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Abstract

A goal of this thesis is development of methods for decreasing number of samples required
for digital measurement of delays between fast analogue signals. After introduction of a
problem, contemporary delay measurement methods are studied and compared. Com-
parison of methods is partially based on the analysis and also on results of experimental
evaluation. I found that lots of methods exist, but they are mainly based on cross-corre-
lation. These methods require high sampling frequency, because their resolution is equal
to a sampling period, therefore, these methods are not good starting point for reduction
of number of samples. Due to this fact, development of a new method was a preferred
option.

My novelty method uses nonuniform sampling and nonuniform Fourier transform
(NDFT) for computation of a frequency and phase shift of the signals. As we have com-
puted phase shift and frequency of signals, it is easy to compute their delay. Nonuniform
sampling have �theoretically in�nite� sampling frequency; this means that we can reduce
sample amount by decreasing an average sampling frequency, resulting in reduction of
total data amount. All this without risk of an aliasing.

However, as the number of samples decreased, statistical features of the sampling got
worse and spurious peaks caused by fuzzy aliasing appeared in the spectrum. General
methods for fuzzy aliasing removal were found hardly usable, therefore, development of
a new method was preferred. My novelty Trellis post-processing method uses the fact
that signal frequency changes slowly between particular measurements. Several greatest
peaks in each spectrogram are selected as suspicious peaks; a sequence of these suspicious
peaks is interpreted as a weighted graph. As the spurious peaks are at �random� positions,
correct peaks could be selected by �nding the lightest path in the graph. Trellis post-
processing signi�cantly simpli�es identi�cation of the frequency of signal, and makes
possible measurements using NDFT with much more limited number of samples.

The goals of the Ph.D. thesis are described in the chapter 3, their ful�llment is
evaluated in the chapter 8.3. Both NDFT delay measurement method and Trellis post-
processing method are novelty results of the author's research. Chapter 8.2 describes
topics for the future work.

Keywords: Delay measurement, phase shift, sampling frequency, non-uniform sampling,
non-uniform discrete Fourier transform (NDFT), aliasing, fuzzy aliasing, Trellis post-
processing, spectrogram, weighted graph, frequency tracking.
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Chapter 1

Introduction

In many applications, precise measurement of short delays between analogue signals is
required. A number of methods were developed for this purpose, supposing measurement
of signals with sharp edges. However, if the signal has no sharp edge, it is common to
use some of the analogue methods which are based on various principles. Usage of
analogue measurement methods requires highly precise production and calibration of
each manufactured piece. More recently, there has been a great tendency towards digital
signal processing making product development faster and production cheaper. For high
precision of measurement, it is required to have signals with special properties or use
high speed signal acquisition and processing. But in many cases signal features are �xed
and signal processing resources are limited.

Many devices, e.g. radar and sonar sensors, laser range�nders, ultrasonic �owmeters,
etc., measure delay between two short pulses. These devices use signals with a high
propagation speed for measurement, and as development continues, shorter and shorter
ranges are measured. Therefore, the delay between transmitted impulse and received
echo is decreasing and shorter pulses are used. This results in more and more stringent
requirements for precision of delay measurement between pulses.

Combination of the both above mentioned tendencies brings di�culties since signals
must be processed as fast as possible, with high precision, and low processing demands.
This work tries to tackle this problem and �nd proper measurement method. It is focused
on a subset of use cases � short periodic pulses with similar features, but di�erent delays.

In the beginning, this work was motivated by development of the digital delay mea-
surement unit for an ultrasonic �owmeter as a replacement of the analogue one. The
initial examination of the problem showed that the problem is broader and more general
than initially considered, especially if high speed digital signal processing units should
have been eliminated as much as possible. As the problem was not easy to be solved by
common methods, it became a motivation to start my research in this domain.
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Chapter 2

Problem Speci�cation

Problem described in the introduction is too general and its description is poor there.
As this work focuses on a small subset of delay measurement use cases, this chapter
formally describes this subset. In the �rst part of this chapter, features of processed
signals are described. The second part describes requirements posed on the hypothetical
good-enough measurement method.

2.1 Signal Features

The main problem is to measure delay between two signals (signal pair) acquired from
a sort of the sensors, for example from the ultrasonic detectors. In the whole work, it is
supposed that this signal pair has following features:

• Signals appear in bursts of �nite waveform length L (usually short).
• Both waveforms in the pair have similar envelope shape but are time-shifted by ∆t.
• Signals in burst are harmonically oscillating at unknown frequency fp.
• Analytical description of signal envelope is not known.
• Bursts are periodic, but each burst is unique.
• Frequency fp is slowly changing between bursts (no or negligible change during one
burst).

• There is no useful signal between bursts (e.g. all samples are zeros or there are no
samples at all). Length of this interval is marked D.

An example of such waveform can be seen in �gures 2.1 (whole waveform) and 2.2 (one
burst).

Figure 2.1: Waveform example (whole waveform).
Burst length is marked L, length of time interval between bursts is marked D,

time shift is marked ∆ti.

17
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2.5 μs

Figure 2.2: Waveform example (one burst).
An example of one burst recorded on ultrasonic �ow-meter prototype. Time shift is hard to

notice because ∆t ≈ 0.01 · f−1
p .
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2.2 Properties of the Measurement

Suppose the above-described signal pair is acquired in some appliance regardless of
whether it is radar, a laser range�nder or something else. The basic principle of many
devices is a measurement of the time shift ∆t between the two waveforms in the sig-
nal pair with high precision. The measured time shift is usually very short. In many
applications, very �ne measurement resolution is also required.

The desired measurement method should have following properties:

• Measure delay between signals in particular burst.

• Work without a priori knowledge of the signal frequency fp.

• Provide results regardless slow changes of signal frequency fp.

• Ability to measure very short time delays (∆t ≈ f−1
p /2 ÷ f−1

p /100).

• Measurement resolution in the order of f−1
p /1000.

• High accuracy of measurement.
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Chapter 3

Goals of the Ph.D. Thesis

3.1 Goals of the Ph.D. Thesis

Goals of the Ph.D. thesis are following:

1. To study and compare the methods for time delay measurement.

2. To develop new procedures for decreasing the sampling frequency and amount of
sampled data necessary for time delay measurement.

3. To verify properties of the proposed method.

The hypothesis on the background of the research is: Using non-uniform sampling
and the non-uniform Fourier transform, it is possible to decrease the number of samples
and the sampling frequency needed for measurement of the time shift between analogue
signals compared to methods using periodic sampling.

3.2 Objectives to be met

In the chapter 3.1, the main goals are presented. In this section, those goals are re�ned
into several objectives planned for further studies in order to accomplish the goals.

1. Investigate the current state of the art of delay measurement and ex-

amine principles of those methods. For the delay measurement exist many
methods, many of them are generally known or use generally known principles.
Understanding the basics is the �rst task to be accomplished when improving any
method.

2. Compare the existing methods each another. Evaluate their suitability

for improvements described in the goal 2. Features of measurement methods
are described in many articles, but comparison of methods is very rare. Therefore,
the �rst step must be comparison of the contemporary methods and selection of the
one that provides acceptable results and also promises the possibility of modi�cation
to the non-uniform sampling.

3. Propose a method for time shift computation of waveforms using non-

uniform sampling in order to decrease the number of samples and sam-

pling frequency. Usage of non-uniform sampling could probably decrease the
amount of data to be stored and also enlarge the bandwidth. Several methods of
non-uniform sampling exist, therefore, the one suitable for our problem must be
chosen. Common processing methods do not work for non-uniformly sampled data;
therefore, new method must be developed.

4. Implement and test the method in a near-to-real appliance. Compare

the new method with contemporary delay measurement methods. Fea-
tures of the method must be evaluated in various conditions including real data.

21
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5. Examine the relation between the number of samples, their resolution

and accuracy of the results. As the amount of input data decreases, accuracy
of the results probably decreases, too. It must be investigated, whether accuracy
is proportional to the number of samples, or whether there are some threshold
limiting the usability. The e�ect of quantization must be also evaluated. This can
be done either analytically or using numerical experiments.

6. Adapt the method for the use of general-purpose AD converters. Accord-
ing to the literature, general purpose AD converters can be used for non-uniform
sampling. This makes possible usage of the common of-the-shelf components, but
also brings some limitations, that must be considered.



Chapter 4

State of the Art of Delay

Measurement Methods

The problem of measurement of short time delays is very old. Thus, many measurement
methods were developed in the past. The �rst methods were fully analogue. Then came
methods using analogue preprocessing for digital measurement. In recent years, there is
a great tendency to use fully digital signal processing. This chapter describes the state
of the art of the delay measurement methods focusing on the digital methods.

4.1 Basic Time Delay Measurement Methods

A few basic measurement methods exist for time delay measurement. These methods
are easy to use but they are unsuitable for many applications. Basic delay measurement
methods are:

• the cross-correlation method,

• the pulse counting method,

• the phase shift method,

• the delay line method.

In this section, there is a brief description of these basic methods.

4.1.1 Cross-correlation method

A common method for signal delay computation is �nding the maximum of their cross-
correlation function (4.1). This maximum corresponds to the time shift with the best
similarity between signals.

Rxy(k) =
∑

m

x(m) · y(k +m)

Lxy(k) = k

(4.1)

Each point of cross-correlation function Rxy(k) is a dot product of discrete signals
x(m) and y(m) mutually shifted by k samples. Time shift k is known as a lag ; dependence
of lag k on time (sample number) is linear increasing function Lxy(k).

The distance between samples is sampling period Ts = f−1
s , where fs is sampling

frequency. The distance between points in the cross-correlation function is also Ts. This
means that maximal resolution of this method is equal to the sampling period Ts. Many
applications need resolution that corresponds to very high sampling frequencies (10Gs/s).
In these applications, this method is not usable without modi�cations providing �ner
resolution.

23
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4.1.2 Pulse counting method

The second basic time shift measurement method is the pulse counting method. A
reference clock generator produces pulses with period Tr. These pulses are routed to the
counter. When the �rst event (e.g. signal transition on signal x) occurs, the counter
starts counting reference pulses; when the second event occurs (e.g. transition on signal
y), the counter stops counting. The delay between events is ∆t = n · Tr, where n is the
counter value.

Maximal measurement error is Emax = 2 · Tr, mean error is E = Tr.

4.1.3 Phase shift method

Let us consider a pair of discrete (attenuated) harmonic signals x(t) and y(t). Both
signals have frequency fp. If phase shift ∆ϕ is known, it is possible to compute time
shift ∆t of waveforms using (4.2).

∆t =
∆ϕ

ωp
=

∆ϕ

2 · π · fp
(4.2)

The phase shift and frequency fp can be easily computed using the discrete Fourier
transform. The phase shift computed using the Fourier transform is in range< −π,+π >;
the time shift is then in range

〈
− 1

2·fp ,+
1

2·fp

〉
.

When using this method, frequency fp of the signal must be found. It is possible
to use a priori knowledge of the frequency or determine the frequency from the signal
spectra. When the ratio of sampling frequency fs and signal frequency fp is not an
integer (4.3), no point in the discrete spectra corresponds to the frequency of the signal,
but more points are in�uenced by this frequency.

fs = k · fp; k ∈ N (4.3)

4.1.4 Delay line method

Usage of a delay line is another basic delay measurement method. This method is suitable
only for signals with edges or similar synchronization points. One signal is connected
to the input of the delay line, the other signal is used as a clock signal for memory
elements (e.g. �ip-�ops). When an event occurs on the �rst signal, it propagates along
the delay line. Propagation is delayed in each element by its propagation delay. When
an event occurs on the second signal, it triggers memory elements capturing a state of
the delay elements, i.e. the position of the �rst event can be found. The time di�erence
between events can be computed from events positions and the propagation delay of
delay elements. The basic delay line concept can be seen in the Figure 4.1.
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Figure 4.1: Basic delay line concept.
An event on signal x propagates along the delay line; an event on signal y triggers memory
elements (D �ip��ops) and captures a state of the delay line.

4.2 Various Measurement Methods Described in the

Literature

In the literature, many methods for measurement of the time shift of signals are described.
In this section, there is a brief description of these methods.

4.2.1 Using a harmonic reference clock for the pulse counting

method

Paper [1], describes a method for increasing the precision of the pulse counting method
using a harmonic reference clock signal instead of a rectangular clock signal. For a
coarse measurement of the time interval between two events, counting reference clock
pulses (periods of sinus) is used. The distance between the start event and the �rst
pulse (and between the last pulse and the stop event) is estimated using measurement
of a phase of the reference clock at the moment of the event. This means that delay
measurement precision is in fractions of the reference clock period.

4.2.2 Edge transformation using a SAW �lter

Paper [2] describes a method for time measurement using a transversal surface acoustic
wave (SAW) �lter. When signals are sampled, it is problematic to measure the precise
position of sharp narrow peaks or transitions because of the sampling theorem (a sharp
edge has an in�nite spectrum; thus, sampling frequency must also be in�nite � practi-
cally, it means very high). The authors of this paper used a SAW �lter for transformation
of the sharp edge into �nite deterministic oscillations. A SAW �lter's oscillations have a
narrow spectral line at a known �xed frequency; thus, waveforms can be easily sampled
and reconstructed from the samples. Due to the known behavior of the SAW �lter, the
time of arrival of the excitation pulses can be computed.

4.2.3 Dividing delay line into coarse and �ne blocks

The authors of paper [3] presented an improved delay line method for measurement of
on-chip signal delays. According to the paper, it is a problem to produce a long on-chip
delay line with high precision. The method presented in the paper divides the delay line
into a coarse block and a �ne block. When the signal pair arrives, it is routed to the
coarse block. In the coarse block, a coarse delay (tC) between signals as c multiples of
coarse block elements' delay TC is measured. The delay between signals is also reduced
by tC in the coarse block. From the coarse block the signals are routed into the �ne
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block. In the �ne block, a �ne delay (tF ) between signals as f multiples of �ne block
elements' delay TF is measured. The measured delay between signals is computed as a
sum of �ne and coarse delay ∆t = tC + tF = c · TC + f · TF . The values c and f are
integers not greater than the number of delay elements in the appropriate block.

4.2.4 Multichannel cross-correlation

Paper [4] introduces an improvement of the cross-correlation method . The time res-
olution of the basic cross-correlation method is equal to the sampling period Ts. The
authors of this paper increased the resolution of the method to Ts/N where N is a small
integer.

One of the signals (x) in the pair is directly sampled, the other signal (y) is routed to
an analogue delay line with N − 1 stages. The delay of each stage is Ts/N . The original
signal and outputs of all stages are sampled giving N delayed waveforms yn where n
is the number of delay stages in the path (n = 0, 1, . . . , N − 1). Time shifts ∆tn are
computed using the correlation method. Linear approximation function ∆̂t(n) is �tted
using the least squares method and �nal time shift ∆t is computed as ∆̂t(0).

4.2.5 Interpolation methods for the cross-correlation method

Paper [5] describes four interpolation methods for resolution improvement of the cross-
correlation method . In the article, following interpolation methods are described:

• Parabolic �tting with bias compensation.

• Parabolic-�t interpolation combined with linear �lter interpolation.

• Parabolic interpolation to the complex correlation function envelope.

• Matched �ltering for interpolation.

4.2.6 Design of an optimal �lter for the cross-correlation method

The authors of paper [6] derived an optimal �lter for use in cross-correlators. They de-
rived a mathematical model of cross-correlator for measurement of the time shift between
two signals in a noisy environment. According to the model, two optimization criteria
were found:

• The ratio between the cross-correlation function peak and background noise must
be maximized at a position (lag) corresponding to the time shift of the signals.

• The mean-square di�erence between the original signal (signal before addition of
noise) and the �ltered signal must be minimized.

Using these two criteria, the paper's authors derived an optimal �lter for �ltering the
cross-correlation function in order to minimize the in�uence of the noise on the peak
detector.

4.2.7 Time delay estimation based on SINC �ltering

Papers [7] and [8], describe a method for time delay estimation using a sinc function
coe�cients estimation. The papers describe the relation between two delayed signals xk
and yk as a function yk =

∑
xk−n · sinc(n + m + a). The authors have shown that the

delay between signals is equal to the peak position (in time axis) of the sinc function.
According to paper [7], this peak position can be estimated using an LMS adaptive
algorithm.
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4.2.8 Signal �ltering using an auto-adjusting Wiener �lter

The authors of paper [9] used a Wiener �lter for reconstruction of a noisy signal from an
ultrasonic receiver. For adjusting the Wiener �lter, it is necessary to the know system's
impulse response and the power spectra of the signal and noise. The authors of the paper
used the part of the received signal with high amplitude for measurement of the signal
parameters and the part of the signal with low amplitude for measurement of noise
parameters. The impulse response of the system is obtained from the transmitter�
receiver acoustic crosstalk.

