It is nonzero only on the interval [αi, αi+q+1] in the
parametric space and each B-spline basis function is non-negative, i.e.,

N q
i (α) ≥ 0, ∀α ∈ [α1, αn+q+1]. (100)

Examples of the B-spline basis are shown in Figure 1 and 2. In the case that the first and
last knot of the knot vector repeat q+1 times, the knot vector is said to be open. The open
knot vectors are standard in isogeometric analysis and they are also used in our numerical
experiments. Basis functions formed from the open vectors lead to an interpolation at the
ends of the parametric space, which is beneficial in the real computations since a boundary
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condition needs to be fulfilled. However in the interior of the parametric domain, the
behaviour of the B-spline basis functions is not automatically interpolatory, but only in
the case of C0 continuity at any interior knot. This is the difference between B-spline and
finite element basis. Nevertheless, the piecewise constant and linear (i.e. for q = 0 and 1)
B-spline basis functions are the same as the piecewise constant and linear finite element
basis functions. However, considering Figures 1 and 2, it is evident that the finite element
and B-spline basis functions differ for q ≥ 2. The partition of unity is remaining property
of B-spline basis functions, i.e

n∑
i=1

N q
i (α) = 1, ∀α ∈ [α1, αn+q+1]. (101)

Figure 1: Linear basis for knot vector A = (0, 0, 13 ,
2
3 , 1, 1) (left), quadratic basis for knot A =

(0, 0, 0, 13 ,
2
3 , 1, 1, 1) (middle), cubic basis for knot vector A = (0, 0, 0, 0, 13 ,

2
3 , 1, 1, 1, 1) (right).

Figure 2: Cubic basis for knot vector A = (0, 0, 0, 0, 13 ,
1
3 ,

2
3 ,

2
3 , 1, 1, 1, 1) (left), A =

(0, 0, 0, 0, 16 ,
1
3 ,

1
3 ,

2
3 ,

2
3 , 1, 1, 1, 1) (middle), A = (0, 0, 0, 0, 13 ,

1
3 ,

1
3 ,

2
3 ,

2
3 ,

2
3 , 1, 1, 1, 1) (right).

B-spline curve in Rd is then a vector function of one parameter (i.e. mapping of a line
segment into d-dimensional space) and it is given as a linear combination of B-spline basis
functions

C(α) =
n∑
i=1

PiN
q
i (α), (102)

where Pi, i = 1, . . . , n are the coefficients of the linear combination, called control points.
The control points create control polygon, which is a polyline whose vertices are the control
points. The control polygon can be reached as a piecewise linear B-spline curve (i.e. C(α)
from (102) for q = 1) since linear B-spline basis give interpolation of the control points.
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However, the control points are not interpolated by B-spline curves for general basis degree
q ≥ 2 as already mentioned above. According to the curve and B-spline basis definitions,
note that a change of one control point Pi affects the curve only locally, but a wider
surrounding is affected with increasing degree of the basis functions.

The B-spline curves inherit the properties from the basis functions, i.e. for example the
B-spline curves have continuous derivatives of order q− 1 in the absence of repeated knots
or control points. Note that each inner knot should not be repeated more than q times,
because the curve would become discontinuous otherwise. More details about the B-spline
basis and B-spline curves can be found in [97, 50, 54].

The B-spline representation can describe a wide range of curves, but the B-splines are
piecewise polynomials, thus the conic sections (except parabola) cannot be represented
exactly by B-splines, [50]. In this case, a rational description is required, i.e. NURBS
(Non-Uniform Rational B-Spline) representation. To construct a rational curve, every
control point Pi is assigned to a weight wi. Then the NURBS curve of degree q is given
by a parametrization

C(α) =

∑n
i=1wiPiN

q
i (α)∑n

i=1 wiN
q
i (α)

=
n∑
i=1

PiR
q
i (α), (103)

where
Rq
i (α) =

wiN
q
i (α)∑n

j=1wjN
q
j (α)

(104)

are NURBS basis functions. Note that some of the weights can be zero, however, at least
one weight must be nonzero to make the fraction well defined. Note that if the weights
satisfy wi = a, i = 1, 2, . . . , n, where a is a nonzero constant, then the NURBS becomes
B-spline.

Although the NURBS curves provide exact construction of more complicated shapes
(like circle and other conic sections), the memory requirements of the evaluation of rational
functions are too high for practical computations. Then, we restrict ourselves to polynomial
B-spline description in this thesis. However, the reader is referred to [97, 50, 54] for more
details about NURBS objects.

In the real applications, we are rather interested in B-spline surfaces/solids. A sur-
face/solid is a vector function of two/three parameters (α, β)/(α, β, γ). There are several
ways how to represent the surfaces/solids, however, the tensor product is the simplest
and standard approach for B-splines. Then, the B-spline surface ([50]) of degree q is
determined by a control net (instead of control polygon for B-spline curves) of control
points Pi,j, i = 1, 2, . . . , n, j = 1, 2, . . . ,m and two knot vectors A = (α1, . . . , αn+q+1),
B = (β1, . . . , βm+q+1) and it is given by a parametrization

S(α, β) =
n∑
i=1

m∑
j=1

Pi,jN
q
i (α)M q

j (β) =
n∑
i=1

m∑
j=1

Pi,jB
q
ij(α, β) =

nu∑
j=1

PjB
q
j (α, β), (105)

where nu = n ·m, N q
i (α), M q

j (β) correspond to the knot vectors A, B, respectively, and
they are defined by (98) - (99) and Bq

ij(α, β) is the corresponding tensor product B-spline
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basis N q
i (α)M q

j (β). Note that the degree of the basis can differ in each parameter, but
B-splines of equal degree are applied in our numerical experiments and thus we denote
them identically by q. The B-spline solid representation is an extension of the B-spline
surfaces and thus it is not considered here for simplicity.

Isoparametric concept

In the previous, we introduced the geometry representation by the B-spline description,
i.e. we prepared computational domain, in which the fluid flow simulation is considered.
A B-spline mesh is defined by the product of knot vectors, i.e. A×B in two dimensions.
The span of the knots subdivides the domain into elements. Then, Galerkin discretization
of an (initial-)boundary value problem is considered such that the isoparametric concept is
required. It means that the discrete solution spaces of the approximation of the unknown
quantities are generated by the same B-spline basis functions which represent the geometry.
The coefficients of the linear combination of the basis functions are then the unknowns -
control variables and we follow in the same way as described in Section 4.1 which leads to
the system of linear algebraic equations.

Theory of B-spline/NURBS objects directly implies that it is not possible (or reason-
able, in some cases) to describe an object of arbitrary topology by one B-spline/NURBS
object [27]. One of the typical examples is a rectangular plate with two holes. The reason
for this lies in a regular control net describing B-spline/NURBS object, which is composed
of m× n (in 2D) control points.

Thus, if the isogeometric analysis is used for numerical solving of partial differential
equations, it is usually necessary to decompose a computational domain into subdomains,
which are suitable for description by one B-spline/NURBS object. Such a domain is then
composed of multiple B-spline/NURBS patches and will be called multipatch domain in
the following. Then, any solver based on isogeometric analysis working on multipatch
domains has to be able to join B-spline/NURBS patches along their interfaces into one
computational domain.

Generally, multipatch domains are usually distinguished by the type of connection of
patches into:

• conforming B-spline/NURBS meshes – patches have along a common interface the
same elements (discretization) and the same control nets describing this interface
(see Figure 3 (top)),

• nested B-spline/NURBS meshes – discretization of the common interface of left patch
is obtained as a uniform refinement of a discretization of the interface of the right
patch, or vice versa (see Figure 3 (middle)),

• non-conforming B-spline/NURBS meshes – description of the common interface be-
tween patches is completely independent on both patches (see Figure 3 (bottom)).

Conforming meshes can be handled easily – it is enough to identify the corresponding con-
trol points determining the common interface on both patches. The case of nested meshes
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is more complex, but it is still possible to find a direct relation between control points
determining a common interface on both patches. The most complex case is then repre-
sented by non-conforming meshes which is usually handled differently (e.g. discontinuous
Galerkin method applied only along the interfaces).

Figure 3: Examples of multipatch domains with different type of connection. Top: Conforming NURBS
meshes; Middle: Nested NURBS meshes; Bottom: Non-conforming NURBS meshes.

Note that the geometry description usually leads to very coarse meshes for practical
computations. It means that quite coarse control net is commonly sufficient to represent
a geometry exactly, but it is not satisfactory for the numerical purposes, especially in the
case of simulation of the turbulent flow in our case. Then, the mesh refinement strategies
have to be employed. It was mentioned that the computational mesh is dependent on the
knot vectors, i.e. the increasing number of the distinct knots in the knot vectors leads
to finer grid. This can be reached by knot insertion known as h-refinement (similarly to
FEM) such that the knots are inserted (possibly even multiple times) without changing
the B-spline object geometrically or parametrically. The h-refinement of the B-splines
can be implemented by the commonly known algorithms, which can be found in [97,
50]. Compared to finite element method, h-refinement is generally easy to perform in
isogeometric analysis. Once the computational domain is constructed, the knot insertion
is automatic process and the user only have to decide the number of refinement. Moreover,
the B-spline object is still represented exactly at each refinement level. Contrarily, the
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process of refinement is much more complicated in finite element analysis and requires
manual treatment. Note that h-refinement of the B-spline requires increasing number of
the control points and thus number of basis functions, which leads to higher number of
degrees of freedom, i.e. larger algebraic system of equations needs to be solved. Considering
the basis in Figure 2a (which is cubic basis with C1 continuity because of repeated knots 1

3

and 2
3
), a refined basis obtained by inserting new knot 1

6
into the knot vector can be seen

in Figure 2b.
In some cases, it is required to elevate the degree of the basis functions, e.g. to achieve

higher numerical accuracy in solving partial differential equations. The degree elevation
(p-refinement) is possible to perform without any changes of the geometry representation
or parametrization again. The knot vector changes so that the multiplicity of every knot
is increased by 1. Thus, the resulting B-spline object preserve the order of the continuity.
Similarly to h-refinement, the number of control points in the knot vector is increased
applying the p-refinement. Figures 2a shows an example of a cubic B-spline basis with C1

continuity obtained from the quadratic basis in Figure 1b by degree elevation. In Figure
2c, the cubic basis with C0 continuity is seen obtained from basis in Figure 2a by knot
insertion of the inner knots repeatedly.

It is also possible to increase both degree of the basis and its continuity. It is shown
in Figure 1, where we start with linear basis (q = 1) for a knot vector U = (0, 0, 1

3
, 2

3
, 1, 1)

with C0 continuity. If we repeat the first and last knot once, resp. two times, we get
quadratic basis (q = 2) for a knot vector U = (0, 0, 0, 1

3
, 2

3
, 1, 1, 1) with C1 continuity, resp.

cubic basis (q = 3) for a knot vector U = (0, 0, 0, 0, 1
3
, 2

3
, 1, 1, 1, 1) with C2 continuity.

It is possible to combine degree elevation (p-refinement) and knot insertion (h-refine-
ment), but note that the processes of knot insertion and degree elevation do not commute.
It is recommended to elevate the degree of the basis on the coarsest level first and then
insert knots into the knot vector. This results in less basis functions of a higher order of
continuity than if we first refine the knot vector and then elevate the degree. This is called
k-refinement, which has no similarity to the finite element method. More details about the
treatment of the mesh refinement can be found in [97, 50].

4.3 Stability

The disadvantage of many discretization methods is that they suffer from two main sources
of instabilities. One is an incompatibility of pressure and velocity such that the discretiza-
tion of velocity and pressure has to satisfy special requirements. Indeed, the so called
inf–sup condition (or Ladyženskaja–Babuška–Brezzi condition (LBB)) has to be fulfilled
to guarantee the stability described in Section 4.3.1. Not satisfied LBB condition leads
to the instability which usually appears as oscillations, primarily in the approximate pres-
sure solution. To avoid the restriction following from the inf–sup condition, the additional
stabilization technique can be employed, which is also discussed in Section 4.3.1.

The other source of instability is the possible dominance of the advective term over
the diffusion term in the problem of Navier–Stokes equations, i.e. in case of the turbulent
flow. Also, the system of RANS equations is closed with the turbulence model, which is
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the advection dominated system of time–dependent advection–diffusion–reaction equations
with the source term. Often, the reaction term is significant in some parts of the domain
and thus the problem becomes reaction dominated, too. Moreover, most of the turbulence
models are problems with non-constant coefficients and usually problems with nonlinear
terms, which makes the problem even more challenging.

The basic difficulties are the interior and boundary layers in the solution of the advection
dominated problems, where the solution gradients are very large. These layers usually
arise from the discontinuous, non-smooth or rapidly changing data, which is typical for
the turbulent flow, or generally for advection dominated problems. The width of the sharp
layers is usually smaller than the mesh size and thus the layers cannot be resolved properly.
It leads to unwanted spurious (nonphysical) oscillations in the numerical solution, which
causes loss of accuracy and stability.

The stabilization techniques have to be employed to improve the stability in the case
of dominated advection/reaction. But the resulting method should be able to resolve the
sharp layers and to prevent the occurrence of the spurious oscillations at the same time to
get an accurate numerical solution.

Most of the stabilization techniques follow from the study of a simple steady linear
advection–diffusion problem. Note that the numerical solution of this problem is equally
difficult if the advection is dominant and the numerical solution suffers from the numerical
instabilities for the same reason as mentioned above. Thus, the numerical treatment of
the linear advection–diffusion equation is still the subject of extensive research, see e.g.
[57, 60, 58, 2].

In case of the finite difference or finite volume methods, one approach is to replace the
central difference, which approximates the advection term, by forward or backward differ-
ence. The direction of characteristics decides if the forward or backward difference will be
chosen. This leads to the so called upwind scheme. The upwind finite difference technique
is one of the first stabilization approaches, which removed the oscillations. However, the
accuracy remains poor, because too much numerical diffusion was added.

Another option of the stabilization is to use methods, which approximate solution in a
special way such that the numerical oscillations are suppressed, e.g. discontinuous Galerkin
method (DG) and also TVD methods. The DG method is widely used in practice, such as
for solving compressible and incompressible flow with high Reynolds numbers, but also for
the shallow water equations, turbomachinery or magneto–hydrodynamics, [23, 22, 5, 87].
The DG method combines features of finite element method and finite volume method. The
solution is represented as a FEM approximation within each element and the advection
terms are resolved similarly as in FVM. Thus, the DGmethod computes high order accurate
solution and it benefits in its ability to handle with the complicated geometries and hanging
nodes. Besides, the importance of DG method is appreciated in situations with steep
gradients or shocks. Moreover, DGFEM can handle with the nonconforming meshes.

The DG method usually produces non–physical oscillations near the shocks if higher
order approximation is used. Then a slope limiter has to be applied to ensure the stability
of the scheme, [49]. Any TVD limiter is usually used, [45]. However, the high order
accuracy of the scheme can be lost, especially in multi-dimensional spaces, for more details
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see [49, 21].
Nevertheless, we concentrate on the solution of the Navier–Stokes/RANS problem using

the isogeometric analysis, which is based on the continuous Galerkin discretization. Thus,
any of the previous stabilization approaches cannot be applied and we need to follow
the techniques developed for the classical finite element method and extended for the
isogeometric analysis.

It is well known that the continuous Galerkin discretization is, in simple settings, equiv-
alent to the central finite difference approximation, which gives rise to spurious oscillations
in advection dominated problems, see e.g. [16, 57, 58].

