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Abstract:

A new ab-inito method and the related computer code has been developed
within this work — in accordance with its aims — for calculating electronic states
and structural properties of (primarily) nonperiodic, possibly electrically charged,
material structures. This method has been implemented into the software package
FENNEC.

The new method fills a gap among the current well-established methods and
represents a counterpart of what the plane-wave method is within the class of the
methods employing the Bloch’s theorem (for materials with translational symmetry).
The newly developed method is based on the density functional theory (DFT), the
finite element method, or isogeometric analysis as an option, and environment-
reflecting separable pseudopotentials, and it provides an excellent convergence
control within a general, in principle arbitrarily precise basis.

During the development of the method, a new precise and computationally
efficient formula for evaluating Hellmann-Feynman forces has been derived, im-
plemented, and used for geometry optimizations. Its advantages and very good
convergence properties have been demonstrated in sample calculations.

Among other originals results of this work, a purely algebraic description of sep-
arable pseudopotentials should be mentioned. This description allows constructing
a projection basis to achieve any required accuracy.

Besides that, an adaptive version of the Anderson iteration scheme, which solves
the problem of choosing the right mixing parameter (an approximation of the
Jacobian) in the DFT loop, has been proposed, implemented, and analyzed.

Discretization of the Kohn-Sham equations using the finite element methods
leads to a rank-k-update generalized eigenvalue problem. To solve it, an efficient
method had to be developed: to find the appropriate eigenvalue solvers, integrate
them into the FENNEC software package, and make them capable to solve the
rank-k-update problem.

The convergence properties of that method in dependence on various technical
parameters — i.e. the finite element shape, basis type, and the order and number
of projectors for separable pseudopotentials — have been examined and analyzed
to determine the best options for the new method.

The newly created method has been implemented using the Python finite
element framework SfePy (and many other libraries) into the software package
FENNEC. This software package is characterized by a modular plugin architecture
which significantly simplifies its further development and makes its usage easy.
FENNEC has been used, among other tasks, e.g. for geometry optimization of a
deformed graphene fragment and calculations of forces in it as a preparation for
the ab-initio construction of force-interaction molecular dynamics potentials.
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Abstrakt:

V této práci — v souladu s jejím cílem — byla vyvinuta nová ab-inito metoda
a odpovídající software pro výpočet elektronových stavů a strukturních vlastností
(primárně) neperiodických, popřípadně elektricky nabitých, materiálových struktur.
Tato metoda byla implementována v softwarovém balíku FENNEC.

Tato nová metoda zaplňuje mezeru mezi současnými běžně užívanými meto-
dami a představuje protějšek toho, čím je metoda rovinných vln mezi metodami
užívajícími Blochův teorém (sloužícími pro výpočet materiálů s translační symetrií).
Nová metoda je založena na teorii funkcionálu hustoty, metodě konečných prvků,
popř. volitelně na isogeometrické analýze, a prostředí-reflektujících pseudopoten-
ciálů, a nabízí výtečnou kontrolu konvergence díky obecné, v principu libovolně
přesné bazi.

Během vývoje metody byla vyvinuta, implementována a pro geometrické op-
timalizace použita nová formulace výpočtu Hellmann-Feynmanových sil. Její
přednosti, především výtečná konvergence, byly demonstrovány na ukázkových
výpočtech.

Mezi další originální výsledky této práce patří čistě algebraické vyjádření sepa-
rabilní formy pseudopotenciálů. Tento popis umožňuje konstrukci projekční báze
tak, že jde dosáhnout libovolné požadované přesnosti.

Mimo to byla navržena, implementována a analyzována adaptivní verze Ander-
sonova iterativního algoritmu, která řeší problém výběru mixovacího parametru
(počátečního odhadu jakobiánu) v DFT selfkonsistentním cyklu.

Diskretizace Kohn-Shamových rovnic za pomoci metody konečných prvků vede
k rank-k-update problému vlastních čísel, pro jehož řešení bylo třeba vyvinout
efektivní metodu: najít vhodné řešiče, integrovat je do softwarového balíku FENNEC
a rozšířit možnosti těchto řešičů o řešení rank-k-update problému.

Byly zkoumány a analyzovány konvergenční vlastnosti této metody v závislosti
na různých technických parametrech — např. tvaru konečných elementů, typu báze
a jejím řádu, počtu projektorů separabilních pseudopotenciálů — a touto cestou
byly získány optimální hodnoty přinášející nejlepší výpočetní výkon a přesnost.

Tato metoda byla implementována v jazyce Python s využitím konečněprvkového
rámce SfePy do softwarového balíku FENNEC. Tento software se vyznačuje mod-
ulární architekturou založenou na pluginech, která podstatně usnadňuje jeho další
vývoj i přispívá k jeho velmi snadnému používání. Jako demonstrace schopností
tohoto software je v práci prezentovaná optimalizace geometrie fragmentu grafenové
vrstvy a výpočet sil potřebných na odtržení atomu z této vrstvy. Tyto výpočty
budou sloužit k ab-initio konstrukci interakčních potenciálů pro simulace grafenu
pomocí molekulární dynamiky.
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Introduction
Suitable tools for predicting the properties of newly proposed materials (e.g. elastic
properties, hardness, magnetism, various material constants) seem to be extremely
useful for present-day material development. Ab-initio electronic structure calcula-
tions take a unique place among these tools, because they allow us to determine
the properties of the proposed material without any need for experimental input
data and so without any need to produce a sample of the material (possibly even
without knowing how to produce the material). In addition, ab-initio electronic
structure calculations allow for deep insight into the properties of the material
and provide a tool for the appropriate understanding of causal links and relations.
Although verification by experiment is still necessary, the possibility to preselect
suitable structures and parameters for the final experiment by means of previous
theoretical calculations saves both time and costs in developing new materials, thus
being almost indispensable in contemporary material engineering.

Therefore a considerable effort has been invested in developing methods for
electronic structure calculations. Many different methods have been developed,
each using certain approximations and so being suitable only for certain classes of
problems. Up to the present, certain types of problems that can still be treated by
means of the currently established methods only in a limited way, if at all.

The aim of my work — introduced in this thesis — has been to develop a
new method for electronic structure calculation that could fill the existing gap
between the currently established ab-initio methods in the field of non-periodic
materials, possibly with charge neutrality violated (e.g. complex clusters, or
structures with various kinds of defects). Among methods employing a general
basis with an excellent convergence control, several are suitable for periodic materials
(based on the Bloch theorem), but so far, there has been no such one suitable
for solving general aperiodic problems directly and efficiently, without artificial,
computationally demanding constructions (such as supercells).

The new method for electronic structure calculations is based on solving the
Kohn-Sham equations (formulated by the density functional theory, abbreviated as
DFT) discretized using the finite element method or the isogeometric analysis. L-
dependent pseudopotentials are utilized to avoid numerical singularities. To retain
sparsity of the matrices resulting from the discretization of the solved equations,
the pseudopotentials have to be transformed into their separable form. This results
in a rank-k-update generalized eigenvalue problem to be solved. The construction
of the separable potentials is described in an original purely algebraic way that
sheds more light on the ideas behind the construction process and offers possible
improvements in the constructions of pseudopotentials.

One of the essential tasks in solid-state physics is geometry optimization —
finding the positions of the atoms that minimizes the energy of the system. To
minimize the energy efficiently, it is necessary to calculate Hellmann-Feynman
forces: derivatives of the energy with respect to the positions of atom nuclei.
Computing the Hellmann-Feynman forces requires developing a new formulation
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of the forces, suitable for use with the finite element method in combination with
non/local potentials.

The new method including the new formulation of the Hellmann-Feynman forces
has been implemented in the software package FENNEC. It has been developed
largely in Python, some parts are written in Fortran or Cython. The development
included the use and incorporation of many libraries. Particularly, I have made use
of the finite element framework Sfepy, the numerical libraries Numpy and Scipy,
and the eigenvalue solvers Jadamilu and Blzpack.

To transform the ideas mentioned above to fully functional computer code, one
needs to find suitable solutions for many subproblems arising in many scientific
disciplines (e.g. mathematical analysis, linear algebra, and numerical mathematic
over quantum physics, computer sciences . . . ). The thesis covers the essential
building blocks of the new method quoted above.

Due to the necessity to combine elements from very different expert field —
from linear algebra through numerical mathematics and computer science up to
quantum physics — I have strived the thesis in as many self-contained ways as
possible, to allow a reader proficient in one field to understand the parts of the
thesis that cover other ones. The thesis is also intended for potential FENNEC users
or developers, as the first introduction to the method and the related package.

Therefore, the thesis contains chapters the significant part of which summarizes
the well established and fact from related fields. The purpose of these summations
is not to give full and exhaustive details of the given topics, but just to provide
a brief overview of key facts, results, algorithms, etc. of the given fields that are
used.

That arrangement, by the way, reflects the character of my work on designing
and implementing the new method: it also required mastering topics from different
fields to find an efficient approach (either well known, requiring a new formulation,
or even unknown in literature) to solve a particular problem or to overcome emerging
difficulties, and to integrate these diverse pieces into a single functional method
and a single functional program package.

To elucidate the motivation for the development of a new method, the thesis
starts – in the first chapter – with a short survey of the existing methods for
electronic structure calculations and their brief classification.

Chapter two summarizes the essentials of the density functional theory and
its implementation. It contains the convergence analysis of mixing algorithms,
including the results of a new modification of the Anderson mixing scheme and its
comparison with other well established mixing schemes.

Chapter three explains the finite element method and its modification – iso-
geometric analysis. The chapter also describes the discretization of the Poisson
equation, which is required for obtaining the Hartree potential during DFT com-
putation, as an example of the application of the finite element method. Original
results in this chapter include algorithms for designing meshes for finite element
calculations (which are implemented in FENNEC) and convergence analysis for
various finite element and isogeometric analysis bases.

In the fourth chapter, the Kohn-Sham equations — the fundamental equations
of the DFT theory — are discretized using the finite element method. Numerical
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problems arising during the discretization are solved using separable pseudopoten-
tials which are formulated using B-orthogonality. The chapter also contains the
analysis of the required number of projectors in separable potential form and the
comparison of two ways of constructing the projectors.

Chapter five is devoted to the total energy of the system and to the Hellmann-
Feynman forces acting on each atomic center among other atoms which are the
crucial part of the implementation of structural relaxations. The convergence
properties of the newly developed formula for the force (useful e.g. for geometry
optimization) are analyzed and compared with other known ways to express the
force.

Chapter six offers the description of the method implemented in the software
package FENNEC. The essential building blocks and main design features of the code
are introduced, and the advantages of its open and expandable plugin architecture
are discussed. Attention is also paid to the linear algebra solvers included in the
package, mainly to the eigenvalue solvers for rank-k-update eigenvalue problem
(which results from discretization using finite element method and pseudopotentials),
whose performance is crucial for the overall performance of the package.

The last chapter demonstrates the use of the FENNEC package on the problem
of a graphene fragment deformation. The positions of atoms in a deformed graphene
sample are optimized using the FENNEC software package. These computations
serve as proof of concept and verification of the capabilities of the FENNEC package.
The obtained forces are used for constructing force-interaction molecular dynamics
potentials in further research of deformed graphene layers.
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1. Overview of methods for
electronic structure calculations

Contents
1.1 Empirical and ab-initio methods . . . . . . . . . . . . . . . . . 10
1.2 Ab-initio methods — more about . . . . . . . . . . . . . . . . 11

1.2.1 Classification of ab-inito methods . . . . . . . . . . . . 12
1.3 FENNEC cornerstones . . . . . . . . . . . . . . . . . . . . . . . 15

1.3.1 Density functional theory . . . . . . . . . . . . . . . . 15
1.3.2 Other ingredients . . . . . . . . . . . . . . . . . . . . . 16
1.3.3 Why a new method at all? . . . . . . . . . . . . . . . . 16

In this chapter, a short survey will be dedicated to the existing methods for
computational material science, primarily for calculating the electronic structure,
and the motivation for the whole present work (i.e. why the new method is actually
needed) will be explained. The more extensive summary of existing methods can
be found e.g. in [1].

The first section in this chapter explains what are empirical and ab-initio
methods: While the empirical methods, based on modeling the experimental data
without ambitions to understand the physics behind, are computationally efficient
and suitable for large scale problems under limited conditions, ab-initio methods
based on the first principles of contemporary physics are much more computationally
demanding but much more general, with a substantially wider scope, providing a
deep insight into the mechanisms affecting material properties.

Because the newly developed method belongs to the latter class, the second
section is dedicated to the properties and categorization of ab-inito methods:
An elementary criterion is a way of treating the quantum character of electrons
(indistinguishability of particles and the Pauli exclusion principle: methods based
on the density functional theory (DFT) [2], Hartree-Fock and post-Hartree-Fock
methods, Monte-Carlo methods, . . . ).

From another viewpoint, the methods can be classified into (1) reciprocal-
space (or k-space) methods, which assume that the system is formally infinite and
conveniently make use of the translational symmetry, and (2) real-space methods
which assume that the system is finite, do not rely on any symmetry requirements
and allow for handling of extended systems at the cost of imposing additional
boundary conditions.

Other classification criteria include the type of the discretization basis (general
basis like plane waves vs. special restricted bases derived from atomic orbitals),
or the treatment of core (non-valence) electrons (pseudopotential vs. all-electron
methods).

The third section summarizes the cornerstones of the newly developed method
introduced in this thesis (DFT, FEM, and pseudopotentials) and basic motivations
for their choice. Moreover, it explains why the method is developed at all: Even
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if there is a great deal of well-established methods, the development of real-space
methods was lagging behind the development of the reciprocal-space ones; hence,
a truly ab-initio method with a general and in principle complete basis, i.e. with
complete convergence control, has been missing among the real-space approaches.

This thesis aspires to fill this gap: the resulting method implemented in the new
code FENNEC is aimed especially on precise and robust calculations of electronic
structure and properties of the materials lacking translational symmetry (e.g. finite
or non-periodic objects such as clusters, nanostructures or materials with defects),
with possibly broken charge neutrality, that can be handled using many existing
methods only in a limited way, at the cost of computationally expensive artificial
constructions. Thus, such a new method can substantially expand the range of
problems and materials that can be efficiently investigated using the ab-initio
approach.

1.1 Empirical and ab-initio methods
Computational material science is aimed to predict the properties of materials
(elasticity, hardness, magnetism, etc.) by means of calculations. A series of methods
have been developed so far for this purpose. These methods can be classified within
the range between two edges: (1) empirical and (2) ab-initio, methods.

The empirical methods are methods based on modeling the experimental data
describing the behavior of the material in some respect. The experimental results
are used as “magic” input parameters. E.g. for molecular dynamics [3], the model
is based on molecules treated as small solid marbles interacting with each other by
means of some kind of “springs”. It relies on “user-provided” atomic interaction
potentials — forces between atoms as functions of their relative positions. As long
as the potentials correspond to the real forces in the material under study, one
can obtain relatively precise results. These methods are generally computationally
efficient and suitable for large scale problems, but they are limited to the class
of problems for which the particular method and its input parameters have been
prepared and tuned, which is correct under certain conditions only. Otherwise,
unpredictable errors can arise. E.g. the forces can depend not only on the positions
of immediately neighboring atoms but also on the positions and state of other
atoms, on charge transfer in the interatomic bonds, on external electric and/or
magnetic field, on other conditions. So a small variation of the problem under
study may require substantially different input parameters and the obtained results
may be inaccurate or completely wrong.

Due to the limitations of the empirical methods, there is a need for more
general and reliable methods not depending on “magic input parameters”. The
ab-initio methods, not using any empirical models and based on essential laws of
contemporary theoretical physics — specifically on the first principles of quantum
theory — aspires to fulfill that requirement. They aim to describe the true state of
the material — particularly the state of atom nuclei and surroundings electrons —
in terms of quantum mechanics (i.e. wavefunctions) and to get a deep insight into
the mechanisms affecting the properties of materials. Nowadays they are the most
general and reliable methods for computational material science.
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Note that the previous paragraphs are not meant as a criticism of the empirical
methods. Both the empirical and the ab-initio methods are applied to problems
of different sizes and so they do not compete with each other: what can be done
with the one, can’t be achieved with the other and vice versa. Moreover, for
some empirical methods (e.g. the interaction-potential-based molecular dynamics
mentioned above) the more computationally demanding ab-initio methods can be
used as a source for the input parameters instead of an experiment (see chapter 7).
So, the empirical methods are a perfect complement of the ab-initio methods and
vice versa.

Besides those two limit approaches mentioned above, the semiempirical methods
represent some kind of a mixture of the previous ones. Although such methods
still employ the ab-initio approach, they substitute some elements of the exact
equations by empirically obtained approximations. Although the results of these
methods are still dependent on the selection of input parameters, they are based
on physical principles and their applicability is usually wider than in the case of
empirical methods.

In fact, even the methods denoted as truly ab-initio and not using any experi-
mentally obtained input data rely on some approximations and need some input
technical parameters. E.g., in practice, using some basis in terms of linear algebra
can embrace just a finite and limited number of basis functions and so the basis
cannot be complete. With improving computational capabilities and theoretical
understanding of materials, the methods developed to more ab-initio shape. There-
fore we regard most of older ab-initio-based methods as semiempirical nowadays. It
concerns both the methods based on DFT and on the Hartree-Fock formalisms (e.g.
implemented in the Spartan software package1, the Pariser–Parr–Pople method [4],
or methods based on empirical pseudopotentials).

1.2 Ab-initio methods — more about
As mentioned above, ab-initio methods are the most general and reliable methods
for computational material science at present time. Contrary to the empirical
methods, they do not replace the principles of physic by any empirical models. The
goal of these methods is to determine the true state of matter — state of atom
nuclei and surroundings electrons — within the quantum theory formalism.

Nearly all the methods of this kind relies on the Born-Oppenheimer approxi-
mation, which assumes that electrons and atom nuclei can be treated separately.
The assumption is based on the fact that masses of particles in atom nuclei are
much greater than masses of electrons, so the atom nuclei can be considered as
stationary during the calculation of electronic states. From the Born-Oppenheimer
approximation it follows that the main task for ab-initio methods in computational
material science is to calculate the electronic structure of material — i.e., in terms
of DFT, to determine the distribution of the electronic charge in the material; or,
generally, to determine the multi-electron wavefunction describing the electronic
states which can be obtained as a solution to the Dirac equation [5]. Because

1http://www.wavefun.com/index.html

http://www.wavefun.com/index.html
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it is computationally very demanding and the relativistic effects for the valence
electrons are negligible due to their low kinetic energy (compared to the energies of
core states), in real problems it is sufficient to solve the Schrödinger equation (i.e.
the non-relativistic approximation) for the valence states instead of the Dirac one.
The core states (i.e. the non-valence electrons) can be treated separately by means
of the Dirac formalism in spherical approximation (i.e. using the assumption of
spherical potential, which is computationally much less expensive and nearly correct
since the core states are minimally affected by interatomic bonds). Resultantly, the
ab-initio methods represent various approaches to solve these tasks by means of
some computationally efficient approach, maybe using additional approximations.

One could object that such approximations (like negligence of relativistic effects
and spherical approximation for the core states) are not better then approximations
in empirical methods. But there is a substantial difference: Whereas both are
approximations, in the ab-initio approach the nature and rate of the errors are
known and the formalism is still grounded in the real physics. While in the empirical
approach one must “trust” that the model and its input parameters have been
chosen suitably for the material under study, the ab-initio method guarantees
correct results under certain conditions: e.g. on condition that the kinetic energy
of electrons remains low, the non-relativistic approximation is reasonable and the
error is negligible. In the same way, the other simplifications (e.g. the errors of the
discretization, etc.) can and should be evaluated (e.g. [6]); therefore the total error
of an ab-inito method can be ascertained.

Even when using the approximations mentioned above, the ab-initio methods
are much more complicated and computationally demanding compared to empirical
methods. Even though the computational limitations are being constantly pushed
forward (see e.g. [7]), a substantially smaller number of atoms (up to hundreds) can
be treated. However, these methods allow us to calculate (in principle arbitrary)
material properties as derivatives of the total energy (evaluated from the electronic
structure, see the chapter 5) with respect to appropriate parameters. E.g. elastic
constants are obtained as derivatives with respect to various deformations.

1.2.1 Classification of ab-inito methods
Many well or less established methods for ab-inito calculations of electronic structure
have been developed. We summarize the main features of the methods in the
following paragraphs.

Treatment of the quantum effects

The important aspect of a method is how it deals with the quantum character of
electrons: indistinguishability of particles and the Pauli exclusion principle (see
section 2.2 on page 24).

The most used approaches are (1) the Hartree-Fock formalism that approximates
electron wavefunctions with Slatter determinants [1]; (2) its descendants the Post-
Hartree-Fock methods; (3) the Quantum Monte Carlo methods that use probability
integration algorithms for efficient evaluation of multi-electron equations [8]; (4)
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the density functional theory [9] (commonly abbreviated as DFT ) that we use
throuhgout this thesis.

