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Abstract 

Diabetic patient desires to avoid hypo- and hyperglycemic episodes, which result from insufficient insulin production. As the 
diabetes disease progresses, it requires an advance control of external insulin administration with an insulin pump. Given the 
importance of blood-glucose level prediction for the insulin therapy, there is a Blood-Glucose Level Prediction Challenge. This 
prediction is based on a post-mortem dataset, which include a number of signals related to the daily life of a diabetic patient. We 
propose replacing these post-mortem signals with an in-silico diabetic patient. For this purpose, we can use the SmartCGMS 
continuous glucose monitoring and controlling framework together with an FDA-accepted diabetic patient simulation. As a 
result, a competing researcher have the same conditions as a developer of a real-life insulin pump, connected to a real diabetic 
patient. When using SmartCGMS, simulated, prototyped and real devices can work together. This approach reduces the 
difference between laboratory and practical results, thus increasing the level of realism for the entire challenge. As a report on the 
current SmartCGMS state, we describe the previously unpublished features, which enable an improved glucose level prediction 
and/or control challenge. 
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1. Introduction 

Diabetes is a silent civilization disease. It manifests with an elevated blood glucose level (BG) [13]. Either absolute 
or relative insulin insufficiency causes elevated BG. Type 1 diabetic (T1D) patient suffers from absolute insulin 
insufficiency due to near-to-zero insulin production by the pancreatic cells.  Type 2 diabetic (T2D) patient suffers 
from relative insulin insufficiency, because cells need more insulin to produce the required amount of energy [25]. 

Elevated BG continuously damages multiple internal organs [11]. It leads to both chronic and acute 
complications. Insulin lowers BG by promoting its utilization. Therefore, diabetic patients use insulin pump to inject 
the insulin from an external reservoir. While the insulin pump is common with T1D patients, it may benefit T2D 
patients as well [4]. 

As the disease progresses, BG control becomes more complex and demanding. Inefficient BG control deteriorates 
patient’s condition and quality of life. A sophisticated computer algorithm may be a solution, when directly 
controlling the insulin pump [9]. Such an insulin pump would be augmented with a sensor of continuous glucose 
monitoring system (CGMS). Possibly, an advanced insulin-pump controller can connect to other sensors as well. 

Let us consider an insulin pump, which delivers the insulin at a constant basal rate (IBR). Let this pump be 
capable of suspending the insulin delivery (LGS aka low-glucose suspend), if BG falls below a given threshold [27]. 
By predicting BG instead of sensing the current level, we can further reduce the number of hypoglycemic episodes 
by possibly adjusting IBR [5, 6]. We can predict BG based on past BG levels, and optionally past levels of other 
signals such as acceleration, body temperature, etc. [8, 12]. 

There is Blood Glucose Level Prediction Challenge. It focuses directly on BG prediction, using multiple signals. 
In its present form, a competing researcher obtains OhioT1DM dataset [24]. This is a training dataset, designed for a 
development of a BG prediction method. Then, organizers of the challenge evaluate the prediction method using 
validation dataset. Using root mean square error (RMSE), the prediction methods compete in 30- and 60-minutes 
prediction horizons.  

With the present challenge setup, we see two opportunities to increase its level of realism: 

1. Now, the researcher obtains a post-mortem database of measured signals as a whole. In reality, sensors provide 
new measurements incrementally. We offer a framework that can replay the post-mortem databases as if they 
come from real sensors. The framework would isolate the competing researcher from the database. 

2. Due to the use of post-mortem databases, researchers cannot compete in BG control. We offer a framework that 
provides in-silico patient that reacts to changes in insulin dosage – i.e., it responds dynamically to insulin boluses 
and IBR changes. 

We propose to use SmartCGMS – continuous glucose monitoring and controlling framework. SmartCGMS 
abstracts the chain of devices (from a sensor to an insulin pump) with a set of filters [20]. Each filter represents a 
single step in the entire processing of measured physiological signals. As SmartCGMS makes no assumption about a 
particular filter implementation, real, prototyped and simulated devices can work together to reduce differences 
between laboratory and practical conditions. 

Second section describes individual features of SmartCGMS, while the following section specializes on 
programming with SmartCGMS. Fourth section presents an experimental setup of a predictive low-glucose 
management system. Fifth section concludes the paper and outlines future work. 