Various stabilization techniques have been developed to diminish the numerical dif-
ficulties that affect the Galerkin discretization. First approaches were employed in the
one-dimensional case such that they imitated the idea of the upwind techniques used in
finite differences (cf. [57, 58, 16]). Later, the upwind type stabilizations were derived for
multi-dimensional problems. But the upwind techniques are known for their over-diffusive
character, which gives typically the solution without the presence of the numerical oscilla-
tions but with poor accuracy. Moreover, the upwind methods are not consistent since only
the advection term is modified and these methods are only first order accurate. Detailed
discussion about the upwind techniques can be found e.g. in [57, 16].

The Streamline Upwind/Petrov–Galerkin (SUPG) method proposed in [16] has become
the most popular stabilization method. It eliminates almost all the difficulties of the
previous methods for the advection dominated problems. By the construction, the SUPG
stabilization introduces numerical diffusion only along streamlines, such that the element
residual of the equation is added to the discrete weak form and multiplied by a test function
weighted by a suitable stabilization parameter. Note that the SUPG method is consistent
since the weighted residual is added to the Galerkin discretization, which results in higher
order accurate method.

The amount of the added numerical diffusion is not affected only by the parameters of
the given stabilization method but also by the choice of the basis functions. Moreover, the
spurious oscillations are usually observed in the vicinity of the sharp layers in the numer-
ical solution computed with the SUPG method, especially in the multi-dimensional and
nonlinear problems. The SUPG method is neither monotone nor monotonicity preserv-
ing (stated e.g. in [57]). From this follows that it cannot be guaranteed that the SUPG
stabilization will be sufficient and thus the numerical oscillations may appear.

Also, the discrete maximum principle is very important property, which is not auto-
matically guaranteed. On the other hand, the maximum principle holds for the continuous
steady advection-diffusion problem assuming certain requirements for the boundary con-
dition and the source term.

Only some of the stabilization methods satisfying the discrete maximum principle were
constructed, but usually under limited assumptions, see e.g. [24]. Thus, the monotone
method with high order accuracy or method that guarantees the discrete maximum princi-
ple is very difficult to develop. The stabilization methods must introduce sufficient artificial
diffusion in the sharp layers and the additional diffusion must quickly vanish in the regions
where the solution is smooth or where the advection is small. According to the literature,
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only a nonlinear method can avoid the numerical oscillations in the vicinity of the sharp
layers (i.e. add sufficient artificial diffusion) and give a high order accuracy in the regions
where the solution is smooth, [24].

Numerous additional stabilization methods have been introduced to suppress the re-
maining spurious oscillation of the SUPG solution. These techniques are called discon-
tinuity capturing, shock capturing or the most commonly, spurious oscillations at layers
diminishing (SOLD) methods, see e.g. [59, 60, 57]. Some of them only eliminate the nu-
merical oscillations, but other are developed such that the resulting method is monotone
or guarantees a discrete maximum principle.

Additional stabilization terms are added to the SUPG discrete form using the SOLD
methods. Most of the SOLD methods are nonlinear and consistent since the additional
terms usually depend on the unknown numerical solution in a nonlinear way and on the
discrete element residual. Some of the SOLD methods provide satisfactory results such that
they reduce the numerical oscillations with a sufficiently high accuracy. On the other hand,
some SOLD methods add too much numerical diffusion and hence the attained accuracy
of the methods is poor.

Although many SOLD methods have been developed, those of them that guarantee the
discrete maximum principle or preserve monotonicity are usually constructed for limited
application, e.g. for conforming linear triangular finite elements. An example of such a
method is the Mizukami-Hughes method, [59], which is a monotone method of first order
and satisfies the discrete maximum principle with high accuracy. But so far, it is not clear
how to generalize this method.

Other methods have been introduced which guarantee the discrete maximum principle.
For example, a nonlinear additional SOLD method is studied in [18], where sufficient
conditions are derived to satisfy the discrete maximum principle, but only with application
to linear elements on strictly acute triangulations.

The most published and popular SOLD method in the literature is the crosswind ar-
tificial diffusion (cf. e.g. [58, 59, 18, 28, 24]). As mentioned above, the SUPG method
introduces numerical diffusion only in the direction of the streamlines usually with suf-
ficient accuracy. Thus, an additional diffusion added only in the crosswind direction is
considered as an appropriate technique. Another popular method is the isotropic method
which however adds numerical diffusion in all directions and hence to much numerical
diffusion is usually added.

The main focus of the current research is on improvements of the SOLD methods, which
consists in the control of the amount of the added numerical diffusion. This is usually in-
fluenced by the choice of a stabilization parameter, which is contained in the stabilization
terms. But the formulas for the parameters are not optimal for general problem and hence
they are usually constructed for a particular discrete problem with an unclear way for gen-
eralization, e.g. the crosswind diffusion developed for the linear elements on triangulations,
[59, 18].

Another SOLD method is the edge stabilization, [19, 59, 60], which adds a term de-
pendent on the jump of the solution gradient over the element boundaries. Some of the
improvements of the edge stabilization include the element residual dependency in addi-
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tion. Nevertheless, the drawback of the method is that it is defined for the linear simplicial
finite elements.

The SOLD stabilization techniques are usually introduced for a simple steady advection–
diffusion problem with constant coefficients, [57, 58, 50, 59, 60, 63, 2]. There are also papers
where the unsteady linear advection dominated problems are studied, [24, 107]. Fewer num-
ber of the literature is focused on steady or unsteady advection–diffusion–reaction equation
with a source term, [18, 62, 76] and only a few papers can be found which employ the sta-
bilization methods for the nonlinear problems, [28, 107]. But the study of this class of the
SOLD methods is rarely seen for the incompressible turbulent flow problems simulated by
solving RANS equations, [92]. Note that almost all of the mentioned literature apply the
finite element method using linear basis functions and only some of them compare higher
degree (quadratic usually) elements. Moreover, there are lots of stabilization methods
which are defined only on the linear elements as mentioned above. Hence, we are limited
in selection of the stabilization methods since the isogeometric analysis with higher order
of the spatial discretization on multipach domain with locally refined meshes is used in
this thesis.

An alternative method to SUPG is the Galerkin/Least–squares (GLS) method which
extends the idea of the SUPG method by appending element residual in least-squares form
to the Galerkin formulation, [59, 38, 75]. The additional terms to the Galerkin form en-
hance the stability without degrading accuracy. For both SUPG and GLS methods, the
second derivatives are required, which are not neglected since the test functions are con-
sidered of higher degree using isogeometric analysis. The GLS method can be found to be
employed for the advection–diffusion problem, also for the incompressible flow, but usually
for the Stokes problem. Nevertheless, the application to the incompressible/compressible
Navier–Stokes equations can be found, too. A drawback of the GLS method is the number
of additional terms, which have to be evaluated in each iteration.

There are even more stabilization methods which can be applied to improve the stability
of the numerical solution (e.g. residual-free bubble finite element methods, local projec-
tion stabilization schemes and continuous interior penalty method, variational multiscale
method) and they are discussed e.g. in [2]. But all the mentioned techniques are based on
modification of the classical Galerkin formulation by adding some stabilization terms.

Besides these techniques, there are other approaches, which are constructed on the
algebraic level. The most popular is the predictor-corrector flux-corrected transport (FCT)
method, which is a high order method introduced in [72].

The idea of the FCT algorithm is as follows. First, a low order scheme is employed to
incorporate enough numerical diffusion such that all the undershoots and overshoots are
suppressed in the whole computational domain. This step enforces the positivity of the
resulting solution. It is based on an analysis of matrix properties which has to be satisfied
to preserve positivity. Algebraic flux correction (AFC) is a standard low-order method
used in the FCT algorithm, [68, 86, 55]. Second step is to apply a limited anti-diffusive
fluxes to the solution obtained by the low-order method, which results in the high-order
solution such that no unwanted spurious oscillations occur.

Another high-resolution FCT scheme is based on the so called blending of the low- and
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high-order flux approximation using a weighting factor (proposed in [122]). The high-order
scheme is used in the regions where the solution is smooth and the low-order scheme is
applied along the sharp layers.

Compared to the above mentioned stabilization methods, the predictor-corrector FCT
scheme does not include any stabilization parameter, which is challenging to set for a par-
ticular advection dominated problem. On the other hand, the anti-diffusive flux dependent
on the unknown solution is the most common choice of the FCT algorithm, which leads to
high computational cost. In order to reduce the computational requirements, various lin-
earization techniques have been developed. The reader is referred e.g. to [72, 73, 78, 70, 69]
for more details.

FCT techniques are mostly restricted to the linear finite elements. There exist exten-
sions to higher order finite elements, but its implementation is very hard due to negative
function values of the finite element bases. It leads to negative entries of the mass matrix
and hence the discrete maximum principle cannot be guaranteed. Isogeometric analysis is
not affected by this problem since B-splines are all non-negative and form the partition of
unity. It makes the isogemetric analysis a perfect tool for extending the FCT framework
to higher order functions, [78, 64].

The Babuška–Brezzi condition is presented in the following section where the sugges-
tions how to satisfy LBB condition are given. Also, SUPG and SOLD stabilizations are
formulated for the isogeometric analysis and then employed in the numerical experiments
in Section 5. We also implemented AFC method into our incompressible solver. But the
resulting solution is extremely over-diffusive as only low-order AFC method was applied.
Thus, the AFC results are not compared in the numerical experiments with the SOLD
methods in Section 5. We tackle FCT techniques in the future work.

4.3.1 LBB (Ladyženskaja–Babuška–Brezzi) condition

Ladyženskaja–Babuška–Brezzi condition is a sufficient condition for the discrete saddle
point problem to have a unique solution that depends continuously on the input data,
i.e. well-posedness problem. According to the Galerkin discretization mentioned in the
previous section, we assume V h to be the discrete velocity space and W h the discrete
pressure space. Then, the LBB condition states that there is a constant γ > 0 which is
not dependent on the mesh such that, [15, 89, 116, 36, 35],

inf
q∈Wh

sup
u∈V h

∫
Ω

q∇ · u

‖u‖H1(Ω) ‖q‖L2(Ω)

≥ γ. (106)

It is well known that many discretizations of the saddle point problems are unstable which
leads to the spurious oscillations of the velocity and primarily pressure approximations
(see the spurious checkerboard pressure mode [116]). But only few combinations of dis-
cretization satisfy the LBB condition. In practice, it is common to apply an extension
of the classical Taylor–Hood finite elements (see e.g. [116, 36, 35]) for the isogeometric
analysis to satisfy the inf–sup condition (106), i.e., to choose (p+ 1)-degree of the B-spline
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basis functions for the velocity approximation and p-degree of the B-spline basis functions
for the pressure approximation. The reader is referred e.g. to [15, 89] for more details,
discussion and basic theory on the saddle point problems and their numerical analysis.

In the case of classical finite element method, second order approximation for velocity
and first order approximation for pressure is the most commonly used combination satisfy-
ing (106), see [35, 104, 17, 12]. In case of finite volume method, LBB condition is satisfied
by different discretization. Specifically, the scalar pressure quantity is located in the vertex
of the mesh but the vector velocity quantity is located in the center of sides.

To avoid this restriction of the discretization, the additional stabilization can be imple-
mented. This can be ensured by the mentioned GLS stabilization method which suppress
spurious oscillations caused by both, not satisfied LBB condition and dominating advective
term, [38]. This makes it possible to use equal order approximations for the velocity and
pressure. If the SUPG method is rather used, the additional Pressure Stabilized/Petrov–
Galerkin (PSPG) method (cf. e.g. [110, 12]) is recommended to employ, because the
SUPG method does not circumvent LBB condition. There are variety of approaches dis-
cussed e.g. in [74, 91, 116, 36]. Nevertheless, the unequal degree of the basis functions is
chosen in this thesis.

4.3.2 SUPG stabilization

This and the following subsections are devoted to the stabilization techniques, which sup-
press the nonphysical spurious oscillations caused by the advection/reaction dominated
character of the equation. In our applications, we have to deal with advection dominated
system of Navier–Stokes equations, advection/reaction dominated turbulence model and if
needed also advection dominated system of RANS equations. Because of different formu-
lations of the mentioned problems, the stabilization methods are introduced on a general
time–dependent advection–diffusion–reaction (ADR) equation with a source term and gen-
eral non-constant coefficients. The application to the specific problem is then analogous.

The unsteady ADR problem is considered in the form

∂φ

∂t
+ b(φ,x, t) · ∇φ−∇ · [D(φ,x, t)∇φ] + r(φ,x, t)φ = f(φ,x, t) in Ω× (0, T ),

φ(x, t) = gD(x) on ∂ΩD × [0, T ], (107)
n ·D(φ,x, t)∇φ(x, t) = gN(x) on ∂ΩN × [0, T ],

φ(x, 0) = φ0(x) x ∈ Ω

where ∂Ω = ∂ΩD ∪ ∂ΩN , b = b(φ,x, t) is an advection coefficient satisfying the condition
∇·b = 0, D = D(φ,x, t) > 0, ∀(x, t) ∈ Ω× [0, T ] is a diffusion coefficient, r = r(φ,x, t) is a
reaction coefficient and f = f(φ,x, t) is a source term. Note that the advection coefficient
is b = u for all the mentioned problems.

The semi-discrete formulation of ADR problem (107) is determined as in Section 4.1,
which is to find φn+1 ∈ H1(Ω) for all n = 0, . . . , N − 1, where φN = φ(tN) = φ(T ), s.t. for

54



all ψ ∈ H1
0 (Ω) it holds∫

Ω

φn+1 − φn

∆t
ψ +

∫
Ω

(b(φn+1,x, tn+1) · ∇φn+1)ψ +

∫
Ω

D(φn+1,x, tn+1)∇φn+1 · ∇ψ

+

∫
Ω

r(φn+1,x, tn+1)φn+1ψ =

∫
∂ΩN

gN(x)ψ +

∫
Ω

f(φn+1,x, tn+1)ψ. (108)

For simplicity, the zero Neumann condition is assumed in the following, i.e., gN = 0.
Moreover, the natural outflow condition is cosidered in our numerical experiments, for
which the zero Neumann condition is used. The procedure is similar to spatial discretization
of the turbulence model, i.e., the Galerkin discretization is applied and B-splines are used
as the basis functions of the corresponding finite dimensional search V h ⊂ H1(Ω) and test
spaces V h

0 ⊂ H1
0 (Ω). A Galerkin problem arising from (108) reads: find φn+1

h ∈ V h such
that

1

∆t

∫
Ω

φn+1
h ψh +

∫
Ω

(b(φn+1
h ,x, tn+1) · ∇φn+1

h )ψh +

∫
Ω

D(φn+1
h ,x, tn+1)∇φn+1

h · ∇ψh +

+

∫
Ω

r(φn+1
h ,x, tn+1)φn+1

h ψh =

∫
Ω

f(φn+1
h ,x, tn+1)ψh +

1

∆t

∫
Ω

φnhψh (109)

for all ψh ∈ V h
0 . Note that the resulting reaction term is∫

Ω

(
1

∆t
+ r(φn+1

h ,x, tn+1)

)
φn+1
h ψh. (110)

Using the same procedure, the fractional step θ-method can be derived. This temporal
discretization can be found e.g. in [62]. But only the backward Euler method is employed
in this thesis, hence the general θ-scheme is not mentioned here for simplicity. The lin-
earization strategy is analogous to the turbulence problem such that the Galerkin problem
(109) is solved iteratively, however, the formulation is not mentioned here for simplicity.