Periodicity: real and reciprocal space

The methods can be classified into reciprocal-space (or k-space) methods, and
real-space methods. The former ones are designed for formally infinite periodic
materials (like crystals), assume three-dimensional translational symmetry, and
make use of the Bloch’s theorem [10]. The latter ones, contrary to the previous
class, assume that the system is finite, do not rely on any symmetry requirements,
and allow for handling of extended systems at the cost of imposing additional
boundary conditions.

The Bloch’s theorem states that each electron wavefunction in periodic material
has the following form:

ψ(~x) = ei
~k·~xu(~x) (1.1)

where ~x is a position in the real space, ψ is the wave function (denoted as Bloch
wave), u is a periodic function with the same periodicity as the material, and the
wave vector ~k is the crystal momentum vector.

The shape of wavefunctions according to Eq. 1.1 suggest naturally to apply the
Fourier transformation to the problem, which transforms its (original) real-space
formulation into the so called reciprocal space, alternatively denoted as k-space (by
the exponent in Eq. 1.1) [10]. Accordingly the methods employing the Bloch’s
theorem are called reciprocal(-space) methods or k-space methods. Other methods,
employing neither the Bloch’s theorem nor the Fourier transform, are commonly
denoted as real-space methods.

The consequence of the Bloch’s theorem (1.1) is that the wavefunctions can be
calculated just in the unit cell (the smallest cell of symmetry) of the reciprocal space
called first Brillouin zone. Therefore, the periodicity of a material significantly
simplifies the problem.

Discretization bases

Because the Schrödinger equation cannot be solved analytically, (perhaps) all
methods use discretization to restrict the space of solutions to some subspace,
spanned by a basis. Both in real and in reciprocal space we can choose many
different bases for expressing the quantities we deal with.

As a reasonable choice, it seems to use a basis derived from the wavefunctions
of isolated atoms, or a basis, that approximates the orbitals. Such a choice leads
to fast convergence of the method with a low number of basis functions, but at
the cost of significant restriction: the wavefunctions in complex materials are often
very different from the wavefunctions of isolated atoms, which negatively affect
the accuracy of the solution. If the basis is built up specifically to describe just
the atomic orbitals, its capability to describe a general wavefunction affected by
interatomic bonds is usually poor. Moreover, such bases are often non-orthogonal
— which regards particularly the functions centered at different atomic sites — and
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it may be very difficult to extend to describe the true wavefunctions more precisely.
These bases are also generally not spatially uniform, which brings difficulties in
forces calculations, see section 5.2.1 on page 143.

There are methods from both the real-space and the reciprocal-space class which
employ atomic orbitals in one way or another. As examples, it can be mentioned
e.g. Fireball code using pseudoatomic orbitals [11], or Gaussian [12] that uses
Gaussian bases that resemble orbitals, or — in the case of the reciprocal methods
— e.g. many versions of LAPW [13] which augments plane waves in the interstitial
region with a basis based on atomic orbitals in spheres around atoms. As other
examples, we can mention various variants of LCAO (linear combination of atomic
orbitals) that exist in both reciprocal- and real-space versions, or the muffin-tin
approach used in LMTO method [14].

An alternative choice is to use a general basis: a basis, which is not related to
a particular problem and which is a subset of a complete basis. We can obtain
such a basis in a reciprocal space if we express u(~x) from Eq. 1.1 in a Fourier basis
restricted by the periodicity condition of Bloch’s theorem

u(~x) =
∑
~G

ei
~G·~x , (1.2)

where ~G is the three-dimensional integer multiple of (symmetry) translational
vector in the reciprocal space. According to Bloch’s theorem, we can limit ~k in Eq.
1.1 to vectors from the first Brillouin zone. The resulting basis

ei(
~k+ ~G)·~x (1.3)

is called plane waves. It is one of the most established basis for electronic structure
calculations (e.g. [15]), and it is implemented in many software packages, e.g. in
the ABINIT software package [16] or Castep [17]. For a real-space approach, finite
elements [18, 19] bases plays a similar role in many fields of real-space calculations,
however, no implementation for electronic structure calculations has been commonly
accepted so far.

When using such a general basis, more basis functions are usually needed
to achieve the same degree of precision, compared to bases specially fitted to a
particular problem. On the other hand, this approach has considerable advantages.
First, such a basis can be constructed with arbitrary precision and it can be easily
extended if necessary; therefore it enables an excellent convergence control. Second,
it enables truly general solution without forcing it into any “predefined shape”, i.e.
without anticipating any special wavefunctions — in contrast to the case of the
basis composed from the wavefunctions of isolated atoms that usually speeds up the
convergence of the method and substantially lowers the computational costs, but it
can also spoil, distort or falsify the results. Consequently, the range of problems
that can be solved using general-basis methods is wider.

The choice of a general basis instead of a special one can be seen as an analogy
to the choice of an ab-initio method instead of an empirical one: the resulting
method will be generally more computationally demanding, but also more robust,
more reliable and precise and the basis will not have to be tuned up to a given
problem.
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Core electrons treatment

Some methods recalculate consistently both the core electrons and valence electrons
in every iteration step (not necessarily treating both in exactly the same way):
such methods are called all-electron methods. Other methods more-or-less make
use the fact that the response of the core states to interatomic bonds is weak,
lowering the computational demands; the most common way is using a frozen core
approximation and/or (possibly) applying pseudopotentials (it should be noted
that up-to-date pseudopotentials do not necessarily mean frozen-core). See section
4.2 for more details.

1.3 FENNEC cornerstones

This thesis introduces a new ab-initio method for electronic structure calculations,
based on the density functional theory, finite element method (that provides
a general real-space basis), and pseudopotentials (their advanced environment-
reflecting version), and describes the implementation of that method — i.e. a
software package FENNEC. Both — i.e. the method and the implementation
— represent a novel, original work contributing to the current development of
ab-initio methods, even if most of the ingredients of the method have been well
known before. New, original components are (a) the algorithm for evaluating the
Hellmann-Feynman forces, and (b) the adaptive mixing algorithm that speeds up
the convergence of the DFT-loop. These components will be described later.

1.3.1 Density functional theory

Our approach is based on the density functional theory (DFT), which is probably
the most common choice in computational material science. Since the Hartree-Fock
methods often neglect the correlation energy term2 in the Schrödinger equation
(see section 2.3.3) and the Quantum Monte Carlo methods are too computationally
demanding for large scale problems, it can be viewed as a sweet spot: it is accurate
enough for common problem types and it is still able to calculate real-sized problems.
However, it doesn’t mean a claim to be the best method generally: there are many
methods with many different properties that might aspire to justify such a claim.
The users of these methods would point to many advantages of their respective
approaches. Therefore no simple evaluation of methods is possible nor will be
attempted in this thesis.

The choice of the DFT theory for FENNEC must be at least partially considered
as a matter of taste, even though the taste is justified by its many advantageous
properties:

2There are methods that follow the Hartree Fock approach and address the issue, they are
denoted as post-Hartree Fock methods.
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— DFT is theoretically precise in the sense that all errors due to used approxi-
mations can be estimated and bounded. It has no empirical assumption that
could unpredictably spoil the results.3

— DFT enables modular implementation: some options (as e.g. spin or rela-
tivistic effects) may be easily switched on/off or they can be treated using
more or less exact approximation. This property of DFT allows to further
decrease computational expenses if a particular effect is not so significant for
a given material and can be neglected/taken into account just approximately.

— Ratio of DFT computational demands and achieved precision is suitable for
a large variety of problems.

— DFT is the well-established method and standard tool in solid-state physics
with well known strong and weak points.

Of course, the DFT theory has also its weak points (e.g. poor treating of
hydrogen bonds) and so it definitely can be considered neither as the only good
method nor even as the best method. But the summarized properties and much
more the up-to-now experience shows that it is at least one of very good choices
for electronic structure calculations.

1.3.2 Other ingredients
For reducing computational demands, the new method uses pseudopotentials, which
belong to commonly used approaches to overcome computational difficulties with
core electrons. Their use not only cures the singularities of potentials of atomic
nuclei and eliminates the need to treat relatively deep energies and high gradients
of core electron wavefunctions, but moreover, it substantially reduces the required
number of degrees of freedom in the DFT iteration loop.

Environment reflecting pseudopotentials [20] used by FENNEC improve the origi-
nal ab-initio pseudopotential approach by the possibility of tuning the pseudopoten-
tials for a given material structure, recalculating the core states selfconsistently with
the current valence charge density. For further discussion of the topic, see chapter 4.

The finite element method is used since it provides a general (in principle
complete) real-space basis and because it makes it possible to take advantage of
robust, industrially proved, and continuously developing software. Generally, it is
a very well established method with very good theoretical and software support.
More about the reasons for this choice will be explained in chapter 3.

1.3.3 Why a new method at all?
For investigating non-periodic problems in material science, employing real-space
ab-initio methods is more natural since the problems of this kind require dealing

3Some used approximations of exchange-correlation interaction can be considered as empirical,
but their error is still bounded and can be estimated.
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with a large number of atoms in an arrangement only little governed by symmetry
(or not at all).

Even though also the non-periodic materials can be studied using reciprocal-
space methods — adding an artificial translational symmetry (forming supercells),
this approach substantially (manifold) increases the computational costs. It can
be suitable in cases of materials with translational symmetry just along some
axis/axes (concerns 1D materials like e.g. carbon nanotubes and 2D materials
as e.g. graphene), however, even in these cases, the necessity to repeat the
atomic structure under study in sufficiently distant incarnations to eliminate their
interaction often makes the calculation very demanding or — in the case of broken
charge neutrality — even computationally unattainable. Therefore, the scope of
the applicability of this approach is limited.

Moreover, even some materials with basically periodic arrangement cannot be
efficiently calculated using reciprocal-space methods e.g. in case of a defect in
the material, or if an external force spoils the symmetry so that the material is
non-periodically deformed.

As mentioned above, the approaches based on Bloch’s theorem also encounter
serious problems particularly if the charge neutrality of the sample under study is
violated, since infinite repeating of such an object with electric charge results in an
infinite charge in total.

The relative simplicity (in the sense of computational demands) of the reciprocal-
space methods and, particularly, aiming at semiconductors with crystalline struc-
tures standing in the solid-state physics for a long period, are the reasons why the
methods for periodic structures had been in a spotlight almost up to recent times
and why much more effort has been made to them, compared to the real-space
methods. Resultantly, there are many well-established methods for materials with
translational symmetry that covers nearly all needs of solid-state physics, but
the development of real-space methods suitable for non-periodic problems was
lagging behind. A truly ab-initio real-space method with a general and in principle
complete basis — something equivalent of what the plane-wave method is within
the k-space class — has been missing among the real-space approaches, disregarding
the new method described in this thesis. Recently, however, efforts to tackle this
problem in various ways have intensified and some interesting attempts have been
made, especially in recent years: [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55],
most of them based on the finite element method, although also attempts based on
isogeometric analysis and finite differences emerged as well. However, none of them
have been accepted as a breakthrough in this field and so, the competition for the
first successful general-purpose real-space method using a general basis is still open.
It follows from the previous discussion that a new method for electronic structure
calculation in non-periodic materials can substantially extend the capabilities of
computational material physics as regards the scope of problems accessible within
the ab-initio approach, and the growing interest focused on this field of material
physics in recent years further confirms a proposition that there is a real need for a
real-space code with a general basis.
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The main task of ab-initio calculations in computational material physics is to
determine the electronic states in a material. The density functional theory — one
of the most frequently used methods for this purpose — represents a tool for solving
the multielectron Schrödinger equation by replacing it by one-electron Kohn-Sham
equations 1. Such an approach greatly simplifies the calculations by describing
the interactions among electrons via potentials dependent on the electron charge
density.

In this chapter, the fundamentals of the density functional theory (abbreviated
as DFT), that were originally published by Hohenberg [56], Kohn, and Sham [9],
will be presented. The purpose of the chapter is to introduce the key parts of the
theory in a way that would facilitate their encoding by means of linear algebra, as
discussed in a greater detail in subsequent chapters. This chapter does not aspire
to present a full and detailed outline of the foundations of quantum mechanics or of
the DFT. A more rigorous and complete expanation of the theoretical background
can be found in the textbooks covering the topics such as, e.g., [10, 57, 58, 59, 60,
61, 62].

1As we will see, it is, in fact, only one equation, though, the equation is commonly called in
plural since more its solutions are needed.



2 Density functional theory 20

The first short section of this chapter gives a brief informal introduction into
the formalism of quantum mechanics, just to present basic concepts of quantum
mechanics for those, which are not proficient in this field of physics, and introduce
a few terms, which will be needed in the later development.

In the next section, the stationary Schrödinger equation and basic properties of
wave functions are discussed.

In the third section, the density functional theory that allows an efficient solution
to the Schrödinger equation will be introduced.

The fourth section is dedicated to some important details of the implementation
of the density functional theory and it summarizes the DFT algorithm for calculating
electron wave functions.

The last section is dedicated to the mixing algorithm (used within the DFT
algorithm), which is one of the crucial elements of the performance of the method.
This section contains original results: (1) an analysis of convergence rate of various
mixing algorithms employed in DFT calculations performed by means of the finite
element method, (2) presentation of an adaptative scheme for the Anderson mixing,
and (3) a comparison of the performance of the newly proposed algorithm with
other approaches.

2.1 Selected elements of basics of quantum me-
chanics

The new method for electron structure calculation the presentation of which is the
main topic of this thesis can be viewed as a mathematical model of a material, to
compute its properties. The method is ab-initio, formulated within the density
functional theory, that is a particular application of quantum mechanics.

For a reader unfamiliar with the topic, a very brief introduction into the
quantum mechanics will be presented here, for the purpose of better understanding
of this particular model and its implementation. Areader interested in a deeper
understanding is referred to any of good textbooks, as e.g. [63, 62, 61].

2.1.1 Wavefunctions
In classical physics, a system can be described by its state: results of measurements
of certain physical quantities performed on the system. E.g., for a system consisting
of one particle, the respective set of measurements includes measurement of the
position and of the velocity of the particle.

In quantum mechanics, the situation is different because certain physical quan-
tities cannot be treated independently. A suitable description can be achieved if
the state of a quantum system is represented by a vector in a specifically defined
Hilbert space. So the state of a single particle is no longer determined by the set of
coordinates and velocity components (as in classical mechanics), but by the state
vector.

Often it is convenient to work in the so-called coordinate representation, where
the state vectors are represented by quadratically-integrable functions, L2(R). The
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state vector is then commonly called a wave function. This terminology reflects
some well-known properties of quantum systems such as interference phenomena.
However, this is not our topic. For our purpose it is important that the probability
that a quantum system (in our case, an electron) will be detected on a given
position x is given by

P (x) = |ψ(x)|2
‖ψ‖2 , (2.1)

The division by the norm of the function reflects the obvious requirement that the
total probability of a system to be somewhere should be one. We can see, that
even if the quantum theory is stated in complex numbers, only the magnitude of a
result of a state vector determines the probability density.

2.1.2 Operators and potentials
In classical physics, one of the key terms is potential: a field that determines
corresponding energies and forces in the system (e.g. electric field, gravitational
field, etc.). In quantum mechanics, the term potential is understood more broadly.
Whereas in classical physics potentials can be derived from forces, it is not possible
in the quantum mechanics: there can be a potential, that causes physical effect
even if no force is present, see the thought experiments in [64].2

In quantum mechanics, the potentials are represented by operators on the
Hilbert space of state vectors [62]. Together with the term which describes the
kinetic energy, the potential forms the Hamiltonian of the corresponding system.
Eigenvalues of the Hamiltonian determine possible energies of the system (2.19).

In the following development, we will exploit some properties of operators.
Therefore, we will define them formally here, for their later use.

Some definitions are formulated for a case of an infinite-dimensional Hilbert
space (which is the playground for quantum mechanics) — in these cases, a similar
definitions apply to a finite-dimensional vector space (which we later obtain by a
discretization).

Locality

We have already mentioned that not all potentials can be expressed as a field.
Among those, that cannot be described by a field, exists a special class of nonlocal
operators:

Definition 2.1 (Local operator). An operator V : L → L on a Hilbert space L is
local, if the value V (ψ) in place ~x depends only on the value of ψ on an infinitesimal
neighborhood of ~x. A operator, which is not local, is nonlocal.

This definition is fulfilled, if there exists a function υ with a finite number of
arguments that holds

∀ψ ∈ L,∀~x ∈ C : (V ψ)(~x) = υ(~x, ψ(~x),∇ψ(~x),∇∇ψ(~x), . . .) . (2.2)
2This nowadays standard interpretation of the Aharonov-Bohm effect has been questioned by

Vaidmain in [65].
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Definition 2.2 (Pure local operator). Given a Hilbert space L over M , an operator
V : L → L is purely local, if the value V (ψ) in place ~x depends only on the value
of ψ(~x).

The definition3 is equivalent to the condition that there exists a function
υ : M× C→ C, that holds

∀ψ ∈ L,∀~x ∈ T : (V ψ)(x) = υ(~x, ψ(x)) . (2.3)

For a linear operator V , locality condition (2.3) can be rewritten such as there
must exists a function υ : Cn → C, that holds

∀ψ ∈ L,∀~x ∈ T : (V ψ)(~x) = υ(~x)ψ(~x) . (2.4)

From this fact immediately follows, that just linear purely local operators can be
expressed as a field: the application of the operator to a given function is just its
multiplication by υ from (2.4)

V ψ = υ(~x)ψ . (2.5)

While common external potentials (e.g. an electric field potential) are usually
purely local, there exist local but not purely-local operators that cannot be expressed
as a conservative field (e.g. the Laplace operator: the operator of kinetic energy),
similarly as nonlocal potentials called pseudopotential (see chapter 4.2.2).

The locality is a substantial property of an operator: we will see in chapter 3.2.3,
that matrices arising from the discretization of such operators has an undesirable
property that prevents an efficient solution of discretized problems (using finite
element method) containing such matrices.

Support

The definition of locality is sometimes confused with small support, which will be
later needed for operators.

Definition 2.3 (Support). Given a function ψ : V→ C, support supp(ψ) of the
function ψ is a set defined by

supp(ψ) = {x ∈ V : ψ(x) 6= 0} . (2.6)

Given an operator V : L → L on the Hilber space L of functions V→ C, support
supp(V ) of the operator V is a set defined by

supp(V ) = {x ∈ V : ∃ψ ∈ L : V (ψ(x)) 6= 0} . (2.7)

Given definition of support, we can define small support property of a function
or an operator

3In some literature is the term local reserved for purely local operators, whereas the local
operators are called semi-local. We will use the above defined terminology, since the difference
between local and pure-local operators will not be significant in our case.
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Definition 2.4 (Small support). Let ‖ ‖ be a meassure of a set on V. Then
function ψ : V→ C has a small support, if

‖ supp(ψ)‖ � ‖V‖ . (2.8)

An operator V on a space of such functions has a small support, if

‖ supp(V )‖ � ‖V‖ . (2.9)

While support talks about size of nonzero domain of a function or an operator,
locality concerns only operators: if an operator acts non-locally, result of its
application on a function depends not only on the value or the course (on the
derivaives) of the function in given point, but on the whole function. Typical
non-local operators are projections, as their evaluation typically involve integral.
An extreme example of a function with a small support is the Dirac delta function.

A common simplification is e.g. to talk about a local potential, which should be
understood as “a potential expressed by a local operator”.
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2.2 The stationary Schrödinger equation

The state of electrons (their positions, momenta, etc.) in the material is determined
by the electrons wave function ψ, which satifies the multielectron Dirac equation
[5]. In many materials (and in the great majority of materials that are a subject
of material physics and engineering) the speed of valence electrons is not close to
the speed of light, therefore, relativistic effects for the electrons are often negligible
and the Schrödinger equation can be used [66, 5].

We are interested in stationary states, which further simplifies the equation[57]
to the following form of a eigenvalue problem:4

HSψ(~x1, ~x2 . . . ~xn) = eψ(~x1, ~x2 . . . ~xn) ψ : C3n → C, e ∈ R , (2.10)

where n denotes the number of electrons. This form of the equation is called
stationary Schrödinger equation. The operator HS is the Hamiltonian, it will
be discussed later. Each wave function ψi(x) satifying the Schrödinger equation
describes a stationary state of the system with energy ei.

The state with the lowest energy is called the ground state. Other states are
called excited states. The degenerate states are those with the same energy. Our
task is to determine the ground state of a system.