4.2.9 Cross-wavelet transformation

The method described in paper [10] uses wavelet and cross-wavelet transforms for time
shift computation. Received signals x(s, τ) and y(s, τ) are transformed from the time
domain into the wavelet domain using wavelet transform ψ giving their wavelet domain
images Xψ(s, τ) and Yψ(s, τ). In the wavelet domain the image of their cross-wavelet
function Cψ = Xψ · Y ∗ψ is computed. The cross-wavelet function is transformed back
to the time domain (i.e. we get c(s, τ)) and its maximum cmax(smax, τmax) is found.
The time shift between signals corresponds to τmax and the ratio between amplitudes of
signals corresponds to smax.

4.2.10 Third order cumulant method

Paper [11], describes two time delay computation methods: the Third order cumulant
method and the Bispectrum method1. The third cumulant of the normal distribution is
zero. The third order cumulant method computes third order cumulant Cxxx(m1,m2)
of signal x(t) and cross-cumulant Cxxx(m1,m2) of signals x(t) and y(t) = x(t − τ) (i.e.
τ is the time shift between signals). These cumulants do not contain white Gaussian
noise. Then the cumulants are sliced at m2 = 0 and the cross-correlation of the slices is
computed R(m1) = xcorr{Cxxx(m1, 0), Cxyx(m1, 0)}. The maximum of the cross-corre-
lation function is at the position m1 = τ , i.e. max{R(m1)} = R(τ).

4.2.11 Bispectrum method

The Bispectrum method is the second method described in paper [11]. The bispectrum
is the Fourier transform of the third order cumulant (it suppresses white noise). Accord-
ing to this paper, the bispectra Bxxx(ω1, ω2) = FFT {Cxxx(m1,m2)} and Bxyx(ω1, ω2) =
FFT {Cxyx(m1,m2)} are computed. From these bispectra function T (t) =

∫∫
(Bxyx/Bxxx) dω1 dω2

is computed, having its peak at position t = τ (signals' time shift).

1The bispectrum method is described in subsection 4.2.11.
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4.3 Summary of the Contemporary Methods.

The previous two sections brie�y describe various time delay estimation methods whether
well-known or described in literature. These methods can be divided into two groups:

1. Methods for measuring time delay between sharp edges in the signals.

2. Methods for measuring time delay between signals without sharp edges.

Methods described in subsections 4.1.2, 4.1.4, 4.2.1, 4.2.3 belong to the �rst group.
These methods are intended for measurement of delay between digital signals. For mea-
surement of delay between analogue signals they are suitable only in a limited number of
cases. These methods are useless for processing of signals described in Chapter 2. The
method described in subsection 4.2.2 belongs to this group, but only partially, because
it converts a problem of measuring delay between sharp edges to the problem belonging
to the other group.

Methods described in subsections 4.1.1, 4.1.3, 4.2.4, 4.2.5, 4.2.6, 4.2.7, 4.2.8, 4.2.9,
4.2.10 and 4.2.11 belong to the second group. Method 4.2.2 partially belongs to this
group too. These methods are intended for measurement of delay between analogue
signals.

Many of these methods are based on the basic cross-correlation method, improving
some of its features. The basic cross-correlation method has two main disadvantages. The
�rst disadvantage of this method is coarse time resolution and the second disadvantage
is the problem with precise peak identi�cation when the cross-correlation function is �at
and signals are noisy.

• Time resolution of the basic cross-correlation method is equal to the sampling
period of processed signals. Methods described in subsections 4.2.4, 4.2.5 and
4.2.2 improve the time resolution of the cross-correlation method in various ways.
Method 4.2.4 uses an analogue delay line and multiple AD converters, the meth-
ods described in 4.2.5 use various interpolation methods and method 4.2.2 uses
computation in a continuous time domain.

• When the amplitude of the processed signals changes slowly, their cross-correlation
function has a �at peak. Then the maximum detection is di�cult and can be easily
in�uenced by noise. Methods described in subsections 4.2.6, 4.2.8, 4.2.9 and 4.2.10
enhance the cross-correlation function in order to get sharper maxima.

Method 4.2.9 uses a wavelet transform instead of the Fourier transform to compute
cross-correlation. The main idea behind this method is a description of the signal using
functions more similar to the signal (in paper [10] short oscillating impulses are processed)
than sinusoids are.

Methods not based on the cross-correlation method are phase shift method 4.1.3, sinc
�ltering method 4.2.7 and bispectrum method 4.2.11.
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4.4 Methods Based on Cross-correlation

The basics of the cross-correlation methods are described in subsection 4.1.1, but for
a better understanding of the main advantages and drawbacks of this method and its
improved versions, it is necessary to provide a wider introduction to cross-correlation
methods.

4.4.1 Continuous time cross-correlation method

Let us consider a pair of time-shifted continuous time signals (4.4). Their cross-corre-
lation function is in (4.5). The time shift between these signals can be computed by
maximizing the cross-correlation function. Substituting (4.4) into (4.5) we get (4.6).

x(t)

y(t) = x(t−∆t)
(4.4)

Rxy(τ) =

∫ +∞

−∞
x(t) · y(t+ τ) dt

Lxy(τ) = τ

(4.5)

Rxy(τ) =

∫ +∞

−∞
x(t) · x(t+ τ −∆t) dt (4.6)

The maximum of the cross-correlation function Rxy is at the position de�ned by equation
(4.7). Thus, the time shift between signals can be found as an argument of the cross-
correlation function at its maximum (4.8).

max{Rxy} =

∫ +∞

−∞
x2(t)dt =

∫ +∞

−∞
x(t) · x(t+ τ −∆t︸ ︷︷ ︸

=0

) dt (4.7)

∆t = arg
{

max
τ
{Rxy(τ)}

}
= arg



max

τ





∫ +∞

−∞
x(t) · x(t+ τ −∆t︸ ︷︷ ︸

=0

) dt







 (4.8)

If the signals x and y are zero outside the interval 〈A,B〉, the cross-correlation function
can be normalized (4.9).

Rxy(τ) =
1

(B −A)

∫ 2B−A

2A−B
x(t) · x(t+ τ −∆t) dt (4.9)

If the signals are noisy, equation (4.9) can be rewritten as (4.10), where r(t) and s(t)
are noises with zero mean value (E(s) = 0 and E(r) = 0).

R̂xy(τ) =
1

(B −A)

∫ 2B−A

2A−B
(x(t) + s(t)) · (x(t+ τ −∆t) + r(t+ τ)) dt (4.10)

If the signal length increases (B − A) → ∞, the cross-correlation function of the noisy
signals approaches the cross-correlation function of the original signals R̂xy(τ)→ Rxy(τ).

R̂xy(τ) = 1
(B−A)

∫ 2B−A
2A−B x(t) · x(t+ τ −∆t) dt +

(B−A)→∞−→ Rxy(τ)

+ 1
(B−A)

∫ 2B−A
2A−B x(t) · r(t+ τ) dt +

(B−A)→∞−→ 0

+ 1
(B−A)

∫ 2B−A
2A−B x(t+ τ −∆t) · s(t) dt +

(B−A)→∞−→ 0

+ 1
(B−A)

∫ 2B−A
2A−B s(t) · r(t+ τ) dt

(B−A)→∞−→ 0

(4.11)
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4.4.2 Discrete time cross-correlation method

If the signal is sampled with sampling period Ts, the equations in (4.4) change to (4.12).

x(t) = x(n · Ts)
y(t) = x(t−∆t) = x(n · Ts −∆t)

n = −bN/2c, . . .− 2,−1, 0, 1, 2, . . . ,

⌊
N − 1

2

⌋ (4.12)

The cross-correlation function of sampled signals is in (4.13). Substituting (4.12) to
(4.13), we get (4.14). The n is the sample number; N is the number of samples of each
signal. If the signal is in�nite, N →∞.

Rxy(k · Ts) =
∑

n

x(n · Ts) · y((n+ k) · Ts)

Lxy(k · Ts) = k · Ts
k = −(N − 1), . . . ,−2,−1, 0, 1, 2, . . . , (N − 1)

(4.13)

Rxy(k · Ts) =
∑

n

x(n · Ts) · x(n · Ts + k · Ts −∆t) (4.14)

The time shift between sampled signals can be computed using (4.15) (modi�cation of
(4.8) for sampled signal). The position of the maximum of the cross-correlation function
of sampled signals corresponds to the position of the maximum of the cross-correlation
function of original (i.e. continuous) signals only if the time shift between signals is equal
to the integer multiple of the sampling period (4.16).

∆̂t = arg

{
max
k·Ts

{Rxy(k · Ts)}
}

= arg





max
k·Ts





∑

n

x(n · Ts) · x(n · Ts + k · Ts −∆t︸ ︷︷ ︸
=0 if∆t=m·Ts

m∈Z
6=0 otherwise

)









(4.15)

∆̂t

{
= ∆t if ∆t = m · Ts; m ∈ Z
∈ 〈∆t− Ts,∆t+ Ts〉 otherwise

(4.16)

It is possible to normalize the cross�correlation function of sampled signals (4.17).

Rxy(k · Ts) =
1

N

∑

n

x(n · Ts) · x(n · Ts + k · Ts −∆t) (4.17)

4.4.3 Cross-correlation of the harmonic functions

If the signals x(n) and y(n) are harmonic functions with angular frequency ω (4.18), then
their cross-correlation function is a harmonic function with the same frequency (4.19).

x(n) = A · sin(ωn)

y(n) = B · sin(ωn+ ω
∆t

Ts︸︷︷︸
s
=∆n

) = B · sin(ω(n+ ∆n)) (4.18)
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Rxy(k) =
∑

n

x(n) · y(n+ k) =
∑

n

A · sin(ωn) ·B · sin(ω(n+ k + ∆n)) =

= AB
∑

n

sin(ωn) · sin(ω(n+ k + ∆n)) =

=
AB

2︸︷︷︸
s
=C

∑

n


cos(ω∆n− ωk)︸ ︷︷ ︸

const. inn

− cos(2ωn+ ωk − ω∆n)


 =

= CN cos(ωk − ω∆n)− C
∑

n

cos(ωk − ω(2n+ ∆n)) =

= CN cos(ωk − ω∆n︸ ︷︷ ︸
ψ

)− C cos(ωk − ω(2n0 + ∆n)︸ ︷︷ ︸
ϕ0

)−

− C cos(ωk − ω(2n1 + ∆n)︸ ︷︷ ︸
ϕ1

)− · · ·

· · · − C cos(ωk − ω(2nN−1 + ∆n)︸ ︷︷ ︸
ϕN−1

) =

= −C
2

(
ej(ωk+ϕ0) + e−j(ωk+ϕ0) + ej(ωk+ϕ1) + e−j(ωk+ϕ1) + · · ·

· · ·+ ej(ωk+ϕN−1) + ej(ωk+ϕN−1) −Nej(ωk+ψ) −Nej(ωk+ψ)
)

=

= −C
2
ejωk

(
ejϕ0 + ejϕ1 + · · ·+ ejϕN−1 −Nejψ

)
︸ ︷︷ ︸

s
=D

−

− C

2
e−jωk

(
e−jϕ0 + e−jϕ1 + · · ·+ e−jϕN−1 −Ne−jψ

)
︸ ︷︷ ︸

s
=E

=

= −C
2

(
Dejωk − Ee−jωk

)
= −C

2
((D + E) cos(ωk) + j(D − E) sin(ωk)) =

= C

(
N cos(ω∆n)−

∑

n

cos(2ωn+ ω∆n)

)

︸ ︷︷ ︸
s
=F (constant in k)

cos(ωk)+

C

(
N sin(ω∆n)−

∑

n

sin(2ωn+ ω∆n)

)

︸ ︷︷ ︸
s
=G (constant in k)

sin(ωk) =

=
AB

2
(F cos(ωk) +G sin(ωk)) A,B, F,G ∈ R

(4.19)

If the signals have �nite lengths, the cross-correlation function is a harmonic function
modulated by the cross-correlation function of their envelopes (it is trapezoid for rect-
angular envelopes because of the summation of di�erent numbers of signal points at
di�erent positions on k axis).

When the time shift computation is done according to equation (4.15), the value ∆̂t
occurs at any point in the interval 〈∆t − Ts

2 , ∆t + Ts

2 〉 with same probability (always
valid because (4.20) holds for all cross-correlation functions).

f(xmax + ∆x) = f(xmax −∆x)

xmax = arg
{

max
x
{f(x)}

}

∆x ≤ ε ε ∈ R+

(4.20)

Thus, the more precise estimation of value ∆t should be done using knowledge of the
shape of cross-correlation function and using more points of the cross-correlation function
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than only ∆̂t. Some methods for such estimations were described in the literature and
brie�y described in subsections 4.2.4, 4.2.5 and 4.2.2.

4.4.4 Computation complexity of the cross-correlation method

Computation of the cross-correlation function according to the de�nition in 4.13 requires
N ·K = N(2N − 1) = 2N2 −N of the multiplications and the same number of summa-
tions. The localization of the maximum requires K = 2N − 1 comparisons. Thus, the
computation complexity of the cross-correlation method is O(N2).

The cross-correlation function can be also computed using a fast algorithm (4.21).
Computation complexities of FFT and IFFT are O(N · logN), thus the computation
complexity of the cross-correlation method is decreased to O(N · logN).

Rxy(t) = IFFT {Rxy(f)}
Rxy(f) = X(f) ·Y∗(f)

X(f) = FFT {X(t)}
Y(f) = FFT {Y (t)}
Y ∗ is the complex conjugate of Y

(4.21)

4.4.5 Maxima detection

The problem of localization of maxima of the discrete cross-correlation function seems
to be easy, but when sampling frequency decreases to the Nyquist limit, it became to be
tricky.

Let us consider hypothetical cross-correlation function described by (4.22). This
function is used just for demonstration; any real cross-correlation function of �nite length
signals is more complicated.

x(t) = t · sin(ωt) (4.22)

If this function is continuous, the value of any local maximum (4.23) of this function
is greater than the values of all previous local maxima (4.24).

xmax = max
D
{x(t)} = x(tmax)

D = (−∞, τ〉
τ ∈ R

i.e. tmax = arg{xmax}

(4.23)

xmax > max
Dε

{x(t)}

Dε = (−∞, tmax)
(4.24)

If this function is sampled, i.e. (4.25), the relation (4.24) isn't valid for some points,
even if the Nyquist's condition is met.

x(n) = nTs · sin(ωnTs) n ∈ Z (4.25)

The violation is unavoidably caused by sample timing if the sampling frequency is not
an integer multiple of the signal frequency. See Figure 4.2. If the sampling frequency
1/Ts decreases, the relation (4.24) is violated more and more often. Thus, the sampling
frequency should be much higher than Nyquist's limit or the localization of the maxima
of the cross-correlation function cannot be done using a basic search for the highest value
of the cross-correlation function.
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Figure 4.2: False peak detection
Local and global maxima of the signal x(t) = t · sin(ωt). Notice the di�erent positions of
global maxima for the continuous time domain and the discrete time domain.

4.5 Common Features of Contemporary Methods

In the literature, many methods for short time delay measurement are described. When
the methods requiring sharp edges in the signal are eliminated, the rest of the methods
have the following common features:

1. Requires high sampling frequency (in the sense of multiples of signal bandwidth).
Thus, high speed AD converters are required, e.g. for sampling of a 1 MHz signal,
20 MS/s AD converter is necessary.

2. When the signals are sampled, a large amount of data is produced and must be
stored or transmitted for processing; thus, high speed communication is required.

3. For real-time computations, fast computation units (e.g. digital signal processors)
are required.
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Chapter 5

Experimental Evaluation of

Methods

As shown in the previous chapter, there is a lot of delay measurement methods described
in the literature, but many of them share the similar principles and have similar fea-
tures. For better understanding and comparison of these methods, several ones were
implemented, and their features were experimentally evaluated. At �rst, various variants
of the particular method were compared. Afterwards, the methods (their best variants)
were compared each another.