2. SmartCGMS 

SmartCGMS is directly available as x86-64 build for MS Windows, macOS and Debian GNU/Linux, as well as 
armeabi-v7a and arm64-v8a builds for Android. Other systems are available upon a request. For non-profit, 
academic research, SmartCGMS is available under the GPLv3 license. Other use requires a different license.  

SmartCGMS ships with two executables (x86-64 only) and a set of dynamically loaded libraries (SmartCGMS 
itself, core libraries, available on all platforms). One executable, gpredict3, offers a graphical user interface (GUI) to 
visualize, edit and execute custom configurations of the signal processing. The second executable, console3, 
executes the configuration only. 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2020.10.048&domain=pdf


	 Tomas Koutny  et al. / Procedia Computer Science 177 (2020) 354–362� 355 

Available online at www.sciencedirect.com 

ScienceDirect 

Procedia Computer Science 00 (2020) 000–000  
www.elsevier.com/locate/procedia 

 

1877-0509 © 2020 The Authors. Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 
Peer-review under responsibility of the Conference Program Chairs.  

The 10th International Conference on Current and Future Trends of Information and 
Communication Technologies in Healthcare (ICTH 2020)  

November 2-5, 2020, Madeira, Portugal 

SmartCGMS as a Testbed for a Blood-Glucose Level Prediction 
and/or Control Challenge with (an FDA-Accepted) Diabetic Patient 

Simulation 
Tomas Koutnya*, Martin Ublb 

aNTIS – New Technologies for Information Society, University of West Bohemia, Technicka 8, 306 14 Plzen, Czech Republic 
bDepartment of Computer Science and Engineering, University of West Bohemia, Technicka 8, 306 14 Plzen, Czech Republic  

Abstract 

Diabetic patient desires to avoid hypo- and hyperglycemic episodes, which result from insufficient insulin production. As the 
diabetes disease progresses, it requires an advance control of external insulin administration with an insulin pump. Given the 
importance of blood-glucose level prediction for the insulin therapy, there is a Blood-Glucose Level Prediction Challenge. This 
prediction is based on a post-mortem dataset, which include a number of signals related to the daily life of a diabetic patient. We 
propose replacing these post-mortem signals with an in-silico diabetic patient. For this purpose, we can use the SmartCGMS 
continuous glucose monitoring and controlling framework together with an FDA-accepted diabetic patient simulation. As a 
result, a competing researcher have the same conditions as a developer of a real-life insulin pump, connected to a real diabetic 
patient. When using SmartCGMS, simulated, prototyped and real devices can work together. This approach reduces the 
difference between laboratory and practical results, thus increasing the level of realism for the entire challenge. As a report on the 
current SmartCGMS state, we describe the previously unpublished features, which enable an improved glucose level prediction 
and/or control challenge. 
 
© 2020 The Authors. Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 
Peer-review under responsibility of the Conference Program Chairs. 

Keywords: diabetes; prediction; control; smartcgms 

 

 
* Corresponding author. Tel.: +420 377 632 437; fax: +420 377 632 402. 

E-mail address: txkoutny@kiv.zcu.cz 

 

Available online at www.sciencedirect.com 

ScienceDirect 

Procedia Computer Science 00 (2020) 000–000  
www.elsevier.com/locate/procedia 

 

1877-0509 © 2020 The Authors. Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 
Peer-review under responsibility of the Conference Program Chairs.  

The 10th International Conference on Current and Future Trends of Information and 
Communication Technologies in Healthcare (ICTH 2020)  

November 2-5, 2020, Madeira, Portugal 

SmartCGMS as a Testbed for a Blood-Glucose Level Prediction 
and/or Control Challenge with (an FDA-Accepted) Diabetic Patient 

Simulation 
Tomas Koutnya*, Martin Ublb 

aNTIS – New Technologies for Information Society, University of West Bohemia, Technicka 8, 306 14 Plzen, Czech Republic 
bDepartment of Computer Science and Engineering, University of West Bohemia, Technicka 8, 306 14 Plzen, Czech Republic  