Properties of electron wave functions

The electrons wave function must have the following properties:

. It is a common requirement (for spatially finite systems) that the wave
function is normalized to unity,

∫
|ψ|2 = ‖ψ‖2 = 1 =⇒ ‖ψ‖ = 1 . (2.11)

. According to the Pauli exclusion principle [67], the electron wave function
must be antisymmetric,

ψ (. . . , ~xj, . . . , ~xk, . . . ) = −ψ (. . . , ~xk, . . . , ~xj, . . . ) . (2.12)

The direct consequence is that

ψ (. . . , ~x, . . . , ~x, . . . ) = 0 (2.13)

and therefore no two electrons can occupy a same state.

4Without a loss of generality we will neglect spin of the electron in following discussion. The
effect of spin will be taken into account in chapter 2.4.2.
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Hamiltonian

The Hamiltonian HS is a simple local operator (see Definition 2.1 on page 21).
To keep the matter as simple as possible, the Hartree atomic units will be used

through this thesis (if it is not said otherwise): these units are designed so that
equations frequently used have simple form. Important physical constants are
simply one: the charge of an electron e = 1, the mass of the electron me = 1, the
(reduced) Planck constant ~ = 1). For more details see [58].

Using the Hartree atomic units, the Hamiltonian HS can be written as sum of
three operators:

HS = 1
2∇

2 + U + Vext , (2.14)

where 1
2∇

2 is the operator of kinetic energy, U describe the electron-electron
electrostatic interaction

U(~x) = 1
2

n∑
i,j

1
‖~xi, ~xj‖

(2.15)

and Vext describe contributions of external potentials. If no external forces are
present, Vext is generated just by the electrostatic attractive force of atomic nuclei
and it can be expressed as

Vext(~x) = Vion(~x) =
number of atoms∑

j=1
− Zj
‖~x− ~cj‖

, (2.16)

where cj denotes the position of atomic nuclei and Zj its charge.5 Vext should also
contain all other external forces, for example electromagnetic field.

Note that Vion potential has a singularity in each atomic center. For the purpose
of discretization (see the next chapter), it is also a substantial fact, that all operators
in the Schrödinger equation are linear and local (see the definition of locality (2.1)).

Coupling of wave functions

The computational difficulty of the many-body Schrödinger equation follows from
the fact that although the space of solution is a direct sum of “single electron
spaces”:

L3n =
n︷ ︸︸ ︷

L3 ⊕ L3 ⊕ L3 . . . , (2.17)
the occurence of the electron-electron term U means that the solution cannot

be decoupled to a product of one-electron wave functions

ψ(~x1, ~x2...~xn) 6=
n∏
j=1

ψj(~xj) . (2.18)

The consequence of the coupling is that the Schrödinger equation (2.10) is not
solvable analytically, unless in a very special situation, and the cost of its numerical
solution grows rapidly with the number of electrons in the system.

5By convention, electrons has positive and atomic nuclei has negative charge in electronic
structure calculations.
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The total energy of the Schrödinger equation

Since the solution of the Schrödinger equation (2.10) ψ is normalized to one, the
energy of the system can be expressed as∫

~xn
ψ+(~x1, ~x2 . . . ~xn)HSψ(~x1, ~x2 . . . ~xn) = Eρ . (2.19)

The energy Eρ is called the total energy (of the system).

2.3 Fundamentals of the density functional the-
ory

To overcome the complexity of the Schrödinger equation, more approaches have
been developed (for their overview see e.g. [1]). The density functional theory
(abbreviated as DFT) occupies a prominent place among them, since it is not an
approximation, at least in principle, but it is equivalent to the original Schrödinger
(2.10) equation.6

The DFT was derived by Hohenberg, Kohn, and Sham [56, 9]. Their approach
is the preferred way how to introduce DFT (e.g. [57, 10]), I will follow it in the
brief summary of the basics of the theory.

A more formal an approach to the DFT is outlined, e.g., in [68, 69], where the
authors offer a more rigor way to develop the density functional theory, based on
the Legendre transformation. The Legendre transformation map functionals of an
external potential and the corresponding ground state density in a mathematically
precise way, so the following theorems can be built from scratch on a stronger
foundation and with a deeper insight into the problem.

2.3.1 The Hohenberg-Kohn theorems
For developing the density functional theory we state the well known variational
principle [56]

Theorem 2.1 (Variational principle). The energy a ground state ψ is stationary
on the space of all normalized wave functions

∂Eρ
∂ψ

= ∂
∫
ψ+Hψ

∂ψ
= 0 (2.20)

and
∀ψ′ :

∫
ψ+Hψ ≤

∫
ψ′+Hψ′ . (2.21)

The inequality is sharp if the ground state is not degenerate.
6For practical calculations, the DFT introduces an unknown quantity — the exchange and

correlation potential — which still has to be approximated. It is the ease and practicallity how
these approximations can be introduced which make the DFT so popular.



2.3 Fundamentals of the density functional theory 27

Proof. The proof (e.g. [70]) can be obtained by expressing ψ in the basis of
eigenfunctions of H where the energy of ψ′ will be a normalized linear combination
of eigenfunction energies. Since the ground state energy is the lowest eigenvalue of
H, any “normalized sum” of non-degenerate states must have its energy greater
equal than the energy of the ground state.

Moreover, since the function of energy has the minimum in the ground state,
its derivative must be zero there.

The key term of the DFT theory is the charge density ρ,

ρ(~x) : R3 → R = n
∫
~x2
. . .
∫
~xn
ψ(~x1, ~x2, . . . ~xn)+ψ(~x1, ~x2, . . . ~xn) (2.22)

that express an amount of charge on the given place. Charge density of a ground
state is abbreviated as ground state density.

Since the main properties of the density functional theory relly on Hohenberg-
Kohn theorems we prove them here briefly.

Theorem 2.2 (The First Hohenberg-Kohn theorem). Given a ground state density
ρ, the potential Vext is determined uniquely by the density.7

Proof. Assume that there exist two distinct potentials Vext and V ′ext with the same
ground density ρ. These potentials yield two distinct Hamiltonians H and H ′ and
two distinct ground wave functions ψ and ψ′.

Since they yield the same density the Hamiltonian is linear and Vext is purely
local, we can write ∫

ψ′+Hψ′ =
∫
ψ′+H ′ψ′ +

∫
(Vext − V ′ext)ρ (2.23)∫

ψ+H ′ψ =
∫
ψ+Hψ +

∫
(V ′ext − Vext)ρ . (2.24)

Moreover, consequence of the variational principle (the theorem 2.1) is that∫
ψ′+Hψ′ >

∫
ψ′+H ′ψ′ (2.25)∫

ψ+H ′ψ >
∫
ψ+Hψ . (2.26)

Summing 2.23 and 2.24 yields∫
ψ′+Hψ′ +

∫
ψ+H ′ψ =

∫
ψ′+H ′ψ′ +

∫
ψ+Hψ , (2.27)

whereas summing 2.25 and 2.26 yields∫
ψ′+Hψ′ +

∫
ψ+H ′ψ >

∫
ψ′+H ′ψ′ +

∫
ψ+Hψ , (2.28)

which is a contradiction.
7We omit the discussion of a few special cases, as the possibility of degenerate states or of

different potentials yielding the same ground-state wave functions, as these cases do not affect
the following discussion and the application of the theorem.
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A direct and a crucial consequence of the theorem is the fact, that a charge
density determines also all wave functions and the total energy of the system.
Therefore there is a bijection between a ground state density and a corresponding
potential.

The second Hohenberg-Kohn theorem states variational principle for ground-
state density and can be rephrased as (more exact formulation can be found in [70,
9])

Theorem 2.3 (The Second Hohenberg-Kohn theorem). The ground state density
ρ minimizes the total energy over the space of all possible charge densities.

Proof. Since by the first theorem the ground density yields unique potential and
the potential yields unique wave function, the variational principle (the Theorem
2.1) completes the proof.

The two of the most important theorems of the density functional theory states
in plain words that the ground state density uniquely defines the state of the system.
Therefore it is possible to express the state of the system and so each potential
that appears in the system as a function of the ground state density.

2.3.2 Representing the system by noninteracting electrons
To derive the Kohn-Sham equations — the key equations of the DFT theory —
let us consider total energy of a system without any electron-electron interaction.
In such a system the Schrödinger equation can be decoupled to a one-electron
equation (index zero denotes zero electron-electron interaction):(1

2∇
2 + Vext

)
ψ0
i (~x) = e0

iψ
0
i (~x) . (2.29)

Since the Pauli exclusion principle (2.13) holds, electrons will occupy the first
n solutions of the equation with the lowest energies. Thus, the charge density
simplifies to

ρ(~x) =
n∑
i=1

ψ0
i (~x)+ψ0

i (~x) . (2.30)

The eigenvalues occuring in 2.29, i.e., the energies of single electron wave
function ψ

ei =
∫
ψ+ 1

2∇
2ψ +

∫
ψ+Vextψ , (2.31)

are called Kohn-Sham energies. They are not the same as the true energies of
the “original” system of “interacting” electrons, even if they share many of their
properties. This holds not only for this simple model case but for the later
introduced Kohn-Sham equations 2.44, too.

The same holds for total energy Eρ of a system. If we sum the Kohn-Sham
energies of the first n electrons with lowest energy, we obtain:

Eρ =
∑
i

(∫
ψ+
i

1
2∇

2ψi +
∫
ψ+
i Vextψi

)
. (2.32)



2.3 Fundamentals of the density functional theory 29

However, due to missing electron-electron interaction, this “zero interaction energy”
is only a crude approximation of the true total energy of the system of interacting
electrons.

However, this issue can be resolved. The missing energy in (2.32) can be added
by means of the two following term:

EH — Hartree energy energy of the electron-electron electrostatic force [58]

EH = 1
2

∫
~y

∫
~x

ρ(~x)ρ(~y)
‖~x− ~y‖

. (2.33)

Exc — Exchange-correlation energy that consists all the other missing contri-
butions to the total energy (which will be discussed later).

Thus, corrected total energy expression will be

Eρ =
n∑
i=1

(∫
ψ+
i

1
2∇

2ψi +
∫
ψ+
i Vext(ψi)

)
+ EH + Exc . (2.34)

According to the first Hohenberg-Kohn theorem (2.2), the energies EH and Exc can
be expressed as functionals of the ground state density

Exc =
∫
~x
Exc(ρ)(~x) EH =

∫
~x
EH(ρ)(~x) . (2.35)

Since the Vext potential is always linear and purely local, its energy can be
transformed as

n∑
i=1

∫
ψ+
i Vext(ψi) =

∫
Vext

n∑
i=1

ψ+
i ψi =

∫
Vextρ (2.36)

and the total energy of the whole system can be finally expressed as

Eρ =
n∑
i=1

∫
ψi

1
2∇

2ψi +
∫
Vextρ+

∫
EH(ρ) +

∫
Exc(ρ) . (2.37)

2.3.3 The Kohn-Sham equations
There is a simple observation that the integral of total charge density of a valid
electron state of a system S must be equal to the number of electrons n in the
system ∫

ρ = n . (2.38)

According to the variational principle (see theorem 2.1), the wave functions
of the ground state are the ones with the lowest possible total energy. Therefore,
they must satisfy the condition given by the application Lagrange multipliers l on
equation 2.37 and condition (2.38):

δ
((∫ ∑n

i=1 ψi
1
2∇

2ψi +
∫
Vextρ+ EH(ρ) + Exc(ρ)

)
− l (

∫
ρ− n)

)
δρ

= 0 . (2.39)
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By differentiating we obtain

δ
∑n
i=1

∫
ψi

1
2∇

2ψi
δρ

+ Vext + δExc(ρ)
δρ

+ δEH(ρ)
δρ

= l . (2.40)

The last two terms of (2.40) are usually called the Hartree potential

VH(ρ) = δEH(ρ)
δρ

. (2.41)

and the exchange-correlation potential Vxc(ρ) (abbreviated as XC-potential)

Vxc(ρ) = δExc(ρ)
δρ

. (2.42)

Now, let us do the same (2.39) variation for another system S ′ of non-interacting
electrons with an external potential V ′ext equal to

V ′ext = Vext + VH + Vxc . (2.43)

We obtain the same equation (2.40). It brings no help at the first sight since
we cannot solve the equation. However, it follows from the equality of equations
2.40 for the two systems, that they share the same ground-state density and
consequently wave functions. Hence, to obtain the correct ground state density for
a system of interacting electron, it is sufficient to solve (2.29) for the system S ′ of
non-interacting electrons in an external potential V ′ext.

The resulting system is called Kohn-Sham equations

Hψi =
(1

2∇
2 + Vext + VH + Vxc

)
ψi(~x) = eiψi(~x) . (2.44)

It is called in plural, since more its solutions are needed.
The ground state density of the original interacting electrons system can be

expressed in terms of solutions of the Kohn-Sham equations as
n∑
i=1
|ψi(x)|2 , (2.45)

where i runs over the n occupied states with the lowest eigenvalues (see the next
section for further discussion of occupied states). The ways of expressing the total
energy within the DFT formalism will be further discussed in the chapter 5.

The potentials in Kohn-sham equations

We effectively transform the system of interacting electrons, which would have to
be dealt with by means of a single multi-electron wave functio, into a system of non-
interacting electrons, whose electron wave functions can be obtained independently
as solutions of single-particle Schrödinger equation. Of course, there is a price we
must pay for the simplification: we have had to include an exchange-correlation
potential into the equation. Besides that, the electrostatic potential 2.15 transforms
himself to the Hartree potential. Both the potentials are worth a brief discussion.
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Hartree potential The Hartree potential is the potential of the electrostatic
repulsion of the electrons in the system. It can be expressed as

VH(ρ) = ∂EH(ρ)
∂ρ

= 1
2
∂
∫
~y

∫
~x
ρ(~x)ρ(~y)
‖~x−~y‖

∂ρ
=
∫
~y

ρ(~y)
‖~x− ~y‖

. (2.46)

Equation (2.46) requires integration in each point where the potential is eval-
uated. It is computationally demanding, therefore it is desirable to use another
formulation in practical computation. Since the Hartree potential is nothing else
than classic electrostatic potential, it can be expressed as a solution of the Poisson
equation [58]

− 1
4π∇

2VH = ρ . (2.47)

This equation can be easily solved using an iterative solver.
Note that the expression (2.47) requires boundary conditions to be specified.

However, since the number of the boundary points in the computation is much
smaller than the number of the interior points, evaluating the boundary conditions
directly from (2.46) does not significantly prolong the overall computational time.

For the later discussion, it will be substantial that the potential is linear and
purely local (see Definition 2.1 on page 21).

The exchange-correlation potential The exchange-correlation potential is
the “weirder” from the two. It describes two quantum interactions8: the exchange
and the correlation.

The exchange arises from the antisymmetry of electron wave functions (see
Eq. 2.13). The correlation “cures the error” coming from the fact that while the
density approach computes with average positions of the electrons, the positions
are correlated in reality: an immediate position of one particle affects the positions
of the others [58].

Whereas exact exchange energy and exchange potential can be expressed ana-
lytically (e.g. [71]), there is still no analytical expression of the correlation one9 —
and so various approximations of the exchange-correlation energy and potentials
are used in practical computations. The most used ones are the local density
approximation (abbreviated LDA) [9] that approximates Exc and Vxc as a function
of the charge density, or the generalized gradient approximation (GGA) that uses
both the charge density and its gradient [72, 73]. There exist relativistic exchange-
correlation potentials that allow10 sufficiently precise approximations of materials,
where relativistic effects appear [74], and many more [75].

It will be important for the later development, that all the used approximations
of Vxc are linear (in terms of their effect on a wave function) and local.

8In fact, the interactions are not real physical interactions mediated by a particle. They are
“fictional forces” that must be introduced to enforce the laws of physics.

9Of course the correlation energy can be expressed as the difference between the energies of
the exact Schrödinger equation and the Hartree-Fock approximation, that neglect the correlation
energy, but such an expression is not usable for practical computation.

10In the combinations with a relativistic pseudopotential.
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2.4 Practical implementation of the density func-
tional theory

Equation (2.44) gives us the recipe for computing the wave functions, but there are
still many subproblems, that need to be addressed in a practical implementation.
The most crucial of them will be summarized in this section. The following
approaches are common to many implementations of the density functional theory,
so they have been only adapted to the finite element method case.

2.4.1 Self-consistency
The Kohn-Sham equations (2.44) have a substantially lower number of degrees of
freedom than the original stationary Schrödinger equation (2.10), however, they
have one principal drawback. The Hartree (2.46) and the XC (2.42) potential, that
had to been included in the equations, are functions of charge density. However
the charge density itself is obtained using the Kohn-Sham equations, thus we have
to solve an instance of a “hen and chicken” problem.

This problem is commonly solved by self-consistent cycle. One starts with an
initial guess of charge density (e.g. the sum of the densities of the isolated atoms or
a uniform charge density). Next, the Hartree and XC potentials are computed from
the input charge density. Then, using the potentials, wave functions are determined
through Kohn-Sham equation(s) (2.44), from which the output charge density is
computed using (2.30). Finally, the new input density is obtained by so-called
mixing algorithm.

This sequence forms one so-called DFT iteration. The iterations are repeated
in a cycle as long as the input and output densities differ. The convergence of the
self-consistent cycle strongly depends (besides others) on the used mixing algorithm
and its parameters. The next section (2.5) is dedicated to this topic.

2.4.2 Occupation of electron states
The equation 2.45 provides the expression for the ground state density. However,
two additional aspects have been omitted in this expression and should be taken
into account: (i) the existence of electron spin, which can split each state, and (ii)
smearing the occupation numbers around the Fermi level, which is necessary to
mitigate the instabilities during iterations.

Spin

Spin can be seen as a quantum equivalent of an intrinsic angular momentum of a
particle. For an electron, its projection along a pre-defined direction attains values
±1

2~. Depending on this, one can speak about spin-up or spin-down electrons. [61]
In many materials, we can assume, that the spins of wave functions are collinear.
I.e. that there are no mixed states, one of the spinor components (spin-up or
spin-down) is zero.
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Spin density functional theory We have more options on how to deal with
the spin. For our purpose the most natural and simple way is via the spin density
functional theory. In this formalism, the energy of the system is function not only
of the density but also of the spin polarization µ(~x), i.e., the difference between
the densities for spin-up and spin-down electrons:

µ(~x) = ρ↑(~x)− ρ↓(~x) . (2.48)

Starting with this, it can be shown that the wave functions for spin-up and spin-
down electrons, ψ↑ and ψ↓, can be obtained by solving the Kohn-Sham equations
but this time with different XC potential for the spin-up and for the spin-down
electrons. The most common approximation for the spin-dependent XC potential is
the local spin density approximation (LSDA) [76]. The solutions of spin-dependent
Kohn-Sham equaitons are then merged into one set of wave functions and the first
n wave functions according to their energies (eigenvalues) contribute to the charge
and spin densities.

Spin-restricted computation As long as the material under study has no
significant spin effects — primarily magnetism [10] — we can, from a computational
perspective, assume, that there is no spin-dependent effect in the system, i.e., the
XC potential does not depend on the spin density.

In this case, the Kohn-Sham equations look the same for spin-up and spin-down
electrons and the respective wave functions are the same — as if there is no spin.
However, the application of the Pauli exclusion principle has to be adjusted: it is
neccesary to consider that for each solution of the Kohn-Sham equations, there
exist two wave functions (one spin-up and one spin-down).

Smearing

Let us assume that we calculate an electron structure of a nitrogen atom using
spin-restricted DFT. A nitrogen atom has five valence electrons: two 2s and three
2p, which occupy four valence orbitals (four spinless electron states that correspond
to four solutions of the Kohn-Sham equation): one 2s and three 2p. Since each
orbital can host two electrons (spin-up and spin-down), there are eight free spaces
for valence electrons in these orbitals. The 2s orbital has lower energy and thus it
will be always filled up (by two electrons). The 2p orbitals have the same energy
(higher than the 2s one has), therefore, they have the same probability of a presence
of an electron, and thus each of the orbitals should be occupied by one remaining
electron.

However, if we calculate the energies ei of the 2p orbitals using DFT, the
energies will slightly differ due to numerical inaccuracies and inaccuracy in the
input density. As a result — the 2p orbital with the lowest energy will be occupied
by two electrons, while the others with higher energies will be empty. Moreover,
the order of the orbitals (by energy) as well as their occupancy will be changing
during the computation. Therefore, not only the obtained result will be wrong: the
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Figure 2.1: Examples of smearing functions for a spin-restricted computation.
EF is the Fermi energy that are the smearing functions constructed for. kBT is
a parameter for the Fermi smearing (the Boltzmann constant multiplied by the
temperature).

changes in the occupancy of the states during the iterations typically11 prevent the
method from converging at all.