As an input signals for experiments, a pair of the signals imitating typical signals
from the real appliance were used. These signals are according to the chapter 2.1.

During the experiments, following methods were implemented and compared:

1. interpolation followed by correlation,

2. approximation of the cross-correlation function,

3. time shift computation from the phase shift,

4. signal approximation using the least squares method and statistical evaluation.

5.1 Description and Evaluation of the Methods

In this section, details of the evaluated time delay measurement methods are described,
and di�erent versions of these methods are compared for various sampling frequencies
and noise levels.

A numeric method evaluation was carried out using the above-described signals. The
main features of the simulated signal are in accordance with the signal features described
in the Chapter 2.1, fp = 1MHz. White Gaussian noise at various signal to noise ratios
was added to the simulated signal in order to evaluate the method's noise sensitivity.

Time shift computations for various time shifts were carried out for many times
(5 to 1000 times, depending on computation complexity) and errors were statistically
evaluated. The computations were carried out in double precision IEEE 754 �oats.

Two di�erent error behaviors were observed regarding dependence between time shift
and error magnitude:

• The error depends only on the method's parameters. In the following chapters the
error is considered as absolute (5.1).

• The error depends on the method's parameters and the time shift. In the following
chapters the error is considered as relative (5.2).

Eabs = ∆̂t−∆t (5.1)

Erel =

∣∣∣∣∣
∆̂t−∆t

∆
t

∣∣∣∣∣ (5.2)

35
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The results for various combinations of parameters are compared in the following
statements and in the next chapter (Chapter 5.2) the methods are compared to one
another.

5.1.1 Interpolation followed by correlation

This method is based on the common correlation method. Analogue signals are sampled
(sampling period is less than the required resolution of the result) and interpolated to the
required sampling rate. The common correlation method is applied to these interpolated
(i.e. up-sampled) signals .

The interpolation ratio can be computed from equation (5.3) where fs is the sampling
frequency of the original signal, finterp is the sampling frequency of the interpolated signal
and res is the required resolution.

1

n
=

fs
finterp

= res · fs (5.3)

The interpolation can be carried out in di�erent ways:

• Lagrange's (Newton's) polynomial interpolation,

• Hermitian polynomial interpolation,

• interpolation using zero�value samples insertion and �ltration,

• spline interpolation.

Because the interpolation ratio can be very high, the usability of this method is limited
due to very high computation complexity.

Interpolation methods comparison

Comparison of the following interpolation methods was carried out: interpolation using
zero-valued samples insertion and �ltration [12], linear interpolation and spline interpo-
lation using natural cubic spline [13] and pchip spline [14]. Lagrangian and Hermitian
interpolation are not suitable for interpolating oscillating signals due to their properties.

The interpolation method using zero-valued samples insertion and �ltration was found
to get much better results than the other methods, see Figure 5.1.

E�ect of �ltration

The e�ect of signal �ltration was analyzed. As signal disturbed by white Gaussian noise
at various levels was �ltered using a bandpass �lter with cut-o� frequencies 0.5·fp and
2·fp. The signals were �ltered before or after interpolation. Experiments con�rmed that
�ltration after interpolation has no e�ect on results, see Figure 5.2. When �ltration is
carried out before interpolation, error magnitude increases rapidly.

5.1.2 Approximation of the correlation function

This method is another modi�cation of the correlation method increasing its resolution.
As signal pair is sampled and then cross-correlation of signals is computed. The corre-
lation function is approximated using the least square method near its maximum. The
maximum of the approximation function is analytically computed and corresponds to
the time shift between signals in the pair.

The signal (maximal frequency fmax) is sampled at sampling frequency fs (fs >
2·fmax) and the correlation function Rxy is computed according to the equation (4.1). Its
maximum Rmax = max(Rxy) and corresponding lag Lmax are found. The lag corresponds
to the time shift with resolution Ts. In the vicinity of Lmax the correlation function is
approximated by function R̂xy and its maximum R̂max = max(R̂xy) is found. Having
corresponding lag L̂max time shift ∆̂t can be computed with a resolution much higher
than Ts, see equation (5.4).
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Figure 5.1: Interpolation methods comparison.
Absolute computation error for various interpolation methods, snr = 20 dB, fs = 50Msample/s.
Interpolation using zero-valued samples insertion and �ltration; interpolation using natural
cubic and pchip splines.
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Figure 5.2: E�ect of �ltration after interpolation.
Absolute computation error for method of interpolation followed by correlation. Filtration after
interpolation, fp = 1MHz, passband 0.5·fp to 2·fp, snr = 20 dB, fs = 5Msample/s.
Without �ltration in blue, with �ltration in red.
o . . .mean error, + . . .maximal error
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For approximation of the correlation function it is advantageous to use a polynomial
approximation using the least squares method (at least in the case of cross-correlation of
signals speci�ed in Chapter 2.1). In the neighborhood of correlation maxima, n points
in both directions are picked up. Coordinates of these points are [Lmax−n, Rmax−n], . . . ,
[Lmax, Rmax], . . . , [Lmax+n, Rmax+n]. These points are polynomialy �tted by polynomial
Pm(L) of degree m (in the least-squares sense). Local maxima of this polynomial can be
computed analytically. Local maximum [L̂max, R̂max] nearest (in the sense of min |Lmax−
L̂max|) to the cross-correlation function maximum [Lmax, Rmax] determines the time shift
∆̂t, see equation (5.4).

∆̂t = L̂max · Ts =
L̂max
fs

(5.4)

Appropriate degree of the approximation polynomial

The appropriate number of points n for polynomial �tting depends on the degree of the
polynomial (m). If the quadratic curve is �tted, it is a good choice to �t it between
in�exion points of the correlation function. For the harmonic function, the in�exion
points are situated at zero crossings. In this case, n is given by equation (5.5). For a
higher polynomial degree, more points can be used.

n =

⌊
fs

4 · fp

⌋
(5.5)

Increasing the polynomial degree also brings increasing ripple and approximation error
in the intervals between nodes (samples). An extreme case arises when m + 1 points
(n = m/2) are �tted with a polynomial of degree m. In this case the least square
method changes into Lagrange interpolation with all its consequences.

Experimental comparison of approximation polynomials

Comparison of results has been done for approximation of the cross-correlation function
by polynomials of degree two and four. A polynomial of degree two gives better results
for some combinations of sampling frequency and noise level and a polynomial of degree
four is better for the other combinations (see Figure 5.3 and 5.4). The results of the
experiment are summarized in Table 5.1.

E�ect of �ltration

The e�ect of signal �ltering has been evaluated using low-pass �lter with cut-o� frequency
2·fp (for de�nition of fp, see Chapter 2.1). It was found that �ltration has no e�ect on
computation error.

Table 5.1: Appropriate degree of approximation polynomial.
Appropriate degree of approximation polynomial for method of approximation of correlation

function for various sampling frequencies and noise levels. fp = 1MHz

50Ms/s 10Ms/s 5Ms/s

Without noise 4 4 2
snr = 20 dB 4 4 2
snr = 10 dB 2 2 2
snr = 0 dB 2 x x

2 or 4 . . . appropriate degree of polynomial is 2 or 4;
x . . . di�erences between degrees 2 and 4 are insigni�cant.
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Figure 5.3: Computation error � approximation of correlation function.
Absolute computation error for method of approximation of correlation function, snr = 10 dB,
fs = 5Msample/s.
Polynomial of degree two in green, of degree four in red.
o . . .mean error, + . . .maximal error
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Figure 5.4: Computation error � approximation of correlation function.
Absolute computation error for method of approximation of correlation function, snr = 20 dB,
fs = 50Msample/s.
Polynomial of degree two in green, of degree four in red.
o . . .mean error, + . . .maximal error
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5.1.3 Signal approximation using the least squares method and

statistical evaluation

Sampled signals are divided into small elements (e.g. half-waves) and each element is
approximated using the least square method. Time shifts are analytically computed
for corresponding pairs of elements. This set of elementary time shifts is statistically
evaluated.

Let us consider a pair of time shifted signals, x1 and x2. Both of them are divided
in some way to n elements x11, x12, . . . , x1n and x21, x22, . . . , x2n. Each element is ap-
proximated (in the sense of least squares) by an appropriate function (a polynomial is
a good choice); we get n functions for each signal x̂11, x̂12, . . . , x̂1n and x̂21, x̂22, . . . , x̂2n.
For each pair of corresponding functions, their time shift ∆̂t1 · · · ∆̂tn is computed. The
algorithm for computation of time shifts depends on the approximation function used;
for a quadratic approximation it may be the distance between peaks, for linear approx-
imation it may be the distance between zero-crossings, etc. The set of elementary time
shifts {∆̂ti} is statistically evaluated in order to get �nal time shift ∆̂t. Basic methods
of statistical evaluation are computations of the arithmetic mean or median of the set
{∆̂ti}.

Experimental comparison of approximation polynomials

This method was evaluated in versions using polynomials of degree two or four as an
approximation function x̂ik. For a quadratic function the time shift ∆̂tk was computed
as a distance of vertexes in t�axis. Local extrema were found for polynomials of degree
four. Time shifts (in t�axis) were computed for extrema laying at particular intervals.
These time shifts were used as ∆̂tk.

The comparison of both versions of the method can be found in Table 5.2. In the
table, it can be seen the polynomial of degree of two is better than the one of degree of
four, except for noiseless signals sampled at low frequency. Dependence of computation
error on sampling frequency can be seen in the Figure 5.5.

Statistical evaluation of elementary time shifts

For statistical evaluation of the set of time shifts
{

∆̂t1, ∆̂t2, . . . , ∆̂tn

}
, the arithmetic

mean and median were used. Computation error is many times (102−1010) higher when
using the arithmetic mean than when using the median.

Table 5.2: Appropriate degree of approximation polynomial.
Appropriate degree of approximation polynomial for method using approximation and statistical

evaluation for various sampling frequencies and noise levels. fp = 1MHz

50Ms/s 10Ms/s 5Ms/s

Without noise 2 4 4
snr = 20 dB 2 2 2
snr = 10 dB 2 2 2
snr = 0 dB 2 2 2

2 or 4 . . . polynomial of degree two or four gives a smaller computation error.

5.1.4 Phase shift methods

In this subsection, there two variants of the method for time shift computation from the
phase shift are compared; the basic phase shift method (see 4.1.3) and the phase shift
method with phase interpolation (described below).
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Phase shift method with phase interpolation

This method is based on the basic phase shift method (see 4.1.3). The phase spectrum of
the signal is computed using the Fourier transform and n points of the phase spectrum
is chosen in the neighborhood of the frequency fp. Then an approximation polynomial
ϕ̂(f) is �tted through these points. The phase shift between signals ∆̂ϕ is computed
according to equation (5.6). The time shift is computed according to (4.2).

∆̂ϕ = ϕ̂1(fp)− ϕ̂2(fp) (5.6)

Comparison of methods with and without phase interpolation

A comparison of the phase shift method with and without phase interpolation was carried
out. Methods were compared for signals with signal to noise ratios 20, 10and0 dB sampled
at frequencies 50, 10 and 5Msample/s. The method without phase interpolation was
better in all evaluated cases. See Figures 5.6 and 5.7.

In�uence of the windowing function

The in�uence of the windowing function used for sample weighting during Fourier trans-
form computation was evaluated. It was found that di�erences between results when
using rectangular or di�erent windows are negligible and thus can be ignored, see Figure
5.8.

5.2 Comparison of Methods

Various modi�cations of methods were compared in the previous section (section 5.1) and
for each method the best variant was found. In this section, the above-mentioned methods
are compared with one another for various combinations of noise level and sampling
frequency. The results are summarized in Table 5.3. Because the computation complexity
of interpolation followed by the correlation method is much higher than the computation
complexity of the other methods, also the next best method has been indicated in the
cases when this method was the best.

In Table 5.3, it can be seen that the choice of method for a particular application de-
pends on the signal to noise ratio and is independent of the sampling frequency. The error
magnitude depends on the sampling frequency. (Excluding cases of very low sampling
frequency � near the Nyquist's frequency.)

Error magnitudes for various combinations of noise level and sampling frequency can
be found in Table 5.4. Methods used for computations are summarized in Table 5.3.1 All
computations were carried out in double precision IEEE 754 �oating point arithmetic.

1Methods comparison was published at Applied Electronics Conference 2015, see [15].
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Figure 5.5: Signal approximation using the least squares method � dependence of error
on sampling frequency.
Absolute computation error for signal approximation and statistical evaluation method. Degree
of approximation polynomial is two, snr = 0 dB.
Sampling frequency fs = 50Msample/s in blue, fs = 10Msample/s in green and fs =
5Msample/s in red.
o . . .mean error, + . . .maximal error.
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Figure 5.6: Time shift computation from the phase shift I.
Relative computation error for time shift computation from the phase shift with and without
phase interpolation. Without noise, fs = 10Msample/s.
Without phase interpolation in red, with phase interpolation in black.
o . . .mean error, + . . .maximal error
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Figure 5.7: Time shift computation from the phase shift II.
Absolute computation error for time shift computation from the phase shift with and without
phase interpolation. snr = 10 dB, fs = 10Msample/s.
Without phase interpolation in red, with phase interpolation in black.
o . . .mean error, + . . .maximal error

0

2e- 09

4e- 09

6e- 09

8e- 09

1e- 08

10- 11 10- 10 10- 9 10- 8 10- 7Δt [s]

Eabs [s]

Figure 5.8: Time shift computation from the phase shift - in�uence of the window.
Absolute computation error for time shift computation from the phase shift. snr = 20 dB, fs =
5Msample/s.
Windowing function: rectangular in blue, triangular in red, hamming in green, hann in black
and kaiser in magenta.
o . . .mean error, + . . .maximal error.
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Figure 5.9: Computation error for signal time shift computation using the Fourier trans-
form � without noise.
Relative computation error for signal time shift computation using the Fourier transform. fp =
1MHz, without noise.
Sampling frequency fs = 50Msample/s in blue, fs = 10Msample/s in green, fs = 5Msample/s
in red.
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Figure 5.10: Computation error for method of approximation of correlation function I.
Absolute computation error for method of approximation of correlation function. fp = 1MHz,
snr = 20 dB.
Approximation polynomial of degree 2: Sampling frequency fs = 50Msample/s in blue, fs =
10Msample/s in green, fs = 5Msample/s in red.
Approximation polynomial of degree 4: Sampling frequency fs = 50Msample/s in black, fs =
10Msample/s in magenta.
o . . .mean error, + . . .maximal error.
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Absolute computation error for method of approximation of correlation function. fp = 1MHz,
snr = 10 dB.
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Figure 5.12: Comparison of absolute computation errors for fs = 100Msample/s.
fs = 100 · fp, SNR = 20 dB, fp = 1MHz,
Approximation of the correlation function using quadratic polynomial in blue, using polynomial
of order of four in red. Phase shift method in green.
Computation run repeatedly:
�x�. . .mean error, �o�. . .median of error, �+�. . .maximal error.
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Table 5.3: Comparison of methods.
This table summarizes the best methods for various combinations of noise level and sampling

frequency. fp = 1MHz.

50Ms/s 10Ms/s 5Ms/s

Without noise FP FP FP
snr = 20 dB IK (KC4)∗ KC4 KC2
snr = 10 dB KC2 KC2 KC2
snr = 0 dB PS PS PS

IK . . . Interpolation followed by correlation.
FP . . .Time shift computation using Fourier transform.
PS . . . Signal approximation using least squares and statistical evaluation.
KC2 or KC4 . . .Approximation of correlation function using polynomial of degree two or
four.

∗ This method has much higher computation complexity than the other methods. The next best

method is KC4.

Table 5.4: Magnitude of computation error.
This table summarizes magnitudes of computation errors for methods from the Table 5.3.

Computations were carried out in double precision �oating point arithmetic. fp = 1MHz.

