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Abstract: Decellularized tissue is an important source for biological tissue engineering. Evaluation of
the quality of decellularized tissue is performed using scanned images of hematoxylin-eosin stained
(H&E) tissue sections and is usually dependent on the observer. The first step in creating a tool for
the assessment of the quality of the liver scaffold without observer bias is the automatic segmentation
of the whole slide image into three classes: the background, intralobular area, and extralobular area.
Such segmentation enables to perform the texture analysis in the intralobular area of the liver scaffold,
which is crucial part in the recellularization procedure. Existing semi-automatic methods for general
segmentation (i.e., thresholding, watershed, etc.) do not meet the quality requirements. Moreover,
there are no methods available to solve this task automatically. Given the low amount of training data,
we proposed a two-stage method. The first stage is based on classification of simple hand-crafted
descriptors of the pixels and their neighborhoods. This method is trained on partially annotated data.
Its outputs are used for training of the second-stage approach, which is based on a convolutional
neural network (CNN). Our architecture inspired by U-Net reaches very promising results, despite a
very low amount of the training data. We provide qualitative and quantitative data for both stages.
With the best training setup, we reach 90.70% recognition accuracy.

Keywords: H&E; decellularization; liver; tissue engineering; semantic segmentation; convolutional
neural networks

1. Introduction

Decellularized tissue scaffolds consisting of extracellular matrix proteins after complete cell
removal represent natural three-dimensional matrices with great potential in tissue engineering [1,2].
Recellularization of the decellularized scaffold can be used for in vitro engineering of artificial
organs [3,4], providing an alternative strategy to other methods such as cell repopulation of synthetic
matrices [5] or growing chimeric organs in genetically altered animals [6].
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Nevertheless, despite research efforts, the construction of liver tissue in vitro remains very
challenging. The quality of decellularized scaffold is crucial for the initial cell-scaffold interaction [7,8],
and thus determines the success of the cell repopulation process. However, the assessment of the
scaffold quality prior to recellularization represents one of the remaining problems to be solved.
The assessment criteria available are very fragmented and concentrate mainly on bulk properties.
Morphological evaluation is mostly qualitative and rather superficial [9,10].

The Whole Slide Scan microscopy (WSS) has been widely used in last years. It allows to study
and archive detail images of whole samples. The image processing techniques allow to design efficient
semiautomatic and automatic procedures for quantitative analysis. The general algorithms available
in free software can be often successfully used to solve simple tasks. In the paper [11], the authors
used ImageJ application based on the Gray Level Co-occurence Matrix and Run-Length Matrix [12]
to analyze liver fibrosis in H&E images. In more complex tasks, the use of an image processing
tool and using a scripting language might be necessary. In [13], the Matlab software with its script
language was used for quantitative analysis of cells and tissues. The most challenging tasks require the
most advanced algorithms. The convolutional neural networks introduced by LeCun in [14,15] have
promising results also in WSS microscopy. The most common tasks are image classification and image
segmentation. The convolutional neural network-based approach to solve this problem for nuclei and
cells can be found in [16].

The first method for the quantitative evaluation of the structure quality with respect to particular
liver scaffold features such as intralobular sinusoidal vessel structures was introduced in [8]. However,
this method requires an initial user input thus it is observer dependent. The first step in creating an
observer independent and reproducible evaluation method of the scaffold structure quality is the
semantic segmentation into three classes: background, intralobular area, and extralobular area.

Due to the neural networks improvements in recent years, most hand-crafted feature descriptors
for semantic segmentation, if enough data are available, become obsolete. However, a suitable
dataset with liver tissues does not exist and the creation of a new one includes per-pixel labels of
high-resolution data which is very time demanding and costly.

Therefore, in this paper, we propose a two-stage method. In the first stage we utilize Naive Bayes
classifier [17] trained on a simple texture descriptor. The outputs of this classifier we utilize as training
data for the convolutional neural network.

The main contributions of this paper are the following:

1. We introduce a two-stage method for semantic segmentation of liver scaffold hematoxylin-eosin
(H&E) stained section images. In the first stage, we train the Naive Bayes classifier on simple
texture descriptors. In the second stage, we utilize the classifier’s outputs as training data for
U-Net-based convolutional neural network.

2. We compare the single-stage approach with the two-stage method on a small subset of manually
annotated data with the two-stage method reaching superior results.