To cure this misbehavior, the smearing technique is introduced. Instead of
a discrete division of the states to occupied and non-occupied, a non-growing 12

function ξ : R→ R representing the occupancy of states is chosen so that (see Fig.
2.1)

ξ(−∞) = f, ξ(∞) = 0,
∑

ξ(ei) = n , (2.49)

where f = 2 for spin-restricted computation and f = 1 otherwise. Occupancy of
electron states, commonly named as weights, is given by

wi = ξ(ei) (2.50)

There are many smearing techniques that differ by choosing the smearing
function. For some examples (Fermi smearing, Gaussian smearing, etc.) see e.g.
[78]. Note that the smearing can be viewed as assuming a nonzero temperature of
the material which causes some electrons to be excited.13 Some smearing functions
(e.g. Fermi smearing) follow from this point of view.

11It is a basis dependent phenomena, in some bases that inherently retains the symmetry
around an atomic site a computation without smearing is possible.

12In some smearing techniques, this restriction is lifted, see e.g. Methfessel-Paxton smearing in
[77].

13It should be mentioned, that the DFT theory is proven only for a ground state, therefore this
approach is disputable from the theoretical point of view. However, smearing is a standard and
well-established approach in DFT calculations.
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FENNEC uses the following approximation of Fermi smearing ξ (see Fig. 2.1)
defined by

ξ(x) = f x<EF − a
ξ(x) = f((x− (EF − a))/a)b EF − a ≤x<EF

ξ(x) = f(((EF + a)− x)/a)b EF ≤x<EF + a

ξ(x) = 0 EF + a ≤x .

(2.51)

This approximation has the advantage, that outside the interval (EF − a,EF + a)
are the electron states either strictly occupied or unoccupied, which is convenient
for computation.

The parameter EF is the Fermi level14: if the smearing is done by the step
function (or by other words if the smearing is not done), the Fermi level would
divide the occupied and the not occupied states: it is the “center” of the smearing
function. Fermi level can be easily found by the bisect algorithm using the condition∑

n

ξ(ei) = n , (2.52)

since the sum in (2.52) is monotone with regard to EF.
The a, b are arbitrary parameters that define the width and hardness of the

smearing. They can differ according to the solved problem, or they even can
be varied during computation: a broader smearing width can be taken at first
iterations of the DFT cycle to ensure the good convergence 15 and then narrowed to
make the result closer to the ground state and so to lower the error of the computed
total energy.

The charge density of a smeared wave functions Since the occupancy of
the electron states is no longer discrete, we must properly modify the expression
for the charge density:

ρ(~x) =
∑
i

wi|ψi(~x)|2 (2.53)

2.4.3 The DFT algorithm
To summarize all the previous ideas, we can finally construct the algorithm for the
density functional theory, see Algorithm 2.1 for the spin-restricted case.

However, even the simpler of the two equations in the algorithm, the Poisson
equation (2.47), is not generally solvable analytically, so the work is not done yet:
discretization, which is a necessary part of DFT implementation, will be the topic
of the next chapters.

Now, let’s focus on the problem of mixing.
14It is commonly denoted by EF . Lowercase EF is used here to indicate its scalar nature since

capital letters denote operators through this thesis.
15Such first cycles with wide smearing can be viewed as a way to obtain a good “guess” of the

charge density for the later computing.
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Algorithm 2.1: Spin-restricted density functional theory
1: ρ0 = a guess of the charge density
2: repeat for j = 1, . . .
3: ρinj = mix([ρinj−1, ρ

out
j−1], [ρinj−2, ρ

out
j−2], . . .)

4: solve VH from the Poisson equation: − 1
4π∇

2VH = ρ
5: Vxc = LDA(ρinj )
6: solve the Kohn-Sham equations: (1/2∇2 + Vext + VH + Vxc)ψj = eiψi
7: wi = smear(ei)
8: ρoutj = ∑

wi(ψi · ψi )
9: until ‖ρoutj − ρinj ‖ < threshold

2.5 Mixing algorithms
In this section, several mixing schemes will be compared and analyzed. The results
will be used as a guide for suggesting a new Adaptive Anderson mixing scheme,
which will be compared to several well-established schemes afterwards.

2.5.1 Definition of the problem
In terms of mathematics, the problem of mixing is a fixed point problem.

Definition 2.5 (Fixed point problem). A fixed point of a function F : H → H is
a point ρ ∈ H such that

F (ρ) = ρ . (2.54)

In our particular case, the function F is an operator on the Hilbert space H.16.
The operator takes a charge density ρin and calculates new charge density — output
density ρout using VH(ρin) and Vxc(ρin) potentials.

This fixed point problem cannot be solved analytically. Therefore, some kind
of iterative process is required: this process is called the self-consistent cycle in
the DFT terminology. The simplest approach is to take a reasonable guess of the
initial charge density and then evaluate the function F (ρ) repeatedly, taking the
output of the previous iteration as the input for the next iteration until the process
converges.

Definition 2.6 (Convergence). A self-consistent cycle has been converged, if∥∥∥ρin − ρout
∥∥∥ < t , (2.55)

where t ∈ R, t > 0 is a given threshold.
16In practice, the operator is evaluated after a discretization (e.g. by the FEM, see chapter 3);

so the problem could be expressed in terms of vectors, not functions. However, this distinction is
insignificant for further development.
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Sometimes the convergence is expressed in terms of a relative convergence
threshold

‖ρin − ρout‖
‖ρin‖

< tREL . (2.56)

A “reasonable guess” for the initial charge density can be given by a superposition
of isolated atoms charge densities, by a charge density obtained from an alike
configuration, from a faster and less accurate computation (e.g. with a lower
number of basis elements), or even by a uniform charge density.

Unfortunately, the direct approach described above to solve the self-consistent
problem leads generally to a poor convergence or (often) no convergence at all.
Therefore, more sophisticated approaches have been found. One of them, in
the simplest form, is the linear mixing: instead of the output density, a linear
combination of the input and output densities is used as the input in the next
iteration of the self-consistent cycle.

ρini+1 = aiρ
out
i + (1− ai)ρini . (2.57)

This approach could deaden the oscillations around the desired result. However,
even the linear mixing might be unsatisfactory in many real problems. Therefore,
more powerful mixing schemes are needed. To proceed formally, let us introduce
the term residual:

Definition 2.7 (Residual). The ith residual τi is defined as

τi = ρout
i − ρin

i . (2.58)

Then (2.57) can be rewritten as:

ρini+1 = ρini + aiτi . (2.59)

By focusing on the residual, a new insight into the problem can be obtained: we
try to find an input for which the residual is zero. Therefore we need to solve a
multidimensional nonlinear root finding problem:

Find ρ such that G(ρ) = 0, where G(ρ) = F (ρ)− ρ . (2.60)

Two significant issues are playing role in solving this problem. First, the
evaluation of the function F (or G) is very costly, so we must keep the number of
its evaluations as low as possible. And second, we have no possibility to evaluate
the gradient of the function, which prevents us from using a wide range of gradient-
based methods, from the classical Newton method to the well established BFGS
methods [79].

The same problem, either in its fixed point or the root-finding form, appears in
many fields and it has been studied by many authors. Their work resulted in several
well-established algorithms for solving the problem, such as the Broyden’s method
and the Anderson or Pulay mixing schemes [80, 81, 82, 83]. Below, the algorithms
will be described here just in a minimum extent. A rigorous mathematical survey
of the methods can be found e.g. in [84].
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Both Pulay and Anderson viewed the problem as a fixed point problem, which
results in an iterative mixing scheme that takes into account a longer history of
previous iterations. Anderson-like schemes calculates a new input density as a
linear combination of previous input and output charge densities:

ρini+1 =
i∑

j=1

(
bi,jρ

in
j + aibi,jτj

)
,

i∑
j=1

bi,j = 1 . (2.61)

The coefficients bi,j are selected according to the particular method (see below).
The important property of each particular method is the number of previous

charge densities taken into account. This property is called the history length:

Definition 2.8 (History length (of a mixing method)). If a method is allowed to
have nonzero coefficients bi,j only for j > i− n, then the method has the history
length n. The available history length hi in the ith step17 is the number of bi,j
allowed to be nonzero in that step.

Thus, if a mixing scheme has a history length n, the new density is sought in
the space of n previous densities (and residuals). See [83] for an analysis of the
influence of the number of used previous densities on the convergence of the DFT
cycle.

2.5.2 Overview of commonly used algorithms
In addition to the already presented linear mixing, the following basic algorithms
are used nowadays.

Anderson and Pulay mixing Today, the Pulay mixing and the Anderson
iterating scheme are essentially the same algorithm viewed from various sides:
Pulay [80] has introduced the scheme, where the scalars bi,j minimize the L2 norm
of the residual over a subspace of n last input densities

min
∥∥∥∥∥∥

i∑
j=1

bi,jτj

∥∥∥∥∥∥
2

. (2.62)

However, only the space spanned by the input densities is taken into account in
this scheme, which is effectively the same as setting all ai to zero.

The constrained minimization is usually done by employing Lagrange multipliers,
which leads to a low-dimensional system of linear equations [85]. This mixing was
named after Pulay but he was not the first who invented the method: the same
method in a bit different context had been published earlier by a less known (at
least in the physics science community) scientist with Czechoslovak roots Márian
Mešina [86].

In his work [82] (which is earlier than the work of Mešina), Anderson suggested
mixing with nonzero ai, but his approach used only the history length two.

17hi can differ from n. E.g. for a mixing scheme with any history length n, the history length
h2 (in the second iteration) is always equal to one, since only the residual for the initial charge
density is available.
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Both approaches — Pulay’s and Anderson’s — evolved: their advantages
(nonzero ai and a longer history) have been combined to form a single algorithm
called either the Pulay mixing, DIIS (Direct inversion of the iterative subspace),
Anderson mixing or Anderson iterative scheme.

Broyden methods Broyden’s work, contemporary with the Anderson’s one,
was aimed at a root-finding problem. Broyden introduced a modification of the
well-known Newton method for solving nonlinear equations.

One iteration of the Newton method is given by

ρi+1 = ρi −
τi

JG(ρi)
(2.63)

where JG(ρi) is the Jacobian18 of function G. Broyden’s methods replace the
Jacobian with its approximation: Broyden’s first method constructs the Jacobian
approximation and then inverts it, while Broyden’s second method constructs directly
the inversion using the Sherman-Morisson-(Woodbury) formula (see Theorem 6.1
on page 183) [87].

Generalized Broyden methods Broyden’s work laid the foundations of the
theoretical background of a class of methods called generalized Broyden’s or multi-
secant methods, which follow the Broyden’s idea of approximating the Jacobian,
but unlike the original Broyden’s methods they use a history longer than two [81].

It can be shown [84] that not only the original Broyden’s methods belong to
this class of methods, but the Pulay/Anderson mixing belongs there too.

The Anderson mixing is nowadays the de facto standard in DFT calculations,
and — as we can see in Fig. 2.2 — it performs substantially better than the
Broyden’s original methods. Therefore, we will focus especially on the Anderson
method and its modifications.

Relatively recently, several papers were published that suggest a modification of
the Pulay mixing scheme using “non-Broyden” approaches. These are represented
by the periodical Pulay method and the guaranteed residual Pulay method.

Periodical Pulay The more recent one is the Periodical Pulay method. Its idea
is simple: to alternate linear (2.57) and Anderson (2.61) mixing steps to achieve a
better convergence [88]. However, it performs slightly worse than the Anderson
method in our numerical examples (see Fig. 2.2).

Guaranteed residual Pulay method The second mentioned modification, the
Guaranteed residual Pulay method [89] (abbreviated as GR-Pulay), shares the idea
of alternating linear and Anderson mixing steps with the Periodical Pulay method.
However, all linear steps are performed with ai = 1 and all Anderson steps are
performed with ai = 0 in this scheme.

18The Jacobian of a function is the matrix of its partial derivatives: Jf
a,b(x) = ∂fa

∂xb
(x) (we

assume the finite dimensional case for the sake of simplicity).
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Moreover, the result obtained by each linear steps are discarded from the history
just after performing the next “Anderson step” which effectively replaces it. Thus,
only the results of the Anderson steps and the last linear step are taken into account
in each Anderson step.

Authors of the GR-Pulay method suggest that the whole “linear-Anderson
multistep” should be considered as a single iteration. However, as it is the number
of function evaluation that determines the performance of the scheme, we will
consider each evaluation of a new charge density to be one iteration. Moreover,
when performing our numerical tests (Fig. 2.2), we will consider a generalization of
the concept, in which linear steps are done with varying values of ai (Anderson steps
are still done with ai = 0), which sometimes brings a slightly better convergence.

Other mixing-related approaches

The efficiency of the mixing can be further enhanced using the following techniques.

Position dependent mixing So far we considered ai to be the same for the
whole charge density vector. In fact, the ai can be different for each component
of the vector: from the “Broyden’s point of view” it follows (see (2.63)) that
−1/a0 should approximate the Jacobian of the function [84]. Therefore, for a
heterogeneous material, setting the parameters independently in different parts of
the domain can be a viable approach. A similar approach was published by Lin and
Chao, who suggested using a spatially dependent preconditioner [90]. Heide and
Ono demonstrated that a substantial improvement of convergence can be achieved
by using different mixing schemes for different parts of the state vector [91].

Preconditioning The preconditioning techniques allow a better approximation
of the Jacobian than the constant −1/a0. Several preconditioners have been
developed, e.g. Kerker preconditioner [92, 93], elliptic preconditioner [90] or Resta
preconditioner [94]. However, all those preconditioners are material dependent and
thus cannot be used as a general recipe for all problems.

Potential mixing The mixing of the charge density is not the only option for
solving the self-consistent problem. Let’s recall the First Hohenberg-Kohn theorem
(on page 27) which states that the ground charge density is the function of the
potential and vice versa. Therefore, taking the potential (VHxc = VH + Vxc) as a
“state of the system” and iterating it instead of the charge density represents a
viable choice.

The exploratory calculations performed by means of the electronic structure
code SPRKKR [95] shows that in some cases this approach could lead to a better
performance than mixing the charge density (see Fig. 2.2).

In our early tests performed by means of the FENNEC code, this approach did
not provide any advantage in comparison with mixing the density. Therefore, the
option to mix the potential instead of the density has not been maintained in the
FENNEC codebase (when the code was updated for spin-polarized calculations).
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Anderson mixing

Anderson mixing (VHxc)
Broyden’s first method

Broyden’s second method

GR-Pulay mixing
Periodical Pulay mixing

Broyden’s-like method (SPRKKR)
Broyden’s-like method (SPRKKR, VHxc)
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Figure 2.2: Dependence of the number of iterations, required to converge the DFT self-consistent
cycle, on the a0 coefficient, for various mixing algorithms. Two codes were employed (FENNEC and
SPRKKR [95]). The convergence criteria were tREL = 1× 10−9 for FENNEC and tREL = 1× 10−8

for SPRKKR (see (2.6) and (2.56)). Algorithms denoted as VHxc mix the VHxc potential. Other
algorithms mix the charge density. Missing value means that the self-consistent calculation has
not been converged. The system for which the FENNEC calculations were performed is quoted in
the title of each graph (using an adaptive hexahedral mesh and cubic Lagrange elements). The
SPRKKR calculation was performed for the ordered magnetic CoPt (L10 structure).
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This functionality has been reintroduced in response to the results of this study,
however, the results have not been evaluated yet.

2.5.3 Analysis of the mixing algorithms and the parame-
ter a0

So far we have not discussed the mixing parameters ai. All algorithms introduced
up to now keep it constant during iterations (ai = a0)19, and the value of a0 has to
be supplied by the user.

Therefore, a suitable value for a0 should be determined. For this purpose we
determined, for various systems, the numbers of iterations needed to converge the
self-consistent calculations by the FENNEC code and, for comparison, also by the
SPRKKR code for ab-initio electronic structure calculations [95]. In FENNEC, we
use implementation from SciPy package [96]. Implementation of Broyden’s method
in SPRKKR is included in the package. The other mixing schemes is my own
implementation. The performance of the Anderson mixing has been compared
with its SciPy implementation: they yield the same results, which confirms the
correctness of my implementation.

The results are summarized in Fig. 2.2. We can observe that the convergence
depends on the value of a0. Since a0 is related to the approximation of the Jacobian,
it is not surprising that the optimal values for a0 are equal or at least close to each
other for various mixing algorithms. The algorithms differ more in how they are
able to handle a non-optimal a0 than in the minimal achieved number of iterations
or in the value of an optimal a0. If the parameter a0 differs from its optimal value,
the self-consistent algorithm converges slowly or even does not converge at all.

The only exception is the GR-Pulay scheme, which seems to be much less
sensitive to the value of a0 than other schemes. However, its convergence is overall
quite slow. This behavior of the GR-Pulay mixing is rather expectable since it
“wastes” half of its iterations on finding the best next guess. This approach is
capable of eliminating bad guesses but the extra iterations it requires mean that it
is not competitive with other algorithms if they are supplied with a good value of
a0.

We can conclude that the crucial question is not which mixing scheme to pick
but how to pick the right a0 for a given problem. If we pick a proper value of a0,
the classical Anderson scheme performs best (at least for the kinds of problems we
investigated).

Moreover, for more complicated examples, having a good estimate of the value
of a0 seems to be necessary for achieving a reasonably quick convergence or even
to have the calculation converged at all (see Graphene fragment in Fig. 2.2).

Unfortunately, though some preconditioning techniques described above exist,
there is no general prescription on how to choose the mixing parameter a0 to obtain
the best possible convergence. Thus, a0 is often viewed as a kind of a “magic
parameter”. I present here a new original approach which is aimed at determining
suitable mixing parameters by adapting the values of ai during the iterations.

19The parameter a0 is often called α.
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Relative number of iterations of the Anderson mixing: #iterations/minimal #iterations

Geometric mean of |bi,i| with scaled (×10−1) geometric standard deviation
Convergence rate heuristic curve (2.66)
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Figure 2.3: Influence of the coeficients bi,i on the number of iterations needed
to achieve convergence for the Anderson mixing. bi,i are given in terms of their
geometric mean with geometric standard deviation and in terms of the heuristic
convergence parameter (2.66).
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2.5.4 The Adaptive Anderson mixing
The coefficients bi,i in the equation (2.61) express the amount of the last input
density and residual in the next input density. The observation crucial for our further
development is that the convergence of the Anderson mixing scheme correlates
with how these coefficients are close to one.

For further reasoning we introduce their geometric mean b across all the previous
iterations:

b = n

√∏
i

abs(bi,i) (2.64)

We use geometric mean, since bi,i is used for multiplication in (2.61) and thus
we are interested in the mean with respect to the logarithmic scale. Geometric
standard deviation is then defined as

GSD ({bi,i}) = exp
√∑i ln (bi,i/b)

n

 . (2.65)

A large value of GSD ({bi,i}) indicates large oscilations of the values of bi,i around
the mean b.

If the coefficients bi,i differ significantly from one, as indicated either by the
mean b or by the presence of large oscillations indicated by large GSD ({bi,i}), the
convergence of the self-consistent cycle is poor: compare the green geometric means
of |bi,i| with the red curves in Fig. 2.3.

Using this observation, the following convergence criterion was constructed: the
convergence is the better the lower is the heuristic convergence parameter c.

Definition 2.9 (Heuristic convergence parameter). For a given Anderson self-
consistent cycle, the heuristic convergence parameter is a real number c defined
as

c = max
(
b,

1
b

)
4
√
GSD ({bi,i}) . (2.66)
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Figure 2.4: Visualisation of the convergence heuristic parameter c(b,GSD ({bi,i})):
the function values for given GSDs (left) and the contour lines of the function
(right).
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This heuristic convergence parameter (see its visualisation in Fig. 2.4) was
constructed empirically. However, it seems that it can predict the convergence
rather well: see the agreement of the red and blue curves in Fig. 2.3.

Our research group is going to explore this dependence in a mathematically
more rigorous way in further work. However, an intuitive explanation can be
already formulated. The suggested adaptation of ai is just a heuristic: the following
development does not claim that the described causal links are valid under all
circumstances. It just describes the correlations that commonly occur, and this
way it attempts to explain why the suggested adaptation scheme works usually
well.

Let’s recall (2.61): for bi,i ≈ 1, the new density ρini+1 can be written as

ρini+1 ≈ ρini + aiτi +
i−1∑
j=1

(
bi,jρ

in
j + aibi,jτj

)
,

i−1∑
j=1

bi,j ≈ 0 . (2.67)

Therefore, the latest iteration forms the major part of the new input density. Its
other components (the sum in (2.67)) can be viewed as small corrections of the
mix of the latest input and output density. Since the coefficients bi,j minimize the
residual, the last step has lowered the residual more than the previous steps: the
self-consistent cycle converges well. This is illustrated by the red lines in Fig. 2.5.
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Figure 2.5: An overes-
timation of a0 leads to
overstepping of the de-
sired solution s and to
oscillations.