To construct the SUPG method, the weighted element residual is added to the Galerkin
problem (109), i.e.,

nel∑
ie=1

∫
Qie

τSR(φn+1
h ,x, tn+1)b(φn+1

h ,x, tn+1) · ∇ψh, (111)

where

R(φn+1
h ) =

φn+1
h − φnh

∆t
+ b(φn+1

h ,x, tn+1) · ∇φn+1
h −∇ · [D(φn+1

h ,x, tn+1)∇φn+1
h ] +

+r(φn+1
h ,x, tn+1)φn+1

h − fh(φn+1
h ,x, tn+1) (112)
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is the element residual, nel is the number of elementsQie , τS is a suitably chosen nonnegative
SUPG stabilization parameter, which is explained below. But the functions from V h and
V h

0 have to satisfy different assumptions such that the second derivative exists. Thus,
the functions from the subspaces V h and V h

0 are assumed to be infinitely smooth inside
each element, which is satisfied using the B-spline basis functions in our applications.
Alternatively, the subspaces can be extended for the functions from H2(Ω). For classical
linear finite elements and B-splines of the first order, the second derivative is zero within
each element. However, this term cannot be neglected if higher order basis functions are
used, which are typically used in isogeometric analysis.

Note that the SUPG method is consistent as the SUPG term (111) is in the form of
weighted residual, i.e., the solution of (107) is a solution of the variational problem.

The choice of the stabilization parameter τS is a challenging part of the SUPG method.
Most of the literature deals with the linear steady advection–diffusion equation, thus the
stabilization parameters are only advection dependent or advection and diffusion depen-
dent. Fewer number of papers introduces the stabilization parameter which takes the
reaction into account, [18, 62, 76, 28, 107, 26]. There are some texts dealing with higher
order basis functions, see e.g. [76, 24, 50, 107]. But the formulas for the stabilization pa-
rameter are not optimal for general problem. Often, they are constructed for a particular
discrete problem with an unclear way for generalization (cf. e.g. [59, 18]).

We compare four variants of the SUPG stabilization parameter introduced e.g. in
[59, 60, 62, 26, 24]. First variant was proposed for one-dimensional advection–diffusion
problem with constant source term using piecewise linear finite elements on uniformly
refined mesh

τ 0
S =

h

2 ‖b‖
ξ(Pe) with ξ(Pe) = cothPe− 1

Pe
, (113)

where h is a characteristic size of the element and Pe is the local Péclet number

Pe =
‖b‖h
2D

. (114)

The parameter τ 0
S was shown to give nodally exact solution. A detail discussion about the

parameter τ 0
S can be found e.g. in [59, 76, 26, 24]. A simplification of this parameter is

τ 1
S =

h

2 ‖b‖
. (115)

It is well known that parameter τ 1
S adds too much numerical diffusion and that the function

ξ in (113) is the so called upwind function, which reduces the amount of the additional nu-
merical diffusion in the smooth regions of the computational domain. Nevertheless, both
parameters are compared in the numerical tests since we use the isogeometric analysis.
Only few studies of stabilization techniques exist using IgA on single patches or multi-
patches with regular mesh (e.g. [76, 107, 50]) and to our best knowledge there is only one
paper solving the turbulent incompressible flow on multipatches with local refinement for
high Reynolds numbers, [92].
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If the diffusion coefficient is constant, it is sufficient to apply the previous stabiliza-
tion parameters for advection dominated problem (Navier–Stokes problem with D = ν).
However, if the diffusion coefficient is not constant (RANS equations with D = ν + νT
and k, resp. ω, equation of the SST turbulence model (70) with D = σkνT + ν, resp.
D = σωνT + ν), the following stabilization parameter is recommended (cf. e.g. [107, 28])

τ 2
S =

((
2 ‖b‖
h

)2

+ 9

(
4D

h2

)2
)− 1

2

. (116)

In the case of unsteady problem, we can apply ([107])

τ 3
S =

((
2 ‖b‖
h

)2

+ 9

(
4D

h2

)2

+

(
2

∆t

)2
)− 1

2

(117)

and if the reaction r is nonzero in (107), the parameter should take the reaction into
account, i.e.,

τ 4
S =

((
2 ‖b‖
h

)2

+ 9

(
4D

h2

)2

+

(
2

∆t

)2

+ ‖r‖2

)− 1
2

. (118)

The parameters τ iS, i = 0, 1, . . . , 4 are generally functions of the evaluation points in the
element.

The element length computation is another key component of the stabilization methods.
A simple choice is to use the length of the diagonal or maximum size length of the element.
Usually, it is recommended to apply the element size in the advection direction in advection
dominated case, [59, 107]. If the problem is also reaction dominated such that reaction even
dominates advection in some parts of the domain, the appropriate choice of the element
length h is not clear, see e.g. [62]. Because the reaction can be dominant in solving
turbulence model, the length of element diagonal is used in our computations similarly to
[76]. The alternatives of h computation for isogeometric analysis will be studied in the
future work.

For higher order B-splines, the following modification of the stabilization parameter τ 0
S

can be used instead
τ 0,deg
S =

h

2deg ‖b‖
ξ(Pe), (119)

where deg is the degree of the basis functions. The modification of the rest of the stabi-
lization parameters τ 1,deg

S , τ 2,deg
S , τ 3,deg

S and τ 4,deg
S is straightforward.

As already mentioned, the SUPG stabilization adds numerical diffusion acting only in
the flow direction. Moreover, it is well known that the solution computed with the SUPG
formulation does not preclude the presence of spurious oscillations of small magnitudes in
the vicinity of the sharp gradients. The small overshoots and undershoots resulting from
the SUPG method are caused by the fact that SUPG method is neither monotone nor
monotonicity preserving method. In the context of the incompressible flow applications,
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the sharp gradients are inseparable part of the numerical simulation. Thus, it is usually
necessary to modify the SUPG formulation by adding additional stabilization terms, which
results in SOLD methods. In the following, we introduce additional crosswind diffusion
and isotropic artificial diffusion methods. These methods can be also employed as individ-
ual stabilizations without the SUPG formulation (see e.g. [18]), which is not a common
approach. First, the inconsistent SUPG method is formulated.

4.3.3 Inconsistent SUPG stabilization

Usually, the B-spline basis functions of higher degree are chosen to approximate the nu-
merical solution using IgA and hence the second derivatives in (112) are not zero in any
element as well as the pressure gradient in the Navier–Stokes equations. It follows that
the whole residual of the discrete problem has to be evaluated in (111). Thus, the incon-
sistent SUPG stabilization (denoted by I-SUPG in this thesis) is now formulated and it
is then compared in the numerical experiments. Employing the I-SUPG stabilization, the
following artificial diffusion term is added to the formulation of a discrete problem, i.e.,

nel∑
ie=1

∫
Qie

τS(b(φn+1
h ,x, tn+1) · ∇φn+1

h )(b(φn+1
h ,x, tn+1) · ∇ψh) (120)

where τS is considered as any of the SUPG parameters (113) – (119) in this thesis. However,
this type of I-SUPG stabilization leads usually to over-diffusive solution. On the other
hand, all the numerical oscillations are typically eliminated using (120).

It can be beneficial to consider the analogy to the classical finite elements applied to the
advection–diffusion equation or to Navier–Stokes equations, where the second order and
first order basis functions are usually used for the velocity and pressure approximations
in spatial discretization. Thus, it leads to zero diffusion and pressure terms and nonzero
advection and time derivative terms. In this analogy, we can apply an inconsistent SUPG
stabilization with the time derivative term in the form

nel∑
ie=1

∫
Qie

τS

(
φn+1
h − φnh

∆t
+ b(φn+1

h ,x, tn+1) · ∇φn+1
h

)
(b(φn+1

h ,x, tn+1) · ∇ψh) (121)

and denoted by IT-SUPG in the experiments. Although, this formulation is inconsistent
(i.e. the solution of (107) is no longer a solution of the variational problem), we have good
experience with the latter (121). Moreover, the research is still devoted to the inconsistent
approaches and the most common local projection stabilization (LPS) is applied e.g. in [62,
3] for advection–diffusion/advection–diffusion–reaction equation, and it is also employed
for the incompressible flow e.g. in [1].

4.3.4 Crosswind stabilization

As mentioned above, the SUPG stabilization can be assumed to add numerical diffusion
in the streamline direction and the crosswind diffusion is employed to reduce the spurious
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oscillations in the crosswind direction. The crosswind diffusion term is constructed such
that the resulting stabilization is consistent, i.e. the additional diffusion is proportional to
the element residual, moreover, it must vanish in the regions where the advection is small
and the solution is smooth to keep the accuracy.

The additional crosswind stabilizing term is written as (cf. e.g. [59, 58])

nel∑
ie=1

∫
Qie

τcwP
⊥∇φn+1

h · ∇ψh, (122)

where τcw is the crosswind stabilization parameter, which represents the relative amount
of the crosswind diffusion added, and P⊥ is an orthogonal projector defined by

P⊥ = I− b⊗ b

‖b‖2 . (123)

If the magnitude of the advection coefficient equals zero, then P⊥ = 0. The form of the
stabilization parameter τcw is very difficult to define and is derived similarly to SUPG
stabilization parameter. Many formulas for τcw have been proposed, but the following
variant [58, 59] is used in our numerical experiments

τcw =
τS ‖b‖2 ‖R(φh)‖

‖b‖ ‖∇φh‖+ ‖R(φh)‖
, (124)

where τS is one of the SUPG parameters (113) – (119).

4.3.5 Isotropic stabilization

Compared to the crosswind, isotropic diffusion is added in all directions. To find the proper
amount of the additional artificial diffusion is even more difficult problem for isotropic
diffusion if it is combined with SUPG method, since numerical diffusion in the streamline
direction was already added from the SUPG part. Thus, isotropic diffusion can be over-
diffusive with an inappropriate stabilization parameter.

The isotropic stabilization term is written as
nel∑
ie=1

∫
Qie

τiso∇φn+1
h · ∇ψh, (125)

where the two variants of the stabilization parameter τiso (cf. e.g. [58, 59, 62]) are consid-
ered

τ 1
iso = max

(
0, αhβ ‖R(φh)‖ −D

)
, (126)

with constants α and β specified in the numerical experiments and

τ 2
iso =

h ‖R(φh)‖
2 ‖∇φh‖

. (127)
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The nonlinear terms arised from the additional isotropic or crosswind stabilization are
treated together with the rest of the problem formulation, since the Navier–Stokes problem,
RANS problem and turbulence models are systems of the nonlinear equations. Thus, the
Picard’s method (introduced in Section 4.1.2) is employed for the whole stabilized form.

5 Numerical experiments

In this section, we present results of some numerical experiments. The fluid flow simula-
tion is obtained from an in-house isogeometric incompressible flow solver implemented in
C++ within a framework of the G+Smo library. G+Smo is an open-source object-oriented
templated C++ library based on abstract classes for geometry, discretization bases, assem-
blers, solvers etc. For more information about the library, see the documentation [81]. The
linear algebra tools available in G+Smo are mostly inherited from the Eigen library [44].

We implemented the incompressible solver including solution of Stokes, Navier–Stokes
and RANS problems in 2D and 3D. The possible choice of periodic boundary conditions
or simulation of the fluid flow in rotating machines using rotating frame of reference is also
included in the framework of our solver in the G+Smo library. In the case of RANS solver,
two–equation turbulence models are implemented, namely Wilcox two–equation k − ω
turbulence model (called LRN turbulence model in the experiments for simplicity) and
SST turbulence model introduced in Section 3.2.3. The solver for the advection–diffusion–
reaction equation with general non-constant coefficients is also integrated into the G+Smo
library.

The numerical experiments were executed on a Linux computer (Ubuntu 16.04.1, 64-
bit) with an Intel R© CoreTM i5-4310U processor @ 2.00GHz with four cores and 16GB of
RAM.

First, we focus on laminar fluid flow and after we simulate the turbulent flow. However,
the numerical simulation of the turbulent flow is very complex problem leading to a non-
linear advection dominated problem. We solve RANS equations closed with the system of
the time-dependent advection–diffusion–reaction equations with the source (production)
term to simulate the turbulent flow. A characteristic feature of solutions of this problem is

y

x

Figure 4: B-spline geometry representation of 2D backward facing step and an example of the computa-
tional mesh with 16032 DOFs.
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the presence of sharp layers. Numerical methods are required which are able to resolve the
sharp layers properly and also which prevent the spurious oscillations that are a typical
negative side effect of the problem with small diffusion. Thus, before the RANS problem is
solved, we focus on study of the numerical stability of the advection–diffusion (AD) such
that we employ and compare the stabilization techniques introduced in Section 4.3. In our
opinion, it is important to understand the numerical difficulties of the AD problem and
then to apply observations to more complicated case as the solution of the RANS equations
closed with turbulence model.

Running a flow simulation of the nonlinear Navier–Stokes, resp. RANS equations closed
with turbulence model, means to solve the resulting linear system several times in each time
step to let the Picard iterations converge. The stopping criterion of the Picard iterations
reflects relative change of the solution between two consequent Picard iterations. The
toleration of the relative error is set to 10−4. The number of Picard iterations of the
flow solver needed to converge increases with the decreasing value of the fluid viscosity.
Typically, high number of the inner iterations is required during first time steps because
of the significant changes of the initial condition. On the other hand, it usually decreases
as the numerical solution converges to the steady state.

The convergence of the inner iterations of the turbulence model is usually very slow. The
time step size can be decreased to reduce the number of the iterations. But higher number
of time iterations has to be computed instead. A common approach in the turbulent flow
computations is to add the maximum number of Picard iterations in one time step for the
stopping condition. In our applications, we set maximum 5 Picard iterations for unsteady
Navier–Stokes problem, at most 3 iterations for RANS nonlinear system and maximum 5
inner iterations for the turbulence model.

The system matrix is sparse, nonsymmetric and usually very large. The direct solver
with LU decomposition is applied for solving linear systems for the time being.

The geometries in Figures 4 – 6 are the B-spline representations of the computational
domains used in the experiments. An example of the computational mesh is also shown for
all the geometries. We consider only conforming meshes in this thesis. In our experiments,
we consider equal degree of the B-spline basis functions in all parameters as mentioned
above. The degree is denoted by q and it follows from the degree of the B-splines used
for geometry representation. But note that we elevate the degree of the basis functions

y

x

Figure 5: B-spline geometry representation of channel domain with an obstacle and an example of the
computational mesh with 9062 DOFs.
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Figure 6: B-spline geometry representation of the blade cascade and an example of the computational
mesh with 24349 DOFs.

for velocity by one to satisfy the LBB condition. By elevation, we assume that the degree
for velocity approximation increase, but the continuity (regularity) remains the same as
described in Section 4.2.

Figure 4 represents the geometry of the 2D backward facing step using the B-splines of
degree q = 2. It consists of three patches such that the individual patches are described as
B-spline surfaces. Uniform refinement with additional local refinement is considered in the
Figure 4 resulting in 16032 degrees of freedom (DOFs) in total for velocity and pressure.

Local refinement is very important tool mostly for turbulent flow near the walls if we
solve RANS problem closed with turbulence model without wall functions. In this thesis,
we consider knot insertion by local refinement explained in Section 4.2 and displayed in
Figures 4 – 6. However, in the context of the tensor product B-splines, insertion of a knot
into one knot vector causes refinement spreading over the whole control grid, which thus
can create a big amount of unnecessary control points. The requirement of conforming
mesh causes local refinement also in unsuitable interior parts of the domain, usually along
the interfaces, see Figures 4 and 5. Alternative refinement techniques can be applied, e.g.
T-splines or truncated hierarchical B-splines (THB-splines), but it is a non-trivial task
which we will study in the future.

