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Abstract:
In this paper three different mechanisms of nonlinear and chaotic oscillation occurrence are studied. The first
model comes from antisymmetric system structure and oscillations are caused by impossibility to reach the
equilibrium state or to diverge to infinity. The second case studies phenomena in Lorenz system of three
differential equations. The third case comes from study of the electronic circuit with comparator with hysteresis.
It is shown that switching with hysteresis can cause chaotic oscillations as well.

INTRODUCTION
In mathematics and dynamical system s theory there
are a lot of systems that can show the nonlinear
periodic or chaotic oscillations. The first numerical
experiments related to the mathematical models of
fluid flow, but now we know that nonlinear resonance
or chaotic oscillations can occur in energetic systems
as well as in electronic circuits. Let us generally
describe three different possibilities how the chaotic
oscillations can occur.

SYSTEM OF 4. ORDER WITH
ANTISYMMETRIC STRUCTURE

The system structure

The antisymmetric structure corresponds the energy
conservation law as defined in [1]. A stability of the
system is given by the sign of the dissipation
parameter α1. Let us consider a system whose
representation is given by
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where matrices A and C are given by
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and parameters are
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The system has the only one equilibrium state at the
beginning of the coordinate system
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The abstract signal energy and signal powr are given
by
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The power can be decomposed into two separate parts
and it is obvious that there are four technically
different ways of the system behavior.
When both the constants k0 and k1 are positive, the
equilibrium state is stable and the system is
dissipative. Energy of the system decreases
monotonously which corresponds with the energy
conservation law and the system dissipativity (fig. 1).
When both the constants are negative, the equilibrium
state is unstable, the power is anti-dissipative and the
energy monotonously arises to infinity (fig. 2).

Fig. 1: The system energy evolution, k0 = k1 = 1, α4 = 1,
x0 = [2,0,0,2]T

Fig. 2: The system energy evolution, k0 = k1 = –1,
α4 = 1, x0 = [2, 0, 0, 2]T



When k0 =1 and k1 = –1, the situation is different. The
equilibrium state is stable but stability of the system
depends on the actual position of the state vector in
the state space, especially on the absolute value of the
component x2. When that component exceeds interval

1,1−  the system becomes unstable. When the state
vector comes near the equilibrium state the
dissipative mode prevails and the system becomes
stable (fig. 3).

Fig. 3: The system energy evolution, k0 = 1, k1 = –1,
α4 = 1, x0 = [2, 0, 0, 2]T

The fourth case brings most interesting situations.
When k0 = –1 and k1 = 1 the equilibrium state is
unstable. When the state vector comes near this point
the system becomes unstable and the state vector
trajectory starts diverging. But now the type of
nonlinearity does not allow the state vector trajectory
diverge to infinity. When the absolute value of the
component x2 exceeds 1 the system becomes stable,
dissipative and starts converge to zero again. It means
that now there are some intervals of stability and
some intervals of instability. Their changing can be
periodic or aperiodic which depends on the control
parameter α4. Aperiodic changes of intervals of
stability and instability can be called chaotic.

Fig. 4: The system energy evolution, the periodic case,
k0 = –1, k1 = 1, α4 = 1, x0 = [2, 0, 0, 2]T

Fig. 5: Fig. 5.: The system energy evolution, the chaotic
case, k0 = –1, k1 = 1, α4 = 2, x0 = [2, 0, 0, 2]T

Types of nonlinearities and chaotic oscillations

Considering the possibility of chaotic oscillations
occurrence, we can try to change the particular type
of nonlinearity. The type of nonlinearity in the
dissipation parameter α1  must satisfy the condition of

instability the equilibrium state and must prevent the
state vector trajectory to diverge to infinity.
These experiments were made with these types of
nonlinearities in the dissipation parameter:
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All these functions including (5) are depicted in the
fig. 6.

Fig. 6: Four types of nonlinearities used in experiments

The results of these experiments are that considering
the possibility of chaotic oscillations occurrence the
particular of nonlinearity is not critical. Periodical
changes of intervals of stability and instability loose
their periodicity with increasing the control parameter
α4 and become chaotic for some value of that
parameter in all those cases which is documented in
the figure (7).

SYSTEM WITH MORE EQUILIBRIUM
STATES
There are some systems whose structure is not anti-
symmetrical and we are not supposed to say anything
about their stability or instability only by one
parameter. The nonlinearity is not present only in one
parameter and there are more than one equilibrium
state. Methods of investigating their stability are mire
difficult. One of those systems is well known Lorenz
system, given by these differential equations
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The model came from approximation of partial
differential equations describing incompressible fluid
flow.
There are three equilibrium states (15) and their
stability depends on values of parameters σ, r and b.