Abstract 

Diabetic patient desires to avoid hypo- and hyperglycemic episodes, which result from insufficient insulin production. As the 
diabetes disease progresses, it requires an advance control of external insulin administration with an insulin pump. Given the 
importance of blood-glucose level prediction for the insulin therapy, there is a Blood-Glucose Level Prediction Challenge. This 
prediction is based on a post-mortem dataset, which include a number of signals related to the daily life of a diabetic patient. We 
propose replacing these post-mortem signals with an in-silico diabetic patient. For this purpose, we can use the SmartCGMS 
continuous glucose monitoring and controlling framework together with an FDA-accepted diabetic patient simulation. As a 
result, a competing researcher have the same conditions as a developer of a real-life insulin pump, connected to a real diabetic 
patient. When using SmartCGMS, simulated, prototyped and real devices can work together. This approach reduces the 
difference between laboratory and practical results, thus increasing the level of realism for the entire challenge. As a report on the 
current SmartCGMS state, we describe the previously unpublished features, which enable an improved glucose level prediction 
and/or control challenge. 
 
© 2020 The Authors. Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 
Peer-review under responsibility of the Conference Program Chairs. 

Keywords: diabetes; prediction; control; smartcgms 

 

 
* Corresponding author. Tel.: +420 377 632 437; fax: +420 377 632 402. 

E-mail address: txkoutny@kiv.zcu.cz 

2 Author name / Procedia Computer Science 00 (2018) 000–000 

 

1. Introduction 

Diabetes is a silent civilization disease. It manifests with an elevated blood glucose level (BG) [13]. Either absolute 
or relative insulin insufficiency causes elevated BG. Type 1 diabetic (T1D) patient suffers from absolute insulin 
insufficiency due to near-to-zero insulin production by the pancreatic cells.  Type 2 diabetic (T2D) patient suffers 
from relative insulin insufficiency, because cells need more insulin to produce the required amount of energy [25]. 

Elevated BG continuously damages multiple internal organs [11]. It leads to both chronic and acute 
complications. Insulin lowers BG by promoting its utilization. Therefore, diabetic patients use insulin pump to inject 
the insulin from an external reservoir. While the insulin pump is common with T1D patients, it may benefit T2D 
patients as well [4]. 

As the disease progresses, BG control becomes more complex and demanding. Inefficient BG control deteriorates 
patient’s condition and quality of life. A sophisticated computer algorithm may be a solution, when directly 
controlling the insulin pump [9]. Such an insulin pump would be augmented with a sensor of continuous glucose 
monitoring system (CGMS). Possibly, an advanced insulin-pump controller can connect to other sensors as well. 

Let us consider an insulin pump, which delivers the insulin at a constant basal rate (IBR). Let this pump be 
capable of suspending the insulin delivery (LGS aka low-glucose suspend), if BG falls below a given threshold [27]. 
By predicting BG instead of sensing the current level, we can further reduce the number of hypoglycemic episodes 
by possibly adjusting IBR [5, 6]. We can predict BG based on past BG levels, and optionally past levels of other 
signals such as acceleration, body temperature, etc. [8, 12]. 

There is Blood Glucose Level Prediction Challenge. It focuses directly on BG prediction, using multiple signals. 
In its present form, a competing researcher obtains OhioT1DM dataset [24]. This is a training dataset, designed for a 
development of a BG prediction method. Then, organizers of the challenge evaluate the prediction method using 
validation dataset. Using root mean square error (RMSE), the prediction methods compete in 30- and 60-minutes 
prediction horizons.  

With the present challenge setup, we see two opportunities to increase its level of realism: 

1. Now, the researcher obtains a post-mortem database of measured signals as a whole. In reality, sensors provide 
new measurements incrementally. We offer a framework that can replay the post-mortem databases as if they 
come from real sensors. The framework would isolate the competing researcher from the database. 

2. Due to the use of post-mortem databases, researchers cannot compete in BG control. We offer a framework that 
provides in-silico patient that reacts to changes in insulin dosage – i.e., it responds dynamically to insulin boluses 
and IBR changes. 

We propose to use SmartCGMS – continuous glucose monitoring and controlling framework. SmartCGMS 
abstracts the chain of devices (from a sensor to an insulin pump) with a set of filters [20]. Each filter represents a 
single step in the entire processing of measured physiological signals. As SmartCGMS makes no assumption about a 
particular filter implementation, real, prototyped and simulated devices can work together to reduce differences 
between laboratory and practical conditions. 