The inlet Dirichlet condition is set on the left boundary at x = −0.25. The zero
Neumann condition is set on the right boundary at x = 2 and homogeneous Dirichlet
condition is considered at the rest of the boundaries.
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Figure 7: Runner wheel with seven highlighted cylindrical slices.

The fluid flow simulation around a circle obstacle is the second problem which we
study. The B-spline geometry representation is shown in Figure 5. The geometry consists
of six patches such that the degree of the B-spline basis is q = 3. Note that the B-spline
representation is used for the circle obstacle, thus the description of the circle is not exact,
but the approximation error is very low. The radius of the circle is 0.05 and the centre
of the circle is S = [0, 0]. The width of the channel is 0.41. Note that the position of the
centre of the obstacle is not in the half of the channel width, see Figure 5.

In this case, we show an example of mesh with 9062 DOFs that was generated using
both uniform and local refinement. Inlet Dirichlet condition is set on the left boundary at
x = −0.6. The zero Neumann condition is set on the right boundary at x = 2 and walls are
considered at the rest of the boundaries (i.e. homogeneous Dirichlet condition for velocity.
The boundary conditions for k and ω are explained in Section 5.4).

Blade cascade is the last 2D geometry, which we consider for numerical experiments of
the fluid flow simulation, see Figure 6. The B-spline geometry representation consists of
three conforming patches with B-spline basis of the degree q = 3. The middle (red) patch
displayed in Figure 6 represents the part of the domain between two neighboring blade
profiles. Blade cascade is constructed such that the upper and bottom boundaries of the
first (grey) and third (green) patches are set to be periodic. Note that the periodic sides
are parallel, hence we simply define an interface between two corresponding sides and treat
the periodic condition in the same way as interface.

The remaining boundaries correspond to the inflow (left boundary) and outflow (right
boundary). An example of the mesh can be also seen in Figure 6 with 24349 DOFs.
Uniform and local refinement is used again. In this case, the local refinement along the
interfaces is not necessary, however, the fluid flow simulation around the leading edge of
the profile is very complicated as the velocity gradients are very steep in this area. Thus,
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it is beneficial to refine this problematic area in both directions to obtain the most regular
elements rather than narrow long elements. A drawback is again the spreading of the
refinement along the whole interface because of the mentioned tensor product B-splines.

The size of the channel (length and pitch) and the parameters describing the blade
profiles are considered from the real data, i.e. the blade profile in Figure 6 is a chosen
unfolded cylindrical slice of the runner blade of the Kaplan turbine shown in Figure 7.

The zero Dirichlet boundary condition for velocity is prescribed at the walls (blade pro-
file) and zero Neumann condition is set at outflow boundary. The inlet velocity boundary
condition is constant with the tangent direction to the leading edge of the blade profile
and magnitude 8.1786, i.e. uin = (7.765,−0.28272).

One more periodic part of the domain is displayed in Figure 8 in order to see the
resulting unfolded slice of the runner blade. The results will be plotted in this periodically
extended domain in the following sections.

The aim of this thesis is the fluid flow around the 2D blade profile in a channel employ-
ing the stabilization techniques to suppress the numerical oscillations without degrading
accuracy. This kind of 2D computation could be used for a simplified turbine blade shape
optimization, since the 3D blade geometry is built from several 2D profiles.

Figure 8: Periodically extended geometry in Figure 6.
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The test cases are divided into three parts. First, the numerical solution of the steady
and unsteady Navier–Stokes equations is presented, i.e. the laminar flow is simulated.
Before the turbulent flow is simulated using RANS equations, the stabilization techniques
are studied for the advection–diffusion equation.

5.1 Laminar flow

In this section, the laminar incompressible flow is simulated solving Navier–Stokes prob-
lem. In the case of laminar flow, diffusion term dominates advection and the stabilization
techniques are not usually required. First example is the laminar flow in the backward
facing step. We prescribe a parabolic velocity profile with the maximum of 1 at the inlet
boundary, zero velocity on the walls and Neumann condition at the outlet as mentioned in
the previous section. The converged numerical solution of the steady Navier–Stokes prob-
lem is displayed in Figure 9 for viscosity ν = 0.0015. Note that the channel was lengthened
to fit the whole bottom vortex into the computational area. The resulting problem has
20066 DOFs. Zero initial guess was chosen for the Picard iterations, which is equally set
for all the experiments solving steady Navier–Stokes problem.

Figure 9: Streamlines and velocity magnitude (top) and pressure solution (bottom) of steady Navier–Stokes
for backward facing step flow with viscosity ν = 0.0015.

In the second experiment, we consider a steady flow around the blade profile with
viscosity ν = 0.01. The resulting velocity and pressure distributions are presented in
Figure 10.

Figures 11 and 12 show the velocity and pressure solutions of the steady Navier–Stokes
problem in channel with circle obstacle for ν = 0.02 and ν = 0.002. Parabolic velocity
profile with maximum 1 is prescribed at the inlet boundary.
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Figure 10: Streamlines and velocity magnitude (left) and pressure solution (right) of steady Navier–Stokes
in blade cascade with viscosity ν = 0.01.

Figure 11: Streamlines and velocity magnitude (top) and pressure solution (bottom) of steady Navier–
Stokes flow around circle obstacle with viscosity ν = 0.02.
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Figure 12: Streamlines and velocity magnitude (top) and pressure solution (bottom) of steady Navier–
Stokes flow around circle obstacle with viscosity ν = 0.002.

The unsteady Navier–Stokes equations are solved in the following experiments. In Fig-
ure 13 we can see velocity and pressure solutions of Navier–Stokes equations with viscosity
ν = 10−3 and ∆t = 0.01 in four different time moments T1 = 1s, T2 = 2s, T3 = 3s, T4 = 4s
for backward facing step. In the subsequent time steps, the vortices connect and start to
stretch. The numerical solution then converges to the steady state similar to solution in
Figure 9. In this experiment, different velocity profile was chosen at the inlet boundary.
In case of decreasing viscosity, the parabolic velocity profile at inlet is not suitable. One
approach is to extend the part of the channel in front of the step and set parabolic velocity
profile at the inlet boundary. The solution is then developed in the extended channel.
An alternative is to set the velocity profile obtained from the corresponding individual
channel flow solved in advance. Another approach is to use a general formula, which ap-
proximates velocity profile in the channel for given viscosity. In [106], the velocity profile
at the position x̄ (i.e. the magnitude of the second velocity component u = (u1, u2) in 2D)
is expressed as

u2(x̄, y) = umax

(
1− y

ȳ

) 1
n̄

, (128)

where umax is maximal value of the velocity profile, ȳ is half of the channel height and
n̄ = 1.03 ln (Re)−3.6. This approximation of the velocity profile is used in the experiment,
where the Reynolds number is computed Re = 0.25umax

ν
(the inlet channel height is 0.25 in

this example).
The fluid viscosity was chosen sufficiently high in the previous examples such that the

corresponding problems were not advection dominated or the computational mesh was fine
enough. Hence, the resulting solutions were stable and no additional stabilization was
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(a) Navier–Stokes solution in time T1 = 1s. (b) Navier–Stokes solution in time T2 = 2s.

(c) Navier–Stokes solution in time T3 = 3s. (d) Navier–Stokes solution in time T4 = 4s.

Figure 13: Time evolution of Navier–Stokes velocity and pressure solutions for T1 = 1s, T2 = 2s, T3 = 3s,
T4 = 4s, ν = 10−3.

required. If we are interested in the turbulent flow simulation with small viscosity, the
system of RANS equations is solved closed with the turbulence model since we are not
able to resolve the Navier–Stokes equations on the corresponding fine mesh. As mentioned
above, the turbulence model is a system of advection–diffusion–reaction equations, which
has to be stabilized. A motivating results are shown in Figure 14, where the RANS velocity
solution is compared for solving SST turbulence model without (left) and with (right)
stabilization terms (SUPG method with τ 2

S) for ν = 10−5 and ∆t = 10−3. Obviously, the
stabilization of the turbulence model affects significantly the RANS solution. Moreover, the
time iterations of the RANS solutions diverge in later time moment when no stabilization
scheme is used. Hence, the stabilization techniques are first studied for a simple advection
diffusion equation in the next section and then the observations are applied to stabilization
of the turbulence model.

Certainly, finer grid with not so narrow elements (especially close to the walls of the
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blade profile) could be used to suppress the numerical oscillations in some parts of the
domain, but our aim is to study the stabilization techniques on meshes which are not
regular, generally curvilinear and possibly insufficiently refined. The reason is to approach
the flow simulation in 3D geometries, for which we are usually forced to solve the problems
on coarser meshes because of the computational requirements.

Figure 14: Velocity solution of RANS equations closed with SST turbulence model in blade cascade with
viscosity ν = 10−5 in time T = 0.03s. SST without stabilization (left) SST with SUPG stabilization and
τ2S (right).

5.2 Advection–diffusion–reaction equation

As mentioned in the previous section, the numerical stability of the advection–diffusion
equation (107) is studied before the turbulent flow is simulated solving RANS equations.
The resulting systems of equations are also solved using LU direct solver.

5.2.1 Example 1

We start with an unsteady linear advection–diffusion initial boundary value problem with
constant coefficients where

b = (2,−3), D = 10−5, r = 0, f = 0. (129)

Linear B-spline geometry representation of the computational domain with a grid used in
experiments is shown in Figure 15. We assume an inflow boundary at the left side of the
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Figure 15: B-spline geometry representation of the L-shape domain with a regular computational grid.

upper left patch, i.e.,
φ(−1, y, t) = 1, y ∈ (0, 1), t ∈ [0, T ]. (130)

At the right side of the lower right patch, the outflow Neumann condition is considered

∂φ(1, y, t)

∂n
= 0, y ∈ (−1, 0), t ∈ [0, T ]. (131)

The zero Dirichlet condition is set at the rest of the domain boundaries and the initial
condition is

φ(x, y, 0) = 0, (x, y) ∈ Ω. (132)

As mentioned above, our aim is to simulate the fluid flow in the blade cascade for
which third degree of the B-splines are used to represent the geometry and hence the
turbulent kinetic energy and turbulent specific dissipation are approximated by the third
degree B-spline basis. Analogously, the following numerical experiments are computed
using the third degree B-spline basis for the numerical solution of the AD problem. Then
the resulting discrete problem has 918 DOFs (k-refinement is used for this example, i.e.,
the linear basis representing the geometry is elevated on the coarsest level and then the
knots are inserted into the knot vectors to get the resulting mesh, see Section 4.2).

The time step is chosen ∆t = 10−3 and the numerical solutions are plotted in time
T = 3s, unless otherwise stated.

Since the advection–diffusion problem (107) with (129) – (132) is advection dominated,
an oscillating numerical solution can be expected if no stabilization is used, see Figure
16. Note that the interfaces between the patches are visible, especially the horizontal one.
Figures 17 and 18 compare the SUPG (left) and the SOLD adding crosswind diffusion
(right) approaches.
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Figure 16: Numerical solution obtained without the employment of the stabilization methods (3D plot top
view).

• Stabilization parameter τ 2
S is used in this example for both SUPG and SOLD terms.

• It can be seen that the SUPG numerical diffusion is sufficient only in the streamline
direction and thus the SOLD method is necessary to reduce the spurious oscillations
in the crosswind direction.

• The numerical solution oscillates at the outflow boundary using SUPG and the os-
cillations are eliminated with SOLD.

• Although, the numerical oscillations are still evident along the interfaces, they are

Figure 17: Numerical solution for the SUPG method with τ2S (left) and the SOLD method with additional
crosswind diffusion both with τ2S (right), 3D plot (top view).
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Figure 18: Results from Figure 17 plotted from a different viewpoint.

less visible for the SOLD method. The numerical difficulties along the interfaces
depend certainly on the rate of the solution change. The direction of the flow cross-
ing the interface is also important. Moreover, the point of discontinuity [−1, 0] in
the boundary condition is also located at the horizontal interface, which makes the
problem even more difficult.

In the following, the results are compared in the form of the section along the line
[−1;−0.2] - [0; 0.8].

Figure 19 compares the SUPG method with all the stabilization parameters (113) -
(119).

• The results are almost identical for the parameters τ 0
S-τ 2

S and τ 0,deg
S -τ 2,deg

S since we
solve linear problem with constant coefficients and small diffusion.

φ

y

φ

y

Figure 19: Plot over line, comparison of the SUPG method using various stabilization parameters τS (left:
τ0S , τ

1
S , τ

2
S , τ

3
S , right: τ

2
S , τ

0,deg
S , τ2,degS ).

72



• It appears that the stabilization parameter τ 2
S (τ 2,deg

S ) is not beneficial. Nevertheless,
we see this parameter promising for the problems with non-constant diffusion coef-
ficient such that these stabilization terms add less numerical diffusion, resp. more
numerical diffusion, in the parts of the domain, where the diffusion coefficient has
higher, resp. lower, value. Then, we rather compare the subsequent results with the
stabilization parameter τ 2

S (τ 2,deg
S ).

• On the other hand, the amount of the additional numerical diffusion is insufficient
using SUPG with the parameter τ 3

S, which leads to an unstable solution.

• SUPG using the parameters with basis degree dependency τ 0,deg
S , τ 2,deg

S leads to less
diffusive results.

The numerical results of the SOLD methods (which add the crosswind or isotropic
additional artificial diffusion) with various stabilization parameters are studied in Figures
20 – 22.

• α = 1.5 and β = 1.9 are used for the isotropic diffusion with parameter τ 1
iso (indicated

by iso1 in the figure).

• The various stabilization parameters τS have similar effect for the SOLD and SUPG
approaches, i.e., the employment of the stabilization parameter τ 3

S or stabilization
parameter with the basis degree dependency exhibit oscillations at both the sharp
layers and interior layers.

• The most promising results are given by the SUPG method with additional crosswind
diffusion using τ 2

S for both methods or using τ 2,deg
S for SUPG and τ 2

S for crosswind.

• Unfortunately, the behavior of the numerical solution is rather poor near the interface
at y = 0 than near the other sharp layer around y = 0.5, where all the spurious
oscillation are effectively eliminated.

φ

y

φ

y

Figure 20: Comparison of the SUPG method and the SOLD method adding crosswind diffusion using
various stabilization parameters τS chosen the same for both SUPG and crosswind.
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Figure 21: Comparison of the SUPG method and the SOLD method adding crosswind diffusion using
various stabilization parameters τS chosen differently for SUPG and crosswind in some cases (right: zoom-
in).
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Figure 22: Comparison of the SUPG method, the SOLD method adding crosswind or isotropic diffusion
using various stabilization parameters τS and τiso (right: zoom-in).

• The SOLD method which adds crosswind diffusion using τ 2,deg
S (for both SUPG and

crosswind methods) leads to acceptable result except for the region near the interface.

• SOLD which adds isotropic diffusion is too diffusive for τ 1
iso.

• Parameter τ 2
iso (indicated by iso2) leads to similar results as the SOLD method with

crosswind diffusion. SOLD using τ 2
S for SUPG and τ 2

iso for isotropic diffusion is
effective near the interface compared to additional crosswind scheme.

The following experiment is focused on the comparison of the consistent and inconsistent
SUPG method. Two types of the inconsistent SUPG terms (I-SUPG and IT-SUPG) were
introduced by (120) and (121). The numerical results are displayed in Figure 23 applying
these approaches.

