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Abstract: This article presents results of the experimental research and numerical simulations of the
flow in a pumping system’s discharge object with the welded siphon. The laboratory simplified
model was used in the study. Two stationary flow regimes characterized by different volume flow
rates and water level heights have been chosen. The study concentrates mainly on the regions below
and behind the siphon outlet. The mathematical modelling using advanced turbulence models has
been performed. The free-surface flow has been carried out by means of the volume-of-fluid method.
The experimental results obtained by the particle image velocimetry method have been used for the
mathematical model validation. The evolution and interactions of main flow structures are analyzed
using visualizations and the spectral analysis. The presented results show a good agreement of the
measured and calculated complex flow topology and give a deep insight into the flow structures below
and behind the siphon outlet. The presented methodology and results can increase the applicability
and reliability of the numerical tools used for the design of the pump and turbine stations and their
optimization with respect to the efficiency, lifetime and environmental demands.
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1. Introduction

This paper presents one part of the results of the project, focused on the improvement and
verification of numerical tools, used for an optimal design of pumping stations. The pumping station
is a complete hydraulic system, consisting typically of one or several pumps, the intake and discharge
objects and the necessary connecting piping. This paper concentrates on the numerical modelling of
flow in the discharge objects with siphons and its validation by the experimental results obtained using
camera-based visualizations and the particle image velocimetry (hereinafter, PIV) measuring technique.

The pumping stations widely use the discharge objects with the siphons, as they are easy-to-install
and easy-to-operate and require minimum mechanical components. The flow in these output
hydro-machine objects could be characterized by specific features. It is typically a combination of the
diffuser flow and the free jet flow which interacts with still fluid and impinges on a wall. Typically,
the fluid is a two-phase one with both the liquid and gas fractions. Until now, there is no systematic
study of this specific case in the literature. Overall, the case represents a tough problem both from the
point of view of the physical modelling using the experimental research and mathematical simulations
involving the so-called computational fluid dynamics (hereinafter CFD). Our paper represents a
contribution to fill this gap.
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Concerning the mathematical simulations of a complete pumping system with the siphon outlet,
some published studies describe the flow inside the system as a single-phase one, e.g., [1]. More recent
simulations consider also the influence of the free water level, e.g., [2]. They use usually the volume of
fluid (hereinafter VOF) multiphase model. A more advanced study can be found in [3], which aims
to predict transient phenomena during the stopping process in the axial-flow pump system with
the siphon outlet using the VOF model inside the fluent CFD code. The transient phenomena
during the start-up phase of the complete pumping station with the welded siphon outlet have been
studied numerically in [4] using the scale-adaptive simulations (hereinafter SAS) and the detached
eddy simulations (hereinafter DES), supported by some experimental visualizations. There, also the
discharge objects with the arrow-shaped overflow wall have been analyzed experimentally as well as
using CFD. Unfortunately, both in the case of overflow walls and in the case of transient start-up of the
siphon (phases during filling the siphon with water), large amount of air bubbles inside water does not
allow to use the PIV measurements to validate the CFD simulations properly.

During the steady operation regimes, the main problem in the discharge objects with siphons is a
very complex pattern of flow, with a very complicated system of the wall attached and free-surface
vortices, which can be important sources of the energy dissipation as well as the erosive processes
decreasing the lifetime of the concrete walls. Simulations of these flow structures are similar to
the problem of flow structures in the intake objects, which have been much more studied both
experimentally and using the CFD tools. Nevertheless, there are some differences in the character of
vortical structures in the intake and discharge objects, which will be mentioned later. The analysis
of the flow with free water level in the suction objects of pumping stations can be found in many
references. They concentrate mainly on vortex structures and cavitation phenomena in the pump
intake [5–11]. Especially Tokay and Constantinescu [5] give a detailed picture of unsteady vortices
obtained by means of the large eddy simulations (hereinafter LES). To visualize the vortical structures,
they use both the pictures of distributions of the velocity, the turbulent kinetic energy and the vorticity
in predefined cross-sections, and the pictures of instantaneous surface streamlines, which give a clear
view of the singular points and singular lines in the flow field. In the next sections, this methodology
will be used as well, referring also to the terminology of three-dimensional separated flows introduced
by Tobak and Peake [12]. A very interesting comparison of five different commercial CFD codes can
be found in the work of Okamura et al. [6] showing the ability to predict vortices in a sump of the
axial-flow pump. Unfortunately, these calculations are based just on the single-phase flow and there is
lack of information on the turbulence and cavitation models used.