50Ms/s 10Ms/s 5Ms/s Figure number
Without noise 0.1 % 0.38 % 0.35 % 5.9
snr = 20 dB 170 ps / 220 ps 1 2 450 ps / 400 ps 1 700 ps 5.10
snr = 10 dB 0.5 ns 1.5 ns 2 ns 5.11
snr = 0 dB 4 ns 20 ns 37 ns 5.5

1 Error magnitudes for methods KC4 / KC2.
2 Error magnitude for interpolation followed by correlation (IK) is 200 ps. (Interpolation using
zero�valued samples insertion and �ltration. Interpolation rate 1:100.) Computation time for
this method is much higher than for other methods.
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5.3 Consequences of the Method Comparison

The above compared methods could be successfully used for delay measurement under
various conditions, but the common disadvantage of all mentioned methods is the re-
quirement that the sampling frequency must be much higher than the Nyquist's limit,
especially for the correlation methods. This means that the sampling frequency of the
AD converter must be high even for relatively low-frequency signals. Therefore, a large
amount of data is produced, requiring high speed communication with the processing
unit, a large memory for data storage, and a high-speed processing unit. These prop-
erties cause resulting devices complex and development of low power devices di�cult.
For wider usage of digital delay measurement, it is necessary to reduce the complexity of
delay measurement devices. Therefore, development of a method for decreasing

the number of samples is required.

The improved method should give the results at least as good as the contemporary
methods, but with reduced number of samples. The preferred solution is to somehow
decrease the sampling rate in order to make possible the usage of built-in AD converters
of low-cost low-power microcontrollers for processing the signals, that are nowadays not
possible to be processed by such microcontrollers.

The resolution of cross-correlation method is dependent on the sampling frequency
of the signal, therefore, this method is not good candidate for decreasing the sample
amount, even though some amount of data could be saved by decreasing the number of
quantization levels (bits per sample). Contrary, the phase shift method is able to work
with the low sampling frequency and the Fourier transform could be computed even with
the samples unevenly spaced. Thus, phase shift method seems to be the best candidate
for the improvements.
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Chapter 6

Non-uniform Sampling for

Sampling Frequency Reduction

As a development of all kinds of devices continues, digital processing of signals with
higher and higher frequencies is required. Sampling of a high frequency signal requires
high sampling frequency; therefore, a large amount of data is, produced increasing de-
mands posed on the data transmission and storage. If the signal is relatively narrow
band, sampling out of the baseband is the common approach to reduce the sampling
frequency. However, it doesn't work for frequencies changing in a wider range, there-
fore, other methods must be used. In such cases, advantages of the randomized sampling
could be used. Randomized sampling is not one method, but a heterogeneous group of
improvements for obtaining more precise sampling results using stochastic processes.

Using non-uniform sampling, in�nite sampling frequency could be reached, making
possible alias free processing of the signal with in�nite bandwidth. However, in�nite
sampling frequency is possible only for in�nite signals in ideal world. For �nite signals,
imperfections of the sampling process limit the usable bandwidth. But even in this case,
average sampling frequency decreases below Nyquist's limit and the sampled signal is
still characterized by samples.

My novelty method uses non-uniform sampling for reduction of sampling frequency
in delay measurement applications. If the measured signals are non-uniformly sampled
at relatively low average sampling frequency, using my new method, it is possible to
compute the delay between these signals. All without the need of high-speed data pro-
cessing and large memories, that are required when using ordinary methods, where the
signals are sampled uniformly with much higher sampling frequency. My method is not
based on the cross-correlation, but on the phase shift computation, therefore, it has not
disadvantages of the cross-correlation methods (e.g. resolution equal to the sampling
period). Conversely, we compute Fourier transform from the non-uniformly distributed
samples of the signal, and then use the phase shift for computation of the delay between
signals. Due to real world imperfections, non-uniform sampling is also in�uenced by the
Nyquist's theorem, but in a slightly di�erent way than uniform sampling. This limita-
tion is also taken into account in my method. Having an appropriate AD converter, my
method would made possible measurement of delays between signals using low-cost micro-
controllers. This novelty method for decreasing sampling frequency using non-uniform
sampling is described in this chapter. Method was also published in author's article [16].

6.1 Di�culties when using the Fourier Transform for

Signals Time Shift Measurement

Suppose we have a pair of signals as described in Chapter 2.1. For time shift computation,
signals have to be sampled at least at Nyquist's sampling rate fs = 2 · fp. Therefore,
if fp is very high, the signal must be sampled at a very high sampling frequency. If
the sampled segment of the waveform is long at the same time, we get a huge amount

49
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of sampled data to process. It could require a large amount of memory, high speed
communication for real-time data transfers etc. To reduce the amount of data, we can
consider reducing the sampling frequency or sampling only a part of the waveform. Both
approaches have disadvantages: Reducing sampling frequency can cause problems with
aliasing. If, on the other hand, only a short part of the waveform is sampled, short-time
noise could in�uence the results1. This problem can be solved by usage of a non-uniform
sampling.

If a non-uniform sampling is used, we use a time measurement resolution dt instead
of sampling period 1

fs
, and thus the average sampling rate can be lower than 2 · fp. This

means that a signal can be sampled along the whole waveform length, while providing
a lower amount of data without the danger of aliasing. Using a non-uniform Fourier
transform, the signals time shift can be computed.

6.2 Non-uniform Sampling

Let us consider a band limited signal (bandwidth B). A well-known Nyquist's theorem
says that sampling frequency must be at least 2 · B to avoid aliasing. Using an in�nite
sampling frequency, we can get an in�nite bandwidth. In a real system, in�nite frequency
is unreachable, but we can approximate it. If we sampled a signal of in�nite length
composed of harmonic waveforms at random sample intervals, we would reach an in�nite
bandwidth [17]. But this is also impossible for two reasons � �rstly no real signal is of
in�nite length and, secondly, we cannot measure time with in�nite precision. However,
it can be done using an approximation, if we comply with several conditions. If the
signal is of �nite length and we take enough samples, it will be statistically similar to an
in�nite length signal. Precision of �nite time measurement resolution becomes evident
in a limited bandwidth and, therefore, latent sampling frequency.

6.2.1 Latent sampling frequency

If the signal is sampled at random points in time, it is important to specify not only
the sample number m, but also the time tm, when each one of the samples is taken.
Time intervals between sampling points can be measured in multiples of a time quantum
dt. As a result, time measurement has limited resolution dt. (Note that time quantum
does not represent a time measurement accuracy but the time measurement resolution.)
Sampling times tm can be written as multiplies of this time quantum (6.1).

tm = n · dt
dt. . . time quantum

n. . . random integer

m. . . sample number

(6.1)

Having this equation, the non-uniform sampling can be regarded as uniform sampling
at frequency dt−1 with some samples missing. If the sampling frequency is known, the
Nyquist's theorem can be applied to �gure out the allowed signal bandwidth (6.2).

B =
1

2 · dt
B. . . allowed bandwidth

(6.2)

1It also in�uences the result in case of whole waveform sampling, but in this case an in�uence is
reduced by the amount of other samples.
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6.2.2 Sampling points

For distribution of sampling points, it is convenient to use (6.3). This distribution assures
a �at probability mass function when time goes to in�nity.

tn+1 = tn + rn · dt

rn ∼ Po(
fs
dt

);

rn . . . random variable

fs . . . average sampling frequency

(6.3)

Suppose we have an AD converter with maximal sampling frequency fmax. For sam-
pling (uniform or non-uniform), we must ensure fs ≤ fmax. Because sampling times are
random, we cannot ensure it for each sample, but we can set the probability of violation
to acceptable level p.

From cumulative distribution function (6.4) of the Poisson distribution [18, pp. 32�
38], we can �nd rmin.2 At probability level 1− p, the value rmin is the minimum of the
set {rn}; n = 0, 1, . . . N−1. Therefore, the sampling period is greater than rmin · dt and
the maximal frequency can be enumerated.

p

N
>

r∑

k=0

λk

k!
e−λ = F (r)

N . . .number of samples

λ =
fs
dt

(6.4)

The AD converter sampling frequency must comply with (6.5).

fm >
1

rmin · dt
(6.5)

For values of λ greater than 9 approximation (6.6) can be used [18, pp. 104].

Po(λ) ≈ N(µ = λ, σ2 = λ) (6.6)

6.3 Non-uniform Fourier Transform

Let us consider a signal x(t). The de�nition of Fourier transform X(k) of x(t) is in (6.7).3

[19] N is the total number of samples, tn is the sampling time, and ∆ω is the circular
frequency step.

X(k) =

N−1∑

n=0

x(tn) · e−j·k·∆ω·tn (6.7)

Assigning frequency step (6.8) and sampling time tn = n, we get the standard DFT
de�nition (6.9).

∆ω =
2 · π
N

(6.8)

X(k) =

N−1∑

n=0

x(n) · e−j2πk n
N (6.9)

Assigning frequency step (6.10) into (6.7), we get non-uniform DFT de�nition (6.11).

∆ω =
2 · π
T

T . . . signal (window) length
(6.10)

2Values of F (r) are tabulated for various values of λ, see [18, pp. 104].
3In this and all following equations we have omitted normalization considering the number of samples.
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Table 6.1: Fourier transform modi�cations comparison.
DFT NDFT Padded DFTa

Frequency resolution 1
T

1
T

1
l·T

Maximal non-aliased frequency fs
2

1
2·dt

fs
2

aZero padded to l times original length.

X(k) =

N−1∑

n=0

x(tn) · e−j2πk tn
T (6.11)

This de�nition expects continuous time, but we can measure time only in discrete time
quanta (clock ticks) lasting dt. Then we can use the number of clock ticks instead of the
time (6.12).

m =
t

dt
(6.12)

Substituting (6.12) into (6.11), we get (6.13). Informally said, we sample the signal in N
points of M possible.

X(k) =

N−1∑

n=0

x(mn) · e−j2πkmn
M

M =
T

dt
; mn =

tn
dt

(6.13)

M . . . signal (window) length in clock ticks dt

mn . . . sampling time in clock ticks dt

Frequency resolution and maximal non-aliased frequency of standard (DFT) and non-
uniform (NDFT) Fourier transform versions can be found in Table 6.1.

The non-uniform Fourier transform can be computed from its de�nition with com-
putational complexity O(N2), using the FFT algorithm with computational complexity
O(M · log(M)),4 or faster using an approximation algorithm, for example [20�22].

6.4 Experimental Evaluation of the NDFT Method

Numerical experiments were carried out to prove desired features of the NDFT method.
Pairs of time shifted waveforms were generated, and noise of a de�ned level was added.
Then the time shift of waveforms was computed, and relative and absolute errors were
evaluated. This procedure was repeated for many combinations of sampling frequency
and signal to noise ratio. For each combination of parameters, the computation was
repeated many times and results were statistically evaluated.

When SNR is high (in the context of this article, SNR ≈ 20 dB) and sampling
frequency is high (fs ≈ 50 · fp), the NDFT method is inferior to the correlation or
polynomial �t methods. But as a noise gets stronger (SNR → 0 dB) and/or sampling
frequency decreases, Fourier transform methods start to perform better than the others.
See Figures 6.1 and 6.2 for details. When sampling frequency approaches the Nyquist's
limit (fs = 2 · fp) and then decreases, NDFT is preferable to classical (uniform) DFT,
see Figures 6.3 and 6.4.

During my experiments, as the signal got shorter, identi�cation of frequency fp be-
came di�cult due to false peaks in spectrograms. In almost all examined cases, there
was local maximum at the correct position corresponding to the frequency fp, but several
higher peaks appeared at �random� positions. These peaks are caused by e�ect called
fuzzy aliasing or secondary aliasing. This e�ect causes various artifacts in sampled signal
and in its spectrum due to poor statistical features of the sampling process. For details

4Each clock tick, we have not used for sampling, is used as zero-valued sample for computation using
FFT.
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Figure 6.1: Methods comparison I.
fs = 2 · fp, dt = (100 · fp)−1, fp = 1MHz, without noise
Approximation of the cross-correlation function in blue, time shift computation from the phase
shift (classical) in red, non-uniform Fourier transform method in green.
Computation run repeatedly:
�x�. . .mean error, �o�. . .median of error, �+�. . .maximal error.

about fuzzy aliasing see [23, chapter 9]. Fuzzy aliasing is always present in results of the
non-uniform Fourier transform. If the non-uniform Fourier transform is used for spectral
analysis, fuzzy aliasing must be considered even in case of long signals, especially for low
power components. In our case it got much stronger for short signals due to the small
amount of the samples.
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Figure 6.2: Methods comparison II.
fs = 2 · fp, dt = (100 · fp)−1, fp = 1MHz, SNR = 0 dB
Approximation of the cross-correlation function in blue, time shift computation from the phase
shift (uniform) in red, non-uniform Fourier transform method in green.
Computation run repeatedly:
�x�. . .mean error, �o�. . .median of error, �+�. . .maximal error.
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Figure 6.3: NDFT method's absolute error I.
fs = 1 · fp, dt = (500 · fp)−1, SNR = 0 dB, fp = 1MHz, N

.
= 125 , M = 50 000

Signal approximation using least squares (see 5.1.3) in blue, non-uniform Fourier transform
method in green. Classical (uniform) phase shift method failed.
Computation run repeatedly:
�x�. . .mean error, �o�. . .median of error, �+�. . .maximal error.
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Figure 6.4: NDFT method's absolute error II.
fs = 0.5 · fp, dt = (100 · fp)−1, fp = 1MHz, N

.
= 62, M = 10 000

Diagram only for non-uniform Fourier shift method, other methods failed due to lack of samples.
Without noise in green, SNR = 20 dB in red, SNR = 10 dB in blue, SNR = 0 dB in cyan.
Computation run repeatedly:
�x�. . . arithmetic mean of the error, �o�. . .median of the error, �+�. . .maximal error.
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Figure 6.5: NDFT method's absolute error III.
fs = 0.2 · fp, dt = (100 · fp)−1, fp = 1MHz, N

.
= 25, M = 10 000

Diagram only for non-uniform Fourier shift method, other methods failed due to lack of samples.
Without noise in green, SNR = 20 dB in red, SNR = 10 dB in blue, SNR = 0 dB in cyan.
Computation run repeatedly:
�x�. . . arithmetic mean of the error, �o�. . .median of the error, �+�. . .maximal error.
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6.5 NDFT Method � Conclusion

My novelty NDFT method was shown to be pre�erable to the other methods for mea-
surement of delays between signals sampled at low sampling frequency (see chapter 6.4
for details). If the signal frequency fp is known, my NDFT method is directly usable
for delay measurement. However, a signal frequency is unknown in our case, therefore,
it must be identi�ed from a spectrogram. Unfortunately, spectrograms contain spurious
peaks due to fuzzy aliasing. Therefore, some method for dealing with fuzzy aliasing

must be used in order to identify the signal frequency.
The main advantage of my novelty NDFTmethod is its usability with very low average

sampling rates. It works even with average sampling frequency lower than 2 · fp, since
the non-aliased bandwidth does not depend on the average sampling rate, but on the
time measurement resolution. This feature makes an advantage of my method against
the other methods, because sampling rate can be reduced without narrowing

a bandwidth of an input. It can be used for reduction of a sample amount by
decreasing an average sampling rate, it makes possible delay measurements using low
cost microcontrollers for data processing, or it could even make possible to carry out the
whole delay measurement using slow internal AD converters of the microcontroller for
signal sampling.



Chapter 7

Trellis Post-processing Method

If the non-uniform Fourier transform is used for spectra computation, some distortion of
the results may be present. This distortion is caused by �nite length of the signal and
the sampling function. As the signal gets shorter, the number of samples taken decreases
and statistical features of the sampling process gets worse causing various artifacts in
sampled signal and in its spectrum. This distortion is called fuzzy aliasing or secondary
aliasing. It is always present in results of the non-uniform Fourier transform, but in
our case, it gets much stronger and spurious peaks in spectrum appear. That causes
identi�cation of oscillation frequency fp more di�cult. Low signal to noise ratio makes
the situation even worse.

Fuzzy aliasing is caused by cross-interference between frequencies in the spectrum
due to statistical imperfections of a sampling process, see [23, chapter 9, 15.2, and 18]
for details. The problem of fuzzy aliasing is not new, therefore, several methods for its
elimination exist. Main principles and features of fuzzy aliasing elimination methods are
described in this chapter. Both methods solve the problem without usage of any side
information. However, in our case we have some sideband information � we know, that
the frequency of the useful peak slowly changes between bursts (successive instances of
the signal). Therefore, it could be advantageous to evaluate the sequences of bursts to
use this information.