• The I-SUPG method produces too much numerical diffusion, even more than SOLD
with isotropic diffusion τ 1

iso in this experiment. The amount of the additional numer-
ical diffusion can be again reduced using different stabilization parameter.
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Figure 23: Comparison of the consistent and inconsistent SUPG methods (right: zoom-in).

• The IT-SUPGmethod gives almost identical result with the consistent SUPGmethod.
Indeed, the advection–diffusion equation is solved with dominated advection and
small constant diffusion. Hence, the diffusion term could be omitted in the element
residual, which implies the IT-SUPG approach.

• If the stabilization parameter τ 3
S is used, the numerical solution oscillates again, but

it is not displayed in the figure.

We study the influence of the local refinement along the interfaces on the numerical
solution in the following. This numerical experiment is very important since all the meshes
are locally refined for the fluid flow simulation as mentioned in Section 5.

The mesh displayed in Figure 24 is used for numerical solution. In Figure 25, we can
compare the SUPG and SOLD stabilizations with and without local refinement.

y

x

Figure 24: Local refinement of the grid in Figure 15 along the interfaces.
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• The numerical solutions differ a lot near the interface. Unfortunatelly, the results on
the locally refined mesh involve oscillations with higher magnitude.

• On the other hand, the numerical solutions are identical in the parts of the domain
far from the interface.
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Figure 25: Numerical solution computed on the regular and locally refined meshes for the SUPG method
and the SOLD method adding crosswind diffusion with the stabilization parameter τ2S (right: zoom-in).

Now, we want to show the influence of the uniform refinement.

• Figures 26 – 29 display the differences of the numerical solution computed on four
meshes using various stabilization techniques. grid1 is the mesh displayed in the
Figure 15 above. grid0 is a coarser grid such that we use one less uniform refinement
than in the case grid1, then the problem has 270 DOFs.

• grid2 and grid3 are finer meshes such that we use one and two more uniform
refinements compared to the basic mesh grid1. The resulting problems have 3366
and 12870 DOFs.

• The numerical solution is less smeared on finer grid. But we cannot generally observe
that the numerical oscillations reduce on finer grid.

• Also, the 3D results (top view) computed using the SOLD methods with various
stabilization parameters τS are displayed in Figure 30.

• The problematic areas are clearly visible in the figures, e.g. the area near the discon-
tinuous Dirichlet boundary condition, where the flow immediately meets the interface
between two patches. Or the areas where the numerical solution meets the walls.

• Certainly, the method using the stabilization parameter τ jS with a higher label j leads
to less diffusive result and thus we can expect more dominant spurious oscillations
in the problematic parts of the domain.
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Figure 26: Numerical solution computed on four uniformly refined meshes for the SUPG method using
τ2S (left) and for the SOLD method adding crosswind diffusion with parameter τ2S for both SUPG and
crosswind (right).
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Figure 27: Numerical solution computed on four uniformly refined meshes using the SOLD method with
additional crosswind diffusion and the parameter τ2,degS for SUPG and τ2S for crosswind (left) and the
parameter τ2,degS for both SUPG and crosswind (right).
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Figure 28: Comparison of the stabilization methods on grid0 (left) and grid1 (right).
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Figure 29: Comparison of the stabilization methods on grid2 (left) and grid3 (right).

Figure 30: Numerical solution computed on grid3 using the SOLD method with the additional crosswind
diffusion and stabilization parameter τ2S for both SUPG and crosswind (top left), τ2,degS for SUPG and τ2S
for crosswind (top right) and τ2,degS for both SUPG and crosswind (bottom), 3D plot (top view).

78



Let us recall that the stabilization parameters τS in (113)–(119) include the element
length computation h. In the previous experiments, the length of the element diagonal
was used for h. Now, we compare the results computed using h as the maximum length of
the element sides, see Figures 31 and 32.

• Stabilization method introduces less numerical diffusion using h as maximum length
of the element sides. This can be expected since the computational meshes consist
only of the rectangular elements in this section and thus the element diagonal is
longer than the maximum element side.

• Then, the maximum element side is beneficial in the areas far from the interfaces,
but it has a negative effect on the results near the interface.
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Figure 31: Comparison of the element diameter computation on the regular mesh.
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Figure 32: Comparison of the element diameter computation on the locally refined mesh (right: zoom-in).

In Figure 33, we give the numerical results for various magnitudes of the diffusion coefficient
from D = 10−2 to D = 10−6. The same time step size is still used for all experiments, i.e.
∆t = 10−3.
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• The results are very similar except D = 10−2.

• The numerical solution is almost identical for D = 10−4, D = 10−5 and D = 10−6.

• We get similar observations if we compute advection–diffusion problem without any
stabilization, see Figure 34.

• If we compare the results with and without stabilization for D = 10−2, Figure 34
(right), we can see that both results are very close to each other, but the stabilization
method eliminates the slight numerical instabilities.

φ

y

φ

y

Figure 33: Numerical solution for various magnitude of the diffusion coefficient using the SOLD method
(right: zoom-in).
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Figure 34: Numerical solution for various magnitudes of the diffusion coefficient without using any addi-
tional stabilization terms, compared to the SOLD method (right: zoom-in of some results).

Third degree B-spline basis was used in the previous experiments. In the rest of this
section, we focus on study of the dependency of the quality of the numerical solution on the
various degrees of the B-spline basis functions to show the advantages and disadvantages
of the higher order spatial approximation. Note that the higher order B-splines indicate
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advantages in the literature including the motivation to the isogeometric analysis (see
e.g. [50]). But the experiments are usually computed on a single patch domain with
regular mesh. We thus want to find out whether the same behavior can be achieved in our
computational problems.

• The degree of the B-spline basis functions is increasing from 1 to 6 in Figures 35 –
37 such that also the continuity of the basis functions increases. Nevertheless, the
continuity at the interfaces remains C0.

• The sections of the numerical solution along the lines [−1;−0.2] - [0; 0.8] and [1, 0] –
[1,−1] are shown in Figures 38 and 39.

• The SUPG method using the stabilization parameter τ 2
S is employed.

• The higher degree of the basis functions (q) tends to reflect better the discontinuous
character of the solution, but the SUPG stabilization is not sufficient to keep the
numerical solution smooth.

• Thus, we do not observe the mentioned positive effect of the higher degrees of the basis
functions in this case. Contrarily, the magnitude of the undershoots and overshoots
tends to increase with increasing q in the interior.

• Only, the overshoots are reduced with higher q in the left corner on the outflow
boundary, see Figure 39 (left).

Figure 35: Numerical solution for the B-splines basis functions of the degree p = 1 with C0 continuity
(left) and p = 2 with C1 continuity (right) using the SUPG method with τ2S .
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Figure 36: Numerical solution for the B-splines basis functions of the degree p = 3 with C2 continuity
(left) and p = 4 with C3 continuity (right) using the SUPG method with τ2S .

Figure 37: Numerical solution for the B-splines basis functions of the degree p = 5 with C4 continuity
(left) and p = 6 with C5 continuity (right) using the SUPG method with τ2S .
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Figure 38: Sections through the numerical solution for the B-splines basis functions of the degree from
p = 1 to p = 6 with the continuity from C0 to C5 using the SUPG method with τ2S (right: zoom-in).
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Figure 39: Sections through the numerical solution for the B-splines basis functions of the degree from
p = 1 to p = 6 with the continuity from C0 to C5 using the SUPG method with τ2S (right: zoom-in).

• The situation is different, if we solve the problem employing the SOLD method
(SUPG with additional crosswind diffusion with τ 2

S for both), see the results in Figures
40 – 47.

• Except for the surroundings of the interface, we can notice the promising behavior
of the numerical solution with increasing degree q.

• Nevertheless, we can see the tendency to the slightly oscillating behavior, which is
typical for higher order approximations.

Figure 40: Numerical solution for the B-spline basis functions of the degree p = 1 with C0 continuity (left)
and p = 2 with C1 continuity (right) using the SOLD method with additional crosswind diffusion and τ2S .
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Figure 41: Numerical solution for the B-spline basis functions of the degree p = 3 with C2 continuity (left)
and p = 4 with C3 continuity (right) using the SOLD method with additional crosswind diffusion and τ2S .

Figure 42: Numerical solution for the B-spline basis functions of the degree p = 5 with C4 continuity (left)
and p = 6 with C5 continuity (right) using the SOLD method with additional crosswind diffusion and τ2S .

Last experiment is similar to the latter one. The degree of the B-spline basis is increased,
but the continuity of the basis remains C0 in each patch. The results are shown in Figure
48, where the degree of the B-spline basis increases from 1 to 6. The section of the result
obtained using basis of the third degree with C2 continuity is added for comparison. This
representative was chosen according to the basis degree used for the computations in the
blade profile geometry.

• The influence of the degree elevation to the numerical solution is opposite to the pre-
vious case, where both degree of the basis and its order of continuity were increased.

• Except for q = 1, the smearing of the layers is larger with increasing degree q.

• Evidently, the results with C0 continuity dominates over the computations with
higher order continuity for the layer near the interface.
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• On the other hand, the right layer of the section is less smeared using basis with
higher continuity.
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Figure 43: Sections through the numerical solution for the B-spline basis functions of the degree from
p = 1 to p = 6 with the continuity from C0 to C5 using the SOLD method with additional crosswind
diffusion and τ2S .
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Figure 44: Zoom-in of the upper left and upper right part of the results in Figure 43.
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Figure 45: Zoom-in of the bottom left and bottom right part of the results in Figure 43.
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Figure 46: Sections through the numerical solution for the B-spline basis functions of the degree from
p = 1 to p = 6 with the continuity from C0 to C5 using the SOLD method with additional crosswind
diffusion and τ2S (right: zoom-in).
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Figure 47: Zoom-in of the bottom right part of the results in Figure 46.
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(a) Section through the numerical solution.
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(b) Zoom-in of upper left and right corners of the layers.
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(c) Zoom-in of bottom left and right corners of the layers.

Figure 48: Sections thought the numerical solution for the B-spline basis functions of the degree from
q = 1 to q = 6 with C0 continuity using the SUPG method with additional crosswind diffusion for τ2S .
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5.2.2 Example 2

Second example is devoted to solving the advection–diffusion equation again, but the com-
putational domain is the blade cascade displayed in Figure 6. We prescribe the initial and
boundary conditions similar to our target problem for the turbulence kinetic energy k since
we want to approach the setting of the turbulence model. The inlet boundary condition is

φ(−0.373118, y, t) = 0.1449, y ∈ (−0.246578, 0.028311), t ∈ [0, T ] (133)

and the Neumann condition at outlet

∂φ(0.433544, y, t)

∂n
= 0, y ∈ (0.34605, 0.620939), t ∈ [0, T ]. (134)

The zero Dirichlet condition is set at the walls representing the blade profile and the
periodic conditions are set at the rest of the boundaries. The initial condition is considered
as the expanded inlet condition into the whole domain, i.e.,

φ(x, y, 0) = 0.1449, (x, y) ∈ Ω. (135)

The advection coefficient is still constant in the whole domain and is chosen to be equal
to the inlet velocity profile, which is considered for the fluid flow simulation (see Section
5), i.e. b = (7.765,−0.28272). The diffusion coefficient D = 10−5, ∆t = 10−3 and T = 0.2,
unless otherwise stated.

Figure 49: Numerical solution computed without using the stabilization methods (left) and applying the
SUPG method with τ2S (right), 3D plot (top view).
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The numerical solution of the given advection–diffusion problem is shown in Figure
49, which oscillates since no stabilization technique is used (left) and the oscillations are
reduced using the SUPG stabilization (right) with parameter τ 2

S. Similarly to the first
example in Section 5.2.1, the interfaces are visible, mainly in the case without stabilization.

The following Figures 50 – 56 compares the results using various stabilization techniques
in the form of the section along the y direction at x = −0.0768. Note that the section is
not crossing any interface in this example.

• The stabilization methods with various parameters τS have similar effect to the nu-
merical solution as in the previous test case except for the stabilization parameter
τ 3
S.

• Remember that the results using τ 3
S were close to the solution computed without

stabilization in Section 5.2.1. In this numerical example, stabilization terms also add
less numerical diffusion for τ 3

S, but the resulting solution does not oscillates, only
some remaining spurious oscillation are observed.

• Generally, the parameters with the degree dependency and τ 3
S are beneficial in the

left part of the cross-section since they give less numerical diffusion.

• However, it leads to the over/under-shoots of higher magnitudes, see Figures 51 and
52.

• We thus need to find a compromise such that the left part is not significantly smeared
and the right part of the cross-section is not oscillating.

• The crosswind diffusion offers the possibility to reduce the numerical oscillations
such that the results are not excessively smeared, e.g., if we choose the stabilization
parameter τ jS with higher value of the index j or if we choose the parameter with the
degree dependency as can be seen in Figures 53 – 55.

• The influence of the isotropic diffusion (with α = 1.5 and β = 1.9 for τ 1
iso) can be

observed in Figure 56.

• The results are not satisfactory for τ 1
iso, since too much numerical diffusion is added

in the left part of the graph and the added numerical diffusion is not sufficient in the
right part of the graph.

• Additional isotropic diffusion for τ 2
iso is also rather poor in this experiment as the

numerical solution is smeared.
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Figure 50: Sections through the numerical solution, comparison of the results computed with and without
stabilization (left), SUPG method using various stabilization parameters τS (right).

φ

y

Figure 51: Sections through the numerical solution, comparison of the SUPG method using various stabi-
lization parameters τS .
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Figure 52: Zoom-in of the upper left and upper right part of the results in Figure 51.
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Figure 53: Comparison of the SUPG method and the SOLD method with the additional crosswind diffusion
using various stabilization parameters τS .
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Figure 54: Zoom-in of the upper left and upper right part of the results in Figure 53 (left).
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Figure 55: Zoom-in of the upper left and upper right part of the results Figure 53 (right).
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Figure 56: Comparison of the SUPG method, the SOLD method with additional crosswind or isotropic
diffusion using various stabilization parameters τS and τiso.

In Section 5.2.1, we did not presented the influence of the time step size on the quality
of the numerical solution, because the effect was not significant. The reason is that we dis-
played the steady state of the numerical solution. Moreover, the SUPG or SOLD methods
using the parameter τ 3

S led to an unstable solution and thus we used the other parameters
for computations, which are not time dependent. Here, we are interested in the behavior of
the numerical solution in time for which the results are not steady states. Thus, the time
step affects the results more significantly, even if we employ the stabilization parameter
τ 2
S, see Figure 57.

Figure 58 shows the differences of the numerical solution computed using the SOLD
method for various time step sizes and for τ 3

S. We can see that the time step size has a
significant influence on the quality of the numerical solution.

φ

y

φ

y

Figure 57: Numerical solution computed for various time step sizes using the SOLD method with the
parameter τ2S (right: zoom-in).

The results of the last experiment of this subsection are shown in Figure 59, in which
we compare the stabilization techniques with some selected stabilization parameters. In
this case, the section through the numerical solution is performed at x = 0.433544. We
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can repeatedly confirm the same influence of the various stabilization parameters on the
resulting numerical solution. The SOLD method with the parameter τ 2,deg

S seems to be a
convenient choice.

5.3 Summary

We studied the SUPG and SOLD methods applied for solving unsteady advection domi-
nated advection–diffusion equation with constant coefficients on regular and irregular mesh.
The most convenient technique appears to be the SOLD method which adds crosswind ar-
tificial diffusion, which suppress the spurious oscillations of the numerical solution. Higher
degree spatial approximation provides positive effect, if the SOLD method is employed.
However, this observation does not hold for general problem in our applications. But
note that even the nonlinear schemes as AFC and FCT provide smearing of the numerical
solution with increasing degree of the B-splines, see [64].