The background of the experimental research and numerical simulations of flow in the discharge
objects with the siphon is very limited. Therefore, the experience from the intake objects should be
obviously applied instead. But still, there are some major differences in these types of flow. In the
intake object, the driving mechanism is the sump of the pump. The main singularity on the floor is
the nodal point or focus of separation (the stable node), based on the pre-rotation generated by the
impeller. An important part of vortices represent the free-surface ones, which could be filled with the
air bubbles or with a full air core, or the submerged vortices with the vapor bubbles originating in
the pressure drop inside the vortex cores [6,11]. On the contrary, in the discharge object close to the
siphon outlet, the vortices are driven primarily by the water jet, which comes from the siphon tube and
attaches the floor at the nodal point of attachment (the unstable node). In the water jet, there is no
swirl generated by the impeller, but there is a system of two or more secondary vortices generated in
the siphon tube bend. In some flow regimes, quite large separations of flow on the siphon inner wall
can influence all vortical structures significantly.

The objective of this work is to validate and verify the numerical tools, used for an optimal design
of the pumping stations and the discharge objects with siphons in particular. The validation is to be
performed using the physical modelling on the same case and the velocity field measurements using
the PIV measuring technique providing distributions of the velocity in the planes of measurement.
The steady operation regimes were chosen for this process, when water in the test section is not
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filled with the air bubbles. In addition, as stated above, this paper aims to broaden the limited
literary resources dealing with the flow structures in the siphon-based discharge objects and their
numerical modelling.

2. Test Case Setup

All experiments have been carried out in the water circuit with a free water level, in the hydraulic
laboratory of the Centre of Hydraulic Research (Figure 1). The test section is 5 m long, with the sluice
gate and a water chute in the rear metal part. The front transparent part of the test section has the
dimensions (l × h × w) 2.7 m × 0.37 m × 0.304 m (Figure 2a). The welded siphon (Figure 2b) starts
from the flange DN125, then turns to the rectangular cross-section 0.122 m × 0.103 m and ends with
the diffuser with an opening angle of 10◦ in the horizontal direction and 7.4◦ in the vertical direction.
The length of the diffusor is 0.31 m along the upper wall. The cylindrical tank with 2.5 m in diameter
has the capacity of 5.9 m3 (Figure 3). Two volume flow rates Qv have been considered: 0.0138 m3/s
(with the water level 0.261 m above the floor, measured in the rear part of the transparent section) and
0.0172 m3/s (with the water level 0.268 m above the floor), which correspond to the mean longitudinal
velocity in the discharge tank about 0.174 m/s and 0.21 m/s respectively. Both these regimes correspond
to the real-life regimes in the already built pumping stations. The aim is the sensitivity analysis of
influence of the volume flow rates on the measured and calculated flow structures. The volume flow
rate has been measured with the induction flowmeter (accuracy 0.05 L/s) and the mean water level has
been controlled by the ultrasonic level transmitter (accuracy 1 mm).
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Figure 3. (a) Detail of the transparent test sections; (b) arrangement of the particle image velocimetry
(PIV) measurements with a blackout tent. Details of the water tank and water chute can be seen.