If bi,i is substantially lower than one, then the sub-
stantial part of the new input density is formed by the
previous steps, not the last one. It can have two reasons:
Either the latest residual has a larger magnitude then
the previous ones — in this case the latest input density
ρini is too far away from the desired solution (see the
cyan case in Fig. 2.5). Or the lastest residual can be (at
least partially) canceled out by a previous one (the blue
case). In both cases, the latest guess

ρini = ρini−1 + ai−1bi−1,i−1τ
in
i−1 + . . . (2.68)

overstepped the solution20: the amount of residua added
to ρini is too large. Decreasing ai, we would obtain a
better guess.

The opposite case, bi,i � 1, can be explained using
similar heuristic argumentation. If there existed τj of
an opposite direction and a similar magnitude as τi,
the situation described in the previous paragraph would
occurred. Thus, we can assume that there is no such
one. Moreover, since ∑j bi,j = 1, there must exists a
negative bi,k. Since the coefficients bi,k minimize (2.62),
the τi and τk aim in a similar direction (they have to
cancel themselves at least partially). Therefore, bi,i � 1
indicates that we approaching the solution still from the

20We assume that the residuals are pointing (at least roughly) towards the solution; fortunately,
the opposite case is not common in DFT calculations.
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“same side” and thus we should enlarge ai to speed up
the convergence.

From these observations, a heuristic scheme for adapting the ai coefficient
during the Anderson iterations can be derived: if bi,i is greater than one, increase
ai, whereas if bi,i is smaller than one, decrease ai. We call this algorithm Adaptive
Anderson scheme onward.

The adaptation of ai could (and for “reasonable” functions would) brings the
values of bi,i close to one, since the adaptation is in fact approximating of the
Jacobian of the function. We can demonstrate this link between Jacobian and the
coefficient bi,i, if we approximate the function by the following linear function G:
let G is a function defined as

G(ρ) = dτρ = d(ρroot − ρ) d ∈ R , (2.69)

for which we are looking for its root ρroot. Application of the Anderson mixing
(2.61) with a given fixed ai = a0 and with ρin0 = 0 yields

ρin0 = 0 τ0 = G(ρin0 )− ρin0 = dρroot (2.70)
ρin1 = a0dρroot τ1 = G(ρin1 )− ρin1 = d(1− a0d)ρroot . (2.71)

To obtain ρin2 , we have to minimize (2.62), thus it have to be satisfied

b1,0 + b1,1 = 1 b1,0 = −(1− a0d)b1,1 , (2.72)

which yields
b1,1 = 1

a0d
. (2.73)

Let’s recall that −ai−1 should be an approximation of the Jacobian of G. Since
we apply the Jacobian on residuals, its best approximation is the derivative of G
in their direction.

ai ≈ −
1
JG
≈ 1
d
. (2.74)

If we substitute (2.74) into (2.73), we obtain

b1,1 = 1 . (2.75)

Thus, the effort to keep the bi,i = 1 through adaptation of ai is in fact approximating
of the Jacobian of the function by the (implicitly) obtained (directional) derivative
of the function. Moreover, the relation of a0 and bi,i in (2.73) indicate how to
suggest the adaptation scheme for ai:

ai = ai−1bi,i . (2.76)

However, for a real use, (2.76) should utilize some form of a damping to prevent
oscillations of ai. The details of my initial approach for a suitable adaptation
function will be presented later.
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Figure 2.6: Comparing the efficiency of the Anderson mixing and of the Adaptive
Anderson mixing: each plot depicts the relative (with regard to the achieved
minimal number of iterations for Anderson mixing) number of iterations, required
to converge the DFT self-consistent cycle for a specific system, in dependence on
the a0 coefficient.
The codes employed are FENNEC and SPRKKR [95]. The relative convergence
criteria were 1 × 10−9 for FENNEC and 1 × 10−8 for SPRKKR. The algorithms
denoted VHxc mix the potential, other algorithms mix the charge density. Missing
values denote that the DFT cycle has not been converged. Dash-dotted lines
present covnvergence heuristic parameters.
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Analysis and discussion of the algorithm

In Fig. 2.6, we compare the results obtained using the Adaptive Anderson mixing
with the results obtained using the original Anderson mixing with a fixed ai ≡ a0.
We can note that the Adaptive Anderson mixing performs, in most cases, at least
as well as the original Anderson algorithm for an optimal a0 (or, in a few cases,
only slightly worse). Additionally, the Adaptive Anderson mixing suffers much less
from a bad initial guess of a0, since the final adapted coefficients ai approaches the
optimal a0 (see Fig 2.7).

There are two exceptions to this trend. The first exception is the case of ozone,
where the convergence is the same for a wide range of a0 and the optimal a0 = 0.9
obtained in our calculation is evidently a “random result”. The second exception is
titanium that will be discussed below.

An interesting situation has been encountered when dealing with the graphene
fragment. In this case, the values of adapted coeficients ai varies during the self-
consistent cycle (see Fig. 2.7), which indicates that the Jacobian and thus the
optimal value of ai (not insignificantly) changes.

As a result, final ai differ from the optimal fixed ai ≡ a0 coefficient and the
adapted version of the algorithm performs better than the original version with any
fixed a0. Thus, this case demonstrates that the adaptation is not only a tool for
determining the right a0 but it can improve the performance of the self-consistency
cycle generally.

This observation can be further confirmed by analyzing the bi,i coefficients,
employing the heuristic convergence parameter c — see Fig. 2.6: we can see that
the largest oscillations of bi,i were substantially reduced.

Limitations of the approach The only exception from the previous observa-
tions is the case of titanium atom. This computation used a pseudopotential
(see Chapter 4.2) intentionally tuned to a wrong energy. This is the reason why
this simple example (a single atom) required more iterations to converge than e.g.
hexafluorethane.

Having a pseudopotential tuned to a given energy means that it acts properly
only on wave functions with energies not far from that specific energy. It is not
necessary to have this energy tuned very well, because the energy range, where
the pseudopotential acts properly, is relatively wide and even outside the range
the errors are usually small. However, if the reference energy is too far from the
correct energy of the true wave function, problems may arise. The wave functions
naturally change their energy during the self-consistent cycle: therefore, the effect
of such an improper choice of energy range on the wave function changes too, which
spoils the convergence of the cycle. The cause lies in the fact that the iterative
step made during the Anderson iterative process cannot guess the change of the
pseudopotential and thus the currently obtained derivative in Jacobian of the
function is not a good estimation of the value of Jacobian in the next iterations.

This effect is especially strong for a large initial a0, which results in poor
estimates of the densities in first iterations, where the energies of wave functions
differ substantially from the final values (see Fig. 2.8).
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Figure 2.7: Adaptive Anderson Mixing - adaptation of the coefficient ai during
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This example has been added to illustrate
the limitations of the proposed adaptive mix-
ing. All fluctuations of the DFT self-consistent
cycle are reflected in bi,i, not only the ones
caused by a wrong estimate of ai. And if such
a secondary source of error is present (be it a
wrongly tuned pseudopotential, e.g. a solver
instability, or just a too “wild” optimized func-
tion), the adaptive mechanism for ai not only
does not help, but it can also spoil the conver-
gence at all. Obviously, the adaptive scheme
can just cure a bad guess of a0 or it can help
if there is a need for a smooth change of Ja-
cobian approximation, but it cannot resolve
other kinds of problems that affect the mixing
performance. Therefore, the adaptive mixing
should be used with a proper carefulness.

On the other hand, even in such case, we
can use the analysis of bi,i, and the conver-
gence heuristic (2.66), as indicators for the
best choice of a0. In addition, the oscillations
of bi,i can be also used to detect instabilities in
the DFT self-consistent cycle. Moreover, we can still observe that even in this case
the convergence heuristic (2.66) correlates with the speed of convergence. Thus,
maybe a better adaptation function could handle even such a case of DFT cycle
with secondary source of “stochastic” errors. This topic will be subject to our
further research.

Details of the adaptation function

The adaptation algorithm has been determined purely empirically and we — in no
way — claim that it is the best possible choice: it can be considered to be the first
attempt in our further research. We observed above that the algorithm converges
most efficiently if bi,i .= 1. Further numerical tests showed that the optimal bi,i
should be even slightly greater than one, the more the longer the available history
is in the given step (to slightly underestimate the Jacobian for the sake of stability).
Thus, the optimal bi,i is set to

gi = 1 + dhi , (2.77)

where d is the algorithm parameter with the value 0.02 and hi is the available
history length in the ith step (recall Definition 2.8). Then the adaptation of ai is
determined via the following expression:

ai = f (bi,i/gi)ai−1 . (2.78)

The function f should be designed so that it allows both to reach the correct ai
quickly and to prevents large fluctuations of ai. In our approach, f is designed as
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follows:

f̄ (x) = x(1/p) , (2.79)
f (x) = 0.1 for f̄ (x) ≤ 0.1 , (2.80)

= f̄ (x) for 0.1 <f̄ (x) ≤ 2 , (2.81)
= 2 + log(f̄ (x)/2) for 2 <f̄ (x) . (2.82)

The coefficient p is equal to either one, two or three, depending on whether two,
one or none of the following criteria are met: (i) the adaptive change of ai is in the
same direction as in the previous step, and (ii) the adaptive change is in the same
direction during all steps.

Algorithm 2.2: Adaptive Anderson mixing

1: ρin1 = a guess of the charge density
2: for i = 1, 2, . . . do
3: ρouti = F (ρini )
4: τi = ρouti − ρini . New residual
5: if ‖τi‖ <= threshold then return
6: If some residuals are collinear to the newer ones, discard them from history
7: Solve coefficients bi,j from (2.62) . [85]
8: ai = ai−1 ∗ f (len({bi}), bi/i) . Adaptation of ai
9: ρini+1 = ∑i

j=1 bi,jρ
in
i + aibi,jτi . Set the new input density

2.5.5 Conclusion
The Adaptive Anderson mixing — as it is summarized in Algorithm 2.2 — differs
from the standard Anderson mixing implementation just in the adaptive ai coeffi-
cient. Therefore, it can be easily implemented in the existing softwares. It seems
that, especially for complex systems, using the adaptive ai can lead to a better
performance than relying on constant ai ≡ a0, even in the case of optimal choice of
a0 (see Graphene fragment results in Fig. 2.2). Besides that, the adaptive scheme
exhibits much smaller dependence on the initial guess of a0. This mixing scheme
has been implemented into two DFT codes, FENNEC and SPRKKR.

There are still open questions regarding the proposed mixing. The adaptation
function has been designed empirically to try the idea of the adaptive mixing.
Further effort in developing the scheme could probably bring even better results,
especially the robustness (see the titanium case in Fig. 2.2). Also the principles of
the mixing themselves — especially the criteria assessing the suitability of ai and
bi,i coefficients — are worth a more rigorous investigation. Such an effort could
shed more light on the whole topic and allow designing a better adaptation scheme
for ai. Our further research will be aimed at these topics.

Moreover, several mixing-related techniques (some of those described above)
are worth to be implemented in FENNEC, since they could lead to a performance
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improvement. The first of them is the mixing of the potential instead of the density,
which can be easily implemented. The second technique is the use of regularization
in the Adaptive Anderson algorithm [97, 98]. This is a more sophisticated approach
to deal with nearly collinear residuals, instead of discarding them (see lines 5 of
the algorithm).

Another interesting technique is Broyden’s first method with a longer history,
which has not been considered in the comparison in this Section (it has not been
implemented neither in FENNEC nor in SciPy yet). According to Fang’s numerical
experiments [84], it could perform a bit better than the Anderson method for some
problems. And finally, the position-dependent mixing seems to be a promising
idea especially combined with the adaptation of ai. The coefficients bi,j can be
determined for a particular domain in the same way as “global bi,j” and the ai values
can be adapted for different subdomains by a corresponding position-specific bj,j.
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The Kohn-Sham equations (2.44) cannot be solved analytically in practice. Thus,
this infinite-dimensional problem must be approximated by some finite-dimensional
one — this process is called a discretization — and solved numerically.

The discretization replaces the original complex problem with several continuous
unknowns with an approximate problem involving a potentially huge number of
discrete unknowns, suitable for a computer.

From many possible ways of discretization, the finite element method (abbrevi-
ated as FEM ) is used in the software package FENNEC, especially for the following
features:

generality The FEM offers a general basis and related excellent convergence
control1. Moreover, the basis assumes no prior knowledge of the problem
solution.

reliability The FEM is used in many fields of engineering and science. It has both a
strong theoretical background and many successful practical implementations.

scalability By choosing a proper mesh and a level of its adaptive refinement, the
accuracy of the method and computational demands can be managed. The
assembling/solution of the resulting matrix problems can also be parallelized.

1This means, that the basis can be built such that the error coming from the discretization
becomes arbitrarily low.
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availability Reliable FEM software packages and solvers are available (even as
Open Source), that can be used for implementing the new method.

The isogeometric analysis[99] (abreviated as IGA) is incorporated into the new
method as a alternative to FEM in the case that continuous derivatives of the
solution (of the discretized problem) are needed [100, 101].

Solving a differential equation using FEM or IGA requires three steps. First,
the equation must be transformed to its weak form. Second, the weak form of the
equation must be discretized: the solution is sought in a finite-dimensional (finite
element) space as a linear combination of basis functions. The discretization results
(in our case) in linear algebra problems: the Poisson equation (5.47) leads to a
system of linear equations and the Kohn-Sham equations (2.44) make up a general-
ized eigenvalue problem — so the third step is clear: the problems have to be solved.

This chapter describes the finite element method and isogeometric analysis
concerning its use in the package FENNEC and the analysis of the best parameters
for employing FEM/IGA for electronic structure calculations using DFT.

The first section describes topics common to both FEM and IGA: the weak
or integral forms of a problem and the concept of discretization. Discretization is
demonstrated on the Poisson equation (2.47), which is solved in iterations of the
DFT self-consistent cycle.

The second section briefly reviews the FEM from the theoretical point of view,
with a practical implementation on mind — details not relevant to the FENNEC
implementation are omitted for the sake of conciseness. Detailed information on
the theory of the finite element method and its applications can been found in
many textbooks, e.g. [102, 103, 104, 19, 105, 18].

The third section is dedicated to the basics of isogeometric analysis, especially
to the differences between FEM and IGA. The source of the summary is primarily
the work of my collaborator and FEM/IGA specialist Robert Cimrman [100, 106],
supplemented by other sources (e.g. [107, 108, 99]).

In the last section, some parameters of the finite element method (e.g. the
basis type and order, shape of elements) are described and their influence on the
convergence of electronic structure calculations is analyzed. The results in this
section are original, they have been published in [106] and extended for the purpose
of the thesis.

3.1 Weak problem and discretization

As have been said in the previous section, to solve an equation using FEM, the
equation must be transformed to its weak form and discretized, this will be covered
in this section. First, we state definitions that allow us to formulate the problem
and its transformation into a weak form. Then we will demonstrate the process on
the Poisson equation (5.47), whose solution is a part of the DFT self-consistent
cycle. Finally, we discretize the problem to be solved either by FEM or IGA.
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3.1.1 Mathematical formulation of the problem
To build a formal definition of FEM, we first have to define the problem and its
components.
Definition 3.1 (Volume (solution domain)). The volume or the solution domain
of a partial differential equation (abbreviated as PDE) in Rn is a subset of space
Rn, where we seek the solution of the PDE.

Note that the domain is not necessarily nor usually a vector subspace, it is just
a “part of space” on where we need to describe the solution.
Definition 3.2 (Solution domain boundary (surface)). Boundary ∂Ω of a volume
Ω is the subset of Ω, whose members are not members of any closed subset of Ω.

The solutions of PDE lie in the space of differentiable functions in Ω. However,
since FEM solves the problem in its weak form, a space of functions with weak
(partial) derivatives is sufficient.

The weak derivative is a generalization of the concept of derivatives for a larger
class (even not necessarily continuous) of functions, based on a generalization of
the integration by parts to more dimensions:∫

(fg)′ =
∫

fg ′ +
∫

f ′g . (3.1)

If the function f is zero on the boundary of an interval (a, b), the integrated equation
(3.1) simplifies to ∫ b

a
fg ′ = −

∫ b

a
f ′g , (3.2)

which leads to the following idea of the weak derivative:
Definition 3.3 (Weak partial derivative). Let f , g be functions on a closed space
L of the integrable functions in Ω with the boundary ∂Ω. Let C1

0 be the subspace of
L of all differentiable functions, that are zero on ∂Ω. If it holds for an ξ ∈ L and
i ∈ {1 . . . n}, that

∀φ ∈ C1
0 :
∫

Ω
f
∂φ

∂~xi
= −

∫
Ω

gφ , (3.3)

then g is the weak partial derivative of the function f by ~xi.
If a function f is differentiable, its (partial) derivative and weak (partial)

derivative are the same function. [19]
Using weak derivatives, we can define the Sobolev space as the space, where the

solution is sought:
Definition 3.4 (Sobolev space). Sobolev space W1,2(Ω) is a space of functions
with (Lebesgue-) square integrable values and weak derivatives in Ω.

This space is a Hilbert space of functions whose values and weak partial
derivatives are square-integrable in the Lebesgue sense, i.e., belong to L2(Ω), [109].

The indexes 1,2 denotes that the functions in the Sobolev space have weak
derivatives of the first order and that the space uses the L2 norm. Since we
will use only such Sobolev spaces, these indexes will be omitted in the following
development.
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Dirichlet problem

All equations solved by FEM in FENNEC are of the Dirichlet type, therefore, we
will focus only on the Dirichlet problems in the following text. For discussion of
Neumann problems with so-called natural boundary condition (where the derivatives
of the solution are enforced on a boundary part) or mixed problems (both condition
types employed) and further types of problems, please see any above-mentioned
FEM textbook or the following brief tutorial [110].

The following (more or less informal) definitions will allow us to define the weak
form of the PDEs in the next section.

Definition 3.5 (Dirichlet boundary condition). Given a Sobolev space W(Ω), a
Dirichlet boundary condition of a PDE for an unknown function ψ ∈ W(Ω) is a
condition (restricting the solutions of the PDE) of the form

∀~x ∈ ∂Ω : ψ(~x) = f (~x), (3.4)

determined by a function f ∈ W(Ω).

Definition 3.6 (Dirichlet problem). The Dirichlet problem is a (partial) differential
equation with a solution in a Sobolev space W(Ω), equipped with the Dirichlet
boundary conditions.

A Dirichlet problem can be transformed (see below) to a homogeneous Dirichlet
problem.

Definition 3.7 (Homogeneous Dirichlet problem). The Homogeneous Dirichlet
problem is a Dirichlet problem with zero boundary conditions.

The solutions of such a problem lie in the zero boundary space:

Definition 3.8 (Zero boundary space). The zero boundary space W0(Ω) is the
maximal subspace of W(Ω), whose members satisfy the zero boundary condition on
the boundary ∂Ω of Ω:

W0(Ω) = {ψ ∈ W(Ω) : ∀~x ∈ ∂Ω : ψ(~x) = 0} . (3.5)

It is easy to prove:

Theorem 3.1 (Zero boundary space). The zero boundary space W0(Ω) is a vector
space.

Proof. W(Ω) itself is a vector space and any linear combination of the functions
zero on the boundary is still zero on the boundary; thus W0(Ω) is closed both to
multiplication and addition.
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Figure 3.1: The red affine
subspace is translation of the
blue vector subspace.

The non-homogeneous Dirichlet problem will be
solved with the help of the transformation to the
homogeneous Dirichlet problem, for which we will
need an affine subspace.

Definition 3.9 (Affine subspace). Given a vector
space2 W(Ω), its vector subspaceW0(Ω) and a trans-
lation vector f ∈ W(Ω) \ W0(Ω). Then affine sub-
space W f

0 (Ω) =W0(Ω) + f is a space of vectors

W f
0 (Ω) = {ψ : ψ = ψ0 + f , ψ0 ∈ W0(Ω)} (3.6)

A visualisation of an afine subspace can be seen
in Fig. 3.1.

Weak problem formulation

We will formulate the weak form of the homogeneous
Dirichlet problem, that is required for solving our equations using FEM. For the sake
of clarity, we will define the weak form for a particular problem type. Generalizations
for other problem types (e.g. an eigenvalue problem) are obvious.

Definition 3.10 (Weak solution). Given a homogeneous Dirichlet problem (in its
strong form) of the following type

V (ψ) = σ ψ ∈ W0(Ω), σ ∈ W(Ω), V :W(Ω)→W(Ω) , (3.7)

the weak solution of the problem is a function ψ ∈ W(Ω) that for each test function
φ ∈ W0(Ω) satisfies the condition

(V (ψ) · φ) = (σ · φ) , (3.8)

or in integral notation
∫

Ω
V (ψ)φ+ =

∫
Ω
σφφ+ . (3.9)

The solution of the original problem is always the solution of the weak one (see
e.g. [19]).3

2We will use for convenience notation suitable for functional spaces, however, this definition
holds for all vector spaces.