If we had continuous discrete time signal (i.e. not bursts but uninterrupted signal),
probably good solution would be to derive non-uniform version of some time-frequency
analysis method (e.g. some method from Cohen class of methods). However, time-
frequency analysis methods are not appropriate in our case since we have bursts with
negligible frequency change during burst and step change between bursts. During the
burst, time-frequency analysis gives no extra information in comparison with spectrogram
(there is nearly no frequency change) but increases computation complexity. Between
the bursts, there is frequency change, but there is no need (neither opportunity) for time-
frequency analysis because there are no samples. Therefore, it seems to be bene�cial to
develop a new method for spectrogram post-processing using our sideband information,
and without the computationally demanding elimination of the fuzzy aliasing.

In the �rst part of the chapter, there is a short overview of the current methods
for dealing with fuzzy aliasing including their pros and cons. I found these methods
unsuitable for our problem, therefore, I had to develop a new method. I noticed, that
the positions of spurious peaks are �randomly� changing between spectrograms, but the
correct peak is always present. Thus, I decided not to remove the fuzzy aliasing, but just
to select the correct peak in spectrogram. Using this approach, I developed a method,
that converted di�cult signal processing problem to much easier graph problem and
solved it. My method not only solves the problem of frequency identi�cation in presence
of fuzzy aliasing in my delay measurement method (that was the motivation), but also
simpli�es tracking of the useful/interesting frequency in similar use-cases (e.g. monitoring
of spectrum). If needed, it seems also possible to modify Trellis post-processing method
for tracking of multiple frequencies.
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My novelty Trellis post-processing method is described in this chapter. It was also
published in author's article [24].

7.1 Fuzzy Aliasing

Base functions of the continuous Fourier transform are orthogonal, suppressing in�uence
between spectral lines. For the uniform Discrete Fourier transform, the base functions
are orthogonal for frequencies ful�lling the Nyquist's sampling theorem. If the signal
length is an integer multiple of periods of the both signal and base function (or in�nite
length), the particular Fourier coe�cient is zero for the base function with frequency
di�ering from the signal frequency. For another signal lengths, windowing function has
to be used in order to reduce the e�ects of un�nished signal periods (spectral leakage)
and thus reduce the Fourier coe�cients not corresponding to the signal frequency. If the
Nyquist's sampling theorem is not ful�lled, (normal) aliasing occurs.

Let us have a general DFT equation

X(k) =
1

N

N−1∑

n=0

x(tn) · e−j·ωk·tn (7.1)

After rewriting the exponentional form of the base function e−j·ωk·tn to sum of the
components cos(ωk · tn)− j · sin(ωk · tn), we get

X(k) =
1

N

N−1∑

n=0

x(tn) · (cos(ωk · tn)− j · sin(ωk · tn)) (7.2)

Splitting the equation 7.2, we get coe�cients for sinus and cosinus part of the base
function (7.3)

X(k) = a(k)− j · b(k)

a(k) =
1

N

N−1∑

n=0

x(tn) · cos(ωk · tn)

b(k) =
1

N

N−1∑

n=0

x(tn) · sin(ωk · tn)

(7.3)

Having the signal x(t) = cos(ωp · t) we got dot product of two harmonic functions with
circular frequencies ωp and ωk

a(k) =
1

N

N−1∑

n=0

cos(ωp · tn) · cos(ωk · tn)

b(k) =
1

N

N−1∑

n=0

cos(ωp · tn) · sin(ωk · tn)

(7.4)

From this equation, it is clear that particular Fourier coe�cient in DFT is a normalized
dot product of the sampled signal and the sampled base function (see also the �gure 7.1).
Therefore, the inde�nite properly sampled monofrequency signal is not orthogonal with
the only one base function. This means that the coe�cients a(k) and b(k) are non-zero
for the frequency ωk = ωp, only. (Nyquist's condition must be valid also for the base
functions, otherwise this statement is not valid due to normal aliasing.)
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Figure 7.1: Dot product of two base functions (equidistant sampling).
For the properly sampled in�nite length signal, the dot product of two sampled base functions is

zero. If the harmonic monofrequency signal has non-zero dot product with the one base function,
there will be zero dot product with the other one, therefore, there is no in�uence of the one
spectral line to the other.

For the �nite length signal, there is in�uence of the incomplete period at the beginning and at
the end of the signal (spectral leakage) if the signal length is not the multiple of the whole periods
of the signal and the base function and the windowing function is not used for its suppression.

Positive terms are in blue, negative in red. In the right side of the picture, there is a sum of
the terms forming the �nal dot product (it is not shown since it is zero).

Figure 7.2: Dot product of two base functions (nonuniform sampling, few samples).
If the non-uniform sampling is used, the dot product of two sampled base functions depends

also on the positions of samples in the particular instance of the sampling process. However,
having the small number of samples, these samples could be improperly spread, making the dot
product non-zero. Therefore, the base functions are not orthogonal each other and due to tran-
sitivity, harmonic monofrequency signal in�uence two spectral lines.

Positive terms are in blue, negative in red. In the right side of the picture, there is a sum of
the terms forming the �nal dot product. Dot product is in black.

If non-uniform sampling is used, samples are positioned randomly and enough samples
is required to make the statistical features of the sampling representative1. If the number
of samples decrease, statistical features of the non-uniform sampling get worse and it
could happen that the samples are distributed in the way, that a dot product of two
base functions is non-zero2, causing that these base functions are not orthogonal for this
instance of the sampling process. Due to this fact, harmonic monofrequency signal is
non-orthogonal with more than one base function, therefore, it in�uences more than one
spectral line, see �gure 7.2. This distortion is called fuzzy aliasing.

As the number of samples increases, statistical features of the sampling process get
better and the dot product of the base functions decreases, therefore, the harmonic
monofrequency signal in�uences mainly the correct spectral line (see �gure 7.3).

1Nonuniform sampling works ideally only for in�nite length signal, therefore, in�nite number of
samples.

2It would have been zero if the in�nite signal length was used.
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Figure 7.3: Dot product of two base functions (nonuniform sampling, more samples).
Having the larger number of non-uniformly distributed samples (due to higher sampling rate

or longer signal), the statistical features of the sampling process get better, and the dot product of
base functions decreases. Therefore, the base functions are better orthogonal and the harmonic
monofrequency signal less in�uences the other spectral lines.

Positive terms are in blue, negative in red. In the right side of the picture, there is a sum of
the terms forming the �nal dot product (it is not shown since it is zero).

7.2 Current Methods for Fuzzy Aliasing Elimination

The problem of fuzzy aliasing is not new, therefore, several methods for its elimination
exist in the literature. One method is based on the computation and subtraction of the
cross-interference between spectral lines. This method is described in [23, chapter 18].
Another method is based on iterative approximation of the signal, it is described in [23,
chapter 20.2.2] and [25, chapter 4.1]. Main principles and features of both methods are
described in the following sections.

7.2.1 Cross interference method

According to [23, chapter 18.1.1], cross-interference can be computed and then subtracted
from the results of the Fourier transform.

The estimation of particular Fourier coe�cient is in�uenced by other coe�cients as
described by equation 7.5.

âi =

K−1∑

k=0

(ak (AiCk) + bk (AiSk))

b̂i =

K−1∑

k=0

(ak (BiCk) + bk (BiSk))

i = 0, 1 . . . (K − 1)

K . . . number of spectral components

âi, âi . . . estimations of Fourier coefficients

ak, bk . . . Fourier coefficients

AiCk, AiSk, BiCk, BiSk . . . cross− interference coefficients

(7.5)

This in�uence is characterized by the cross-interference coe�cients (equation 7.6). Each
coe�cient characterizes the in�uence of two spectral lines to each another. Coe�cients
are dependent on the particular instance of the sampling process, but independent on
the sampled signal.
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(AiCk) =
2

N

N−1∑

n=0

(cos (2πfktn) · cos (2πfitn))

(BiCk) =
2

N

N−1∑

n=0

(cos (2πfktn) · sin (2πfitn))

(AiSk) =
2

N

N−1∑

n=0

(sin (2πfktn) · cos (2πfitn))

(BiSk) =
2

N

N−1∑

n=0

(sin (2πfktn) · sin (2πfitn))

N . . . number of samples

tn . . . sampling instants

(7.6)

System of equations 7.5 can be rewritten to the matrix form (7.7), (7.8) and solved
(7.9), giving values of the Fourier coe�cients without e�ect of the cross-interference.




â1

b̂1

â2

b̂2

. . .

âK

b̂K




= C ·




a1

b1

a2

b2

. . .

Ak

bK




C . . . matrix of cross− interference coefficients

(7.7)

C =




AiCk BiCk Ai+1Ck Bi+1Sk

AiSk BiSk Ai+1Sk Bi+1Sk

AiCk+1 BiCk+1 Ai+1Ck+1 Bi+1Sk+1

AiCk+1 BiCk+1 Ai+1Ck+1 Bi+1Sk+1


 (7.8)




a1

b1

a2

b2

. . .

aK

bK




= inv(C) ·




â1

b̂1

â2

b̂2

. . .

âK

b̂K




C . . . matrix of cross− interference coefficients

(7.9)

Computation complexity of this method can be estimated in the following way (N �
number of samples, M � length of the signal in clock ticks dt and number of frequency
steps, K � number of spectral components/lines):

• Computation of NDFT: O(M · log(M)) (computation using FFT) or O(N2) (ac-
cording to de�nition).

• Computation of one cross-interference coe�cient: O(N) (there are four coe�cients
for one frequency pair).
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• There are M2 frequency pairs. It is necessary to compute approximately half of
the coe�cients since cross-interference between frequencies in the pairs [fk, fm] and
[fm, fk] is the same.

• Inverting the matrix of cross-interference coe�cients: O(M3) (generally known
Gauss-Jordan elimination method; a bit faster method exist).

• Matrix multiplication: O(M2).

• Total: O(N2 + 4 ·M2 ·N +M3 +M2).

This method promises good results since it analyses the principles of the cross-
interference and using inverse transform it removes the distortion of results. Main disad-
vantage of this method is inversion of the large matrix causing high computation com-
plexity (especially if the cross-interference matrix is not precomputed) and high memory
requirements. Issues with precision of numeric computations are also highly probable.

Experiments were performed with this method in order to check its usability for our
problem. The method was implemented in GNU Octave and tested with our spectro-
grams. For solving equation 7.9, Octave operator backslash3 was used. Very often, it
gave warning about numerical instability, even though, it should behave more stable than
matrix inversion followed by matrix multiplication. The results of computations were the
nearly same spectrograms as the input ones (no spurious peaks disappeared), therefore,
the method was recognized as not suitable for solving our problem.

7.2.2 Iterative method

In paper [25, chapter 4.1], there is described iterative method for fuzzy aliasing removal.
This method uses forward and inverse Fourier transforms for approximation of the signal
and better alias suppression.

1. Signal is non-uniformly sampled.

2. Fourier transform is computed from samples (either NDFT or FFT with zeros
inserted instead of �missing� samples).

3. Following steps are repeated:

(a) Peaks higher than some threshold are selected, other peaks are replaced by
zeros. This threshold is lowered in each iteration.

(b) Optional cross-interference suppression is done (according to [23, chapter 18]
)

(c) Inverse (equidistant) Fourier transform is computed from the results of the
previous step. It produces (equidistant) approximation of the signal.

(d) Instead of approximated samples are inserted samples from step 1 where avail-
able.

(e) Fourier transform (equidistant) of this modi�ed signal approximation is com-
puted.

4. Computations are interrupted when energy of peaks lower than threshold in step
3.a is low enough.

5. Results of Fourier transform from the last iteration are used as �nal results.

Computation complexity of this method can be estimated in the following way (N �
number of samples, M � length of the signal in clock ticks dt, K � number of iterations):

• First computation of NDFT: O(M · log(M)) (computation using FFT) or O(N2)
(according to de�nition).

3Operator backslash in GNU Octave is optimized implementation of matrix inversion and multipli-
cation
inv(A)× y = A \ y with improved stability.
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• Repeated computation of IDFT (IFFT): O(K ·M · log(M)) (K iterations).

• Repeated computation of DFT (FFT): O(K ·M · log(M)) (K iterations).

• Total: O((2K + 1) ·M · log(M)).

This method suppresses the in�uence of the strong peaks to the weaker peaks. It can
be advantageous for processing of the signals with many peaks with various amplitudes.
However, in our case it gives no advantage since we need only a few of the greatest peaks.
If we had used this method, we would have obtained results in the �rst iteration, but
these results would have been the same as we would have obtained without usage of this
method. Therefore, this method is completely and de�nitely not usable for our

problem.

7.3 Trellis Post-processing Method

As shown above, spurious peaks caused by the fuzzy aliasing occur in the spectrograms
computed using NDFT. For short signals, identi�cation of the useful signal frequency fp is
problematic due to these spurious peaks. Removing them could be somehow possible, but
fuzzy aliasing elimination methods described in the literature were found inappropriate
in our case. However, those methods were originally intended for spectral analysis,
therefore, they try to remove fuzzy aliasing from the whole spectrogram. Contrary, for
my method is su�cient to select the correct peak without the removal of the others. This
allows development of a simpler method because the useful frequency fp changes slowly
between bursts (spectrogram instances). Therefore, selection of the useful frequency fp
can be simpli�ed using the knowledge of history. Such selection method is proposed in
this chapter.

The problem is formally de�ned in subsection 7.3.1, solved in subsection 7.3.2 us-
ing Trellis post-processing method, and features of this new method are investigated in
following three subsections.

7.3.1 Problem de�nition

Let us have a set of signal bursts x(t) sampled according to conditions described in
chapter 2. After computation of non-uniform Fourier transform (NDFT), we get a set of
spectrograms (amplitude spectra) |Xi(f)| = Abs(Xi(f)) (one spectrogram per burst per
signal). Each of these spectrograms consists of:

• Several peaks originating from fuzzy aliasing. These peaks are at random positions.

• One peak |Xi(fp)| corresponding to signal frequency fp. Position of this peak is
slowly changing from spectrogram to the next one.

Each peak |Xi(fm)| is a local maximum in spectrogram |Xi(f)|, and one of the peaks
is a global maximum (it can be at fp or elsewhere) � see �gure 7.4. We have chosen N
greatest local maxima.

For easier notation, we mark the peaks as Pi,j where i is number of the spectrogram
and j is number of the maximum in spectrogram; we mark the position (i.e. frequency)
of the peak as |Pi,j | and value of the peak as ||Pi,j ||.

The main task is to select a sequence of peaks {P0,j , P1,j , P2,j , . . . } that has {|P0,j |, |P1,j |, |P2,j |, . . . }
as similar as possible to sequence of signal frequencies {fp0, fp1, fp2, . . . }. Signal fre-
quency fp is slowly changing.

Informally said, we have a sequence of wanted peaks at slowly changing positions and
more unwanted peaks at random positions, and we want to identify the wanted peaks
even though unwanted ones are higher.
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Figure 7.4: Frequency fp corresponds to local maximum in spectrogram.

7.3.2 The Method

Let us have sets of peaks as described in chapter 7.3.1. We can draw the set of peaks in
a manner that spectrogram number is on the x-axis and peak positions are on the y-axis.
This way we can think about it as about directed acyclic graph. Peaks are nodes of the
graph; edges are connections between peaks Pi,j and Pi+1,k (see �gure 7.5). The edges
are weighted by distance di,j:k = norm(|Pi,j |, |Pi+1,k|). As a norm for edge weighting,
any norm norm(|Pi, j|, |Pi + 1, k|) = (abs(|Pi, j|, |Pi + 1, k|))p; p ≥ 1 can be used (see
chapter 7.3.4 for further details)4. The nodes are weighted by cumulative sum of the
edge weights traveled along the way to this node wi+1,k = wi,j + di,j:k; w0,∗ = 0. 5 6

If i < j than we say that peak/node Pi,∗ is older than Pj,∗ and spectrogram i is older
than spectrogram j.

If position of the wanted peaks changes slowly and position of other peaks is random,
the path going along wanted peaks would probably be the lightest path in the graph,
i.e. min(w∞,∗). This path (we call it correct path) can be identi�ed by backtracking the
path from the node with the least cumulative weight.
Note: This is valid only if peaks are sparse distributed. Details are further studied in
section 7.3.3.