3. Experimental Methods

The start-up regime, when the water is filled with a large amount of air bubbles could not
be measured by means of PIV. For the steady state regimes of the siphon performance, the PIV
measurements with one camera have been realized (Figure 4). Therefore, the results represent
two components of the velocity vectors in the plane of the laser sheet. The measurement apparatus
consists of a laser and the CMOS camera by Dantec Company. The laser is the New Wave Pegasus,
Nd:YLF, double head pulse type with the light of wavelength 527 nm, the maximal frequency is
10 kHz, the single shot energy is 10 mJ (for 1 kHz) and the corresponding power is 10 W per one head.
The camera Phantom V611 with the resolution of 1 280 × 800 pixels is able to acquire double snaps
with the frequency up to 3000 Hz (the full resolution) and it uses the internal memory of 8 GB for
the data storage within a single experiment. The data have been acquired and post-processed using
the Dynamic Studio, Matlab and Tecplot software tools [13]. Measurements in both the vertical and
horizontal planes have enabled to get a complex view of the flow structures. The vertical planes have
been located in the positions z = 0 mm, +/−75 mm and +/−141 mm, where z is the distance from the test
section symmetry plane. The horizontal planes have been located at the distance of 10 mm, 135 mm
and 170 mm above the test section floor.
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The measurements have been done in the Segment A (in front of the siphon), Segment B (location of
the main siphon jet) and Segment C (behind the siphon), see Figure 5. The wide-angle objective lens
enabled to capture flow pictures with the maximum dimensions about 300 mm × 300 mm, which fits
well with the distances between test section steel ribs. For the vertical planes, the 105 mm objective has
been applied, the horizontal planes have been visualized with the 35 mm objective. In every segment,
the calibration has been performed in one vertical plane (z = 0 mm) and in one horizontal plane
(y = 100 mm) using special optical target boards (Figure 5). Both the overall view of the Segments
A–C and details of flow close to the siphon walls have been captured, including time-averaged and
instantaneous results. The instantaneous results have been captured with the frequencies of 100–250 Hz;
the time-averaged results have used frequencies 10–20 Hz. In the investigated flow areas, there are
quite high velocity gradients. In the local areas with very low velocities, we can expect an increased
level of uncertainty. Inside local areas with the velocities in the order of about 1 m/s, the accuracy of
velocity measurements is about 1–2% of the maximum velocity.
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4. Numerical Simulations

All calculations in the discharge object with the siphon have been carried out by means of the
CFD software ANSYS CFX release 19.2. The free-surface flow modelling including the gravity effects is
based on the VOF method evaluating the volume fraction of each fluid. A non-homogenous model of
the multiphase flow has been applied with different velocities for the water and air fractions. In this
study the unstructured computational grid with prismatic elements inside the boundary layers has
approximately 10 million nodes (Figure 6), which enables to preserve sufficiently low values of y+

calculated at the first grid point away from the solid walls and to reach a sufficiently isotropic grid
with acceptable aspect ratios close to the walls. The maximum distance of the neighboring grid points
is about 3 mm, which enables to capture the turbulent vortices larger than 10 mm. It is practically
impossible to optimize the computational grid from the point of y+ values as the wall shear stress
changes dramatically in time with the changing pattern of separation and attachment regions. In our
case the values of y+ monitored in time have remained close to 1 on the majority of solid surfaces.
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As mentioned above, the transient phenomena during the start-up phase of the pumping station
as well as the experimental discharge object with the welded siphons have been studied numerically
in [4] using the SAS and DES scale resolving simulations. Though the DES simulations provided
better resolution of vortical structures, the SAS simulations showed much better robustness and
better predictions of frequencies of unsteady phenomena. That is why the fundamental calculations
in this study are based on the SAS simulations, with the time step of ∆t = 0.005 s. Nevertheless,
these calculations are also compared with the shear stress transport (SST) turbulence model based
unsteady Reynolds-averaged Navier–Stokes equations (URANS) calculations (with the time step of
∆t = 0.01 s), which provide some time-averaging (the Reynold’s one) of results, though they are fully
unsteady in their nature.

The computational domain includes all the three-dimensional geometry of the discharge object
including the siphon with its walls. No symmetry plane has been applied. To set correctly the inlet
boundary conditions, the computational domain has been extended with a straight piping DN125
of the length 0.75 m (six diameters) in front of the flange (which corresponds to the experiment).
The boundary conditions are based on the prescribed volume flow rate at the inlet and the static
pressure distribution at the outlet. The initial calculations employed the URANS equations with
the standard SST turbulence model and then switched to the SAS simulations. The momentum
equations have employed the high-resolution scheme while the first order scheme has been used for the
turbulence numerics. The time discretization has employed the second order backward Euler scheme.