Second section describes individual features of SmartCGMS, while the following section specializes on 
programming with SmartCGMS. Fourth section presents an experimental setup of a predictive low-glucose 
management system. Fifth section concludes the paper and outlines future work. 

2. SmartCGMS 

SmartCGMS is directly available as x86-64 build for MS Windows, macOS and Debian GNU/Linux, as well as 
armeabi-v7a and arm64-v8a builds for Android. Other systems are available upon a request. For non-profit, 
academic research, SmartCGMS is available under the GPLv3 license. Other use requires a different license.  

SmartCGMS ships with two executables (x86-64 only) and a set of dynamically loaded libraries (SmartCGMS 
itself, core libraries, available on all platforms). One executable, gpredict3, offers a graphical user interface (GUI) to 
visualize, edit and execute custom configurations of the signal processing. The second executable, console3, 
executes the configuration only. 
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2.1. Reading the dataset 

Let us connect three filters – file reader, drawing and log. The file reader would read the given dataset, while the 
drawing filter would visualize respective graphs. To verify that such a setup works correctly, the third filter records 
all events to an external, comma-separated value (CSV) log file. For example, to load the OhioT1DM dataset, we 
select respective .xml file of a particular patient and set the segment spacing to 1200 seconds. The segment spacing 
determines the gap, which separates individual segments of measuring. 

To replay post-mortem measurements, SmartCGMS can replay the given dataset, SQL-compliant database, log 
file and a number of CGMS profiles as exported by authorized software of Medtronic, Dexcom, etc. – a 
functionality inherited from the preceding project on on-line BG calculation [19]. 

2.2. Closed-Loop 

To improve the degree of realism, let us replace the post-mortem signal-replay with an in-silico patient. 
SmartCGMS ships with three in-silico models. (1) Bergman model [28] combined with Hovorka’s absorption model 
[10] and Koutny’s diffusion model, which calculates the interstitial fluid glucose level (IG) [15, 16], UVA/Padova 
(2) S2013[31] and (3) S2017 [32] models. Researcher can develop another model as needed. With a valid license, 
SmartCGMS works with FDA-approved diabetic-patient simulators T1DMS and DMMS.R [29]. FDA stands for 
U.S. Food & Drug Administration. 

With a patient, we need to deliver insulin. SmartCGMS filter calculates insulin bolus or IBR, based on measured 
signals. Then, it uses a feedback connection to deliver requested insulin boluses and IBR requests to the insulin 
pump. The in-silico patient contains a simulated insulin pump that reacts to these requests. The fifth section 
describes, executes and discuss such an experimental setup. 

With a real patient, we would replace only the in-silico patient filter with a CGMS-sensor reading filter and a 
filter that controls real insulin pump. Other filters do not change. 

2.3. Calculating Time-in-Range 

To quantify effectiveness of BG control, let us calculate a time in range [2]. It is a time that the patient spent 
between given low and high BG thresholds, during a given period. SmartCGMS ships with several filters, which can 
produce different statistical markers. One of them is a decoupling filter. This filter evaluates a logical formula. If it 
evaluates to true, the filter changes signal id of the particular device event (a unit of communication between filters). 
In addition, it updates statistics of these device events. Eventually, the filter saves the statistics to an external CSV 
file. Hence, we can use it to gather statistics about hypo- and hyperglycemic episodes, time-in-range, etc. Fig. 1 
depicts configuration of the decoupling filter to collect information about the time in range for T1D and T2D 
patients [2]. Setting the output signal to the Null signal causes the filter to update the statistical markers only. 

2.4. Metric 

When evaluating different competing filters, we need a scalar-represented score. SmartCGMS implements a 
filter, which calculates a chosen metric such as average absolute error, standard deviation, area under the curve, 
Crosswalk [18], etc. It takes times and levels of a reference signal. At these times, it calculates difference between 
the reference-signal levels and calculated levels. For example, predicted or controlled BG can be the calculated 
signal, while measured or target BG would be the reference one. Eventually, the metric reduces the resulting set of 
difference to a single scalar. 