Let us have N peaks/nodes Pi,∗ and N succeeding nodes Pi+1,∗; there are N2 edges
between them. These edges go to each node Pi+1,∗ from all preceding nodes (see �gure
7.6). If we are looking for the lightest path, it is su�cient to track only N edges � for
each node Pi+1,∗, only one edge that is part of the lightest path to this node is enough
(see solid lines in �gure 7.6). These edges can be found by evaluating

wi+1,k = min
j

(wi,j + di,j:k) = min(wi,1 + di,1:k;wi,2 + di,2:k; . . . ;wi,n + di,n:k) (7.10)

4Value p = 1/2 was alo tried.
5Asterisk (∗) in indexes (e.g. Pi,∗ or w0,∗) is used as a placeholder saying any valid value.
6It would be formally more proper to weight the nodes by p

√
wi+1,k , but for purposes of my method,

it is enough to use wi+1,k since for any a < b < c; a, b, c > 0 holds ap < bp < cp; p > 1.
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Figure 7.5: Set of peaks can be seen as a graph.

wi,j . . .weight of node Pi,j

di,j:k . . .weight of the edge from node Pi,j to Pi+1,k

(wi,j + di,j:k) . . .weight of the node Pi+1,k using the path via node Pi,j

n . . .number of nodes (peaks) per spectrogram

If there is no edge from peak Pi,j to Pi+1,∗, no path leading to Pi,j need to be tracked
any more, and paths leading from Pi+1,∗ to the past starts to converge.

This way it is enough to track at most N paths in each step. If we backtrack all the
tracked paths (i.e. all paths from Pnow,∗), we usually �nd, that all these paths converges
to one paths somewhere (at Pconv,p) in the past.7 Lightest path for all spectrograms
older than conv is unambiguous, therefore, the most probable signal frequency fp is
identi�ed for all spectrograms older than conv (see bold line in the �gure 7.6). Path
through spectrograms older than conv need not be tracked any more, and cumulative
weight wconv,p can be subtracted from all tracked paths.

The convergence length now−conv could theoretically be in�nite (i.e. non-converging
paths), but usually is much shorter and depends on particular nodes and on the norm
used for computation of distances.

It is di�cult to look for convergence point Pconv,p in each step (backtrack N paths and
look for their intersections). Therefore, for practical implementation is easier to assume
that convergence length is a constant. This constant should be set a bit greater than
the value of real convergence length in most cases. Using this simpli�cation, fp can be
identi�ed in each step by backtracking from any node. Advantage of this simpli�cation
is lower computation complexity and constant delay of results. Disadvantage is the fact
that delay of results is in many cases greater than a real convergence length.

7.3.3 Probability of False path

Let us carry out computations as described higher in this chapter. We mark maximal
allowed change of frequency fp in one step as λ and signal bandwidth as B. Cumulative
weight wc of the correct path with length k is limited by8

wc = k · norm(λ)

norm(λ) = (λ)p ; p ≥ 1
(7.11)

For easier computation, we describe λ as a fraction of bandwidth λ = B
2·r . Let's

assume uniform distribution of unwanted peaks.

7There could be more non-converging paths, but it is improbable due to random distribution of the
most of the nodes.

8It would be formally more appropriate to use wc = p
√
k · (λ)p, but we must use the same norm as

we use for path weighting, i.e. wc = k · (λ)p.



66 CHAPTER 7. TRELLIS POST-PROCESSING METHOD

Figure 7.6: Edges between nodes Pi,∗ and Pi+1,∗.
Nodes Pi,∗ and Pi+1,∗ are connected by N2 edges. It is enough to track only one edge to each
node (solid line). Unambiguous part of the path (i.e. older than conv) is drawn bold.

We say that path is false path if it contains unwanted peaks, and distances between
peaks are at most λ. False path is indistinguishable from correct path. Cumulative
weight of the false path is limited by the same value as for the correct path.

Probability that at least one unwanted peak appears in band 2 · λ wide is

p(1) = n · 2 · λ
B

= n ·
B
r

B
=
n

r
(7.12)

B . . . signal bandwidth

n . . .number of peaks in one step

r . . .parameter used for description of λ as a fraction of B (r =
B

2 · λ )

Probability of existence of false path with length k is probability that at least one
peak falls to the band wide 2 · λ in all k successive steps (there is n starting nodes of the
false path):

p(k) = n ·
(n
r

)k
(7.13)

Table 7.1 contains probabilities of false path occurrence for various numbers of peaks.

Another unwanted type of the path is light bad path. This path has smaller cumulative
weight than correct path, but distance between at least two peaks is greater than λ. This
path is shown in the picture 7.7. Light bad path is distinguishable from correct path
during backtracking (due to distance between peaks greater than λ).

7.3.4 Selection of proper norm

The norm used for computation of di,j:k shall be carefully selected. If this norm prefers
small distances, e.g. norm(|Pi,j |, |Pi+1,k|) = (|Pi,j | − |Pi+1,k|)4, long edges increment
cumulated weight too much. Therefore, convergence length is too long. If norm used for
computation of di,j:k prefers long distances, e.g. norm(|Pi,j |, |Pi+1,k|) = 4

√
(|Pi,j | − |Pi+1,k|),

paths quickly converge to the one with the least cumulated weight, regardless if this path
is the best. Results could be incorrect due to higher initial (slowly cumulated in past)
cumulative weight. Therefore, norm must be selected somewhere between these extreme
cases; generally, most common norms are abs(b− a) and (b− a)2.
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r = 10 n = 2 n = 3 n = 5 n = 7

k = 2 0.08 0.3 1 1

k = 5 10−3 0.007 0.15 1

k = 10 10−7 10−5 0.004 0.2

k = 20 10−14 10−10 10−5 0.06

r = 50 n = 3 n = 5 n = 10 n = 15

k = 2 0.01 0.05 0.4 1

k = 5 10−6 10−4 0.003 0.04

k = 10 10−12 10−9 10−6 10−4

k = 20 10−24 10−19 10−13 10−9

Table 7.1: Probability of false path.
Value r = 10 means that fp changes at most by 5% of B in one step, r = 50 means 1% of B, n

is number of peaks in one step, k is the length of false path.

Figure 7.7: Light bad path
Light bad path is lighter than correct path, but distance between at least two peaks is greater than
λ.

4 · norm(λ− ∆) + norm(λ+ ψ) < 5 · norm(λ)
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7.3.5 Computation complexity

Computation complexity of extending trellis by one new spectrogram can be computed
in the following way: During computation of the best path to one new node, paths from
all preceding nodes are compared, i.e. N paths. This computation is done for each new
node, i.e. N times. Therefore, computation complexity is O(N2).

Computation complexity of searching minimum of N values is O(N). Computation
complexity of backtracking K steps to history along one path is O(K).

7.4 Experimental Evaluation of Trellis Post-processing

Method

To con�rm properties of the trellis post-processing method, various numerical experi-
ments were carried out. Data for these experiments were generated using following two
approaches:

• Array of random numbers (uniform distribution) was generated. These numbers
represent simulated positions of unwanted peaks (|Pi,j |). Then the positions of
the wanted peaks (i.e. fp,i) are generated and added to this array. This array is
used instead of a result of spectra computation and maxima identi�cation. Main
advantage of this method is the fact, that properties of the input data can be
precisely controlled.

• Pair of input signals is generated and sampled, NDFT is computed, peaks in spec-
trograms identi�ed and used as input data for method evaluation. This approach
gives almost real data since it corresponds to intended use-case of method, however,
input data of the trellis method cannot be so preciously controlled. It also requires
much more computations than the other approach.

With growing number of nodes (per spectrogram) amplitude of error decreases, there-
fore, squared error between proper path and identi�ed path cannot be used for compari-
son of results. Instead of it, the number of incorrectly identi�ed nodes is used as a metric.
In following sections, number of mistakes is normalized by the number of spectrograms
� results are in range 〈0, 1〉.

7.4.1 Number of peaks versus λ

If λ (max. distance between nodes along the correct path) grows up to B
2·N (N is number

of peaks per spectrogram), the probability of false paths grows. Dependency between
these values and error was evaluated. One result of this experiment is shown in the �gure
7.8. Results of this experiment con�rmed theoretical assumption, that the best results
are the ones with the lowest possible λ and N . Experiments showed, that for λ ≈ B

2·N
(false path surely occurs), approximately one third of nodes is incorrectly identi�ed. If
λ is half of this critical value (λ ≈ B

4·N ), there is approximately 10% of mistakes.

7.4.2 Proper norm

For computation of distance between two peaks could be used various norms. Compu-
tations with same data and conditions9 were carried out for several norms. One of the
results is shown in the �gure 7.9. Experiments showed that well-known norm (b− a)2 is
appropriate for usage in this method. Basic distance between nodes abs(b−a) gave worse
results in all cases. Norm

√
abs(b− a) gave results very similar to abs(b − a). Norms

(b− a)q with exponent q = 4 or greater gave results negligibly better than (b− a)2.

9Generator of pseudo-random numbers was also initiated to the same state.
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Figure 7.8: Dependency between ratio B
2·N and number of mistakes for constant λ.

Fraction B
2·N is a half of the average bandwidth occupied by one node, B is a signal bandwidth,

N is the number of nodes, and λ is maximal distance between nodes on the correct path.

Figure 7.9: Number of mistakes for various norms.
Norm

√
abs(b− a) was also evaluated giving results very similar to abs(b− a). Norms (b− a)q

with exponent q greater than 4 gave results very similar to (b− a)4. B is a signal bandwidth.
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7.4.3 Real data

Method was many times applied on data, that were simulation of data from real ap-
plication. Resulting graphs were compared with correct results in order to evaluate
whether the method gives appropriate results in real conditions. Results con�rmed that
the method works as expected in the cases when peaks corresponding to the frequency
fp are present in spectrograms. Example can be seen in the �gure 7.10. Although this
�gure is quite similar to �gure 7.5, it is a result of computations and not a drawing.

If nodes corresponding to fp are missing10, method often gives incorrect results even
for several neighbor spectrograms. This is inherent feature of the trellis postprocessing
since no path can be routed via the correct node in case this node/peak does not exist.
Instead, the path is routed via existing nodes minimizing its weight, see �gure 7.11.
Absence of the node could be caused by one of the following reasons:

• Parameter N (number of processed peaks per spectrogram) is to low and correct
peaks are not added to set of N greatest nodes.11

• Values of the cross-interference coe�cients caused accidental suppression of the
correct peak.

• A random error or bad settings in the signal processing chain caused than spectro-
gram does not show properties of the signal.

7.5 Trellis Post-processing Method � Conclusion

If the non-uniform Fourier transform is used for spectra computation, some distortion of
the results may be present. This distortion is called fuzzy aliasing and causes spurious
peaks in spectrum. The general fuzzy aliasing removal methods were evaluated and found
not to be suitable for our problem. Nevertheless, situation in our case was simpli�ed
by the fact, that position of the correct peak changes slowly between spectrograms.
This motivated me to develop a new method, that does not remove fuzzy aliasing from
spectrogram, but selects the correct peak. Using this approach, I converted di�cult
signal processing problem to easier graph problem and solved it. My novelty Trellis post-
processing method not only solves the problem of frequency identi�cation in presence of
fuzzy aliasing in NDFT delay measurement method (that was the motivation), but also
simpli�es tracking of the useful/interesting frequency in similar use cases (e.g. monitoring
of spectrum). It also seems possible to modify Trellis post-processing method for tracking
of multiple frequencies, if needed.

The experiments proved, that my Trellis post-processing method can track the correct
frequency in the sequence of spectrograms. This makes possible usage of the NDFT delay
processing method for measurement of delays between signals with unknown frequency
fp.

10In the spectrogram, there is no local maximum for useful frequency fp, or local maximum is too
small.

11In case of increasing N , take care about ratio of λ and B
2·N .
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Figure 7.10: Graph computed from real data.
Signal was simulated according to chapter 2.1, frequency fp was slowly changing around
1.25 MHz. Signal was noisy with SNR = 6 dB. Sampling was non-uniform with average sam-
pling frequency fs = 700 kHz and time resolution ∆t = 100 ns. Number of processed local
maxima N = 10.
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Figure 7.11: Node corresponding to the frequency fp is missing.
Peak/node corresponding to the useful frequency is missing in one spectrogram, therefore, the
lightest path is routed via other nodes, incorrectly identifying the useful frequency in this and
in the next spectrogram. Dotted line corresponds to the path via missing node, bold line is the
lightest path.



Chapter 8

Conclusion

8.1 Results of Research

The main goal of this work is digital measurement of delays between analogue signals
using low number of samples. As the �rst step, contemporary methods were studied
and evaluated. It was found that only several main principles are used by the most
of methods. As the best candidate for my improvement was recognized the phase shift
method � both signals are sampled, and their frequencies and phase shifts are found using
the Fourier transform. From the phase shifts and frequencies, a time shift is computed.
Computed time shift is shorter than a half period of the signal. For the longer shifts, the
computed result could di�er from the real result by an integer multiple of periods.

Using a non-uniform Fourier transform, the phase shift method can be used with
non-equidistant sampling. Usage of the non-uniform sampling brings an advantage of a
theoretically in�nite sampling frequency. Considering �nite resolution of a time measure-
ment, latent sampling frequency is introduced to describe an unaliased signal bandwidth.
Shortest measurable time interval is called clock tick. In Nyquist's theorem, this clock
tick can be used instead of the sampling period. An average sampling frequency has no
e�ect on the aliasing. A position of samples can be described as a number of clock ticks
from the beginning. Using this de�nition and a general de�nition of the discrete Fourier
transform, equation of the non-uniform discrete Fourier transform is derived.

The phase shift method using the non-uniform discrete Fourier transform can be used
for delay measurement using decreased amount of the samples and low average sampling
frequency. But as a number of samples decrease, statistic features of the sampling process
get worse and fuzzy aliasing appears. It is caused by a random coincidence of the sampling
instants mostly in the positive or negative parts (e.g. half-periods) of the signal. This
e�ect gets more probable with decreasing number of samples. Fuzzy aliasing is not a
new problem, therefore, methods for its elimination exist in the literature. Nevertheless,
these methods were found not suitable for our use-case. But our use-case has a feature,
that could be used for elimination of the e�ects of the fuzzy aliasing � we are processing
a sequence of the waveforms, whose frequency changes slowly between following ones.

The fuzzy aliasing appears as a one or several spurious peaks in the spectrogram,
making identi�cation of the signal frequency more di�cult. Precisely said, it disturbs all
components in spectrum, but in our use-case, it is problem only if it causes large spurious
peak (problem with identi�cation of the signal frequency). It also could have in�uenced
the correct peak causing the phase shift measurement error. This error is small (high
power signal in�uenced by the one with lower power), less probable than spurious peaks,
and harder to eliminate. Therefore, I focus on elimination of the spurious peaks, only.

Having the sequence of the spectrograms computed from the sequence of waveforms,
the position of the correct peak (the one corresponding to the signal frequency) is chang-
ing slowly between spectrograms. Positions of spurious peaks are �random�. For iden-
ti�cation of the correct peaks, the trellis post-processing method can be used. From
each spectrogram, a set of suspicious peaks is selected and used as nodes of a graph. The
nodes (peaks) of the following spectrograms are connected, the edges are weighted by fre-
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quency change between nodes (peaks). As positions of most of the peaks are �random�,
the lightest path will go along the correct peaks since it corresponds to the smallest
frequency changes. The method was tested with simulated data from real appliance
and results showed, that method performs well with exception of cases with suppressed
correct peak in spectrogram. In that case the method might in�uence also results from
several neighboring spectrograms, because path cannot be routed via non-existent peaks.

The construction of a dedicated AD converter for non-uniform sampling is improb-
able, but some microcontrollers are equipped with several synchronized general-purpose
AD converters. Author's conference paper [26] analyzes one example of such microcon-
troller and possibilities to use it for non-uniform sampling. It was found that ADCs in
this microcontroller (STM32-F427) triggered by an internal timer are able to perform
non-uniform sampling, widening an unaliased input bandwidth of the ADC (in com-
parison to the bandwidth obtained by periodic (equidistant) sampling). It was found
that in case of non-uniform sampling, a limitation of input bandwidth is not caused by
sampling itself (i.e. by an aliasing), but by an attenuation of higher frequencies in the
sample&hold circuits of ADC. These results are also in contradiction with [23, pp. 58]
for this microcontroller (STM32-F427). There is written that a bandwidth of analogue
inputs of common AD converters is typically 4 to 8 times higher than half of the maximal
(periodic) sampling frequency of the AD converter, but it is not true in this case.1

This thesis showed that phase shift method with non-uniform sampling and non-
uniform discrete Fourier transform with trellis post-processing could be e�ectively used
for measurement of delays between fast signals using the reduced average sampling fre-
quency and reduced amount of the samples. Main principles and features of NDFT phase
shift method with trellis post-processing are described in this thesis, but more work must
be done to make it widely usable. The main topics for future work are described in the
following chapter.