3The opposite implication does not hold: there are many solutions that differ only on a zero
measure set and so they are in the “integral” sense equal to each other, but such solutions do not
have to solve the original “strong” problem. However, since weak solutions are in practice always
obtained using some reasonable basis, the existence of such “weird” solutions does not matter.
Moreover, as Strakoš points (see the excellent book [6]), not the strong form of the problem, but
the weak one — viewed as a minimization of an energy functional — can be considered in many
cases as the primary form of the problem.
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Theorem 3.2 (Solutions of Dirichlet problems). Given the weak form of a Dirichlet
problem with the boundary conditions f on its boundary ∂Ω, its solution lies in
an affine subspace W0(Ω) + ψf , where ψf is an arbitrary function from W(Ω) that
satisfies the boundary condition.

Proof. Let ψ be a solution of the problem. Then by definition

∀~x ∈ ∂Ω : ψ(~x) = ψf (~x) . (3.10)

Therefore
ψ − ψf ∈ W0(Ω) =⇒ ψ ∈ W0(Ω) + ψf . (3.11)

The theorem allows us to take an arbitrary translation vector V f
H that satisfies

the boundary condition and then seek the solution in the following form:

VH = V 0
H + V f

H V 0
H ∈ W0(Ω) . (3.12)

This theorem is applied in the next subsection.

3.1.2 Weak form of the Poisson equation
We can now apply the above transformation to the Poisson equation (Eq. 2.47
on page 31), that needs to be solved during the DFT iterations. For the sake of
self-containment of this chapter, we first restate the equation, that has to be solved
for an unknown VH:

− 1
4π∇

2VH = ρ . (3.13)

To transform the equation (3.13) to its weak form (see Eq. 3.8), let us multiply
the equation by a complex conjugate of the test function φ and integrate over the
whole volume: ∫

Ω
− 1

4π∇
2VHφ

+ =
∫

Ω
ρφ+. (3.14)

The Laplace operator contains the second derivatives, which forces requirements
on the continuity of derivatives of the utilized FE basis.4 Since the FE bases with
continuous derivatives are not constructed easily (see Section 3.2.3), the better
approach is to use the first Green identity

− (∇2ψ)φ = (∇ψ) · (∇φ)−∇ · ((∇ψ)φ) , (3.15)

to remove the second derivatives:∫
Ω
− 1

4π
(
∇VH∇φ+ −∇ · (∇VHφ+)

)
=
∫

Ω
ρφ+ (3.16)

4It is not completely true, as the commonly used FEM bases have discontinuous derivatives
only on a set of zero measure, however, still, the discontinuity brings problems that are better to
avoid.
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and then to apply Gauss’s theorem5, that transforms the integral of a divergence
to the flux through the boundary∫

Ω
∇ ·Ψ =

∫
∂Ω

Ψ · ~n . (3.17)

This common FEM approach results in∫
Ω
− 1

4π∇VH∇φ
+ −

∫
∂Ω
~n · (∇VHφ+) =

∫
Ω
ρφ+ . (3.18)

Since the test function is zero on the boundary by definition (φ ∈ W0(Ω)), the
surface integral vanishes and we obtain the weak form of the Poisson equation:∫

Ω
− 1

4π∇VH∇φ
+ =

∫
Ω
ρφ+ . (3.19)

To treat the non-homogeneous Dirichlet boundary conditions, we substitute (3.12)
into (3.19): ∫

Ω
− 1

4π∇V
0
H∇φ+ =

∫
Ω
ρφ+ −

∫
Ω
− 1

4π∇V
f
H∇φ+ . (3.20)

While the known function V f
H could be taken arbitrarily, the most usual choice for

FEM will be shown in the next section. The solution VH of the original problem
(3.19) is obtained as VH = V 0

H +V f
H . Notice that the right hand side of (3.20) varies

according to the selected translation vector V f
H .

Thus, we obtain the weak formulation of the Dirichlet problem. The next step
is the problem discretization using a FE basis.

3.1.3 Discretization
A discretization of a problem in its weak form consists of approximating an infinite
dimensional space W(Ω) by a finite dimensional space Wh(Ω). The letter h stands
for the discretization parameter, see e.g. [19] for the theory of convergence of the
finite element method.

This approximation is done using a projection PWΩ
h

: W(Ω) → Wh(Ω), a few
details of the choice of the projection will be given in the section 3.2.3. The
projection PWΩ

h
can be spatially restricted to the corresponding boundary space:

PWΩ
h0

:W0(Ω)→Wh0(Ω).
The construction of the space Wh(Ω) will be covered in the next sections, now

we will assume that we have a suitable space, with its basis {ϕi : i ∈ N, i ≤ n}
of dimension n. We will seek the solution in its subspace, which is equivalent to
W0(Ω):

Definition 3.11 (Zero boundary finite element space). Let Wh(Ω) be a finite
element space with n0 basis functions that are zero on the boundary (inner functions),
with the basis ordered in such a way that the n0 inner functions are in front of
the other (boundary) basis functions. Then the zero boundary finite element space
Wh0(Ω) is the finite element space spanned by the n0 inner basis functions.

Wh0(Ω) = span{ϕi : i ∈ {1, . . . , n0}} = span{ϕi : ϕi ∈ W0(Ω)} . (3.21)
5Called also the Divergence theorem.
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If we have a boundary condition determined by a function f , we can choose
V f
H,h from Wh(Ω) and approximate the solution and the test function in Wh0(Ω):

V 0
H
.=
∑
i

viϕi , i ∈ {1, . . . , n0} , (3.22)

φ
.=
∑
j

tiϕj , j ∈ {1, . . . , n0} , (3.23)

V f
H
.= V f

H,h =
∑
k

bkϕk, such that PWΩ
h0

(f) = V f
H,h , k ∈ {n0 + 1, . . . , n} , (3.24)

VH = V 0
H + V f

H . (3.25)

The translation vector V f
H has been constructed in the simplest way: as a function

satisfying the boundary conditions and zero in the “interior” of the discretization
domain.

Substituting the approximations (3.22)–(3.25) into the weak Poisson equation
(3.20) yields

− 1
4π

∫
Ω

∑
i

vi∇ϕi
∑
j

tj∇ϕ+
j =

∫
Ω
ρ
∑
j

tjϕ
+
j + 1

4π

∫
Ω

∑
k

bk∇ϕk
∑
j

tj∇ϕ+
j ,

(3.26)

which can be expressed in the scalar product notation:

− 1
4π

∑
i

v, i∇ϕi ·
∑
j

t, j∇ϕj

 =
ρ · ∑

j

tjϕj

+
∑

k

bk∇ϕk ·
∑
j

tj∇ϕj

 .
(3.27)

From the linearity of the gradient operator it is sufficient to satisfy (3.26) only for
the basis of Wh0(Ω), which results in n0 equations

∀j ∈ {1, . . . , n0} : −1
4π

(∑
i

vi∇ϕi · ∇ϕj
)

= (ρ · ϕj ) +
(∑

k

bk∇ϕk · ∇ϕj
)
,

(3.28)

with vi as the unknown coefficients. Therefore, a system of linear equations is
obtained:

Av = b . (3.29)

This system can be easily solved, as compared to other parts of the DFT iterations,
see section 6.3.3 for details. To obtain the solution of the original Poisson equation
(3.13), the boundary term (3.24) must be added back to the obtained solution of
the linear system (3.29).

As we will see in the next chapter, the practical solvability of the system and
an acceptable discretization error are not automatic properties of the FE method.
However, the use of pseudopotentials (see chapter 4.2) ensures, that the resulting
charge density (that determines the right-hand side of the Poisson equation 3.13)
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does not have too steep gradients and does not fluctuate — therefore it is rather
well describable by common finite element bases. Moreover, there is no problematic
term in the equation and therefore no additional work for solving the equation is
required. This topic is covered by appropriate parts of the next chapter, whose
analysis of the discretization of the Kohn-Sham equations can be applied to the
case of the Poisson equation without loss of generality as well.

The previous statement has one exception: the resulting matrix A from the
discretized Poisson equation (3.29) can be ill-conditioned, especially if a refined
mesh with hanging nodes is used (see definition 3.19 on page 63), which can result
in poor convergence of numerical solvers applied to the problem. However, this
issue can be rather easily cured by employing a preconditioner. According to our
experiences, a general-purpose preconditioner is sufficient in practice (see chapter
6.3.3).

3.2 Finite element method

So far the description has been common both for IGA and FEM. These methods
differ in how the discretization space Wh(Ω) is constructed. In this section the
construction of a FEM basis will be introduced, the construction of IGA bases is
described in the next section 3.3.

Please note that although the following definitions are exact, more general
definitions exist that allow even greater freedom in constructing finite element
spaces (e.g. the possibility of “curved” elements [103], different coordinate systems,
etc.). Therefore the following definitions can be considered as a formal but simplified
approach that suits our needs to have some background for solving the Kohn-Sham
equations using FEM. To gain a better insight into the problem, the following
references are recommended [102, 103, 104, 19, 18].

The idea of FEM is as follows: first, the described object/solution domain
is divided into small parts, “cells” called elements: that can be treated (nearly)
independently. This process is called meshing. Then local basis functions — shape
functions – are defined on the elements, using an isomorphism with a fictional
ideal reference element. This isomorphism allows treating the differences among
elements only by transformation coefficients. And finally, a global discretization
basis is constructed using the shape functions.

3.2.1 Meshing and meshes in FENNEC

There are two major approaches for a geometry description of a computational
domain. The Lagrange description, in which the mesh is connected with the
object(s) of interest themselves, e.g. a sample of a deformed material or a wing of
an airplane [111]. On the contrary, in the Euler description the mesh is connected
to the (stationary) space and properties of the computed objects are expressed as
functions of the space (and time). While the Lagrange description might be used
more often in disciplines such as engineering, the Euler description meets the needs
of the quantum mechanics.
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For describing a geometry, we will start with several formal definitions, that
aim to define the mesh: the description of the volume (space) for computations
and of the division of the volume to elements. Generally, a mesh is not required
to cover the whole volume (e.g. it can only approximate curved boundaries of the
volume).

Definition 3.12 (Discretized volume). The discretized volume Ωh is a subset of
Rn, that approximates the original volume Ω of a problem.

Elements of a mesh are constructed as convex hulls.

Definition 3.13 (Convex hull). Let Ωh be a volume and T = {~vi ∈ Ωh} is a set
of vectors from the volume. The convex hull of T is the subspace conv(T) ⊂ Ωh

that holds

1. T ⊂ conv(T)

2. ∀~x, ~y ∈ conv(T), ∀i ∈ 〈0, 1〉 : ~x+ i(~y − ~x) ∈ conv(T).

3. ∀T′ ⊂ Ωh that satisfy 1. and 2. : T ⊂ T′.

Definition 3.14 (Vertex). The vectors ~vi that determine a convex hull conv (~vi)
are called vertices of the convex hull.

Definition 3.15 (Regular polyhedron). A set T = conv(T) with vertices ~vi ∈ T
is the regular polyhedron if

1. it is not degenerate: dimT = dim Ωh.

2. it has no unnecessary vertex: ∀~vi ∈ T : conv(T) 6= conv(T− ~vi).

Definition 3.16 (Mesh). Given Ωh ⊂ Rn, a set of regular polyhedrons {Tk},

1. that covers Ωh:
⋃k
i=1Tk = Ωh, and

2. whose elements are nonoverlaping: ∀i, j ∈ {1 . . . k} : Ti
⋂
Tj has meassure of zero ,

is called the mesh of Ωh. The polyhedrons Tk are called elements (of the mesh).

Other useful terms for describing a mesh are edge and face. They are nearly
self-explanatory, for the sake of completeness a definition suitable for the 3D case
is given below.

Definition 3.17 (Face). The Face of a mesh element is a convex hull of a subset
of vertices of the element, for which it holds that:

. It has dimension two.

. Its intersection with the interior (maximal open subset) of the element is zero.

. Adding any vertex of the element to the set violates the conditions above.

Definition 3.18 (Edge). The edge of an element is a convex hull of two vertices
of the element, whose intersection with the interior of any face is zero.
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In some literature, meshes are not allowed to have hanging nodes — nodes in
the middle of a face or an edge of another element:

Definition 3.19 (Hanging node). Let {Tn} be a mesh and ~vi,j be the jth vertex of
the ith mesh element. Then ~vi,j is called a hanging node, if

∃Tk 6= Ti : ~vi,j ∈ Tk & ∀l : ~vk,l 6= ~vi,j . (3.30)

However, the hanging nodes are often allowed in practically used non-uniformly
refined meshes. Therefore we introduce also the term conforming mesh.

Definition 3.20 (Conforming mesh). The conforming mesh is a mesh without
hanging nodes.

Since a mesh is necessarily spatially finite, whereas electron wave functions are
not, there is an approximation hidden in the process of the selection of the volume,
and in the subsequent meshing of the volume.6

However, wave functions are negligible in regions far from atomic cores and
therefore the approximation does not spoil the results, though it is needed to have
this fact on mind and to design the mesh sufficiently large in order to cover the
proper distance from atomic cores: how far the mesh should reach is dependent on
the material and the desired precision.

Practical aspects of meshing

So far we talked about the theoretical properties of a mesh. However, from the
practical point of view, the question: “how to build a mesh?” is much less important
than the question: “how to build a suitable mesh” for a particular task. From a
certain point of view, meshing is the hardest part of the application of finite elements.
Though the domains needed to be described for electronic structure calculations
are not as complicated, as the ones resulting from the Lagrange approach in other
FEM applications, the computational demands of the method require that proper
attention should be given to the mesh construction.

A good mesh should. . .

1. . . . have as few elements as possible for computational efficiency,
2. . . . have sufficiently small elements to describe the problem with a desired

precision,
3. . . . have shapes of elements that yield matrices with good numerical properties

in the finite precision arithmetic,
4. . . . have shapes of elements that yield low error bounds on the discretization

error.

The first and the second property are pretty clear: as we will see, the more elements
the mesh has, the more basis functions the resulting FEM basis will have and so
the larger dimension the resulting matrix will have. However, we need a sufficient
number of basis functions to approximate the solution well.

6Unless a material periodic in all directions is studied, but in such a case it is better to use
existing methods for periodic systems.
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Figure 3.2: Example of a “suitable” and a “ill-shaped” mesh element. The points
A and B have the same relative (see chapter 3.2.2) coordinates.

During the meshing, local properties of the problem should be taken into
account: in regions, where the solution has high gradients and changes rapidly,
more basis functions are needed than in regions where the solution does not
fluctuate. Therefore there is no “one correct element size”: the most suitable
element size differs according to both the wanted precision and to the behavior of
the solved problem in a given place. Hence, in practice, the meshes are created with
variable element size according to the expected behavior of the solution — or mesh
adaptivity (called h-adaptivity to distinguish it from p-adaptivity see section 3.4.1
on page 95) is employed when a coarse mesh is taken at first, which is gradually
refined during computation according to the intermediate results.

The third property determines the conditioning of the resulting matrices. The
conditioning affects numerical errors arising during computation with the matrices
and real performance of used solvers. Both the shape and the size of the elements
affect the spectrum of the matrices (see e.g. [112]). To fulfill the first two properties,
both small and big elements are usually required and therefore the conditioning of
the resulting matrices is spoiled.

The fourth property of a suitable mesh is very similar to the third, but while
the third spoke about numerical errors (errors that came from the finite precision
arithmetic), this one takes care of the discretization error (the difference between
the analytical and the discretized solution). Although the sizes and shapes of the
finite elements affect both errors, neither of them is a function of the other [113].

A rough informal insight into the “badness” of an element can be gained from
Fig. 3.2. Although the second element in the picture is three times smaller in
area than the first one, the same perturbation of reference coordinates (see chapter
3.2.2) yields a greater error on this element than on the first one.

Though this observation does not cover the whole complexity of the problem7,
in our application the highly irregular shapes of finite elements (sometimes called
ill-shaped elements) should be avoided, as this brings an artificial anisotropy to the
problem. Especially it can be shown, that small or large angles at vertices usually
imply high error bounds, same as hexahedra with a large ratio of the longest and
shortest edge do. A brief introduction to the error analysis can be found in [115].

7It holds for isotropic material properties — for highly anisotropic environments, a skewed
element is be preferable, cf. [112, 114].
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The mentioned properties of a suitable mesh are somewhat contradictory.
The first two conditions could be satisfied by a mesh with varying element sizes.
However, it is not possible for hexahedral meshes either without ill-shaped elements
(that do not meet the third condition) or without using the hanging nodes, that
requires special care during FEM matrices assembling (e.g. [116]). Moreover, even if
hanging nodes (see Def. 3.19) are employed, which in many cases solves the problem
with ill-shaped elements, combining large and small elements leads naturally to
ill-conditioned matrices since scalar products of elements shape functions are of
different magnitudes. In such cases the conditioning of resulting matrices should
be cured by preconditioning:

P−1Ax = P−1b (3.31)

that transforms the spectrum of a matrix so that the condition number of the matrix
(the ratio of the largest and the smallest magnitude eigenvalue) is limited. Therefore,
the matrix P — the preconditioner – should be an easily invertible approximation
of the matrix A. A practical implementation of a suitable preconditioner (both
sufficiently exact and cheap to evaluate) is not a simple task and it is far beyond
the scope of this thesis. For further discussion of the problem see e.g. [117, 118,
119].

Meshes used in FENNEC

Two basic mesh types are available in the FENNEC package: the uniform mesh —
whose elements have all the same shape and size — and the non-uniform mesh. The
uniform meshes are suitable for convergence analysis and other validation purposes,
since they offer the best element shapes and excellent conditioning, and bring no
prior knowledge (or anisotropy) into the problem. However, they are unsuitable for
practical computations, since the resulting discretized problems are too large to be
efficiently solved in the cases of larger atomic structures.

Therefore, non-uniform meshes with elements of different sizes have to be
utilized. The element sizes should reflect the behavior of the wave functions: wave
functions change rapidly in the proximity of the atomic cores, while they are
smoothly decreasing in more distant regions. Therefore, nonuniform meshes should
(and they are in FENNEC) created in such a way, that there are small elements
near the atomic centers, while in distant regions, where only smooth tails of wave
functions are present, the elements are created as large as possible. Such a mesh
can be rather easily created using tetrahedra, but it is rather problematic for
hexahedral meshes without hanging nodes.

The following routines for creating meshes in FENNEC are available.

Uniform cube mesh A uniform cube mesh is created by an even division of a
rectangular cuboid, thus its elements are rectangular cuboids (most often cubes) of
the same size and shape. This type of mesh does not reflect the behavior of the
problem and thus using this type of mesh results in unnecessary large matrices.
However, such meshes can be easily created with various element sizes to cover
the same volume and the meshing does not bring any prior knowledge into the
computation. Therefore, these meshes are ideal for convergence analysis.
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Figure 3.3: An adaptive tetrahedral mesh for one atom, cube of side 20 a.u,
ρfin = 3, r = 1.

Adaptive tetrahedral mesh The advantage of tetrahedra is the possibility to
mesh general domain shapes and to be arbitrarily locally refined using the same
element type (i.e. the tetrahedra) even without adding vertices to the edges or
faces that would lead to hanging nodes. This property of tetrahedra is a great
advantage over hexahedra, but to keep good element shapes, refining the edges is
required [120], which leads to forced refinements if the hanging nodes are to be
avoided, see below.

The idea of how to generate the refined mesh is straightforward: recursively
refine all the elements that meet the criteria to be refined, as long as such elements
exist. In our case, the finest mesh is required near atomic centers, where the wave
functions have the most steepest gradients. Thus the criterion is given by a simple
boolean function f(d(T ), ρ(T )), that determines whether the element T should
be refined or not. The function takes two arguments: d(T ) — the distance of
the tetrahedron from the nearest atomic centre, and ρ(T ) — the volume of the
tetrahedron.

f(d(T ), ρ(T )) = ρ(T ) > max
1,

(
d(T )
r

)2
 ρtarget(s) , (3.32)

where the amount of refining is parameterized by a minimal distance r and the
target finest volume ρtarget(s) (given as the size of a regular tetrahedron with side
s). This criterion function is rather simple but it generates sufficiently suitable
meshes. For better results in more complex cases, the radius of circumcircle of the
tetrahedron could be included in the criterion.

The simplest algorithm to refine a tetrahedron is to create a new vertex in
the midpoint of the tetrahedron and divide the tetrahedron into four smaller



3.2 Finite element method 67

tetrahedrons. However, such an approach generates ill-shaped tetrahedra, thus a
more sophisticated refinement strategy [120] is used: an element is refined so that
six vertices are added, each in the middle of each edge of the tetrahedron, and the
tetrahedron is divided into eight smaller tetrahedrons similar to the original one
(with the same shape).