As needed, the metric filter can periodically output the metric scalar as another signal so that we can observe its 
time course. We used this approach e.g. with the Icarus game [30].  Fig. 1 depicts respective metric-filter 
configuration. Less metric value means better fitness. Hence, the Icarus-game frontend further recalculates the score 
signal to be monotonically increasing. 
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By emitting the metric-value as a signal, while possibly remapping particular signals, we can evaluate multiple 
metrics, thus exerting a multi-objective optimization. When remapping, a dedicated filter rewrites signal id to a 
different one. For example, it can change calculated-BG id to measured-BG id. 

2.5. Batch Processing 

To evaluate multiple competing filters (e.g. BG predicting filter, or insulin dosing filter), there would be a need to 
use multiple input files and to produce output files with custom names to identify a particular competing filter and/or 
an evaluation scenario. For such a purpose, it is possible to create a single SmartCGMS configuration, which will 
read actual parameters from system variables. Then, a batch file can execute SmartCGMS to produce desired results 
with a constant configuration for all competing filters. 

Fig. 2 depicts the batch-processing configuration for a log replay. 

2.6. Decomposition 

For example, IBR calculation may require additional signals such as insulin-on-board (IOB) and carbohydrates-
on-board (COB) [26]. Although IBR-calculating filter can produce them internally, it would considerably increase 
its logic. Therefore, SmartCGMS allows extraction of e.g. IOB and COB-calculation to separate filters. These filters 
produce respective IOB and COB signals, possibly utilized by the IBR-calculating filter. As a result, we support 
multiple IOB and COB models, e.g. bilinear and exponential ones. 

Such an approach reduces maintenance costs of individual filters, and improves a verification process. As we are 
concerned about processing medical signals, we are concerned about verification of correct functions of individual 
SmartCGMS components, e.g. the filters. 

Fig. 2. Batch Processing with SmartCGMS 
 

 

Fig. 1. Configuring Error Metric filter (left) and Signal Decoupling to obtain Time-In-Range Statistics (right). 
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2.7. Masking – Training and Testing Datasets 

When testing a particular calculation, there is a need for training and testing datasets. One possibility is to create 
different scenarios – one for training and one for testing. Depending on the needs, another possibility is to use 
masking. SmartCGMS implements a masking filter, for which a researcher selects particular signal and enter a 
binary mask. Bits in this mask identify whether to keep a level of the given signal unmodified, or whether to mask it. 
For example, we can omit every third and fourth measured level of the CGMS sensor to evaluate how much it would 
degrade BG prediction or IBR calculation. 

2.8. Solvers – Parameter Identification 

With SmartCGMS, we decouple a physiological model implementation from an identification of its parameters. 
To SmartCGMS, an array of floating-point numbers represents the model parameters. Then, the model 
implementation calculates particular signals only, by read-only accessing the parameters array. To identify the 
parameters, we offer a number of solvers, which we expose with a uniform interface. Then, a signal-calculation 
filter can automatically apply these solvers to determine model parameters progressively. In this process, the solver 
uses the metric as described in Section 2.4.  

By default, SmartCGMS ships with Meta-differential evolution [17] and Pathfinder – a deterministic 
evolutionary method of our own design. On request, we can provide a custom build that supports the NLOpt [14] 
and PaGMO2 [3] implemented algorithms. Alternatively, a researcher can develop a specialized solver for a 
particular model. 

3. Programming with SmartCGMS 

A SmartCGMS front-end (e.g.; the gpredict3 and console3 executables) loads the scgms (SmartCGMS) dynamic 
library. This library loads other dynamic libraries, which implement individual filters and models. A researcher 
competing in the challenge would simply create a set of custom filters or models. For example, one filter can predict 
BG, while another one can calculate IBR. The latter filter can reuse the calculation of the preceding one. 

The filters interoperate using a message called device event. Device event contains event code (e.g.; measured 
level), time segment id, time stamp, signal’s id and signal level [20]. Time segment represents a continuous period 
of measuring, e.g. a lifetime of CGMS sensor from its insertion to its removal. On receiving a device event, a filter 
can output none, single or multiple device events. As needed, a filter can output device events without waiting for an 
input event. For example, the in-silico patient filter or CGMS-sensor filter do so. SmartCGMS ships with example 
projects, which provide respective source code. 