The drawback is the application to multipatch problems, which follows only C0 con-
tinuity of the numerical solution at the interfaces. Therefore, the solution gradients are

φ

y

φ

y

Figure 58: The numerical solution computed for various time step sizes using the SOLD method with
different stabilization parameters τS .

φ

y

Figure 59: Section at x = 0.433544 using various stabilizations.
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discontinuous at the interfaces. Hence, the abrupt changes in the solution near or at the
interfaces usually amplify the numerical oscillations, which make the problem of numerical
stabilization even more challenging.

The key component is the choice of the stabilization parameter. The most promising
approach seems to be the mentioned SOLD method adding crosswind diffusion with the
stabilization parameters τ 2

S, τ
2,deg
S . Also, τ 3

S, τ
3,deg
S can be applied if the numerical solution

does not involve discontinuities. In some cases, it is beneficial to use different variant of
the parameter τS for SUPG and crosswind diffusion.

The employed stabilization schemes are neither monotone nor monotonicity preserving.
Thus, the oscillation-free numerical solution is not guaranteed.

The mentioned observations are applied for the stabilization of the turbulence model
in the following section. Certainly, the problem of advection–diffusion–reaction turbulence
model with the production terms is much more complicated. We studied the stabilization
techniques for the ADR equation with reaction and source terms with a constant coeffi-
cients. Also, we tested this equation with non-constant coefficients (not changing in time),
which were set as the real coefficients of the k equation of the turbulence model in specific
time. But the observations are similar to the experiments in this and previous sections.
The stabilization parameter τ 4

S in (118) provides negligible advantages in our applications.
But the importance of this parameter is appreciated to the turbulence model, where the
reaction and production terms are dominant over the advection in some parts of the com-
putational domain. Moreover, the terms are time dependent and nonlinear. We thus show
the influence of the parameter τ 4

S for the turbulence model coupled with RANS equations
in the following section.

5.4 Turbulent flow

We present some numerical results obtained by our RANS solver. The main goal of this
section is the simulation of the fluid flow in the blade cascade. The time evolution of the
fluid flow over the circle obstacle is also solved and the numerical solutions are presented
in Appendix C. First, it is important to mention, how the boundary conditions for the
turbulence model are imposed.

We set the boundary conditions according to the literature (e.g. [42, 116, 30, 31, 32]).
The k − ω model is used in the thesis (primarily SST model and Wilcox LRN in some
comparisons), which can be resolved up to the walls. At the inflow boundary, the turbulent
kinetic energy satisfies

k =
3

2
(IU)2 , (136)

where I is the turbulence intensity and U is the mean velocity already mentioned in (7) in
Section 2. The turbulence intensity is usually expected I ≤ 5%. I = 4% in the experiments
of this section. The inlet condition for specific dissipation can be considered as

ω =

√
k

l
(137)
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using the estimation of the length scale l. An alternative is to set the turbulence viscosity
νT at inlet such that the required eddy viscosity ratio νT

ν
is satisfied. The eddy viscosity

ratio expresses the influence of the turbulent viscosity to the molecular viscosity. The
relation (137) is rather recommended for the internal flows than external flows, but the
viscosity ratio should be controlled to be sure that a reasonable value for ω is set. The
viscosity ratio νT

ν
= 10 in the experiments, unless otherwise stated.

The normal gradients of k and ω are assumed to be zero at the outflow boundary, i.e.
the zero Neumann boundary condition is set. The Dirichlet boundary condition for the
turbulent kinetic energy at solid walls is zero (k = 0). However, one problem occurs for ω
at walls since (see the relation (62) in Section 3.2.3)

ω =
ε

k
(138)

goes to infinity. Thus, ω is assumed to reach high limited value, which is usually problem
dependent. A partially universal procedure is to apply the relation for ω derived for the
wall function approach (cf. e.g. [42, 116, 30, 31, 32]), i.e.,

ω =
6ν

βy2
. (139)

To approximate the boundary condition at walls for ω, this relation is used such that y is
considered as the normal distance of the first grid point to the nearest wall. It is sometimes
common to approximate analogically the boundary condition for k as a small value close
to zero (k ≈ 0).

The homogeneous Dirichlet boundary condition for the mean velocity is prescribed
at the walls and zero Neumann condition is set at outflow boundary. The inlet velocity
boundary condition is constant with the tangent direction to the leading edge of the blade
profile and magnitude 8.1786, i.e. ūin = (7.765,−0.28272).

Two types of initial conditions are considered for velocity, k and ω in this work. First
type is to set constant value in the whole internal part of the computational domain, which
is zero for velocity and expanded inlet condition for k and ω in the whole interior part of
the domain.

Second type is a non-constant initial condition. A Stokes problem or steady Navier–
Stokes problem is solved assuming higher viscosity (i.e. laminar flow is considered for the
identical setting of the boundary conditions) such that the numerical scheme converges to
the steady state. The resulting numerical solution is set as the initial condition for the
RANS unsteady discrete problem.

The initial condition for the turbulence model can be set analogically, i.e., a separated
steady discrete problem of the turbulence model is solved iteratively until converges. For
this purpose, the corresponding initial condition for the velocity field (computed in the
previous step by solving Stokes or steady Navier–Stokes problem) is used for evaluation of
the terms of the steady turbulence model.

An alternative is to solve only the steady Stokes/Navier–Stokes problem for the setting
of the initial condition for RANS problem and to apply the mentioned constant initial
condition for k and ω. The chosen initial condition is specified in the numerical examples.
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Figure 60: Approximation of the wall distance.

The discrete RANS problem is solved decoupled from the discrete turbulence model. In
the first time step, the Picard RANS problem is solved until the iterations of the numerical
solution of u and p converge (or until the maximum number of the Picard iterations is
achieved as mentioned in Section 5). Then, we continue solving the discrete turbulence
model such that the computed velocity and pressure solutions are used for evaluation of
the turbulence model terms. This sequence is repeated in each time step.

The wall distance y of the computational nodes is required to evaluate the coefficients
of the SST turbulence model. Usually, an additional differential equation is solved to
approximate the distance to the nearest wall rather than search algorithms, which can be
difficult to apply in complex geometries. The three well known differential equations used
to compute wall distance are the Eikonal, Hamilton-Jacobi and Poisson equations.

In our case, the result of the additional Poisson equation is used to approximate the
wall distance, i.e.,

∆Ψ = −1, in Ω (140)

is the Poisson equation for which the zero Dirichlet condition is set at the walls of interest
and zero Neumann condition on the rest of the boundaries. The wall distance is then
approximated as (cf. [113])

y = −‖∇Ψ‖+

√
‖∇Ψ‖2 + 2Ψ. (141)

The wall distance approximation is computed only once at the beginning of the RANS
solver since the geometry does not change over time. The resulting wall distance is shown
in Figure 60 for the blade profile geometry. Very fine grid is used to solve the Poisson
equation (140) in order to get the most accurate wall distance approximation. Although
the computational requirements are high using fine grid, the Poisson equation is solved
only once as mentioned.
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(a) Velocity solution of RANS
with LRN turbulence model in
time T1 = 0.06s.

(b) Velocity solution of RANS
with LRN turbulence model in
time T1 = 0.12s.

(c) Pressure solution of RANS
with LRN turbulence model in
time T1 = 0.12s (3D plot top
view).

(d) Velocity solution of RANS
with SST turbulence model in
time T1 = 0.06s.

(e) Velocity solution of RANS
with SST turbulence model in
time T1 = 0.12s.

(f) Pressure solution of RANS
with SST turbulence model in
time T1 = 0.12s (3D plot top
view).

Figure 61: Comparison of LRN and SST turbulence models for T1 = 0.06s, T2 = 0.12s. Solutions of steady
problems set as initial condition.

The computational mesh in Figure 6 is used, which satisfies y+ < 10. The simulation
was carried out for a fluid with viscosity ν = 10−5 with time step ∆t = 10−4.

If the stabilization techniques does not completely eliminate the spurious oscillations,
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special treatment is required to prevent the nonphysical negative values of the variables.
A negative slope linearization or other positivity preserving techniques can be found e.g.
in [69, 93]. The main idea is to limit the coefficients and source term of the linearized

(a) Velocity solution of RANS
with LRN turbulence model in
time T1 = 0.015s.

(b) Velocity solution of RANS
with LRN turbulence model in
time T2 = 0.03s.

(c) Pressure solution of RANS
with LRN turbulence model in
time T2 = 0.03s (3D plot top
view).

(d) Velocity solution of RANS
with SST turbulence model in
time T1 = 0.015s.

(e) Velocity solution of RANS
with SST turbulence model in
time T2 = 0.03s.

(f) Pressure solution of RANS
with SST turbulence model in
time T2 = 0.03s (3D plot top
view).

Figure 62: Comparison of LRN and SST turbulence models for T1 = 0.015s, T2 = 0.03s. Constant initial
conditions.
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equations from below, which is also employed in our fluid flow solver.
The LRN (Wilcox low Reynolds number k − ω turbulence model) and SST turbulence

models are compared in Figures 61 - 63. The solutions of the steady problems are set as the
initial condition for both RANS and turbulence model problems in Figure 61, whereas the
constant initial value is prescribed in Figures 62 and 63. The SOLD method which adds
crosswind artificial diffusion is employed in the rest of the experiments for the turbulence
model. Parameter τ 4

S is chosen for both the SUPG and crosswind terms in this section,
unless otherwise stated.

The LRN turbulence model produces much more turbulence viscosity, see Figure 63
(middle and right). It leads to numerical solution with no or little numerical instabilities,
which is more evident in the case of constant initial condition, Figures 62 (top) and 63
(middle and right). Almost identical results are obtained if the problem is solved without
any stabilization techniques for LRN model, but the results are not presented here. The
reason is the mentioned big amount of νT added to the RANS diffusion coefficient (ν+νT ).
From the numerical point of view, the turbulence viscosity plays a role of the additional
artificial diffusion. The resulting approximation of the fluid flow is laminar, which prevents
the transition to turbulence.

On the other hand, the SST turbulence model produces less turbulent viscosity νT ,
which leads to better predictions of the turbulence. Also, the SST model for RANS com-
putations is one of the most common turbulence models for the real applications in the
literature. The price to be paid is the presence of the spurious oscillations, see Figures
61 and 62 (bottom) and Figure 63 (left). Moreover, the time iterations of the numerical

(a) Eddy viscosity νT of the SST
turbulence model in time T1 =
0.015s.

(b) Eddy viscosity νT of the
LRN turbulence model in time
T1 = 0.015s.

(c) Eddy viscosity νT of the
LRN turbulence model in time
T2 = 0.12s.

Figure 63: Comparison of νT of LRN and SST turbulence models for T1 = 0.015s, T2 = 0.12s. Constant
initial conditions.
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solution diverge if none of the stabilization approaches is employed for the SST model (as
already mentioned in the motivation example in Section 5.1).

Thus, the SST k − ω turbulence model is rather used to predict the turbulence in the
rest of the experiments. However, the suitable stabilization scheme has to be applied to
suppress the numerical oscillations without an excessive smearing.

The influence of the SUPG and SOLD methods with various stabilization parameters
used for the system of unsteady advection–diffusion–reaction k − ω equations is similar
to the results obtained in Section 5.2. It means that the SUPG method reduces the
unphysical oscillations only in the streamline direction and a convenient artificial diffusion
has to be added. The additional crosswind diffusion also leads to most promising results for
turbulence model. The stabilization parameters τS affect the amount of the added artificial
diffusion in the same way as observed in Section 5.2. The artificial isotropic diffusion (with
both parameters τ 0

iso and τ 1
iso) was also applied to the SST model for comparison, but this

approach does not provide satisfactory results similarly to observations in Section 5.2. We
thus focus on numerical study of the additional crosswind diffusion for the SOLD method
in this section.

We presented the RANS velocity and pressure solutions for solving SST model with
and without stabilization terms in Section 5.1. It follows from the results that the sta-
bilization techniques used for turbulence model can strongly affect the RANS solutions.
Hence, the choice of the stabilization parameters is also very important. Similarly to the
simple advection–diffusion equation, the parameters τ 0

S and primarily τ 1
S leads to numeri-

cal results which are extremely diffusive. Also, the parameter τ 2
S is not satisfactory since

the turbulence model is usually reaction dominated in some areas of the computational
domain, but τ 2

S is not reaction dependent.

Figure 64: RANS velocity solution in time T = 0.03s. SOLD parameters: τ4S for SUPG, τ2S for crosswind.
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Hypothetically, the mentioned stabilization parameters could be used in order to get
oscillation-free solution though smeared. However, the resulting time iterations of the
RANS solution diverge. According to our consideration, the reason is just the unsuitable
stabilization parameter, which leads to diffusive result. This can be observed in Figures 64
and 65, where the SOLD method adding crosswind diffusion is used with τ 4

S for SUPG and
τ 2
S for crosswind. Indeed, the reaction and production terms play an important role in the
boundary layer. If too much artificial diffusion is added, the solution is excessively smeared
to the areas outside the boundary layer, see the time evolution of the turbulent kinetic
energy in Figure 65. The smearing spreads fast along the interface and the arised mass of

Figure 65: Time evolution of turbulence kinetic energy solution for T1 = 0.005s, T2 = 0.01s, T3 = 0.015s,
T4 = 0.03s from top left to bottom right. SOLD parameters: τ4S for SUPG, τ2S for crosswind.
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the kinetic energy travels through the domain. At the moment, when it crosses the second
interface and wake at the end of the profile, the numerical solution blows-up. If the time
step size is decreased, the blow-up time is unchanged. The same observations are obtained
also using other stabilization parameters, which do not take the reaction coefficient into
account. It is primarily for the crosswind diffusion, which smears the solution near the
leading edge of the blade profile in the orthogonal direction to the wall. If only SUPG
stabilization is used for the turbulence model, the time iterations of the solution does not
diverge although the numerical solution is polluted by the spurious oscillations all over the
domain mainly in the crosswind direction.

Figure 66 compares the distribution of the turbulent kinetic energy for various stabi-
lization parameters for the SOLD method. We can see the importance of the parameter
dependence on the reaction term. Nevertheless, the remaining numerical instabilities arises
from behavior of the numerical solution along the interfaces as presented in Section 5.2.1
and apparently from the insufficiently refined mesh (such that the elements are now very
narrow, curvilinear and irregular) near the walls.

To sum up, the stabilization approaches are needed for the discrete Galerkin problem of
the SST turbulence model to get non-divergent time iterations of the numerical solution.
The requirement is a stabilization scheme which does not introduce too much artificial
diffusion primarily in the crosswind direction in the regions with dominated reaction term.
Hence, the SOLD method adding crosswind diffusion with parameter τ 4

S is recommended
despite the remaining spurious oscillations which arises from the numerical difficulties along
the interfaces (where the order of the solution continuity is decreased to C0).

A drawback is that the numerical instabilities in the k and ω solutions propagate into

(a) SOLD parameters: τ4S for
SUPG, τ2S for crosswind.

(b) SOLD parameters: τ4S for
SUPG, τ3S for crosswind.

(c) SOLD parameters: τ4S for
SUPG, τ4S for crosswind.

Figure 66: Comparison of νT of the SST turbulence models in time T = 0.005s for various SOLD param-
eters.
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the RANS velocity and pressure solutions. Thus, to suppress the remaining unphysical
oscillations, a stabilization terms are required to be added also to the discrete RANS
problem. Unfortunately, the results employing the SUPG or SOLD approaches for RANS
equations are not satisfactory in our applications to the flow in blade cascade so far.
Only the I-SUPG and IT-SUPG stabilizations (introduced in Section 4.3.3) provide non-
divergent time iterations of the RANS solution.