All the simulations are based on the constant property fluids. It means, that both the water and
water vapor are taken as incompressible, with constant densities and constant temperatures.

5. Results

In this paragraph, some selected results of the PIV measurements and the CFD simulations are
presented. The complete database is collected at the Centre of Hydraulic Research as well as at the
Institute of Thermomechanics, Czech Academy of Sciences, the contact emails are provided above.

5.1. PIV Experiments

During the experiments, the (two-dimensional) velocity vector magnitude (the symbol M in
corresponding figures) has been evaluated, together with the individual velocity components, variances
and vector lines with the singular points. The general term “vector lines” is used in the description of
results as “streamlines” are strictly “vector lines of the instantaneous velocity fields in 3D”, which is
not the case of the time-averaged velocity fields in 2D. Not all data can be presented because of
limited space of the article. Moreover, because for both measured flow rates the topology of the
flow phenomena is the same, with the difference just in the velocity magnitude (as it will be shown
hereinafter), only the results for the volume flow rate of 0.0172 m3/s (with a higher relative accuracy)
are considered. Figures 7–9 show the (two-dimensional) magnitude of velocity and the vector lines in
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the vertical planes z = 0, 75 and –75 mm obtained from the time-averaged results. The primary flow
structure is a water jet, which dominates in the upper part of the siphon outlet, accompanied with a
backflow and a strong vortex just below the siphon outlet. The jet tears down the water above the
siphon outlet, with a distinct shear layer. In the vertical planes z = 75 and –75 mm, a large secondary
vortex can be located behind the jet, above the nodal point of attachment (Figures 8 and 9). The flow is
weakly asymmetrical in the vertical planes z = 75 and –75 mm, but it is rather insignificant in these
figures. Figure 10 shows the flow in the vertical planes z = 0, −75 and –141 mm in the Segment C
obtained for the time-averaged results. It can be seen that the secondary vortex located behind the jet
is not fully perpendicular to the test section plane of symmetry and its core can be detected only in the
vertical planes z = 75 and –75 mm. The asymmetry of the flow can be visually registered much better
in the horizontal planes. In Figure 11, the flow in the horizontal plane y = 10 is shown. The dominant
structure here is the nodal point of attachment. It can be seen, that this singular point is shifted about
50 mm from the test section centerline. It is very important to note, that the nodal point of attachment
is a highly unstable node. Its position is unsteady and any small deviation in the test section geometry
causes the asymmetry of the experimental results. It is in contrast with the numerical simulations,
which consider the test section geometry perfectly symmetric and without any influence of external
(e.g., Coriolis) forces. Figures 12 and 13 show the flow in the horizontal planes y = 135 mm and
170 mm. The flow asymmetry is decreased here a little bit, which indicates, that the main source of the
asymmetry is located near the floor.

The instantaneous flow structures in the horizontal plane y = 10 mm are shown in Figure 14.
In some instants, there is a complex system of singular points replacing temporarily the picture of
one dominant nodal point of attachment. On the other hand, in the other instants, this dominant
nodal point can be clearly recognized and apparently it is not necessarily shifted from the test section
centerline all the time.
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Figure 15 shows the flow in the shear layer behind the upper siphon wall in the vertical plane
z = 0 mm. Pictures and the coordinate system are in this figure rotated by 37◦ against the horizon.
Unsteady vortices behind the wall edge can be found in the shear layer.
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Figure 15. Flow in the shear layer behind the upper siphon wall in vertical plane z = 0 mm. Pictures
and the coordinate system are rotated by 37◦ against the horizon. (a) Time-averaged velocity field;
(b) instantaneous vortices behind the wall edge.