3.1. Programming a Filter 

A straightforward way to process the signals is to develop a custom filter. SmartCGMS components builds on the 
concept of Component Object Model (COM) [23]. Each component inherits from the same interface 
refcnt::IReferenced. This interface provides methods to increment and decrement reference counter of the object, 
together with a method to query the interface for another interface. Globally Unique ID (GUID) [22] identifies each 
interface. The component releases itself, once its reference counter decreases to zero. Hence, it uses the correct 
memory manager so that multiple programming languages and runtimes can be used together. 

To implement the filter, the containing dynamic library must export C functions do_create_filter and 
do_get_filter_descriptors. The latter one returns static structures only. 

The generic filter implements two methods only – Configure and Execute. The Configure method has one 
parameter. It is another component, which allows the filter to obtain the configuration based on the key-value 
paradigm. 

SmartCGMS calls the Execute method, whenever a preceding filter produced an event. Hence, the component 
can either discard this event, or produce one or more events, while performing a custom calculation. It is a simple 
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and straightforward process. As a result, it provides no specialization. Signal and discrete models are specialized 
filters, which further reduce the amount of source code needed to implement a model. 

3.2. Signal Model 

The signal model interface inherits from a signal interface. The signal interface defines access to measured levels 
and their interpolation, using the Akima spline. As time segment contains multiple signals, it implements a time 
segment interface, which enumerates and makes individual signals accessible to other, time-segment contained 
signals. For example, the diffusion model calculates with BG and IG to produce future IG – thus accessing the BG 
and IG signals in the same time segment. 

Let us predict BG by calculating weighted average of 10 recent BG levels. Hence, the model would have 11 
parameters. Ten parameters would express the individual weights, while the 11th parameter would express the 
prediction horizon.  

With the filter implementation, we would periodically update a buffer of 10 floating-point numbers – the recent 
BGs. With each update, we would calculate the weighted average and emit the result as the predicted BG. This is a 
stateful approach. On contrary, signal model presents a stateless approach. 

With the signal model, the developer must implement a method called Get_Continuous_Levels. Its arguments are 
model parameters, vector of times at which to calculate the levels and desired derivative order of the calculated 
levels. When implementing this method, we would predict BG for a particular time, after requesting 10 preceding 
BG levels via the time segment container, prior the particular time less the prediction horizon. Hence, we can 
calculate prediction for any past time. Such a functionality may be needed under certain circumstances. 

SmartCGMS provides a calculation filter, which calls the signal models to produce calculated signals. In 
addition, it enables automatic solving of their parameters as new data are incrementally measured – e.g.; as CGMS 
sensors provides new readings. 

3.3. Discrete Model 

Let us consider an in-silico patient model. When implementing such a model, we need two methods – one to 
initialize its state and the second to advance its simulation time, while emitting signals such as BG. The in-silico 
patient has to respond to carbohydrates and insulin, both represented with device events. 

There are two possible configurations. First, the discrete model executes in a dedicated thread, thus producing 
device events asynchronously to its input. This is the case with the Icarus game. Second, the discrete model is 
synchronized to another signal, produced by a preceding filter. For example, this is the case with FDA-accepted 
scenarios for testing IBR calculation. In such a scenario, meals and insulin boluses are delivered exactly at 
scheduled times of the in-silico experiment. 

Implementing the support for both, synchronous and asynchronous, configurations would be demanding and 
repeating task across different discrete models. Therefore, SmartCGMS provides Signal Generator filter. This filter 
executes discrete models in both configurations. 

Fig. 3. SmartCGMS connects with FDA-accepted DMMS.R. 
 

 



	 Tomas Koutny  et al. / Procedia Computer Science 177 (2020) 354–362� 359 Author name / Procedia Computer Science 00 (2018) 000–000  5 

 

2.7. Masking – Training and Testing Datasets 

When testing a particular calculation, there is a need for training and testing datasets. One possibility is to create 
different scenarios – one for training and one for testing. Depending on the needs, another possibility is to use 
masking. SmartCGMS implements a masking filter, for which a researcher selects particular signal and enter a 
binary mask. Bits in this mask identify whether to keep a level of the given signal unmodified, or whether to mask it. 
For example, we can omit every third and fourth measured level of the CGMS sensor to evaluate how much it would 
degrade BG prediction or IBR calculation. 