Considering the results of the advection–diffusion equation in Section 5.2.1, the I-SUPG
term (120) introduces equally too much numerical diffusion in application to RANS equa-

Figure 67: Time evolution of RANS velocity (upper row) and pressure (bottom row) solutions using SST
turbulence model for T1 = 0.015s (left col), T2 = 0.03s (middle col), T3 = 0.12s (right col). SOLD method
(SUPG with additional crosswind) for SST model and IT-SUPG method for RANS equations. Stabilization
parameters: τ4S for both SUPG and crosswind, τ3S for IT-SUPG, (3D plot of the middle bottom result: top
view).

103



tions. The velocity and pressure approximations are smeared similarly to the results shown
in Figure 62 for the LRN turbulence model and hence they are not displayed. On the other
hand, the IT-SUPG method provides satisfactory results, see Figure 67. Compared to the
RANS solutions in Figure 62 (bottom row), almost all the numerical oscillations are elim-
inated, which is most evident for the RANS pressure solution. The remaining spurious
oscillations again arises from the C0 continuity across the interfaces. Although the incon-
sistent method was applied, the resulting RANS solution are only slightly smeared (see the
pressure minimum value in time T = 0.03s).

Several other numerical experiments for different stabilization parameters τS of the
SOLD method are shown in Appendix C.

The spurious oscillations can be also reduced to some extent, if we set higher value of
the eddy viscosity ratio νT

ν
at the inlet boundary. As a consequence, the resulting turbulent

viscosity has globally higher value in the whole computational domain. In our consider-
ation, the locally added artificial diffusion introduced from the mentioned stabilization
schemes is rather used than to globally increase the diffusion coefficient.
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6 Conclusions and future work

Isogeometric analysis is a very powerful tool for the analysis of partial differential equations
and optimization processes since it gives the possibility to represent the geometry exactly.
Moreover, it allows to avoid the time-consuming step of mesh generation and manual
treatment of the mesh refinement. We have presented numerical investigations for IgA
applications to unsteady advection/reaction dominated problems. A characteristic feature
of numerical solutions of the mentioned problems is the presence of sharp layers, where the
solution gradients are very large. Then the continuous Galerkin discretizations give rise to
unwanted nonphysical oscillations.

This thesis project resulted in the extension of the common stabilization approaches for
finite elements to higher order basis functions on multipatch domains with general curvilin-
ear meshes including local refinement (within the meaning of tensor product refinement).

The SUPG and SOLD methods have been applied to suppress the spurious oscilla-
tions without excessive smearing of the numerical solution. The choice of the stabilization
parameters is the most challenging part of the stabilization techniques. Numerical re-
sults reveal their capabilities in solving unsteady advection–diffusion equations and RANS
equations closed with SST turbulence model in highly advective situations. Special effort
has been devoted to the problems on multipatch domains with irregular and curvilinear
meshes.

Higher degree spatial approximation provides positive effect, if the SOLD method is
employed. However, this observation does not hold for all our numerical experiments. The
drawback is the application to the multipatch problems, which follows only C0 continuity
of the numerical solution across the interfaces. Therefore, the solution gradients are dis-
continuous at the patch boundaries. Hence, the abrupt changes in the solution along the
interfaces usually amplify the numerical oscillations, which makes the problem of numerical
stabilization even more challenging.

For all the numerical experiments, the SOLD method which adds the artificial crosswind
diffusion appears to be the most convenient technique with an appropriate choice of the
stabilization parameter. It is hard to suggest an optimal parameter for general advection–
diffusion equation and even more complicated is the choice of the parameter for complex
problems. According to our observations, we recommend parameter with dependency on
all the coefficients of the given equation.

The importance of the stabilization parameter with reaction dependency is significant
for the turbulence model, where the reaction terms are dominant over the advection in
some parts of the computational domain. This parameter should be used especially in
the case of SOLD method application despite the remaining spurious oscillations, which
mostly arises from the numerical difficulties along the interfaces (where the order of the
solution continuity is decreased to C0). As a consequence, the numerical instabilities of
the solution of the turbulence model propagate into the resulting RANS solution. The
IT-SUPG stabilization method provides satisfactory results, but the SUPG and SOLD
techniques for RANS equations leads to unstable solutions in our applications so far. Thus,
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the stabilization techniques for the RANS equations should be investigated in more detail.
The numerical solutions of the advection dominated problems were obtained from an

in-house IgA solver implemented in C++ within a framework of the G+Smo library.
Since the spatial discretization of the Navier–Stokes and RANS equations using an

implicit time discretization results in nonsymmetric linear systems of saddle-point type,
employment of the iterative methods with a good choice of preconditioner for the whole
system is necessary for industrial application, which is not a trivial task. Thus, the direct
solver with LU decomposition is applied for the time being. But the efficiency is a significant
limitation of the current code and hence only two dimensional problems were studied.

The work of this thesis is motivated by the problem of automatic shape optimization
of runner blades in water turbines in order to improve utility quantities as the turbine effi-
ciency. The flow in the hydraulic turbine is assumed to be very fast and thus the turbulent
behavior of the flow is expected. Moreover, if we are interested in shape optimization, the
flow near boundary must be properly simulated to get reasonable solution.

Considering the above goal, it is necessary to improve the numerical simulation of the
turbulent flow, especially near the boundary. The near wall treatment is very problematic
and important issue. The turbulence models are resolved up to the walls, since the wall
function approach is not employed so far. A drawback is very fine grid near the solid walls.
In the future work, either we have to improve the local refinement near the walls using
special refinement techniques, e.g. truncated hierarchical B-splines, or the wall function
approach has to be integrate into our fluid flow solver. For the same reasons, the mesh
along the wake flow past the blade profile deserves more care. But without the true local
refinement (not tensor product knot insertion) techniques, the treatment of the long narrow
elements has to be covered.

The length of the element diagonal was chosen for evaluation of the stabilization pa-
rameters and compared with the maximum size length of the element. The alternatives
suitable for the isogeometric analysis applied on advection/reaction dominated problems
will be studied in the future work.

Further research will be also concentrated on AFC and FCT nonlinear stabilization
techniques for high order B-splines. FCT techniques are mostly restricted to the linear finite
elements. There exist extensions to higher order finite elements, but its implementation is
very hard due to negative function values of the finite element bases. Isogeometric analysis
is not affected by this problem since B-splines are all non-negative, which makes IgA a
perfect tool for extending the FCT framework to higher order functions. The low-order
AFC method has been already implemented into the framework of the G+Smo library, but
certainly the resulting numerical solution is excessively smeared. The implementation of
the high-resolution FCT scheme needs to be tackled.

Application of different time discretization schemes together with the SOLD methods
should be also integrated into our flow solver to get higher order accuracy of the entire
space-time discretization.

All of the experiments demonstrated the numerical difficulties along the multipatch
interfaces. The rate of the solution change and the direction of the flow crossing the
interface extremely affect the numerical oscillations in this areas. In order to handle the
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decrease in the solution approximation continuity across the interfaces, the discontinuous
Galerkin technique is recommended to be employed. The discontinuities are allowed in the
numerical solution at the patch boundaries, which can provide advantage since the solution
derivatives and the turbulence viscosity are generally discontinuous at the interfaces. This
combination of the IgA and DG approaches starts to be frequently used for the compressible
flows, but we believe in favourable results also for the incompressible flow. Moreover,
DG method is capable to accommodate the non-conforming meshes which are frequently
employed in multipatch domains.
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A Weak formulation and linearization of the unsteady
problem

In the following, the weak formulation of the Reynolds-Averaged Navier–Stokes equations
closed with k–ω turbulence model is derived similarly to the case of the steady Navier–
Stokes problem in Section 4.1. However, special attention has to be invested to the time-
derivative of the mean velocity solution. We introduced several turbulence models in
Section 3. Note that all of the turbulence models are advection-diffusion-reaction equations,
which differ in the form of the coefficients from the mathematical point of view. Thus, only
the Wilcox’s two equation k–ω turbulence model (66) is considered here to close the RANS
problem and the derivation of the weak formulation of RANS with another turbulence
model is straightforward. Before the weak form is derived, the closed RANS problem is
formulated.

In the unsteady case, we are looking for a velocity field ū(x, t) : Ω̄ × [0, T ] → Rd, a
pressure p(x, t) : Ω̄ × [0, T ] → R, a turbulent kinetic energy k(x, t) : Ω̄ × [0, T ] → R and
turbulent specific dissipation ω(x, t) : Ω̄× [0, T ]→ R such that the initial boundary value
problem is satisfied

∂ū

∂t
+ ū · ∇ū−∇ ·

[
(ν + νT )(∇ū +∇ūT )

]
+∇p̄ = −2

3
∇k, in Q,

∇ · ū = 0, in Q
∂k

∂t
+ ū · ∇k −∇ ·

[(
ν + σkα

∗ k

ω

)
∇k
]

+ β∗ωk = Pk, in Q (142)

∂ω

∂t
+ ū · ∇ω −∇ ·

[(
ν + σωα

∗ k

ω

)
∇ω
]

+ βω2 = γ
ω

k
Pk +

σd
ω
∇k · ∇ω, in Q

ū(x, 0) = ū0(x), in Ω,

k(x, 0) = k0(x), in Ω,

ω(x, 0) = ω0(x), in Ω,

ū = g, on ∂ΩD × (0, T ),

νn · (∇ū +∇ūT )− np̄ = 0, on ∂ΩN × (0, T ),

k = gk, on ∂ΩD × (0, T ),

ω = gω, on ∂ΩD × (0, T ),

n · ∇k = 0, on ∂ΩN × (0, T ),

n · ∇ω = 0, on ∂ΩN × (0, T ),

where ∂Ω = ∂ΩD∪∂ΩN , Q = Ω× (0, T ) and the coefficients in the k–ω equations are given
in Section 3.2.3. A classical solution of the unsteady RANS problem closed with the two–
equation turbulence model is (ū, p̄, k, ω), if it satisfies (142) and ū ∈ C2(Q̄), p̄ ∈ C1(Q̄),
k ∈ C2(Q̄) and ω ∈ C2(Q̄).

To treat the time dependence of the RANS problem, we apply the semidiscrete method
such that the discretization of the time variable is given first. For this purpose, the RANS
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and k − ω equations are rewritten in a more general form as

∂ū

∂t
= R(x, t, ū,∇ū,∇p̄,∇k, νT ),

∂k

∂t
= Rk(x, t, k,∇k, ω, ū,∇ū), (143)

∂ω

∂t
= Rω(x, t, ω,∇ω, k,∇k, ū,∇ū).

Now, we choose a time step ∆t and discretize the time interval [0, T ] as 0 = t0 < t1 < t2 <
. . . < tN = T , where tn = n ·∆t, n = 0, 1, . . . , N . Then we denote an approximation of the
velocity and pressure at a given time tn by ūn = ūn(x) ≈ ū(x, tn), p̄n = p̄n(x) ≈ p̄(x, tn)
and similarly kn and ωn. We look for the approximations ūn+1, p̄n+1, kn+1 and ωn+1

applying the θ–method, which yields

ūn+1 − ūn

∆t
= θR(x, tn+1, ūn+1,∇ūn+1,∇p̄n+1,∇kn+1, νn+1

T ) +

+(1− θ)R(x, tn, ūn,∇ūn,∇p̄n,∇kn, νnT ),

kn+1 − kn

∆t
= θRk(x, tn+1, kn+1,∇kn+1, ωn+1, ūn+1,∇ūn+1) +

+(1− θ)Rk(x, tn, kn,∇kn, ωn, ūn,∇ūn), (144)
ωn+1 − ωn

∆t
= θRω(x, tn+1, ωn+1,∇ωn+1, kn+1,∇kn+1, ūn+1,∇ūn+1) +

+(1− θ)Rω(x, tn, ωn,∇ωn, kn,∇kn, ūn,∇ūn),

where θ ∈ [0, 1]. We obtain the fully explicit scheme for θ = 0, the choice θ = 1 results in
the fully implicit scheme and the Crank–Nicolson scheme is obtained for θ = 0.5. However,
the fully implicit case is considered in the following paragraphs for simplicity, i.e.,

ūn+1 − ūn

∆t
−∇ ·

[
(ν + νn+1

T )(∇ūn+1 + (∇ūn+1)T )
]

+

+ūn+1 · ∇ūn+1 +∇p̄n+1 = −2

3
∇kn+1,

∇ · ūn+1 = 0,

kn+1 − kn

∆t
+ ūn+1 · ∇kn+1 −∇ ·

[(
ν + σkν̃

n+1
t

)
∇kn+1

]
+ (145)

+β∗,n+1ωn+1kn+1 = P n+1,

ωn+1 − ωn

∆t
+ ūn+1 · ∇ωn+1 −∇ ·

[(
ν + σων̃

n+1
t

)
∇ωn+1

]
+

+βn+1
(
ωn+1

)2 − σn+1
d

ωn+1
∇kn+1 · ∇ωn+1 = γn+1ω

n+1

kn+1
P n+1.

Notice that we used a substitution
ν̃t = α∗

k

ω
(146)

to simplify expressions in the equations (145).
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Weak formulation

In order to derive the weak formulation of the semidiscrete problem, we proceed similarly
to the derivation of the weak form of the stationary Navier–Stokes in Section 4.1, i.e., we
define solution and test function spaces as follows

V = {u ∈ H1(Ω)d |u = g on ∂ΩD},
V0 = {v ∈ H1(Ω)d |v = 0 on ∂ΩD},
V̂ = {k ∈ H1(Ω) | k = gk on ∂ΩD},
Ṽ = {ω ∈ H1(Ω) |ω = gω on ∂ΩD},
V̂0 = {w ∈ H1(Ω) |w = 0 on ∂ΩD}.

(147)

The weak formulation of the closed RANS problem in semidiscrete form is to find ūn+1 ∈ V ,
p̄n+1 ∈ L2(Ω), kn+1 ∈ V̂ and ωn+1 ∈ Ṽ , satisfying ū0 = ū0(x), k0 = k0(x), ω0 = ω0(x) and

1

∆t
(ūn+1,v) + ((ν + νn+1

T )∇ūn+1,∇v) + (ūn+1 · ∇ūn+1,v)−

−(∇ · v, pn+1) + (νn+1
T (∇ūn+1)T ,∇v) =

1

∆t
(ūn,v) +

2

3
(∇ · v, kn+1),

(∇ · ūn+1, q) = 0,
1

∆t
(kn+1, w) + (ūn+1 · ∇kn+1, w) + ((ν + σkν̃

n+1
t )∇kn+1,∇w) + (148)

+(β∗,n+1ωn+1kn+1, w) =
1

∆t
(kn, w) + (P n+1, w),

1

∆t
(ωn+1, w) + (ūn+1 · ∇ωn+1, w) + (

(
ν + σων̃

n+1
t

)
∇ωn+1,∇w) + (βn+1

(
ωn+1

)2
, w)

−(
σn+1
d

ωn+1
∇kn+1 · ∇ωn+1, w) =

1

∆t
(ωn, w) + (γn+1ω

n+1

kn+1
P n+1, w),

for all v ∈ V0, q ∈ L2(Ω) and w ∈ V̂0, where the L2 scalar products in Ω are defined as

(u,v) =

∫
Ω

u · v dΩ, for vector functions,

(σ, τ) =

∫
Ω

σ : τ dΩ, for second-order tensors (149)

(p, q) =

∫
Ω

pq dΩ, for scalar functions.