8.2 Topics for Further Work

Previous chapter summarizes the results of the research that are described in this work.
Even though this work studies and describes the main principles and features of NDFT
phase shift method with trellis post-processing, more work must be done to make the
method widely usable. The main topics for future research are described in this chapter.

One main topic for future work is necessity to optimize implementation of the method.
For the experiments, method was implemented in GNU Octave, sometimes using 'naive'
implementations, and for computations was used �oating point arithmetic. Therefore, for
real use, better and more optimized implementation is necessary. We used computation
of non-uniform discrete Fourier transform (NDFT) according to the de�nition, but faster
approximation algorithms exist, for examples see [20�22]. These algorithms need to be
evaluated and eventually modi�ed for our use case. In order to use the method in low-cost
devices, it could be also bene�cial to use integer arithmetic.

Author's theoretical study [26] shows non-uniform sampling using general-purpose
STM32-F4xx microcontroller. But in some applications, it could be better to use another
microcontroller type/family. In such cases, similar study will be needed for respective
microcontroller. For particular application, the theoretically computed features must be
proven by measurement, preferably on samples of microcontrollers from several manu-
facturing batches. In case of non-uniform sampling using STM32-F4xx microcontroller,
bandwidth limitation is caused by analogue features of ADC inputs (and not by aliasing,
that occurs at higher frequency). This means that it might (or might not) be possible
to get even wider bandwidth, than theoretically computed, by constraining operating
conditions (e.g. temperature, operating voltage),

Many microcontrollers are equipped with AD converters working at a sampling fre-
quency of hundreds of kilosamples. Using my methods, it seems to be possible to measure
the delay between signals at frequencies of several megahertz using these cheap devices.

1Analysis mentioned in this paragraph is not part of this thesis, for a draft of the conference paper
[26] see Appendix.
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8.3 Ful�lment of the Objectives

For this work, several objectives were set-up. In this chapter, ful�llment of these objec-
tives is evaluated.

1. Investigate the current state of the art of delay measurement and exam-

ine principles of those methods.

and

2. Compare the existing methods each another. Evaluate their suitability

for improvements described in the goal 2.

Description of the state-of-art is in chapter 4, brief description of the interesting
methods is also there. It was found, that there are lots of methods described in
the literature, however, nearly all of them are slight modi�cations of one of the
well-known basic method. Therefore, these methods were classi�ed into several
groups and basic methods on their background were examined. Some groups of
methods promised usability for our problem; these methods were deeper examined,
implemented, tested on our data, and results of particular methods were compared
each another. Results of comparison were published in author's conference paper
[15]. The most promising method � the phase shift method � was chosen as a basic
method for my modi�cations.

3. Propose a method for time shift computation of waveforms using non-

uniform sampling in order to decrease the number of samples and sam-

pling frequency.

Delay measurement method based on phase shift computation was modi�ed for
non-uniform sampling. Non-uniform Fourier transform was derived. Method was
published in author's conference paper [16]. In this thesis, it is described in chapter
6.

4. Examine the relation between the number of samples, their resolution

and accuracy of the results.

The properties of the non-uniform sampling and non-uniform Fourier transform
were theoretically studied in chapter 6.2; formula for computation of latent sam-
pling frequency was derived. Experimental evaluation of these properties is de-
scribed in chapter 6.4. These results were published in [16].

5. Implement and test the method in a near-to-real appliance. Compare

the new method with contemporary delay measurement methods.

The method was implemented in Octave and tested on simulated data from real
appliance. During the tests it was found, that there are problems with identi�-
cation of the correct frequency of the signal in cases with low sampling rate and
small number of samples. It was investigated that this issue is caused by fuzzy
aliasing that introduces random spurious peaks to the spectrograms. This problem
was analyzed and solved using new Trellis postprocessing, see chapter 7. Trellis
postprocessing method was published in author's journal article [24].

6. Adapt the method for the use of general-purpose AD converters.

It was found that some microcontrollers are equipped with synchronized ADCs.
Author's conference paper [26] studies such microcontroller and shows that nonuni-
form sampling could be bene�cially used to widen the input bandwidth of micro-
controller's ADCs. A required sampling function is also speci�ed in the paper,
taking into account timing properties of a microcontroller and ADC.
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For this Ph.D. thesis, following goals were established in chapter 3. Their ful�llment
is evaluated in this section.

1. To study and compare the methods for time delay measurement. �
Finished in objectives nr. 1 and 2.

2. To develop new procedures for decreasing the sampling frequency and

amount of sampled data necessary for time delay measurement. � Finished
in objectives nr. 3 and 5.

3. To verify properties of the proposed method. � Finished in objectives nr. 4
and 5.



Chapter 9

Summary

In many applications, precise measurement of short delays between analogue signals is
required. But in many cases signal features are �xed and signal processing resources are
limited, therefore, my goal was development of methods, that allows such measurements
without expensive devices.

In the beginning of the thesis, the problem is speci�ed (chapter 2) and contemporary
delay measurement methods are studied (chapters 4 and 5). In the analysis of the
contemporary methods the common features of the methods were described. Based on
these results, I developed a novelty method using the non-uniform sampling and non-
uniform discrete Fourier transform (NDFT) for computation of a phase shift and delay
between signals (chapter 6). Numerical experiments were performed, and my NDFT
method was shown to be preferable to the other methods for measurement of delays
between signals sampled at low average sampling frequency. The main advantage of
the method is its usability with very low average sampling rates. It works even with
average sampling frequency lower than double of a signal frequency. This feature makes
an advantage of my method against the other methods, because sampling rate can be
reduced without narrowing a bandwidth of an input.

But as a number of samples decreased, problems with fuzzy aliasing appeared and
made the frequency identi�cation di�cult. Therefore, I developed the Trellis post-
processing method for frequency identi�cation and tracking (chapter 7). Using this
method, slowly changing frequency can be tracked in series of spectrograms contain-
ing �random� spurious peaks. This novelty method not only solved the problem, but it
could be probably used also for similar problems of frequency tracking.

Using my novelty methods, the delays between fast analogue signals can be mea-
sured using non-uniform sampling, that reduces average sampling frequency and amount
of produced data. These methods bring theoretical background, that, if appropriately
implemented and optimized, could make possible a great step forward towards usage of
low-cost microcontrollers for processing of fast analogue signals.
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Shrnutí

V mnoha aplikacích je t°eba m¥°it krátká zpoºd¥ní mezi rychlými analogovými signály.
Protoºe vlastnosti signál· jsou v mnoha p°ípadech dané, a zárove¬ máme omezené výpo-
£etní prost°edky, cílem této práce byl vývoj metod, které umoºní provád¥t taková m¥°ení
bez nákladných za°ízení.

Na za£átku práce je popsán problém (kapitola 2) a soudobé metody pro m¥°ení zpoº-
d¥ní (kapitoly 4 a 5). V analýze soudobých metod jsou ur£eny spole£né vlastnosti t¥chto
metod, a na jejich základ¥ je vyvinuta nová metoda vyuºívající neekvidistantní vzorko-
vání a neekvidistantní diskrétní Fourierovu transformaci (NDFT) pro výpo£et fázového
posuvu a zpoºd¥ní mezi signály (kapitola 6). Provedené numerické experimenty potvrdily,
ºe p°i m¥°ení zpoºd¥ní mezi signály navzorkovanými s velmi nízkou pr·m¥rnou vzorko-
vací frekvencí je moje metoda s NDFT lep²í neº ostatní metody. Vyvinutá metoda je
pouºitelná p°i velmi nízkých vzorkovacích frekveních, funguje dokonce i p°i vzorkovací
frekvenci niº²í neº dvojnásobek frekvence signálu. Tato vlastnost je její hlavní konku-
ren£ní výhodou proti jiným metodám, nebo´ pr·m¥rná vzorkovací frekvence m·ºe být
sníºena bez omezení ²í°ky pásma na vstupu.

P°i sníºení po£tu vzork· ov²em nastává fuzzy aliasing, který komplikuje ur£ování frek-
vence signálu, a proto byla následn¥ vyvinuta m°íºková metoda (Trellis post-processing
method)1 pro ur£ení a sledování frekvence (kapitola 7). Tato metoda umoº¬uje sledo-
vání pomalu se m¥nící frekvence v sérii spektrogram· obsahujících �náhodn¥� rozmíst¥né
klamné spektrální £áry. Tato nová metoda nejen vy°e²ila problém, ale pravd¥podobn¥ ji
p·jde pouºít téº pro °e²ení obdobných problém· se sledováním frekvence.

Tyto nové metody slouºí k m¥°ení zpoºd¥ní mezi rychlými analogovými signály s
pouºitím neekvidistantního vzorkování a neekvidistantní diskrétní Fourierovy transfor-
mace, která umoº¬uje sníºit pr·m¥rnou vzorkovací frekvenci a díky tomu téº mnoºství
vyprodukovaných dat. Vyvinuté metody p°iná²ejí teoretické základy, které, pokud budou
vhodn¥ implementovány a zoptimalizovány, mohou umoºnit velký krok vp°ed k pouºití
levných mikrokontrolér· ke zpracování rychlých analogových signál·.

1Trellis je anglicky m°íº nebo ro²t pro upevn¥ní popínavých rostlin.
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Zussamenfassung

In vielen Anwendungen ist eine präzise Messung kurzer Verzögerungen zwischen Analog-
signalen erforderlich. Dabei sind in vielen Fällen die Signaleigenschaften gegeben und die
Ressourcen für die Signalverarbeitung begrenzt. Das Ziel dieser Arbeit war die Entwick-
lung von Methoden, die solche präzise Messungen ohne kostbare Geräte ermöglichen.

Am Anfang der Doktorarbeit wurde das Problem spezi�ziert (siehe Kapitel 2) und die
gegenwärtigen Verzögerungsmessungsmethoden beschrieben (siehe Kapitel 4 und 5). Bei
der Analyse der gegenwärtigen Methoden wurden die gemeinsamen Eingenschaften dieser
Methoden beschrieben. Auf Basis dieser Ergebnisse haben wir eine neue Methode ent-
wickelt. Diese Methode benutzt nicht-äquidistante Abtastung und die nicht-äquidistante
diskrete Fourier-Transformation (NDFT) zur Berechnung einer Phasenverschiebung und
Verzögerung zwischen den Signalen (siehe Kapitel 6). Wir haben numerische Experimente
mit unserer neuartigen NDFT-Methode durchgeführt. Die Messungen haben gezeigt, dass
die NDFT Methode bessere Ergebnisse im Vergleich mit anderen Methoden erreicht hat,
wenn das Signal mit einer niedrigeren durchschnittlichen Abtastrate abtastet wird. Der
Hauptvorteil der Methode ist ihre Anwendbarkeit bei sehr geringen durchschnittlichen
Abtastraten. Sie funktioniert sogar mit einer durchschnittlichen Abtastrate, die unter
der doppelten Signalfrequenz liegt. Diese Eigenschaft bietet einen Vorteil der NDFT Me-
thode gegenüber den anderen Methoden, da die Abtastrate reduziert werden kann ohne
eine Einschränkung der Eingangsbandbreite.

Mit abnehmender Anzahl von Samples traten jedoch Probleme mit dem Fuzzy-Aliasing
auf und erhöhten die Schwierigkeiten mit der Frequenzidenti�kation. Aus diesem Grund
wurde eine Gitter-Nachbearbeitungsmethode (Trellis post-processing method)2 für die Fre-
quenzidenti�kation und einen Nachlauf entwickelt (siehe Kapitel 7). Mit dieser Methode
kann eine sich langsam verändernde Frequenz in einer Reihe von Spektrogrammen mit
�Random� Störspitzen verfolgt werden. Diese neue Methode löste nicht nur das Problem
der NDFT Methode auf, sondern sie kann wahrscheinlich auch für ähnliche Probleme des
Frequenznachlaufs verwendet werden.

Mit der neuen Methoden können die Verzögerungen zwischen schnellen Analogsigna-
len mit nicht-äquidistanten Abtastung gemessen werden, die die durchschnittliche Abta-
strate und die Menge von produzierten Daten reduziert. Die hier entwickelten Methoden
liefern eine theoretische Basis. Bei einer passenden Umsetzung und Optimierung kön-
nen sie einen groÿen Schritt nach vorne auf dem Weg zum Einsatz von kostengünstigen
Mikrocontrollern zur Verarbeitung schneller Analogsignale ermöglichen.

2Trellis bedeutet im Englisch ein Gitter für Festigung der Kriechp�anzen.
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Abstract—Some microcontrollers of the STM32 family are
equipped with two or three synchronised ADCs, that could
be utilized for non-uniform sampling. Conversion timing was
studied, and non-uniform sampling function proposed in order to
exploit the ADC as most as possible. It was found that attenuation
of a sample&hold circuit limits an input bandwidth earlier than
aliasing, nevertheless, it is still significantly wider bandwidth than
without usage of non-uniform sampling.

Index Terms—Nonuniform sampling, analog-digital conver-
sion, microcontrollers, frequency response.

I. INTRODUCTION

Many modern microcontrollers are equipped with one or
more analog-to-digital converters (ADCs), usually intended for
single-shot or periodic sampling. Nowadays, methods using
non-uniform sampling appear, but their implementation in low-
end devices is limited also by the lack of appropriate ADCs.
Microcontrollers of STM32-F4xx family and STM32-F303
family are equipped with ADCs that seem to be usable for
non-uniform sampling. In this article, we will focus on these
ADCs and perform theoretical study regarding their usability
for non-uniform sampling.

STM32 microcontrollers, including ADCs, are rather com-
plex, in this article we will describe only functionalities
important for non-uniform sampling. There are differences
between ADCs of F303 family and F4xx family, in this article
we will focus on F4xx family, and on STM32-F427 device in
case of features differing across the particular family.

II. THEORY OF NON-UNIFORM SAMPLING

Let us have a band limited signal (bandwidth B). A well-
known Nyquist’s theorem says that, sampling frequency has
to be at least 2 · B to avoid aliasing. Using infinite sampling
frequency, we can get infinite bandwidth. In real system,
infinite frequency is unreachable, but we can approximate it.
If we sample signal of infinite length composed of harmonic
waveforms in random sample intervals, we would reach in-
finite bandwidth [1]. But this is also impossible due to two
reasons — no available signal is of infinite length. The other
reason is we can’t measure time at infinite precision. However,
it can be used as approximation, if we comply with several
conditions. If the signal is of finite length and we take enough
samples, it will be statistically similar to the infinite length
signal. Finite time measurement resolution limits bandwidth
and therefore introduces latent sampling frequency.

A. The latent sampling frequency

If the signal is sampled at random points in time, it is
important to specify not only the sample number m, but also
the time tm when each one of the samples is taken. Time
intervals between sampling time points can be specified as
multiplies of a time quanta dt. As a result, time measure-
ment has limited resolution dt. (Note that time quanta does
not represent the time measurement accuracy but the time
measurement resolution.) Sampling times tm can be written
as multiplies of this time quanta (1).

tm = n · dt
n. . . random integer (n > 0)

m. . . sample number

(1)

Having this equation, the non-uniform sampling can be re-
garded as uniform sampling at frequency dt−1 with some sam-
ples missing. If the sampling frequency is known, Nyquist’s
theorem can be applied to figure out the allowed signal
bandwidth (2).

B =
1

2 · dt
B. . . allowed bandwidth

(2)

B. Sampling points

For sampling points distribution it is convenient to use (3).
This distribution assures flat probability mass function when
time goes to infinity.

tn+1 = tn + rn · dt

rn ∼ Po(
1

fs · dt
);

rn . . . random variable

fs . . . average sampling frequency

(3)

Suppose we have an AD converter with maximal sampling
frequency fmax. For sampling (uniform or non-uniform) we
must ensure fs ≤ fmax. Because sampling times are random,
we can’t ensure it for each sample, but we can set probability
of violation to acceptable level p.