A drawback of this way of refinement is that the algorithm creates hanging
nodes if adjacent tetrahedra have a different level of refinement. Therefore, after
performing one level of refinement the elements with hanging nodes on their edges
are divided into smaller elements to make the nodes non-hanging. For this purpose,
the Delaunay triangulation (see e.g. [121]) is used to ensure a good quality of
resulting finite elements.

The algorithm to create the mesh starts with the Delaunay triangulation of the
vertices of the volume bounding box and the atomic centers. If there is more than
one atomic center, a cube around each atomic center is created and its vertices
are added to the starting vertices to ensure a better layout of vertices around the
centers.

Algorithm 3.1: Adaptive tetrahedral mesh

1: procedure Tetrahedral adaptive mesh(atomic centres, distance d, max.
level of refinement)

2: create a cube with atomic centres inside, so that all centres are at least d
distant from its sides

3: create a set of vertices from vertices of the cube and all atomic centres
4: if count(centres) > 1 then . to avoid long sharp triangles
5: for each centre do
6: add to the set the vertices of a cube of side d/2 with its midpoint

located in the atomic center
7: average the above added vertices, that are closer to themselves than d/4
8: create tetrahedron from the set of vertices using the Delaunay triangulation
9: repeat
10: for each (in the previous iteration refined) element do
11: if Eq.(3.32) does not hold for the element then
12: refine the element by adding a vertex on each its edge
13: mark all its neighborhoods
14: for each marked non-refined element do
15: divide the element to subelements using the Delaunay triangulation
16: until no element have been refined or max. level of refinement is reached

We call the mesh adaptively refined, which may cause some confusion. Adaptiv-
ity is usually understood as a dynamical process performed during a computation
reflecting its intermediate results. We do not follow this approach, since changing
the mesh during computation could (and would) spoil the convergence of the DFT
self-consistent cycle. Therefore, in our case the adaptivity may be called preadap-
tivity: the mesh is adapted prior to the computation according to the positions of
the atoms.
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Figure 3.4: An elastically streched hexahedral mesh for nitric oxide. Parameters:
max distance=16 a.u., element size=0.8 a.u., min/max radius=2.5 a.u./4 a.u.,
min/max stiffness=1/3000, stretch factor=3

Elastically stretched hexahedral mesh To reflect the nature of our problem,
an algorithm for generating hexahedral mesh with non-uniform elements has been
created for computing with earlier versions of SfePy, which did not support the
hanging nodes. The mesh is created by stretching elastically a uniform cube mesh.
The rigidity of the mesh nodes is set so that it prevents the mesh from being
stretched near the atomic centres, while the more distant elements can be stretched
to a greater volume. The elements far from atomic centers elements are discarded
thereafter (see Fig. 3.4).

Without utilizing the hanging nodes (or non-hexahedral elements), the transition
between small and large elements of a hexahedral mesh cannot be done without
compromises. It is the principal reason, why a mesh created by this algorithm
is far from perfect. But even though the presented algorithm creates prolonged
ill-shaped elements in corners of the mesh, we will see (see chapter 5.4.2), that the
resulting meshes still offer reasonable numerical properties.
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Algorithm 3.2: Adaptive hexahedral mesh

1: procedure Adaptive hexahedral mesh(atomic centres, distance d, mini-
mal element side=e, strech factor r, minimal and maximal stiffnes smin, smax ,
minimal and maximal radius rmin, rmax)

2: create an uniform cube mesh with the element edge size e, so that all atomic
centres are inside and at least d distant from the cube sides

3: remove from the mesh all the vertices in distance greater that d from all
the atomic centres

4: set the maximal stiffness to all the vertices closer than rmin to any atomic
center

5: create a convex hull from these points
6: for each vertex ~pi on the mesh boundary do
7: project ~pi onto the convex hull [122] as p′i
8: shift ~pi by vector r ∗ (~pi − ~p′i) and set it fixed
9: set the minimal stiffness to all vertices more distant than rmax from the

convex hull
10: let f = linearly growing function (rmin, rmax)→ (smin, smax)
11: for each remaining vertex ~pi do
12: find its minimal distance m to any atomic center
13: set its stiffness to f(m)
14: treating it as an elasticity problem, find the equilibrium positions of all

non-fixed points using FEM
15: remove from the mesh all the vertices in a distance greater that d from all

centers

Adaptive hexahedral mesh A hexahedral mesh can be rather easily refined
if one can use hanging nodes. During FENNEC development, level-one hanging
nodes support has been implemented to SfePy: one hanging node on each edge
and one hanging node inside each face have been allowed. An up-down strategy
has been chosen for generating such meshes: the algorithm starts with big cubes
and it iteratively refines them to smaller ones. This approach is simpler than the
down-to-up approach (merging small cubes), yet it can provide suitable meshes if
the parameters are appropriately selected. If one starts with a uniform cubic mesh,
each element can be refined a maximum of n + 1 times, where n is the minimal
level of refinements of all its neighbors. See Fig. 3.5 for an example.

The idea of the mesh generating algorithm is very similar to the adaptive
tetrahedral mesh algorithm: An element of the mesh is refined, if two criteria are
met: first, the element must not be adjacent to an element non-refined in the
previous iteration (to have only level-1 hanging nodes), and second, a criterion
function must be satisfied. The currently used criterion function is either an
always-true function or that the element in the ith step of the refinement is closer
than di to any atomic center, where di are a chosen set of distances: they should
be selected accordingly to the nature of the problem.
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Algorithm 3.3: Adaptive hexahedral mesh

1: procedure Adaptive hexahedral mesh(atomic centres, base cube size e,
distance d, criterion function, maximal level of refinement)

2: create a uniform cube mesh with the element edge size e, such that all the
atomic centers are inside and at least d distant from the cube sides

3: mark the whole mesh as a refinable area
4: repeat
5: remove all the boundary elements from the refinable area
6: refine all the elements in the refinable area that meet the criterion

function
7: until no element refined or the maximal level of refinement reached
8: remove all the elements more distant than d to any of the atomic centres

Which mesh to use?

The analysis including various meshes has been performed and the results can be
found in the last section of this chapter (3.4.2). We can observe from the results
that even a uniform hexahedral mesh performs better than a refined tetrahedral
mesh (in term of the problem size for the given accuracy) since it allows us to use
a better (tri-quadratic, tri-cubic . . . ) finite element basis. The advantage of refined
meshes over the uniform ones can be seen there, too. Therefore, for practical
computations with FENNEC, the best choice is to pick the refined hexahedral mesh.

Figure 3.5: An adaptive hexahedral mesh for a single carbon hexahedron. Max.
distance=16 a.u., base cube size=8 a.u., four levels of refinement, the criterion
function is to have the minimal distance from the atomic centres less than 10 a.u.,
8 a.u, 4 a.u. and 2 a.u. respectively.
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3.2.2 Finite element and its local properties
In the previous subsection, we divided the volume domain into elements. To allow
independent/parallel evaluation of the integral forms over the elements, we need to
define a local discretization basis (whose members are called shape functions) on
each element of the mesh: to construct the finite elements.

Finite element

The finite elements can be defined in several ways, we will follow the Braess
definition [19].

Definition 3.21 (Finite element). The finite element T is a triplet (T,M,Σ) of
a regular polyhedron T, a finite vector space of functionsM over T (that defines a
model reduction) and a linear vector functional Σ (that determines the discretization
coefficients of the spaceM).

The finite element has to fulfill the following properties:

1. M = span{φi(~x) : T→ R}.

2. Let k = dimM. Then Σ = {Pi :M→ C, i ∈ {1 . . . k}, Pi is linear}.

3. The mapping Σ is unisolvent: ∀u ∈ Ck !∃ψ ∈M : Σ(ψ) = u.

The linear map Σ project any function from the spaceM to the to the vector
space Ck. The map implicitly defines the basis ofM by the bijection betweenM
and Ck. Members of the basis are called shape functions.

Definition 3.22 (Shape functions). The shape functions of a finite elements are
the functions Φ, that form a basis ofM and have the δ-property:

Φ = {φi : Pi(φj) = δi,j} . (3.33)

For any ψ ∈M, the coefficients u, Σ(ψ) = u, are called degrees of freedom (DoFs),
and we have

ψ(~x) =
∑
i

φi(~x)ui .

The concepts of the above definitions are illustrated below using the Lagrange
nodal basis and the induced projections, see 3.35).

The definition 3.21 of the finite element could be relaxed to allow T to be any
closed subset of Rn with nonempty interior and a Lipschitz-continuous boundary
[103], such definition is required for the isogeometric analysis, which allows the
geometry to be described by NURBS curves (see Section 3.3).

Shape functions and Lagrange basis

The shape functions form the basis of a discretization space on a finite element.
There are many types of shape functions, that can be used for FEM computations.
Here we will describe a construction of one family of shape functions, the Lagrange
basis. Bézier polynomials, B-splines, and NURBS bases, defined in the next chapter,
are other examples. A basic classification of shape function types is in Section 3.4.1.
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Lagrange basis Probably the most common shape functions — and the ones
that FENNEC primarily uses — are the Lagrange basis shape functions. This
basis is often called the nodal basis since the DoFs are directly the values of the
approximated functions in given nodes: points in the elements.

A Lagrange basis is constructed using the Lagrange polynomials:

Definition 3.23 (Lagrange polynomials). Given a set of n nodes xi ∈ R (one-
dimensional), the Lagrange polynomials `i are n functions defined as

`
{x1,...,xn}
i (x) =

∏
j 6=i

x− xj
xi − xj

. (3.34)

Theorem 3.3 (Lagrange projection). There exists a projection to the space spanned
by Lagrange polynomials `i with n distinct nodes, that is exact (p = ∑

Pi(p)`i) for
each polynomial p up to the order n− 1.

Proof. There is a one-to-one correspondence between the nodes and the Lagrange
polynomials: each `i is equal to one in its own node xi and zero in all the other
nodes. Hence, the projections

Pi(p) = p(xi) (3.35)
are exact for `i. `i are n lineary independent polynomials of order n− 1, therefore,
they form a basis of the polynomial space of order n − 1, which completes the
proof.

The projections Pi can be used as projections in definition 3.21 for constructing
the finite element.

It is a common requirement that the shape functions should be able to represent
a constant function exactly. This property is linked to the convergence of the FEM
[105] and is automatically fulfilled, if the basis functions form a partition of unity:

Definition 3.24 (Partition of unity). The set of functions βi : T ⊂ Rn → C forms
the partition of unity on T, if

∀~x ∈ T :
∑
i

βi(~x) = 1 (3.36)

The Lagrange polynomials have this desirable property:

Theorem 3.4 (Partition unity of Lagrange polynomials). Given the set of n nodes
xi ∈ R, the corresponding Lagrange polynomials form a partition of unity.

Proof. `i are polynomials of degree n− 1. Their sum χ = ∑
`i is a polynomial of

the same degree. According to (3.34) we have for each node xi

χ(xi) = 1 =⇒ χ(xi)− 1 = 0 . (3.37)

A polynomial of the degree n − 1 that is zero in n points have to be the zero
polynomial (this fact can be easily proven by induction). Therefore χ is a constant
polynomial equal to one.
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For a multi-dimensional finite element, which is a Cartesian product of one-
dimensional subspaces (e.g. a cube), the Lagrange basis can be defined using the
product of 1D Lagrange polynomials, determined by a grid of nodes.
Definition 3.25 (Grid). Let Xj be n sets of distinct real numbers. Then the grid
GXj is the Cartesian product of the sets. The dimension of the grid is n, the size
of the grid in its ith dimension is |Xj|.

We will use a multiindex (that will serve as a discrete equivalent to Cartesian
coordinates) for indexing a grid — for selecting a node of the grid:
Definition 3.26 (Multiindex). Let G be a grid made from sets Xj. Then the
multiindex i into the grid is a member of the set

{1, 2, . . . dim(X1)} × {1, 2, . . . dim(X2)} × . . . . . .× {1, 2, . . . dim(Xn)} , (3.38)

Denoting a jth index of a node selected by a multiindex i as ij we can finally
define the multi-dimensional Lagrange basis.
Definition 3.27 (Lagrange shape functions). Let GXj be a grid determined by the
sets of numbers Xj and indexed by a multiindex i, and let `(Xj)

i be the ith Lagrange
polynomial for the set of nodes Xj. Then the Lagrange shape functions (or the
Lagrange basis) associated with the grid are the functions defined by

φi =
∏
j

`
(Xj)
ij . (3.39)

This definition assigns to each node in a grid a basis function constructed as
a product of those Lagrange polynomials, that are nonzero in the given node.
Therefore, these functions still holds the property, that each basis function is zero
in all nodes except the associated one. In the case of the Lagrange shape functions,
the linear mappings Pi (see definition of a finite element (3.21)) are

Pi(ψ) = ψ(xi) . (3.40)

The Lagrange basis forms a partition of unity, which can be easily proven by
induction (by dimension) using Theorem 3.4.

The usual choice of nodes is their even distribution in the element, see the
rectangular element in Fig. 3.7 right. A visualization of such 2D Lagrange elements
can be seen in Fig. 3.6.

Nodal bases The idea of the Lagrange basis can be generalized even for elements,
on which a grid cannot be reasonable defined, e.g. for triangles. There are two ways
how to accomplish this. The first is to collapse a hexahedron (or a quadrilateral)
to a tetrahedron (or a triangle), unifying corresponding nodes [105].

The second way is a generalization of Lagrange polynomials:
Definition 3.28 (Nodal interpolation polynomials). Let {~ui : i ∈ {1 . . . n}} be a
set of n nodes of the dimension d. Let pi be n sets of polynomials in d coordinates.
Then, the nodal interpolation polynomial has as its basis a set of functions {φi :
i ∈ {1 . . . n}} given as linear combinations of pi that satisfies

∀i, j ∈ {1 . . . n} : φi(~uj) = δi,j . (3.41)
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Figure 3.6: Lagrange FEM bases on a reference element for various element shapes
and polynomial orders in 2D.
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The requirements on the choice of the set of polynomials can be found in [123].
E.g. for a quadratic basis on a triangle, a suitable set of nodes are the vertices and
edges midpoints and the suitable set of polynomials pi is {1, x, y, x2, xy, y2}, see
Fig. 3.7.

The use of these multidimensional interpolation polynomials instead of a product
of one-dimensional ones is the reason, why while the Lagrange bases on tensor-
product elements are linear, quadratic, etc. in each dimension — and therefore (in
2D) bi-linear, bi-quadratics, etc. — the Lagrange bases on simplex elements are
only linear, quadratic, etc. See Fig. 3.7 for a visualization of the difference.

It should be noted, that this approach can be used even on hexahedra, the
notable example being the serendipity elements. These elements are constructed
using nodal interpolation polynomials determined by surface nodes of a grid of
nodes [123]. This concept can be further expanded to allow more types of degrees
of freedom than just function values in nodes. Adding derivatives along the edges
of the element as degrees of freedom allows us to define shape functions with
continuous derivatives [124].

However, since FENNEC uses mainly hexahedral elements in practice (see chapter
3.4.2) and the details of the Lagrange bases construction on simplex elements or
even shape functions with continuous derivatives would not bring more light on
the matter now, we refer an interested reader to one of the textbooks covering the
topic, e.g.: [124, 123, 105].

Reference mapping

The strength of the finite element method lies in the fact, that although the elements
in the mesh can have both different shapes and sizes, they all can be treated (as
long as they have the same “topology”, e.g. they all are hexahedrons) in the same
way.

1
x y

x2 y2x1y1

x3 y3x1y2 x2y1

x4 y4x1y3 x2y2 x3y1

x5 y5x1y4 x2y3 x3y2 x4y1

x6 y6x1y5 x2y4 x3y3 x4y2 x5y1

x7 y7x1y6 x2y5 x3y4 x4y3 x5y2 x6y1

Lagrange basis nodes
triangle quadrilateral

P1

P2

P3

Figure 3.7: Polynomials contained in Lagrange finite element bases on triangles
and quadrilaterals. The bases are bi-linear, bi-quadratic, . . . on quadrilaterals
(blue), while they are only linear, quadratic, . . . on triangles (red). [105]
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We can perform all the necessary constructions (e.g. of shape functions) and
computations on an reference (finite) element TREF and then transfer the results
using the reference mapping to the actual elements. The reference element is
a fictional element with an “ideal” geometry, e.g. a square with coordinates
{(−1,−1), (1,−1), (1, 1), (−1, 1)} for 2D quadrilateral elements, a triangle with
coordinates (0, 0), (1, 0), (0, 1) for triangles, or either a cube or a regular polyhedron
for 3D cases.

Definition 3.29 (Reference mapping). Given a finite element Tk, the reference
mapping of the element is a continuous bijective function Fk from coordinates
~xREF on the corresponding reference element TREF to the coordinates ~x on the finite
element Tk.

Note the word “corresponding” — if there are more types of elements: e.g. the
mesh contains both hexahedra and tetrahedra, or a computed expression contains
both volume and surface integrals, each type of elements has to have its own
reference element and reference mapping.

Barycentric coordinates For FEM calculations, it is useful to know not only
the reference mapping (e.g. to obtain real coordinates of quadrature points, see
below), but its inversion, too (e.g. for evaluating a function approximated in the
finite element basis in given real coordinates).

Both the mapping and its inversion can be determined by an isomorphism of
such a coordinate system (the same on both the reference and the actual element),
that is independent on the actual shape of the element: we need a coordinate
system, whose coordinates will be retained (in a “topological” sense) under spatial
deformations of the element.

Definition 3.30 (Barycentric coordinates). Given set of n vectors ~vi, barycentric
coordinates8 of a vector ~x is such n-tuple bi that satisfies

~x =
∑

bi~vi ,
∑

bi = 1 . (3.42)

The barycentric coordinates can be viewed as functions of the (reference)
Cartesian coordinates on the reference element:

bi = bi(~xREF) . (3.43)

The functions bi form the partition of unity (see definition 3.24). Thus, the
coordinates can be viewed as blending the vertices of the reference element (another
example of such a blending are the Bézier curves in Section 3.3.1). We can blend
the vertices ~vki of an actual finite element in the same way, which defines us the
reference mapping:

~x = Fk(~xREF) =
∑

bi(~xREF)~vki . (3.44)

8The definitions of barycentric coordinates differ in literature, e.g. sometimes the predicate
“absolute” or “normalized” denotes the requirement

∑
ai = 1, or the term is limited to triangle-like

elements, where the barycentric coordinates have been invented. Our generalization (definition
3.30) corresponds to “generalized barycentric coordinates”.
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Figure 3.8: Barycen-
tric coordinates on tri-
angles, see (3.45).

The barycentric coordinates are especially suitable for
simplex elements (triangles, tetrahedra, . . . ), where they
can be easily determined. If we split the triangle by adding
a point ~x as a new vertex (see Fig. 3.8), a barycentric
coordinate of the point associated with a given vertex can
be computed as a normalized volume of the triangle/tetra-
hedron opposite to the vertex: [125]

bi(~x) = |Bi|∑
j(|Bj|)

. (3.45)

This equation can be easily utilized to find the barycen-
tric coordinates of a point on the reference element. To
obtain the inversion of the reference mapping, two steps
have to be done. First, the right element of the mesh has to
be found. For this purpose, the KD-tree [126] is employed
in FENNEC for efficient searching. And second, (3.45) can
be utilized to find the reference coordinates.

Coordinates in general elements The problem is a
bit more complex on a general element since barycentric coordinates are not unique
for any element with the number of vertices greater than dim(T)+1 [127]. Therefore,
we need to construct a partition of unity, associated with the vertices of the element
(the functions bi), that define the coordinates uniquely.

The functions bi form, in fact, a linear Lagrange basis on the triangle associated
with its vertices. The natural generalization9 in the case of a general element is
again to employ a (bi-, tri-, etc.) linear Lagrange basis associated with its vertices:

~x =
∑

i
φi(~xREF)~vi (3.46)

However, the Lagrange basis can be directly constructed only on an element with
a regular geometry, or only in 2D [128]. Hence, we have no simple option (as 3.45)
to determine the coordinates on a general distorted element. Using a nonlinear
(Newton) solver is a common way (e.g. [129]) to obtain ~xREF for a given ~x.

Numerical quadrature

The next important technique in FEM tied to the concept of the reference element
is the numerical quadrature: approximating a value of a definite integral over an
element. Moreover, the most common way for the numerical integration is again
based on the Lagrange polynomials.

Usually, the integrals in a weak formulation of a problem cannot be evaluated
analytically, or even an analytical form of the integrated function is not available
at all. Thus, a numerical approximation of the integral is often the only feasible
way to compute the integrals. A method to accomplish this is usually called either
quadrature, numerical integration or integration scheme.