As it has been already mentioned, not all data are presented, because for both measured flow
rates (0.0138 m3/s and 0.0172 m3/s) the topology of the flow phenomena is the same, including the
same asymmetries in the flow fields. It is partially demonstrated in Figure 16, which shows the flow
structures measured at the volume flow rate of 0.0138 m3/s and can be compared to the results in
Figures 7 and 8. For clarity, Figure 16 is the only one with the volume flow rate of 0.0138 m3/s.
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5.2. CFD Simulations

Similar to the experiments, the (two-dimensional) velocity vector magnitude has been evaluated
from velocity components, together with the vector lines and singular points. Moreover, some criteria
which enable to visualize the vortical structures (like the vorticity, velocity real eigenvalue or Q
invariant [14,15]) are used for unsteady results. As mentioned for the measurements, only the results
for the flow rate of 0.0172 m3/s are presented.

Figures 17–21 show the (two-dimensional) magnitude of velocity and the vector lines in the vertical
planes z = 0 mm, ±75 mm and ±141 mm obtained with the SAS turbulence model for the time-averaged
results. To enable a better comparison with the experimental data, each picture includes indicative lines
with the x-coordinates x = 151 mm and 806 mm, which frame the full range of experiment. Though the
geometry of the computational domain is perfectly symmetric, the time-averaged results show an
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asymmetry, especially in the vertical planes z = ±75 mm. There could be several reasons, among them
the asymmetric unstructured computational grid or not sufficient size of data files can play the most
important role. Nevertheless, a similar asymmetry (including the topology of the asymmetric flow
structures) can be found in the time-averaged results obtained with the SST turbulence model as could
be seen in Figures 22–26. Concerning the horizontal planes (Figures 27–32), we can see the asymmetry
of the time-averaged results especially in the plane y = 135 mm behind the primary jet. Still, the jet
itself is surprisingly symmetric.
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It is difficult to quantify and compare the asymmetry of the presented results obtained from the
experiments and from the numerical simulations. The asymmetry is an imperfection of the specific
experimental apparatus and the mathematical model. For each, the imperfection reason can be different.
However, it must be considered, that the investigated phenomena are highly turbulent and unsteady in
their nature. Both in the experiment and numerical simulations, the flow in the siphon-based discharge
object behaves like the Hopf bifurcation, so, any asymmetry perturbation breaks the global solution
symmetry. From the point of view of the visualized results, the numerical simulations show a higher
degree of asymmetry.

Large turbulent eddies calculated in the vertical plane z = 0 with the SAS scale resolving simulations
can be seen in Figures 33 and 34. The highly unsteady vortices can be found especially in the shear
layer behind the upper siphon wall. They are shedding with the dominant frequency about 5.2–6.3 Hz
(Figure 35). Figure 36 shows (similar to Figure 15) in detail the flow in the shear layer behind the upper
siphon wall in the vertical plane z = 0 mm, calculated with the SAS turbulence model. In this figure,
pictures and the coordinate system are rotated by 37◦ against the horizon. The smooth time-averaged
shear layer can be seen on the left, unsteady vortices behind the wall edge can be found in the shear
layer on the right-hand side. Similar (but much less pronounced and less regular) vortices can be
found in the CFD analysis based on the SST model (Figure 37).
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Figure 37. SST simulation. Time instant t0 + 5.96 s. Vertical plane z = 0 mm. Vector lines (top),
2D velocity magnitude (bottom).

The unsteady flow close to the floor calculated with the SAS turbulence model can be seen in
Figures 38 and 39. Similarly to the experiments, the dominant structure here—the nodal point of
attachment—can be replaced by a structure of connected singular points. Typically, one to three
nodal points can be observed. This structure is periodically moving in the stream-wise and span-wise
directions with the frequencies, which will be discussed later. Concerning the SST based simulations,
they give one nodal point, moving also in the stream-wise and span-wise directions with the dominant
frequency of 2.5 Hz (Figures 40 and 41).Water 2020, 12, x FOR PEER REVIEW 17 of 23 
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Figure 38. SAS simulation. Time instant t0 + 2.92 s. Horizontal plane y = 10 mm. Vector lines (top),
2D velocity magnitude (bottom).
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Figure 39. SAS simulation. Time instant t0 + 2.92 s. Horizontal plane y = 10 mm. Vorticity (top),
velocity real eigenvalue (middle) and Q invariant (bottom).
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2D velocity magnitude (bottom).
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Figure 41. SST simulation. Unsteady vortices behind the siphon edge. Horizontal plane y = 10 mm.