2.8. Solvers – Parameter Identification 

With SmartCGMS, we decouple a physiological model implementation from an identification of its parameters. 
To SmartCGMS, an array of floating-point numbers represents the model parameters. Then, the model 
implementation calculates particular signals only, by read-only accessing the parameters array. To identify the 
parameters, we offer a number of solvers, which we expose with a uniform interface. Then, a signal-calculation 
filter can automatically apply these solvers to determine model parameters progressively. In this process, the solver 
uses the metric as described in Section 2.4.  

By default, SmartCGMS ships with Meta-differential evolution [17] and Pathfinder – a deterministic 
evolutionary method of our own design. On request, we can provide a custom build that supports the NLOpt [14] 
and PaGMO2 [3] implemented algorithms. Alternatively, a researcher can develop a specialized solver for a 
particular model. 

3. Programming with SmartCGMS 

A SmartCGMS front-end (e.g.; the gpredict3 and console3 executables) loads the scgms (SmartCGMS) dynamic 
library. This library loads other dynamic libraries, which implement individual filters and models. A researcher 
competing in the challenge would simply create a set of custom filters or models. For example, one filter can predict 
BG, while another one can calculate IBR. The latter filter can reuse the calculation of the preceding one. 

The filters interoperate using a message called device event. Device event contains event code (e.g.; measured 
level), time segment id, time stamp, signal’s id and signal level [20]. Time segment represents a continuous period 
of measuring, e.g. a lifetime of CGMS sensor from its insertion to its removal. On receiving a device event, a filter 
can output none, single or multiple device events. As needed, a filter can output device events without waiting for an 
input event. For example, the in-silico patient filter or CGMS-sensor filter do so. SmartCGMS ships with example 
projects, which provide respective source code. 

3.1. Programming a Filter 

A straightforward way to process the signals is to develop a custom filter. SmartCGMS components builds on the 
concept of Component Object Model (COM) [23]. Each component inherits from the same interface 
refcnt::IReferenced. This interface provides methods to increment and decrement reference counter of the object, 
together with a method to query the interface for another interface. Globally Unique ID (GUID) [22] identifies each 
interface. The component releases itself, once its reference counter decreases to zero. Hence, it uses the correct 
memory manager so that multiple programming languages and runtimes can be used together. 

To implement the filter, the containing dynamic library must export C functions do_create_filter and 
do_get_filter_descriptors. The latter one returns static structures only. 

The generic filter implements two methods only – Configure and Execute. The Configure method has one 
parameter. It is another component, which allows the filter to obtain the configuration based on the key-value 
paradigm. 

SmartCGMS calls the Execute method, whenever a preceding filter produced an event. Hence, the component 
can either discard this event, or produce one or more events, while performing a custom calculation. It is a simple 

6 Author name / Procedia Computer Science 00 (2018) 000–000 

 

and straightforward process. As a result, it provides no specialization. Signal and discrete models are specialized 
filters, which further reduce the amount of source code needed to implement a model. 

3.2. Signal Model 

The signal model interface inherits from a signal interface. The signal interface defines access to measured levels 
and their interpolation, using the Akima spline. As time segment contains multiple signals, it implements a time 
segment interface, which enumerates and makes individual signals accessible to other, time-segment contained 
signals. For example, the diffusion model calculates with BG and IG to produce future IG – thus accessing the BG 
and IG signals in the same time segment. 

Let us predict BG by calculating weighted average of 10 recent BG levels. Hence, the model would have 11 
parameters. Ten parameters would express the individual weights, while the 11th parameter would express the 
prediction horizon.  

With the filter implementation, we would periodically update a buffer of 10 floating-point numbers – the recent 
BGs. With each update, we would calculate the weighted average and emit the result as the predicted BG. This is a 
stateful approach. On contrary, signal model presents a stateless approach. 

With the signal model, the developer must implement a method called Get_Continuous_Levels. Its arguments are 
model parameters, vector of times at which to calculate the levels and desired derivative order of the calculated 
levels. When implementing this method, we would predict BG for a particular time, after requesting 10 preceding 
BG levels via the time segment container, prior the particular time less the prediction horizon. Hence, we can 
calculate prediction for any past time. Such a functionality may be needed under certain circumstances. 

SmartCGMS provides a calculation filter, which calls the signal models to produce calculated signals. In 
addition, it enables automatic solving of their parameters as new data are incrementally measured – e.g.; as CGMS 
sensors provides new readings. 