2. Materials and Methods

2.1. Scaffold Sample Preparation

After the explantation from domestic pigs (Sus scrofa), the liver was decellularized by perfusion
with detergent solutions (1% Triton X-100, 1% SDS) via the portal vein and hepatic artery, and finally
washed with saline using a system of peristaltic pumps (Masterflex L/S, Cole-Palmer, Vernon Hills,
IL, USA). Scaffold samples were fixed in 10% buffered formalin, embedded in paraffin, and eventually
cut on a microtome in 4 µm thick sections. The tissues were taken with ethical approval from the
Ministry of Education of the Czech Republic (no. MSMT-4428/2018-2).
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2.2. Histological Staining and Imaging

Histological sections were mounted on glass slides, deparaffinized, and subjected to
hematoxylin-eosin staining resulting in blue stained nuclei and pink stained cytoplasm. Whole slide
scans were produced using Nanozoomer 2.0HT Digital Slide Scanner (Hamamatsu, Hamamatsu City,
Japan). The source lens used for data acquisition was 40×. The typical size of the source area was
about 15 × 10 mm. The resolution of the images is 227 nm per pixel. The size of an uncompressed
image data was 7 to 19 GB.

2.3. Image Processing

The input image of H&E stained scaffolds is described by selected texture features. As a result of
the small amount of training data and the lack of full image annotation we used a two-stage method.
In the first stage, the training set of partially annotated images was used. This classifier is then used
per-pixel for the WSS segmentation. To increase accuracy, the classifier is trained based on a simple
annotation for a particular image. Thus, the obtained segmentations are used in the second stage to
train a convolutional neural network that does not require further adjustment.

2.4. Preprocessing and Data Annotation

WSS data are stored in NDPI file format and partial annotations are stored in NDPA format.
Background, intralobular, and extralobular areas are annotated by with magenta, black, and red color,
respectively (see Figure 1). The area with the particular type of tissue is selected by drawing a polygon.
With this procedure few representative parts of the image were picked. The full annotation of the
whole slide image was not generated due to large time demands. Annotations were produced by an
operator supervised by a tissue engineering expert.

Figure 1. Example of partially annotated H&E Whole Slide Scan (WSS). The manually selected
extralobular area is labeled in red. The magenta delineation shows the scan background and the
intralobular area is annotated in black. The green, cyan, blue, and yellow annotation represents the
rough delineation of the central vein.
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Based on metadata, the pixel size for each layer from the pyramid representation of the NDPI
file format was extracted. The vertices of the annotation polygons were recalculated to the proper
resolution. A 10 µm pixel bitmap is created from the pyramid representation of NDPI files. The image
was then divided into tiles of 255 × 255 px for easier processing.

2.5. Handcrafted Texture Feature Segmentation (HCTFS)

The texture features were designed to describe the pixel intensity and the neighborhood texture.
We started from our formerly designed method for scaffold texture segmentation [8] and extended the
feature vector to better distinguish the differences between the “background” and the “intralobular”
area. The flow-chart of the algorithm can be seen in Figure 2. To keep the computation demands low,
the texture features are as simple as possible. The first three features originate from RGB intensity.
This takes into account the color information in the H&E stained scaffold images. Only the red
channel, which is strongly correlated with other color channels, is used in the calculation of other
features. The next two features are obtained by a Gaussian filter [18] with a Standard Deviation for the
Gaussian kernel of 2 and 5 pixels. The Sobel filter [19] is used to describe the local discontinuity in
the image. The Sobel filter response at the pixel location is used as one feature. The information from
the neighborhood discontinuity is generated by the Gaussian Response Filter of the Sobel filter with a
standard deviation of 2 and 5 pixels. The last feature is a median of the neighborhood of 10 pixels in
diameter. The responses of each feature extractor can be found in Figure 3.

Figure 2. Handcrafted Texture Feature Segmentation algorithm. Input H&E stained image is divided
into tiles. Each tile is processed separately. Red (R), Green (G), and Blue (B) image channels are used as
first features. The Sobel filter and the Gaussian smoothing with the standard deviation of 2 pixels and
5 pixels (Gauss(2)) and Gauss(5)) are applied to the Red channel. The output of the Sobel filter is used
to calculate two features based on the Gaussian of the Sobel filter with a standard deviation of 2 pixels
and 5 pixels (Gauss(2) of Sobel) and the median of Sobel with neighborhood with size 10(Med(10) of
Sobel). These features are used for image segmentation based on per-pixel classification.

The features obtained from partially annotated areas of the image are then used to train the
Gaussian Naive Bayes Classifier. The studies of the classifier can be found in the paper [20,21].
The scikit-learn implementation was used [22] for our experiments. The annotations were performed
to distinguish the three following classes: background, intralobular areas, and extralobular areas.
The classifier was pre-trained on a general dataset and then used for per-pixel segmentation.
Before each use, it is additionally trained using target image data and available partial annotations for
that image.
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Figure 3. Features used for per-pixel Handcrafted Texture Feature Segmentation (HCTFS). In each
subfigure, the intralobular, extralobular, and empty areas are on the left, middle (the vertical structure),
and right, respectively. Red, Green, and Blue image channels are in the first row. The Gaussian
smoothings with the standard deviation of 2 pixels and 5 pixels together with the Sobel filter are in the
second row. The Gaussian of the Sobel filter with a standard deviation of 2 pixels and 5 pixels are in the
third row. The last feature in the figure is the median of the Sobel filter with a neighborhood of size 10.