To treat the nonlinearity in the advective term of the unsteady problem, we employ Picard’s
method in the same way as described in Section 4.1.2 at every time step, i.e., the problem is
solved iteratively at each time step and the non-linear term is linearized using the solution
from previous Picard’s iteration step, [35].

Assume that the weak solution at the n-th time step (ūn, p̄n, kn, ωn) ∈ V × L2(Ω) ×
L2(Ω)×L2(Ω), n = 0, 1, . . ., is known. To linearize the problem (148) at the (n+1)-th time
step using Picard’s method, consider an initial guess (ūn+1,0, p̄n+1,0, kn+1,0, ωn+1,0) ∈ V ×
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L2(Ω)× V̂ × Ṽ and a sequence of iterates (ūn+1,1, p̄n+1,1, kn+1,1, ωn+1,1), . . ., (ūn+1,m, p̄n+1,m,
kn+1,m, ωn+1,m) ∈ V × L2(Ω)× V̂ × Ṽ . Now, let (ūn+1,m, p̄n+1,m, kn+1,m, ωn+1,m) be known
from the previous iteration step. Then we look for ūn+1,m+1 ∈ V , p̄n+1,m+1 ∈ L2(Ω),
kn+1,m+1 ∈ V̂ , ωn+1,m+1 ∈ Ṽ , m = 0, 1, . . . , such that for all v ∈ V0, q ∈ L2(Ω) and w ∈ V̂0

satisfying

1

∆t
(ūn+1,m+1 − ūn,v)+

+((ν + νn+1
T )∇ūn+1,m+1,∇v)− (∇ · v, pn+1,m+1)+

+(ūn+1,m · ∇ūn+1,m+1,v) + (νn+1
T (∇ūn+1,m+1)T ,∇v) =

2

3
(∇ · v, kn+1),

(∇ · ūn+1,m+1, q) = 0,
1

∆t
(kn+1,m+1 − kn, w) + ((ν + σkν̃

n+1,m
t )∇kn+1,m+1,∇w)+

+(ūn+1 · ∇kn+1,m+1, w) + ((β∗)n+1,mωn+1,mkn+1,m+1, w) = (P n+1,m, w), (150)
1

∆t
(ωn+1,m+1 − ωn, w) + ((ν + σων̃

n+1,m
t )∇ωn+1,m+1,∇w)+

+(ūn+1 · ∇ωn+1,m+1, w) + (βn+1,mωn+1,mωn+1,m+1, w)−

−(
σn+1,m
d

ωn+1,m
∇kn+1,m · ∇ωn+1,m+1, w) = (γn+1,mω

n+1,m

kn+1,m
P n+1,m, w),

Similarly to the Picard’s iteration of the steady Navier–Stokes problem, the solution from
the previous time step is chosen to be the initial guess of the Picard’s iteration of the RANS
problem (150), i.e. ūn+1,0 = ūn, pn+1,0 = pn, kn+1,0 = kn, ωn+1,0 = ωn. Note that the given
initial condition from (142) is considered as the initial guess for the Picard’s iteration at the
first time step. Another approach how to deal with the nonlinearity is to use the solution
from the previous time step to evaluate the nonlinear terms, which is possible when using
a sufficiently small time step ∆t.
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B Discrete unsteady formulation

To discretize the closed RANS problem (150) by means of the Galerkin method, we proceed
in the same way as in the derivation of the discrete steady Navier–Stokes problem given
in Section 4.1.3. Define finite dimensional subspaces V h ⊂ V, V h

0 ⊂ V0, W h ⊂ L2(Ω),
V̂ h ⊂ V̂ , V̂ h

0 ⊂ V̂0 and Ṽ h ⊂ Ṽ together with their bases. We look for discrete solution
ūh ∈ V h, p̄h ∈ W h, kh ∈ V̂h and ωh ∈ Ṽh of the closed RANS problem such that

1

∆t
(ūn+1,m+1

h ,vh)+

+((ν + νn+1
T )∇ūn+1,m+1

h ,∇vh)− (∇ · vh, pn+1,m+1
h )+

+(ūn+1,m
h · ∇ūn+1,m+1

h ,vh) + (νn+1
T (∇ūn+1,m+1

h )T ,∇vh) =
1

∆t
(ūnh,vh) +

+
2

3
(∇ · vh, kn+1

h ),

(∇ · ūn+1,m+1
h , qh) = 0,

1

∆t
(kn+1,m+1
h , wh) + ((ν + σkν̃

n+1,m
t )∇kn+1,m+1

h ,∇wh)+ (151)

+(ūn+1
h · ∇kn+1,m+1

h , wh) + ((β∗)n+1,mωn+1,m
h kn+1,m+1

h , w) =
1

∆t
(knh , w) + (P n+1,m, wh),

1

∆t
(ωn+1,m+1

h , wh) + ((ν + σων̃
n+1,m
t )∇ωn+1,m+1

h ,∇wh)+

+(ūn+1
h · ∇ωn+1,m+1

h , wh) + (βn+1,mωn+1,m
h ωn+1,m+1

h , wh)−

−(
σn+1,m
d

ωn+1,m
h

∇kn+1,m
h · ∇ωn+1,m+1

h , wh) =
1

∆t
(ωnh , wh) +

+(γn+1,mω
n+1,m
h

kn+1,m
h

P n+1,m, wh),

for all vh ∈ V h
0 , qh ∈ W h and wh ∈ V̂ h

0 . Let us write the velocity solution ūh as a linear
combination of basis functions ϕūj ∈ V h and the pressure solution p̄h as a linear combination
of basis functions ϕp̄j ∈ W h. In 3D, the approximate solution has the form

ūh =
nū∑
j=1

(ū1j, ū2j, ū3j)
Tϕūj +

nūD∑
j=nū+1

(ū∗1j, ū
∗
2j, ū

∗
3j)

Tϕūj ,

(152)

p̄h =
np̄∑
i=i

p̄jϕ
p̄
j ,

where the coefficients ū∗j , j = nū+1, . . . , nūD are fixed and the second velocity term in (152)
represents the interpolation of the Dirichlet boundary condition. Similarly, the functions
of turbulent kinetic energy kh and specific turbulent dissipation ωh can be written as a
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linear combination of basis functions such that we employ basis functions equal to pressure
basis functions and noted as ϕkωj . Then

kh =
nkω∑
j=1

kjϕ
kω
j +

nkωD∑
j=nkω+1

k∗jϕ
kω
j ,

(153)

ωh =
nkω∑
j=1

ωjϕ
kω
j +

nkωD∑
j=nkω+1

ω∗jϕ
kω
j .

Remember that the type of boundary conditions is assumed to be the same at each bound-
ary for k and ω according to (142). Thus, the number of coefficients, which corresponds
to the Dirichlet boundary condition is the same for k and ω and it is marked by nkωD .

The Picard’s iteration is performed in every time step as mentioned in the previous sec-
tion. However, the matrix formulations are written without treatment of the nonlinearity
to keep the following text well readable. For the same reason, the matrix forms of the RANS
and k–ω model are written separately and the RANS matrix formulation is mentioned first,
i.e. suppose that the solution from the previous time step is known, then we look for the
vector of velocity and pressure coefficients (ūn+1

1 , ūn+1
2 , ūn+1

3 , p̄n+1) ∈ Rnū×Rnū×Rnū×Rnp̄

such that the following system of equations in three dimensions is satisfied
M1 E12 E13 −BT

1

E21 M2 E23 −BT
2

E31 E32 M3 −BT
3

B1 B2 B3 0




ūn+1
1

ūn+1
2

ūn+1
3

p̄n+1

 =
1

∆t


C 0 0
0 C 0
0 0 C
0 0 0


ūn1

ūn2
ūn3

+
2

3


F1

F2

F3

0

kn+1+ (154)

+


−( 1

∆t
C∗ + A∗ + N∗(ūn+1) + E11) · ū∗1 − E12 · ū∗2 − E13 · ū∗3

−( 1
∆t

C∗ + A∗ + N∗(ūn+1) + E22) · ū∗2 − E21 · ū∗1 − E23 · ū∗3
−( 1

∆t
C∗ + A∗ + N∗(ūn+1) + E33) · ū∗3 − E31 · ū∗1 − E32 · ū∗2

−(B∗1 · ū∗1 + B∗2 · ū∗2 + B∗3 · ū∗3)

 (155)

where
Mi = 1

∆t
C + A + N(ūn+1) + Eii (156)

and

A = [Aij]1≤i≤nū,1≤j≤nū , A∗ = [Aij]1≤i≤nū,nū+1≤j≤nūD
,

N(ū) = [Nij(ū)]1≤i≤nū,1≤j≤nū , N∗(ū) = [Nij(ū)]1≤i≤nū,nū+1≤j≤nūD
,

Bl = [Blij]1≤i≤np̄,1≤j≤nū , B∗l = [Blij]1≤i≤np̄,nū+1≤j≤nūD
,

C = [Cij]1≤i≤nū,1≤j≤nū , C∗ = [Cij]1≤i≤nū,nū+1≤j≤nūD
,

Ekl = [Eklij]1≤i≤nū,1≤j≤nū , E∗kl = [Eklij]1≤i≤nū,nū+1≤j≤nūD
,

Fl = [Flij]1≤i≤nūd ,1≤j≤nkω
,

(157)
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Aij =
(
(ν + νT )∇ϕūj ,∇ϕūi

)
,

Nij(ū) =

 nūD∑
l=1

(ū1l, ū2l, ū3l)ϕ
ū
l

 · ∇ϕūj , ϕūi
 ,

Blij =
(
∇ϕūj · el, ϕ

p̄
i

)
, (158)

Cij =
(
ϕūj , ϕ

ū
i

)
,

Eklij =
(
∇ϕūj · ek,∇ϕūi · el

)
,

Flij =
(
ϕkωj ,∇ϕūi · el

)
Here, the block matrices Ekl, k 6= l are off-diagonal blocks. As the Picard’s iteration is
performed in every time step, the blocks Ekl can be treated explicitely to keep the off-
diagonal blocks of the system matrix zero.

Now the matrix formulation of the turbulence model is written, i.e. also suppose that
the k and ω solution from the previous time step is known. Then, we look for the vector
of the coefficients (kn+1, ωn+1) ∈ Rnkω × Rnkω such that the following system of equations
in three dimensions is satisfied[

Mk 0

0 Mω

][
kn+1

ωn+1

]
=

1

∆t

[
C 0
0 C

] [
kn

ωn

]
+

[
Fk

Fω

]
+ (159)

+

[
−( 1

∆t
Ckω∗ + Ak∗ + Nkω∗(ūn+1) + Dk∗(ωn+1)) · k∗

−( 1
∆t

Ckω∗ + Aω∗ + Nkω∗(ūn+1) + Dω∗(ωn+1) + Tω∗(kn+1, ωn+1)) · ω∗

]
(160)

where
Mk = 1

∆t
Ckω + Ak + Nkω(ūn) + Dk(ωn+1),

Mω = 1
∆t

Ckω + Aω + Nkω(ūn) + Dω(ωn+1) + Tω(kn+1, ωn+1)
(161)

and

Ckω = [Ckω
ij ]1≤i≤nkω ,1≤j≤nkω , Ckω∗ = [Ckω

ij ]1≤i≤nkω ,nkω+1≤j≤nkωD
,

Ak = [Akij]1≤i≤nkω ,1≤j≤nkω , Ak∗ = [Akij]1≤i≤nkω ,nkω+1≤j≤nkωD
,

Aω = [Aωij]1≤i≤nkω ,1≤j≤nkω , Aω∗ = [Aωij]1≤i≤nkω ,nkω+1≤j≤nkωD
,

Nkω(ū) = [Nkω
ij (ū)]1≤i≤nkω ,1≤j≤nkω , Nkω∗(ū) = [Nkω

ij (ū)]1≤i≤nkω ,nkω+1≤j≤nkωD
,

Dk(ω) = [Dk
ij(ω)]1≤i≤nkω ,1≤j≤nkω , Dk∗(ω) = [Dk

ij(ω)]1≤i≤nkω ,nkω+1≤j≤nkωD
,

Dω(ω) = [Dω
ij(ω)]1≤i≤nkω ,1≤j≤nkω , Dω∗(ω) = [Dω

ij(ω)]1≤i≤nkω ,nkω+1≤j≤nkωD
,

Tω(k, ω) = [T ωij (k, ω)]1≤i≤nkω ,1≤j≤nkω , Tω∗(k, ω) = [T ωij (k, ω)]1≤i≤nkω ,nkω+1≤j≤nkωD
,

Fk = [F k
i ]1≤i≤nkω ,

Fω = [F ω
i ]1≤i≤nkω ,

(162)

Ckω
ij =

(
ϕkωj , ϕ

kω
i

)
,

Akij =
(
(ν + σkν̃t)∇ϕkωj ,∇ϕkωi

)
,
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Aωij =
(
(ν + σων̃t)∇ϕkωj ,∇ϕkωi

)
,

Nkω
ij (ū) =

 nūD∑
l=1

(ū1l, ū2l, ū3l)ϕ
ū
l

 · ∇ϕkωj , Rkω
i

 ,

Dk
ij(ω) =

β∗
nkωD∑

l=1

ωlϕ
kω
l

ϕkωj , ϕ
kω
i

 , (163)

Dω
ij(ω) =

β
nkωD∑

l=1

ωlϕ
kω
l

ϕkωj , ϕ
kω
i

 ,

T ωij (k, ω) =

 σd∑nkωD
l=1 ωlϕ

kω
l

nkωD∑
l=1

kl∇ϕkωl

 · ∇ϕkωj , ϕkωi
 ,

F k
i =

(
P (ū, νT ), ϕkωi

)
,

F ω
i =

(
γ

∑nkωD
l=1 ωlϕ

kω
l∑nkωD

l=1 klϕ
kω
l

P (ū, νT ), ϕkωi

)
.
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C Extension of numerical experiments

Figure 68: RANS velocity solution for ν = 10−6 in time T1 = 0.03s (left) and T2 = 0.06s (right). SOLD
method (SUPG with additional crosswind) for SST model and IT-SUPG for RANS equations. Stabilization
parameters are τ4S for both SUPG and crosswind, τ3S for IT-SUPG. Constant initial condition, ∆t = 0.0001.

Figure 69: RANS velocity solution in time T1 = 0.03s (left) and T2 = 0.06s (right). SOLD method (SUPG
with additional crosswind) for SST model. Stabilization parameters are τ4S for SUPG, τ3S for crosswind.
Constant initial condition, ν = 10−5, ∆t = 0.0001.
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Figure 70: Time evolution of RANS velocity (upper row) and pressure (bottom row) solutions using SST
turbulence model for T1 = 0.015s (left col), T2 = 0.03s (middle col), T3 = 0.12s (right col). SOLD method
(SUPG with additional crosswind) for SST model and IT-SUPG method for RANS equations. Stabilization
parameters: τ4S for both SUPG and crosswind, τ2,degS for IT-SUPG. Constant initial condition, ν = 10−5,
∆t = 0.0001, (3D plot of the middle bottom result: top view).
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(a) RANS solution in time T1 = 0.5s.

(b) RANS solution in time T2 = 1.5s.

(c) RANS solution in time T3 = 3.5s.

Figure 71: Time evolution of RANS velocity and pressure solutions for T1 = 0.5s, T2 = 1.5s, T3 = 3.5s,
ν = 10−4, ∆t = 10−3. RANS equations and SST turbulence model without stabilization terms. Constant
initial condition.
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