From cumulative distribution function (4) of Poisson dis-
tribution [2, pp. 32–38] we can find rmin

1. At probability
level 1 − p the value rmin is minimum of the set {rn}; n =

1Values of F (r) are tabulated for various values of λ, see [2, pp. 104].
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0, 1, . . . N−1. Therefore the sampling period is greater then
rmin · dt and the maximal frequency can be enumerated.

p

N
>

r∑

k=0

λk

k!
e−λ = F (r)

N . . .number of samples

λ =
1

fs · dt

(4)

The AD converter sampling frequency has to comply with (5).

fmax >
1

rmin · dt
(5)

For values of λ greater then 9 approximation (6) can be used
[2, pp. 104].

Po(λ) ≈ N(µ = λ, σ2 = λ) (6)

III. SYNCHRONIZED ADCS IN STM32-F4XX

The STM32-F427 microcontroller is equipped with three
ADCs, that could be used either independently or in dual/triple
mode for synchronized operation. Each ADC is successive
approximation analogue-to-digital converter with configurable
resolution 6, 8, 10, or 12 bits. Conversion could be started
either by software trigger or hardware trigger (from timers or
external input). On the ADC input, there is analogue multi-
plexer with 16 external and 3 internal channels. Channels are
organized to regular group and injected group with separate
triggers. Request for conversion of an injected group during
conversion of a regular group suspends the regular group
conversion (similar behavior as an interrupt on processor).
Detailed description of channel sequencing is out of scope
of this article, for detailed description see reference manual
[3] and datasheet [4].

In the dual/triple mode, two/three ADCs work together ei-
ther for simultaneous conversion of two/three channels, or for
overlapping conversions of a single channel (next ADC starts
sampling before the previous one has finished conversion).
Both/all three ADCs are controlled by the single control unit,
therefore conversions are synchronized and could be controlled
by a single trigger. Interleaved mode is intended for increasing
sampling rate of uniform sampling by interleaved operation of
two/three ADCs. Alternate trigger mode is similar, but ADCs
are started by trigger, this mode seems to be well suited for
non-uniform sampling. Several other modes exist, see [3] for
details.

Direct memory access (DMA) could be used for reading
data from ADC in single, dual, and triple operation modes.

Clock signal for ADCs is generated from peripheral clock
divided by integer prescaler, maximal clock frequency of the
ADC clock fADC = 36MHz (for STM32-F427) [4, table 74].
The whole AD conversion is divided to sampling phase and
conversion phase. Sampling phase has programmable length
of 3, 15, 28, 56, 84, 112, 144, or 480 ADC clock cycles [3,
chapter 11.5 and 11.13.4]. Conversion phase takes one ADC
clock cycle per bit of resolution. In dual/triple mode, any
channel could not be sampled concurrently by more ADCs,

the next sampling of the channel could start at least two clock
cycles after the end of the previous sampling2. Conversion
phases could overlap. [3, chapter 11.9.3]

In the triple ADC alternate trigger mode, one trigger input
is used for starting sampling of all ADCs (one ADC per event).
The first trigger event starts the first ADC, the second trigger
event starts the second ADC, the third trigger event starts the
third ADC, the fourth trigger event starts the first ADC, and
so on. See figure 1. If the dual ADC alternate trigger mode
is used, sequence is similar to the triple ADC mode, but the
third trigger event starts the first ADC, the fourth trigger event
starts the second ADC, and so on. Alternate trigger mode can
be only used for converting channels in the injected group.
If the discontinuous conversions are enabled, one channel is
converted, otherwise, all channels in the group are converted.
Delay between trigger events must be at least one ADC clock
cycle.

IV. COMPUTATION OF ADC LIMITS

Maximal sampling rate of ADC is specified in datasheet [4,
table 74]. At maximal ADC clock speed (fADC = 36 MHz),
sampling frequency is 2.4 MS/s with 12-bit resolution or
4 MS/s with 6-bit resolution. In interleaved mode, maximal
sampling frequency is 4.5 MS/s for dual ADC and 7.2 MS/s
for triple ADC.

According to the Nyquist’s theorem, sampling rate limits
an unaliased bandwidth of the sampled signal. If the periodic
sampling is used, maximal signal frequency shall be at most
half of this sampling rate in order to prevent aliasing. But
sampling rate tells nothing about analogue features of the
ADC, it could be able to sample even faster signals, but not fast
enough to prevent aliasing, or it could be unable to accurately
sample even signals that fulfills Nyquist’s limit.

Bandwidth of the system depends on the whole signal path
from the source to the end of processing, but for basic analysis
of ADC features, it can be simplified. The signal source
is approximated by an ideal voltage source, resistance, and
capacitance of the signal source and signal path. ADC is ap-
proximated by capacitance and resistance of the sample&hold
circuit, that could be found in datasheet ([4, table 74] for
STM32-F427). For simplified circuit diagram see figure 2.
For computations in this chapter, we will expect ideal signal
source with zero resistance and capacitance, therefore, only
parameters of ADC will be taken into account.

The sample&hold circuit is RC integration circuit, therefore,
it is the first order low-pass filter. In order to minimize
the influencing of the measurement results, changes of the
filter’s gain/attenuation must be lower then a half of the
least significant bit of the converted value across the whole
bandwidth.

The complex transfer function of the RC circuit is

2In reference manual [3], this rule is not mentioned for alternate trigger
mode, but just for the other modes. It probably holds also for alternate
trigger mode, because concurrent sampling of the single channel by two ADCs
connect two sample&hold circuits in parallel to one channel, therefore, input
capacity is doubled.
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Fig. 1. Alternate trigger mode according to [3, figure 50].

Fig. 2. Simplified circuit diagram.
RIN is resistance of voltage source and signal path, CIN is parasitic capacitance of the signal path, CPAD is parasitic capacitance of a
microcontroller pad, RADC is resistance of the sampling switch, CADC is capacitance of the sample&hold circuit.

F (jω) =
1

1 + jωRC
(7)

therefore the voltage gain is

|F (ω)| =
√

1

1 + (ωRC)2
(8)

For DC signal, the gain is |F (0)| = 1. For the maximal
frequency, signal attenuation must be less than a half of the
least significant bit 1

d , where d = 2N+1 and N is number of
bits.

|F (ω)| = 1− 1

d
(9)

This means, that maximal frequency will be

fmax =

√(
d
d−1

)2
− 1

2 Π ·RC (10)

According to the datasheet [4, table 74], these values are
CADC = 4 pF (typical) / 7 pF (maximal) and 1.5 kΩ <
RADC < 6 kΩ. The maximal value of RADC is given for the
lowest operating voltage of MCU (1.7 V), minimal one for
highest voltage (3.3 V) [4, table 74 note 4]. Maximal signal
frequencies computed according to the equation (10) using
datasheet values are summarized in the table I for various
ADC resolutions3.

35-bit, 4-bit, and 3-bit resolutions are not directly supported by ADC, it
must be switched to 6-bit mode and results truncated.

TABLE I
MAXIMAL SIGNAL FREQUENCIES.

ADC resolution Max. signal frequency
N @6 kΩ @1.5 kΩ

12-bit 104 kHz 416 kHz
10-bit 207 kHz 828 kHz
8-bit 415 kHz 1.6 MHz
6-bit 834 kHz 3.3 MHz
5-bit 1.2 MHz 4.8 MHz
4-bit 1.7 MHz 6.8 MHz
3-bit 2.5 MHz 10 MHz

Values in this table are computed for typical value CADC = 4 pF ,
and for both minimal and maximal value of RADC = 1.5 kΩ/6 kΩ.

V. ANALYSIS OF ADC TIMING

The fastest signal sampling takes 3 periods of ADC clock
signal [3, chapter 11.5], for STM32-F427 at maximal ADC
clock frequency (36 MHz), it is 83 ns – it is one period of
a 12 MHz signal. This means that a length of the sampling
interval must be taken into account for computation of the
trigger instants, otherwise, there would be very large aperture
error. According to the datasheet [4, table 74], it takes three
periods of ADC clock signal between trigger event and start
of the sampling (valid for injected channels4). This means,
that it have taken 6 periods of ADC clock signal since trigger
event to start of the conversion. Because this delay is constant

4External trigger sources has additional latency due to clock resynchroni-
sation.
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Fig. 3. Short delay between conversions prevents usage of the second ADC.
Two conversions at the first ADC are done as fast as possible, delay
between two conversions of first ADC is 9 ADC clock cycles. After
taking into account sampling and hold times, there is insufficient time
for sampling phase of the second ADC. Resulting sampling period
is 9 ADC clock cycles.

Fig. 4. Fastest sampling, but uniform.
Conversions are done as fast as possible, but respecting a sampling
time of the second ADC. Delay between two conversions of first ADC
is 10 ADC clock cycles, there is just sufficient time for sampling phase
of the second ADC. Resulting sampling period is 5 ADC clock cycles.
This sampling is the fastest possible, but it is an uniform sampling.

for all conversions, relative positions of samples (i.e. delays
between two samples) are not affected, but it must be taken
into account for absolute positions of samples (i.e. delay since
time ”0” is trigger time + 6 ADC clock cycles).

As has been shown in the previous chapter, effective ADC
resolution for high speed signals is limited to just few bits,
therefore, it is sufficient to use 6-bit ADC resolution without
any loss of information. Conversion with 6-bit resolution takes
6 ADC clock cycles. Shortest sampling phase takes 3 ADC
clock cycles. Thus a whole conversion cycle takes 9 ADC
clock cycles (3 cycles sampling and 6 cycles conversion). After
sampling phase of one ADC, there must be at least two ADC
clock cycles long hold time before the start of the sampling
phase of another ADC. This means that shortest delay between
two samples is 5 ADC clock cycles. Because two sampling
periods (including hold times) take 10 ADC clock cycles and
a sampling&conversion period of one ADC is 9 ADC clock
cycles, a bottleneck limiting sampling frequency is a timing
of the sampling phases. As the first ADC finishes conversion
before the end of sampling phase (including hold time) of the
second ADC, it is enough to use dual ADC mode. Usage of
triple ADC mode brings no advantage in this case. See figures
3, 4, 5, and 6 for analysis of conversion timing, legend for
these figures could be found in the figure 7.

As could be seen from the analysis, a distance between two

Fig. 5. Non-uniform sampling.
Conversions are done slower and with respect to a sampling time of
the second ADC. Delay between two conversions of first ADC is 13
ADC clock cycles. There are four options of a trigger instant for the
second ADC. Resulting sampling period could be varied in range
of 5 – 8 ADC clock cycles. Sampling could be performed as non-
uniform sampling by choosing each time a random option from the
four trigger instants.

Fig. 6. Non-uniform sampling, the longest period.
Delay between two conversions of the first ADC is 14 ADC clock
cycles. There are five options of a trigger instant for the second
ADC. Resulting sampling period could be varied in range of 5 – 9
ADC clock cycles. A sampling period of single ADC is 9 ADC clock
cycles, therefore, the latest option is the same time instant as the
earliest instant for triggering of the first ADC. It is also the longest
period, that could not be obtained as a combination of two shorter
ones.

Fig. 7. Legend for figures 3, 4, 5, and 6.
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following samples could be 5, 6, 7, 8, or 9 ADC clock cycles.
Intervals shorter than 5 clock cycles are not possible. Usage of
intervals longer than 9 cycles is possible, nevertheless, it is not
reasonable to do so since these intervals could be composed
from the shorter ones, taking also intermediate samples.

VI. NON-UNIFORM SAMPLING FUNCTION

For non-uniform sampling, equation (2) defines bandwidth
of the signal, that could be processed without aliasing. This
frequency depends on the length of the shortest measurable
time quantum dt. In our case, this time quantum is one period
of ADC clock dt = fADC

−1, therefore, maximal unaliased
signal frequency is fmax = 18 MHz (for STM32-F427). This
is a theoretical maximum for the non-uniform sampling, but
analogue features of ADC also restrict the maximal frequency,
see table I for these limitations.

It is reasonable to have average sampling period in range
(5 . . . 9) · dt. (dt corresponds to ADC clock period fADC−1).
As described in the chapter II-B, a set of the sampling
periods {rn · dt} should have Poisson distribution rn ∼
Po
((
fs · dt

)−1
)

. But at the same time, sampling period must
not be shorter than 5 · dt. This means that a set of random
numbers with Poisson distribution can not be directly used,
because values down to zero might occur. If the signal is short,
it is also a bad idea to have excessively long interval between
samples, because the amount of samples would be too low.
Longer intervals could be composed from two shorter ones
taking intermittent samples.

To fit our requirements, all numbers must not be less than
5 and as most numbers as possible should be in the range
[5 . . . 9]. Poisson distribution is characterized by parameter
λ, mean value of the Poisson distribution is equal to this
parameter E (Po (λ))λ, therefore, it is reasonable to have
this parameter ”somewhere” in the range [5 . . . 9]. Probability
P (5 ≤ rn ≤ 9) that random number is in our range is
summarized in table II for various values of parameter λ. As
could be seen from the table, this probability is highest for
λ = 7.

TABLE II
BEST PARAMETER FOR POISSON DISTRIBUTION.

λ P (rn < 5) P (5 ≤ rn ≤ 9) P (rn > 9)

5 0.4405 0.5277 0.0318
6 0.2851 0.6310 0.0839

6.5 0.2237 0.6537 0.1226
7 0.1730 0.6575 0.1695

7.5 0.1321 0.6443 0.2236
8 0.0996 0.6170 0.2834
9 0.0550 0.5324 0.4126

Having these requirements for sampling periods {rn · dt},
clipped Poisson distribution with probability function g(x) is
defined, see equation (11) and figure 8.5

5In the equation, discarding all values greater than 9 is assumed. Setting
this threshold a bit higher is allowed and works similarly.

Fig. 8. Probability function of clipped Poisson distribution.

g(x) =





0 for x < 5

f(x)

F (9)− F (4)
for 5 ≤ x ≤ 9

0 for x > 9

(11)

f(x) = P (X = x) = λx
e−λ

x!

F (x) = P (X ≤ x) =
x∑

k=0

(
λk

e−λ

k!

)

X ∼ Po(λ)

λ = 7

x, k. . . integers; x ≥ 0

As we are discarding some values, mean value E(X) of the
distribution will be affected. A new value could be computed
according to the equation (12).6

E(X) =
9∑

k=5

(k · g(k)) =
1

F (9)− F (4)
·

9∑

k=5

(k · f(k)) (12)

fs = (E (X) · dt) =
fADC
E(X)

(13)

Using equation (12), we get mean value of our distribution
E(X) = 6.89. Using equation (13), an average sampling
frequency of ADC could be computed, it is 5.22 MHz for
maximal ADC clock frequency 36 MHz.

Trigger events for ADC will be generated by some timer
in microcontroller (it is equipped by several timers of dif-
ferent types) configured to count rn clock periods. Sampling
sequence {rn} could be either precomputed sequence, or it
could be generated by on-chip random number generator and

6Discarding of values greater than 9 and lower than 5 is assumed.
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transformation function from uniform distribution to clipped
Poisson distribution.

VII. CONCLUSION

Features of synchronized ADCs in STM32-F4xx microcon-
trollers were analyzed, and it was found, that they could be
used for non-uniform sampling of signals with frequency too
high for periodic sampling. Theoretical unaliased bandwidth of
the signal, that could be non-uniformly sampled without alias-
ing, is 18 MHz. Unaliased bandwidth for uniform sampling is
3.6 MHz. However, properties of analogue part of an ADC
restrict the maximal signal frequency and also a conversion
resolution to lower value due to excessive attenuation at high
frequencies. Due to this fact, it is possible to sample 10 MHz
signal with 3-bit resolution or 4.8 MHz signal with 5-bit
resolution.

Bandwidth of an uniformly sampled signal in microcon-
troller with synchronized ADCs is limited by an aliasing
(i.e. insufficient sampling frequency). On the contrary, usage
of non-uniform sampling widened the unaliased bandwidth
behind the limits set by an analogue input stage of ADCs,
therefore, full potential of the ADCs could be used.
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I want to thank Adam Bařtipán and Petr Hodina for valuable
remarks regarding architecture of STM32 processors.

REFERENCES

[1] Jian-Jiun Ding. Non-uniform Sampling. [online]. Avail-
able: http://djj.ee.ntu.edu.tw/Nonuniform Sampling.docx
[2014, Apr. 3].
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