2.6. Fully-Convolutional Neural Network

The second tested method inspired by [23–25] is built upon a feed-forward fully-convolutional
neural network (CNN), with an encoder–decoder structure. Based on our previous research [26],
we believe that such a structure is perfectly suitable for semantic segmentation tasks. Firstly, the encoder
compresses the data from raw image pixels on the input into a feature vector representation. Secondly,
based on the feature vector, the decoder produces output maps with the same size as the input.
One map is produced for each class, i.e., our network produces three maps in total.
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Our architecture is based on U-Net [24], however, we have made a few minor changes. Firstly,
our architecture also utilizes skip connections between corresponding layers of encoder and decoder,
however, unlike skip connections in the original implementation of U-Net, our skip connections are
implemented as element-wise additional. Secondly, due to the relatively small amount of training data,
we employ a much smaller architecture to prevent overfitting. To be more specific, our architecture
called UNet-Mini uses only 128k parameters, whereas the original implementation of U-Net uses over
17M parameters. Our encoder, and decoder are composed of only four (de)convolutional layers with
16, 32, 64, and 64 number of kernels, respectively, kernel size ks = 3 × 3 and stride s = 1.

Apart from these differences, our architecture follows a standard setup of (de)convolution
followed by batch normalization and the ReLU activation. Four deconvolutions in decoder are followed
by the convolution with kernel size ks = 1 × 1 and stride s = 1. This layer performs a classification
task, therefore, it utilizes the classical Softmax activation function. The detailed description of the
architecture can be found in Figure 4.
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Figure 4. Structure of UNet-Mini architecture. The encoder is composed of four convolutional layers,
each followed by batch normalization (BN) and the ReLU activation function. The decoder mirrors
this structure. N in the last convolutional layer convF of the decoder represents the number of classes
(i.e., 3). conF is followed by the Softmax activation.

The neural network is implemented and trained in Python using Chainer deep learning
framework [27,28]. Experimental settings and results can be found in Section 3.2.

3. Experiments and Results

3.1. Handcrafted Texture Feature Segmentation

To train the first stage classifier in Handcrafted Texture Feature Segmentation, we used a dataset
that contained 60 different areas of 8 WSS. This pre-trained classifier with small additional annotation
for every image was then used to produce 33 WSS segmentations for the second stage based on CNN.
The first stage segmentation output can be seen in Figure 5.



Sensors 2020, 20, 7063 7 of 12

Figure 5. Output of the handcrafted texture feature-based segmentation. The background class is in
dark purple, the intralobular area is represented by teal color, and the extralobular area is in yellow.

3.2. Semantic Segmentation via CNN

Generally, a huge amount of data is necessary for network training. For this initial experiment,
we used only 33 WSS (with average resolution approximately 3000 × 2000 pixels) without any original
labels. The annotations resulting from the HCTFS of the individual scans were then utilized as the
labels. We believe our network should handle occasional mislabels of the HCTFS, learn the correct
structure for each class, and outperform the first method.

The data were converted to gray-scale and split into three subsets—training (25 scans),
development (4 scans), and testing (4 scans) set. Considering the size of scans, we decided to cut
each of them into the crops of the size of 224 × 224 pixels with 100 pixels overlay. Furthermore,
to produce more training data, we resized each scan to half of the original resolution and repeated
the whole cutting process. This process was repeated two times in total. In the last step, we resized
the original scan to the size of 224 × 224 pixels. Thanks to this process, we got 11,384 training images,
2739 development images, and 2425 testing images. Such amount of data represents still quite a small
data set for the training of the neural network. To overcome this problem and improve the network’s
robustness, we also used data augmentations. To be more specific, each image crop was modified with
a random number of augmentations. The possible augmentations were the following: horizontal flip,
vertical flip, white noise, and Gaussian blur. This process was repeated three times for each image
crop. This leads to 45,536 training images in total. All the pixel values were normalized from 0 to 1.

UNet-Mini is trained for the semantic segmentation of an input image into one of the three
following classes: intralobular, extralobular, and background. The Adam optimization method [29]
with standard parameters setup and also standard SGD optimizer with a starting learning rate l = 0.01
and step decay d = 0.1 every 10 epochs were the hyperparameters we used for updating UNet-Mini’s
parameters. In both cases, we use the cross-entropy loss for the network training and mini-batch
size 32. The training is stopped after 35 epochs. We used 1 GPU NVidia 1080Ti for training.