Fig. 7: Trajectories of the state vector in the state space, 3D projection. Depicted in time t∈ 〈350,500〉
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At the figure (8) there is the evolution of these
equilibrium states (x2 component) and their stability
in dependency of parameter r value. For experiments
σ = 10, s = 5 and r = var. were chosen.

Fig. 8: Equilibrium states (blue line – stable, red –
unstable) in dependency on the r parameter.

In the figure (9) we can see how the stability of the
three equilibrium states affects the state vector
trajectory. For small values of the parameter r there is
only one steady state and the trajectory leads towards
it very quickly. As the parameter grows at the point of
1 the bifurcation of the equilibrium states takes place.

The first equilibrium state becomes unstable and the
trajectory is attracted to one of the other stable states,
the particular point depends on initial conditions
(trajectories at fig. 9).
Another growing of the r parameter causes instability
of all the equilibrium states. Then the trajectory
becomes chaotic. It moves in diverging spiral with
center in one of the equilibrium states. But when the
x1 component changes its sign the state vector
trajectory starts to be affected by the second unstable
equilibrium state. The state vector moves in diverging
spiral again but the center of the spiral is the second
equilibrium state. Both these states symmetrically
placed in the state space changed their influence. This
phenomenon repeats again and again, aperiodically
(chaotically) or periodically which depends on the r
parameter value.
The mechanism of chaotic oscillations occurrence is
different from the first case. Results for so called
geodynamo [2] are very similar. The system of three
differential equations can show the chaotic
oscillations by the similar mechanism – the state
vector moves along two unstable equilibrium states in
diverging spirals.

SYSTEM WITH HYSTERESIS AND
SATURATION
The third mechanism leading to nonlinear and chaotic
oscillations is hysteresis in system of two technically
linear differential equations.



Fig. 9: Attractor of Lorenz system, 2D projection, blue/red points: stable/unstable equilibrium states
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The first nonlinearity is changing of constant E sign
depending on the first variable value (switching) and
sign of its derivation (the hysteresis of width ±R).
Second nonlinearity is present in the saturation of the
first variable. It can move only in given limits ±K.
When the x1 variable comes to its limits the equations
(16), (17) change into
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These nonlinearities are typical for magnetic circuits
and for circuits with comparators, operational
amplifiers and semiconductor components. The
hysteresis is depicted in the figure (10).

Fig. 10: Fig. 10: Hysteresis of the constant E sign
switching and saturation of the x1 variable

This case is very interesting with its possibility to
find the analytical solution of equations (16) – (19) .
The resultant trajectory of the state vector arises as
the connection of partial analytical solutions valid for
given initial conditions that changes with the system
evolution.
This system has only one equilibrium state given by
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As the sign of E constant changes, the equilibrium
state changes its position in the state space. That is
the reason why there seem to be two equilibrium
states.
In following experiments the width of the hysteresis
loop is chosen as the parameter. All the constants
have these values:
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and the parameter R changes from 0 to K:
KR 0∈ (22)

In the figure (11) we can see periodic solutions. As
the parameter R declines it is possible to observe
changes of the period. It suddenly becomes larger.
The first periodic attractor disappears and the second
one arises at that moment. The parameter changes are
continuous but the period changes are discrete. This
process repeats several times and then the attractor
becomes chaotic as we can see in the figure (12).
The mechanism of these chaotic oscillations
occurrence is little bit similar to the case studied at
the Lorenz system. The state vector moves around the
only one unstable equilibrium state in diverging
spiral. At the moment of changing the sign of the E
constant the equilibrium state changes its position in
the state space. The state vector continues its move in



diverging spiral that has different center now. The
system is unstable and it tends to divergence but
switching in hysteresis holds the trajectory of the
state vector in finite area.

Fig. 11: Trajectory of the state vector in the state space,
periodic solution

Fig. 12: Trajectory of the state vector in the state space,
chaotic and periodic solution

CONCLUSION
Three different mechanisms leading to nonlinear and
chaotic oscillations were studied. In the first case the
chaotic oscillations were consequence of changing
intervals of stability and instability of the system. It
was experimentally shown that considering the
possibility of the chaotic oscillations occurrence the
type of the nonlinearity in the dissipation parameter is
important but the particular form is not critical.
The second case is well known Lorenz system where
the state vector moves in diverging spirals around two
unstable equilibrium states. This mechanism can be

found in systems of two coupled disk dynamos as
well [2].
The third case can be found in electronic circuits with
comparators or components with possibility of
saturation [3]. Switching in hysteresis loop together
with saturation of state variables can cause periodic
or aperiodic oscillations as well.
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