3.3. Discrete Model 

Let us consider an in-silico patient model. When implementing such a model, we need two methods – one to 
initialize its state and the second to advance its simulation time, while emitting signals such as BG. The in-silico 
patient has to respond to carbohydrates and insulin, both represented with device events. 
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Fig. 3 depicts configuration of the Signal Generator filter. Particularly, it depicts a connection between 
SmartCGMS and the recent FDA-accepted DMMS.R T1D simulator. 

 

4. Experimental Setup of a Predictive Low-Glucose Management System 

To demonstrate the capability of predicting and controlling BG levels, we configured SmartCGMS to act as a 
Predictive Low-Glucose Management (PLGM) system [1]. PLGM insulin pump suspends insulin infusion for a pre-
defined period of time, when PLGM predicts that BG would fall below a given threshold. 

To demonstrate the PLGM functionality, we adopted FDA-accepted scenario. This scenario describes times and 
amounts of ingested CHO and associated insulin boluses. Specifically, we followed study [21]. We fed these events 
to our modification of the Bergman model, using the log-replay filter. The log-replay filter clocks the Bergman 
model as both filters execute synchronously. Then, the model computes BG and IG. 

We chose our modification of the Bergman model for this experimental setup, because SmartCGMS delivers it 
free for academic research. Switching to FDA-accepted T1D simulator is as easy to accomplish as to change a single 
line in the SmartCGMS configuration file or selecting a different model in a GUI combo box. 

Using the Steil-Rebrin (SR) model [7], we calculate SR-BG from Bergman-IG. Then, we use the diffusion model 
[15] to predict IG 30-minutes ahead. The signal filter automatically solves the prediction parameters, as new IG 
levels become available. 

To suspend insulin infusion, we use the LGS insulin pump. This pump uses IG as the reference signal. Therefore, 
we use the diffusion model to transform the future IG to the present IG, while calculating a temporal BG signal. 
After these steps, the LGS acts as PLGM, because it actually calculates with predicted IG. Let us note that the LGS 
developer did not need to develop a complex PLGM logic, due to the signal remapping. 

Fig. 4 depicts SmartCGMS filter-sequence needed to build the PLGM system. Fig. 5 depicts calculated signals as 
displayed in the SmartCGMS GUI. The red curve depicts patient’s BG, while the blue one depicts IG. A green circle 
depicts CHO intake, while a purple dot represents insulin bolus. The turquoise steps indicate IBR. The green curve 
is predicted IG. The yellow curve is the signal consumed by LGS to produce the PLGM behavior. 

Fig. 4.  SmartCGMS configuration to obtain the Predictive Low-Glucose Management system behavior. 
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5. Conclusion and Future Work 

In this paper, we demonstrated main features of the SmartCGMS framework, which are relevant to design a BG 
prediction and/or control challenge with an increased level of realism. Using these features, we demonstrated 
SmartCGMS capability to predict BG as well as to control it. With SmartCGMS, competing researchers can 
implement custom models, while SmartCGMS provides the infrastructure for automated testing and evaluation of 
the submitted glucose-level prediction and/or control models. Hence, the competition organizers would be relived 
from the burden of assuring that each model is fairly compared to another model across several reviewers and the 
reviewers can focus just on the methodology. 

In the future work, we will focus on implementing the community feedback as received by fellow researchers and 
improving the frontend. Particularly, we focus on designing a new frontend for mobile phones as SmartCGMS 
compiles and executes on low-power hardware as well. 

To accelerate SmartCGMS-connected research, we focus on interoperability with different languages. A number 
of languages support COM natively. Where COM is not available, SmartCGMS can invoke an external, discrete 
model using a network protocol. Currently, this protocol enters the beta-testing phase. To facilitate SmartCGMS 
invocation from different languages, SmartCGMS implements ISO/IEC 9899:2018 (C18) compliant interface. 

Finally, let us stress that SmartCGMS architecture is independent on the diabetes specifics. While we develop 
SmartCGMS primarily for treating diabetes, we can apply SmartCGMS to any signal processing. This benefits 
diabetic patients, because SmartCGMS can process additional signals. For example, it can consider the 
accelerometer signal to estimate physical activity of the patient. Hence, SmartCGMS can process all signals of e.g.; 
the OhioT1DM data set without any need for a non-systematic, ad-hoc solution. 
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