Therefore, so as to analyze frequencies linked to the unsteady phenomena in the computational
domain, a system of ten control points has been used, in each all three velocity components being
monitored. In this study, two most important points are presented. The point HP4 (with the coordinates
x = 386 mm, y = 10 mm, z = 0 mm) is located in the symmetry line of the horizontal plane y = 10 mm,
in the position where the nodal point of attachment moves (Figure 42). The point VP5 is located in the
symmetry plane z = 0 mm, in the position, where vortices are shedding in the shear layer behind the
upper siphon wall. Its coordinates are x = 465 mm, y = 164 mm, z = 0 mm. The numerical simulations
based on the SST turbulence model show a distinct dominant frequency of 2.5 Hz in all control points.
In addition, the frequencies 1.25 and 5 Hz are important, especially in the point VP5 (Figure 43).
Graphs of velocity components during 1.6 s can be seen in Figure 44. The frequency analysis of the
numerical simulations based on the SAS scale resolving simulations is much more “noisy”. In the
point HP4, the dominant frequency is about 2.8–3 Hz, which is close to the SST results. However,
in the point VP5, the dominant frequency is somewhere between 5 and 6.3 Hz (Figure 45), which is
approximately a double frequency of the SST prediction. Nevertheless, this frequency obtained from
the Fast Fourier Transform (hereinafter FFT) analysis of velocity components corresponds well with
the visualizations in Figure 35.
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Figure 42. Control points for FFT analysis of velocity components. Point HP4 representing horizontal
plane y = 10 mm, point VP5 representing vertical plane z = 0 mm.
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6. Discussion

The goal of the study is to perform a validation of the mathematical model and to study the
flow topology and dynamics in detail. The laboratory simplified model of the real situation was
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built up. The reason of using the simplified laboratory model is that the application of the advanced
experimental techniques based on the optical principle is not possible in the real situation. In reality,
the geometry of the discharge object can be more complicated [4], the size is bigger and the vessel
walls are not suitable for the optical measurements (they are typically made of concrete). Nevertheless
the flow phenomena investigated in the study depict the complex flow behavior enough to validate
reliably the CFD tools used by authors.

The primary flow structure is the water jet, behind the siphon outlet, accompanied with the
backflow and the strong vortex just below the siphon outlet. The nodal point of attachment (or a
structure of connected unstable singular points) is unsteady and moves with the dominant frequency
of several Hz. The dynamic and erosive effects of this structure should be considered during the design
of the discharge object.

Comparisons of the SAS and SST simulations show a good agreement of the time-averaged
flow fields, which also agree well with the visualizations by means of PIV. The SAS scale resolving
simulations give more detailed view of all vortical structures, but the computational demands are
much higher. Concerning the frequency analysis, predictions of the dominant frequency (related to the
nodal point of attachment) from both numerical models differ about 10%, but the frequency chart from
the SAS scale resolving simulations is much more “noisy” suggesting the higher frequencies resolved
by this method.

The methodology used in this study can be generally very effective to design and optimize the
pump or turbine systems. When validated by the experimental data, the CFD tools enable to examine a
wide range of variants and to choose the best one. CFD also provides very effective tools for the detailed
analysis of the flow phenomena, their interaction and dynamics. Figure 46 shows the 3D view of the
time-averaged and unsteady water jets behind the siphon outlet visualized for the SAS simulations.
Figure 47 shows the (two-dimensional) magnitude of velocity and the vector lines in the inclined plane
behind the siphon outlet, which follows the main part of the jet (as indicated in Figure 46). Two vortical
structures close to the side walls are driven by the jet side shear layers. The shear layers which are the
sources of two dominant vortices above and below the water jet are visualized in Figure 48 by means
of the iso-surfaces with the opposite value of vorticity. Vortex filaments of these dominant vortices are
shown in Figure 49a. It can be seen that these filaments are not straight and do not extend up to the
side walls, as both the dominant vortices dissipate in the side boundary layers. The 3D view of the
strong backflow region associated with these vortices can be seen in Figure 49b visualized by means of
the iso-surfaces of the negative longitudinal velocity U = −0.17 m/s.
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Figure 46. SAS Simulation. 3D view of the water jet behind the siphon outlet visualized with iso-surfaces
of the 3D velocity magnitude 1 m/s. (a) Time-averaged velocity field; (b) unsteady flow, time instant
t0 + 2.92 s.
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outlet. Pictures and the coordinate system are rotated by 35◦ against the horizon. (a) Time-averaged
velocity field; (b) unsteady flow, time instant t0 + 2.92 s.
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velocity U = −0.17 m/s.