Both optimizers reach comparable results, with the best recognition accuracy of 92.35% on the
development set. It is necessary to note that the reached accuracy is calculated by comparing the
network results with the results from HCTFS. As it was already mentioned, the HCTFS’s results
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contain some mislabels, therefore, our goal was not to completely replicate the original results, but to
filter out these mistakes and to learn to segment the scans more precisely.

To objectively compare both methods, we manually label additional ground-truth data patch on
the original images. The resulting images can be found in Table 1. UNet-Mini overcomes the HCTFS
method by more than 4% on both sets. This means that UNet-Mini learns to generalize better than
the original method despite incorrect data in the training set. Plus, UNet-Mini does not need any
additional image specific labels.

Table 1. Comparison of classification recognition rates. Bold font indicates best results.

Method Dev Set Test Set

HCTFS 86.47% 86.51%
UNet-Mini 90.87 % 90.67%

Furthermore, we provide examples of qualitative results comparing both methods. Figures 6
and 7 show the results, where the UNet-Mini corrected or partially corrected the original mistakes
in labels. On the other hand, an example of obvious mislabels made by the network can be found in
Figure 8. Finally, Figure 9 provides an example of equally good results from both tested methods.

Figure 6. Example of semantic segmentation, where the neural network reached better results.
The original image (on the left), the result from the HCTFS (in the middle), and the results from
the neural network (on the right).

Figure 7. Example of semantic segmentation, where the neural network reached better results.
The original image (on the left), the result from the HCTFS (in the middle), and the results from
the neural network (on the right).
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Figure 8. Example of semantic segmentation, where the neural network reached worse results.
The original image (on the left), the result from the HCTFS (in the middle), and the results from
the neural network (on the right).

Figure 9. Example of semantic segmentation, where the neural network reached comparable results.
The original image (on the left), the result from the HCTFS (in the middle), and the results from the
neural network (on the right).

4. Discussion

The scaffold function is directly linked to its structure [30]. Current approaches to analyze
scaffold quality include the qualification of the residual DNA content, the amount (or ratio) of
structural proteins such as collagen I, collagen IV, laminin, fibronectin, or elastin, and presence
of glycosaminoglycans [31,32].

The morphological assessment consists of subjective evaluation of scaffold structure preservation
which is supposed to be as close to the native liver structure as possible. H&E staining represents a
fast and simple histological method to visualize the scaffold structure as well as cell removal from
samples. The typical structural unit of the liver is a lobule, ideally a hexagonally shaped structure with
intralobular space occupied by sinusoidal vessels surrounded by hepatocytes. The scaffold consists of
the extracellular matrix of the vessel walls forming conduits, empty inter-sinusoidal space after the
removal of hepatocytes, and interlobular septa formed by thick protein fibers.

The presence and distribution of individual structural proteins is usually confirmed by
immunohistochemistry representing more time and cost consuming method. The ultrastructure
can be visualized by scanning electron microscopy; however, the cost and extended time spent during
sample processing makes this powerfull technique not always available. Scaffold images obtained by
any of these methods have a potential to be quantitatively analyzed. However, for the development of
a new quantitative method, we selected H&E stained images. They can be produced in a fast and easy
way while still carrying the information necessary to evaluate structural integrity of the scaffold.

The segmentation of liver scaffold from H&E stained image based on handcrafted texture features
works well in the interactive mode where additional partial segmentation of a particular image is given.
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Without additional per image classifier training, the segmentation algorithm provides unstable results.
This makes it dependent on the manual annotation of each examined image. Considering the very
promising results that we have reached in our initial experiments, we would like to further investigate
possible usage of semantic segmentation via neural networks. In our future research, we would like to
extend our training set with additional slides. Moreover, we would like to perform extensive testing of
other neural network architectures.

5. Conclusions

The first step in the decellularized liver analysis can be successfully represented by the whole
slide segmentation. Due to the lack of completely annotated WSS, we designed a two-state solution.
The first stage is segmentation based on hand-crafted features that are trained using partially annotated
WSS. The second stage uses CNN with a U-Net scheme. The two-stage approach has proved to be
useful to compensate the lack of training data, and reaches semantic segmentation accuracy over 90%
and overcomes the handcrafted features by more than 4%. In our future work, firstly, we would like to
enrich our dataset. Especially images obtained using different scanners are very desirable because such
data can provide a classifier bigger robustness and better generalization capacity. Secondly, with more
data, we believe, utilizing more complex neural network architecture would be possible. We also plan
to use the suggested algorithm in the open-source application for the scaffold tissue evaluation.
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