Still, the methodology limitations should be mentioned as well. First, there are limits of the
experimental research. Measurements are done one by one in different planes and different measurement
segments. That is why, only the time-averaged results can be used to reconstruct the complex 3D view
of flow in the test section. Concerning the numerical methods, they are still limited by computational
resources, especially in the case of calculations with advanced physical models. In many cases it is still
not possible to use sufficiently dense computational grids and sufficiently long computational times,
which can guarantee grid-independent and sufficiently time-averaged results.
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7. Conclusions

The subject of the presented study is the laboratory model of a pumping system’s discharge object
with the welded siphon and a relatively simple geometry of the discharge object. Results of both the
experimental research and mathematical modelling are presented.

Two stationary flow regimes characterized by different volume flow rates and water level heights
have been chosen. The study concentrates mainly on the regions below and behind the siphon outlet. Five
vertical planes, three horizontal planes and one cross-wise section have been examined, focused mainly
on the regions below and behind the siphon outlet. The experimental data are compared with the results
of the CFD simulations, based on the ANSYS CFX software and the SST and SAS turbulence models.

The mathematical modelling using the advanced simulation methods has been performed,
the volume-of-fluid method has been applied for the free-surface flow modelling. The experimental
results obtained by the PIV method are used for the mathematical model validation. The presented
results show a good agreement of measured and calculated complex flow topology below and behind
the siphon outlet, especially close to the test-section floor.

The unsteady behavior of the flow from the siphon impinging to the vessel bottom has been
observed and analyzed using the spectral methods. The evolution and interactions of the main flow
structures have been studied using visualizations.

Nowadays, the CFD tools are able to model all the complete hydraulic system of a pumping or water
turbine station, to prove the functionality and design parameters of hydrodynamic machines as well as
to guarantee functionality of such a new station under design, as any changes and reconstructions of the
suction and discharge objects of the station are extremely time and money consuming. The numerical
models are not restricted to a simple geometry and can replace the physical modelling in the laboratory,
which is (in a full complex geometry of the complete station) practically impossible. From this point of
view, any improvement, validation and verification of the numerical tools, used for the optimal design
of pumping or turbine stations, is highly desirable.
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Nomenclature

f frequency [Hz]
h height [m] or [mm]
l length [m] or [mm]
M magnitude of two-dimensional velocity vector [m/s] in specified plane
Q velocity invariant (exact definition in [15]) [s−2]
Qv volume flow rate [m3/s] or [L/s]
t time [s]
U, V, W velocity components [m/s]
W width [m] or [mm]
x, y, z Cartesian coordinates [m] or [mm]
y+ dimensionless wall distance [-]
∆t time step [s]
Abbreviations
Amp Amplitude
CFD Computational Fluid Dynamics
CMOS Complementary Metal–Oxide–Semiconductor
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DES Detached Eddy Simulations
DN Diameter Nominal
FFT Fast Fourier Transform
HP Horizontal Plane
LES Large Eddy Simulations
Nd:YLF Neodymium-Doped Yttrium Lithium Fluoride
PIV Particle Image Velocimetry
RANS Reynolds-Averaged Navier–Stokes equations
SAS Scale Adaptive Simulations
SST Shear Stress Transport
URANS Unsteady Reynolds-Averaged Navier–Stokes Equations
VOF Volume of Fluid
VP Vertical Plane
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