9But it is not the only possibility, see [128] for the other possibilities.
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Since we have already constructed a mesh to divide the integration domain, it
is natural to evaluate integrals as a sum of integrals over individual elements of the
mesh using the reference element mapping. The most common class of quadratures
is based on a projection of the integrated function f into a space spanned by a
basis βi,

f ≈ ciβi , (3.47)
which yields the following approximation of the integral of a function f :∫

TREF
f ≈

∫
TREF

∑
j

ciβi =
∑
j

ci

∫
TREF

βi . (3.48)

The integrals in 3.48 can be precomputed as weights:

Definition 3.31 (Weights (of a quadrature)). Given an integration scheme as in
3.48, its weights are given by

wi =
∫
TREF

βi . (3.49)

It is convenient to use the Lagrange basis for the interpolation (we change the
notation of index i to the multiiindex i to be consistent with Definition 3.27):

Definition 3.32 (Lagrange interpolation polynomial). Given a grid of nodes
G = {~xqREF

in } on an element TREF and a Lagrange basis ϕi associated with the grid,
the Lagrange interpolation polynomial of a function f (~xREF) is the function

f (~xREF) ≈
∑

i
f
(
~xqREF

i

)
ϕi(~xREF) . (3.50)

Thus we have: ∫
TREF

f
(
~xREF

)
≈
∑

i
f
(
~xqREFi

)
wi . (3.51)

Both the grid and the weights can be easily expressed only on a reference
element with a regular geometry. Hence, it is convenient to express all integrals
on the reference element and then to transfer them using the reference mapping
(3.44) to the actual one [130, 131]. Thus, an integral over a general element can be
approximated as:∫

Tk
f(~x) =

∫
TREF

f
(
Fk(~xREF)

)
|JFk(~xREF)| ≈

∑
wi f

(
Fk(~xqREFi )

) ∣∣∣JFk(~xqREFi

)∣∣∣ .
(3.52)

Definition 3.33 (Quadrature points). The quadrature nodes ~xqREF
i on the reference

element are called the quadrature points.

The quadrature points can be mapped to a spatial element Tk using the reference
mapping:

~xqk,i = Fk
(
~xqREFi

)
. (3.53)

where i is a linearization of the multiindex i. If we denote

wk,i = wi

∣∣∣JFk(~xqREFi )
∣∣∣ , (3.54)
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then the integration over the whole domain can be expressed just as a simple dot
product of the values of an integrated function in quadrature points and the vector
of weights: ∫

Ω
f (~x) ≈

∑
k,i

wk,if (~xk,i) . (3.55)

Gauss quadrature An unanswered question remains, how to choose the nodes
that determine the used Lagrange basis. From Theorem 3.3 it follows, that each
quadrature that uses the Lagrange polynomials is exact for all polynomials up to
the order n− 1. Using specially selected nodes, the accuracy can be raised. In this
sense, the best possible quadrature is the Gauss quadrature.
Definition 3.34 (Gauss quadrature). The Gauss quadrature of the order 2n− 1
on an interval I is an integration scheme, that uses the Lagrange interpolation
polynomials with n nodes in roots of the nth monic orthogonal polynomial[6] on the
interval.

From the orthogonality of the underlying polynomials it follows that the Gauss
quadrature with n quadrature points is exact for all polynomials up to the degree
2n − 1; and it is simple to show that no exact quadrature (with n quadrature
points) of the order 2n can exist. See [6] for a deeper insight into the matter and
rigorous proofs of the introduced theorems.10 The generalization of the (Gauss)
quadrature to more dimensions (using multidimensional orthogonal Lagrange basis
polynomials) is possible.

From the FEM point of view, the important facts about the Gauss quadrature
are:

. The integration of a function in FEM is done by a scalar product of the
weights and the function values in quadrature points.

. The used Gauss quadrature is suitable for polynomials, however, it could fail
for non-polynomials (e.g. rational) functions. It should be used carefully for
such functions and the convergence of the quadrature and the whole method
should be verified.

. In 1D, to have an exact integration scheme for polynomials up to degree
2n− 1, a quadrature with n Gauss points is needed. In 3D in a hexahedral
mesh, such quadrature has n3 quadrature points in each element of the mesh.
However, this claim only holds for the integration on the reference element.
For integration over a general element, the Jacobian JFk (see 3.52) must
be taken into account. In the case of a regular cubic mesh, the Jacobian
does not increase the required order. Nevertheless, the Jacobian of a general
distorted element is not constant and thus the order of the integration should
be increased accordingly. For a general distortion, the reference mapping
might not even be polynomial and thus the Gauss integration scheme is not
exact in such cases [132].

10The cited book is exceptional in the fact, that it does not focus on the one topic, but it
reveals deep linkages between various topics from very different fields of mathematics, which
provides a much better insight into the matter.
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. In the case of regular elements, for integrating the charge density (a sum of
square roots of wave functions), a quadrature of the exactness 2p is required,
where p is the maximal order of polynomials in the used basis.

For common problem types and regular elements, the required exactness of
quadrature, which does not bring additional error into the finite element
method, is 2(p−m), where m is the order of the solved differential equation
[133].

To conclude, the resulting required exactness of the quadrature is at least
2p; thus a quadrature with least p + 1 points is required (in the case of
Gauss integration scheme). However, this will change with the introduction
of pseudopotentials, that are rational functions, see page 129 in Section 4.3.2.

3.2.3 Finite element space

Having all the necessary ingredients to build up the finite element space at the
local level, we can “glue” the finite elements together.

Finite element space

Equations discretized using FEM (see e.g. 3.26) have usually a form of a sum of
scalar products of basis functions, interlaced by an operator. It will be substantial
in the later development, whether two basis functions have a nonzero scalar product.
The necessary condition for it is, that the multiplied functions overlap.

Definition 3.35 (Overlapping of functions). Two functions ϕ1, ϕ2 overlap, if and
only if the intersection of their supports (see definition 2.3 on page 22) is a set of
measure greater than zero.

After this small detour, we can return to building the finite element space. We
just put the finite elements together:

Definition 3.36 (Finite element space). The finite element space is a set of finite
elements with a global finite element basis.

This simple definition does not solve the key problem: how to define the global
basis of the finite element space. A trivial finite element basis could be just a union
of all shape functions (extended to the whole domain by the zero function) — i.e.
that each shape function would have its own “private” degree of freedom. However,
such a basis has a major drawback for our application: the elements would not
communicate due to no overlap between shape functions of adjacent elements, and
the functions approximated using such a basis could and would be discontinuous
on the element boundaries. In electronic structure calculations, the physical fields
need to be continuous.
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Figure 3.9: Example of a one dimensional linear finite element basis ϕi in a one-
dimensional space. A mesh polyhedron Tk is determined by its two vertices xk
and xk+1. Finite elements are separated by dotted lines. The kth finite element is
defined (see Definition 3.21) as

Tk = conv ({xk, xk+1})

Mk = span{φk,0(x) = (xk+1 − x)/(xk+1 − xk), φk,1(x) = (x− xk)/(xk+1 − x)}

P k
j (f) = f(xk+j) j ∈ {0, 1} ,

where a function f is approximated on the element k by

f
.=
∑
j

P k
j (f)φk,j =

∑
j

f(xk+j)φk,j .

If we assign the zero function to φ0,1 and φ5,0 (to treat the borders), the finite
element basis is given by functions

ϕi = φi,0 ∪ φi−1,1 .

Continuity

To make the basis continuous and to ensure convergence of the method [134], the
shape functions from more (typically adjacent) elements need to be glued together:

Definition 3.37 (Finite element basis). A global finite element basis is a basis of
Wh(Ω), such that restrictions of the basis functions to each element Tk are a linear
combination of shape functions of Tk.

A basis function ϕi corresponding to a global DoF i covers the whole domain,
but is nonzero only in the elements that share the DoF i (the small support property,
see below).

Note that if we disregard hanging nodes, the restriction of a basis function on an
element is directly a shape function — the linear combination of shape functions in
the above definition is required to cover the treatment of hanging nodes in practical
calculations.
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Definition 3.38 (Ck class (FEM basis continuity)). A finite element basis is in
the class C0, if all the functions of the finite element basis are continuous.
A finite element basis is in the class Cn, n ∈ N , if all its basis functions derivatives
up to nth exist and are continuous.

To ensure a finite element basis to be in Cn, we must construct a basis in such
a way that each shape function that is nonzero on a boundary of an element is
continuously extended to adjacent elements.

If we denote the ith shape function of the element Tk as φk,i, the restriction of
the finite element basis function ϕj to Tk can be expressed as

ϕj|k = a
(j)
k,iφk,i , (3.56)

where the linear combination coefficients a(j)
k,i need to ensure the basis continuity.

It can be rather easily done for C0 continuity on a conforming mesh (without
the hanging nodes), where the restrictions of basis functions on an element are
directly the shape functions. For example, in the case of the Lagrange basis (see
Definition 3.27), whose shape functions coefficients are determined by values in the
nodes, it holds that

a
(k)
i,j ∈ 0, 1 a

(k)
i,j = 1 =⇒ ∀l 6= i : a(k)

l,j = 0 . (3.57)

Then the C0 continuity can be easily ensured by the proper (global) numbering
of vertices in the mesh connectivity (i.e. the array of vertex indices that belong
to each element). The numbering also allows the assembling of the matrices by
adding the contributions of each element to the corresponding global matrix items.

Such an approach is not possible in general in the case of a non-conforming
mesh: in such a case, a common technique is still to evaluate the quantities on
the reference element using shape functions and then use (3.56) to reconstruct the
results in the global finite element basis (see e.g. [135]).

The construction of a finite element space with continuous derivatives is much
harder to achieve. Common approaches require use of polynomials of the degree
2n+ 1 for the continuity Cn [103]. The complexity and computational demands of
such approaches are the reason, why FENNEC follows the SfePy idea to employ
isogeometric analysis for this purpose. This technique will be described in Section
3.3.

So far we assumed the so-called conforming finite elements.[19]

Definition 3.39 (Conforming finite elements). The finite element basis is con-
forming, if

Wh(Ω) ⊂ W(Ω) , (3.58)
i.e. if the discrete space spanned by the basis is a subset of the function space of
solutions.

This property is automatically fulfilled, if the finite element basis is C0. [136].
It should be mentioned for the sake of completeness that nonconforming finite
elements exist (e.g. [137]), where the continuity of basis functions is typically
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required only on a limited subset of element boundaries (e.g. in given points).
Nonconforming elements are typically used in special applications to overcome
some difficulties (e.g. a too large number of degrees of freedom required for a
conforming method [138]).

Since the nonconforming finite elements have often undesirable properties such
as a non-guaranteed convergence[134], common implementations of the FEM are
conforming. Therefore, we do not describe the nonconforming variants of FEM
and the word “conforming” will be omitted in the following text. However, Ciarlet
shows [136] that to achieve the conforming approximation, the scalar products on
the original and the discretized spaces need to be the same. This is in fact violated
in the case of inexact numerical integration. From this point of view our method
could be classified as nonconforming, since rational functions (see Section 4.2) will
be integrated.

Small support and sparsity

In practice, the shape functions and finite element basis are usually constructed, so
that

. each shape function is either nonzero in one vertex and zero on all faces that
do not contain the vertex, or it is zero in all vertices and nonzero on at most
one face (recall the Lagrange bases in Fig. 3.6);

. finite element basis functions are combined only from the adjacent elements
shape functions, see Fig. 3.9 for an example.

Therefore the FE basis functions have a very desirable property: a small support
(recall definition 2.4 on page 23). The small support of the basis functions is one of
the most important properties of the finite element basis since the matrices arising
from FEM discretization are then sparse.

Definition 3.40 (Sparse matrix). A matrix M is sparse if the number of nonzero
elements in the matrix is substantially lower than the number of all elements of the
matrix.

To ensure the sparsity of the resulting matrices, it is sufficient to meet the
requirements of the following theorem:

Theorem 3.5 (Sparsity of local operators). Let the elements of a matrix M be
determined by the following scalar products of finite element basis functions ϕk with
operators A and B:

Mij =
∫
Wh(Ω)

AϕiBϕ
+
j = (Aϕi · Bϕj ) . (3.59)

Then if ϕk have a small support and A and B are local operators, M is sparse.

Proof. The proof is simple: if basis functions ϕi have a small support, only a few
functions overlap. Therefore the matrix M ′

i,j = (ϕi · ϕj ) is sparse. Since for a
local operator (recall Definition 2.1 on page 21) V the support of supp(V ϕi) can
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volume dimension 3D
mesh element type hexahedra
basis type Lagrange
basis order cubic
dimension of the matrix 5.672
nb. of elements 32.171.584
nb. of structural nonzeros 526.136

Figure 3.10: Structural nonzeros of the Poisson equation discretized by the 3D
FEM cubic Lagrange basis.

differ from supp(ϕi) only on a set of measure zero, the matrix Mij has the same
pattern as M ′

ij. In the other words, a basis with a small support generates sparse
matrices and a local operator does not spoil this property.

The assumptions of the theorem are fulfilled by a vast majority of solved
problems using FEM, including the matrices arising from the discretization of the
Poisson equation (recall (3.29) on page 60), whose items are given by

Aij = − 1
4π
(∑
∇ϕi · ∇ϕj

)
, (3.60)

since ∇ is a local operator.
Bases with the small support lead to typical structures of nonzeros in matrices

(an example can be seen in Fig. 3.10), which allow us to define the following term:

Definition 3.41 (Matrix structural nonzeros). Let ϕi be a finite element basis and
let U , V be local operators, that yield the matrix Mij = (Uϕi · V ϕj ). Then the
(structural) nonzeros of M are the set of all such index couples i, j that ϕi and ϕj
overlap. The number of (structural) nonzeros, abbreviated as NNzs, denotes the
size of this set.

Note that for a particular operator, even some structural nonzeros can be
“accidentally” zero.

Special storage formats exist for sparse matrices that make calculations with
sparse matrices much more efficient (see e.g. [139, 118]). Similarly, special sparse
matrix algorithms (from many e.g. [140]) lower the memory consumption and the
computational time of programs dealing with sparse matrices.

For common sparse matrix formats (e.g. Compressed sparse row), the storage
and computational demands of many operations (e.g. the matrix-vector multipli-
cation) depend not (only) on the dimension of the matrix, but primarily on the
number of structural nonzeros [118], since only nonzero elements of matrices are
stored. Therefore, it is desirable to keep the number of nonzeros as low as possible.
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In some cases it is useful to express the number of nonzeros relatively to the
matrix size:
Definition 3.42 (Fill-in). A matrix fill-in is defined as the

number of structural nonzeros(M)/ dim(M) . (3.61)
Projection to a finite element basis

Functions (in our case e.g. wave functions, the charge density, potentials, etc.) can
be represented during a computation in two different ways. Results of finite element
computations are given as coefficients of the FEM basis (the DoFs). However, this
form is not possible for all functions: e.g. the charge density is given as a sum of
square roots of wave functions, therefore it does not belong to the finite element
space. The potentials of atomic cores, that are expressed using radial bases, also
are not expressed in the FEM basis.

The functions, that are not given as DoFs, are represented in FENNEC numeri-
cally by their values in given points. For this purpose, the quadrature points (see
Definition 3.33 on page 78) are used with advantage, since they allow numerical
integration of these functions.

However, it is still necessary to be able to map a general function to the finite
element basis, i.e., a projection into the FE space from the underlined functional
space needs to be defined.
Definition 3.43 (Projection into a FE space). Given a FE space Wh(Ω) with its
basis ϕi, which approximates a function space W(Ω), a projection into Wh(Ω) is a
function

PWΩ
h

:W(Ω)→Wh(Ω) , (3.62)
such that it holds for

ψ ∈ W(Ω) and ψh = PWΩ
h

(ψ) = aiϕi , ai ∈ C , (3.63)

that
∀ψ′h ∈ Wh(Ω) : ||ψh − ψ|| ≤ ||ψ′h − ψ|| . (3.64)

The simplest is the L2 projection, where the norm in Eq. 3.64 is the L2 norm
[124]:
Definition 3.44 (L2 projection). The L2 projection is a projection PWΩ

h
into a

FE space with a basis ϕi, for which it holds, that

∀i :
(
ϕi · (ψ − PWΩ

h
(ψ))

)
=
ϕi ·

ψ −∑
j

aiϕj

 = 0 . (3.65)

In cases where it is substantial to approximate the derivatives well, a H1

projection can be used instead — then the used inner product in (3.65) includes
not only values of the multiplied functions, but their derivatives too.

A cheap way for evaluating a projection exists for a nodal (e.g. Lagrange) basis:
the coefficient (DoF) of the ith basis function can be taken as the value of the
function in the corresponding node. This approach also requires the ability to
evaluate the function in the nodes of the basis, which is not possible for functions
given numerically in quadrature points without further approximation.
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3.3 Isogeometric analysis

Commonly used finite element bases have only the C0 continuity and thus they
have discontinuous derivatives on element boundaries. This can be insufficient for
some purposes or the resulting precision could suffer (e.g. for forces calculations,
that includes differentiation). Therefore it is convenient to have an option to obtain
solutions with the continuous first or even the second derivatives.

It is possible to construct a finite element basis of a higher continuity than C0,
but the construction of such a basis is not trivial and to obtain the desired level
of continuity of derivatives, high degree polynomials are required (e.g. [103, 141]).
Therefore Sfepy and FENNEC employed another approach to obtain bases with
globally continuous derivatives: the Isogeometric analysis, abbreviated as IGA.

The IGA is an approach for solving partial differential equations, that can
be thought of as a variant of the FEM, using NURBS (non-uniform rational B-
splines) both for the computational domain description and for the unknown field
approximation, instead of the usual polynomial bases.

The IGA basis is global on each NURBS patch [142] and thus can have there
an arbitrary level of continuity. To facilitate the IGA implementation into existing
finite element codes, the techniques of the Bézier extraction [99] or the Lagrange
extraction [143] allow local assembling over elements just as in the FEM, however,
the necessity of the transformation between the local and the global bases results
in greater computationally demands compared to FEM. Another drawback is a
lesser sparsity of the assembled matrices, since in IGA bases with higher continuity,
more elements overlap than in the common FEM bases.

3.3.1 NURBS basis
As mentioned above, in IGA, unlike in FEM, the geometry of a computational
domain is not defined by a mesh, but by using NURBS objects. A single object
described by NURBS curves/surfaces/solids is called a patch. The same approach to
the geometry description of objects is used in modern CAD softwares11. Although
not in electronic structure calculations, this property is a substantial advantage
in many other fields where the FEM is employed, since it allows transferring the
geometry directly from a CAD to a computational software without the meshing
step, which can be all but not trivial (especially for complex structures) and which
can bring substantial numerical errors into the computation.

The idea of NURBS came from the fields of interpolation and computer graphics,
where NURBS bases were used as blending functions allowing to join smoothly
polynomials that interpolate parts of interpolated data sets, or segments of curves
or surfaces in computer graphics. We will define the NURBS in the usual way
(e.g. [100]): first the Bézier curves will be defined, then their generalization: the
B-splines and finally the NURBS themselves.

Bézier curves are defined using Bernstein basis polynomials.

11Computer-aided design – a software used for design, construction, and engineering.
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Figure 3.11: Bernstein basis polynomials
of the fourth order.
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Figure 3.12: Example of reshaping of a
Bézier curve using control points.

Definition 3.45 (Bernstein basis polynomials). The Bernstein basis polynomials
of the degree n are polynomials on the interval [0, 1] defined as

β(i,n)(t) =
(
n

i

)
ti(1− t)n−i i ∈ {0, . . . , n} . (3.66)

The Bernstein basis polynomials (see Fig. 3.11 for an example) of an arbitrary
degree form the partition of unity on [0, 1] (see Definition 3.24 on page 72): this
claim can be easily proven by induction. Therefore, they can be used for blending
in the same way, as the Lagrangian basis used for the interpolation on hexahedral
elements (see Chapter 3.2.2). A Bézier curve is obtained by blending its control
points, see Fig. 3.12.

Definition 3.46 (Bézier curve). The degree p Bézier curve in a vector space V is
the function ζ : (0, 1)→ V determined by p+ 1 control points P = {~pi : ~pi ∈ V, i ∈
{0 . . . n}}, defined as the linear combination of these control points with the degree
p Bernstein polynomial basis

ζ(t) =
∑
i

β(i,n)(t)~pi . (3.67)

Bézier curves are common in many fields of computer graphics (e.g. TrueType
fonts are defined using this type of curve12). However, Bézier curves have a
substantial drawback for more complex geometries: either the geometry is described
using a single curve — then a change a control point position affects the whole curve.
Or the geometry is described using several concatenated Bézier curves — then the
continuity of derivatives of the compound curve is lost. Some level of continuity
can be achieved by imposing constraints on the adjacent control points, but such
constraints propagate local changes to more distant control points.[144] Therefore,

12https://developer.apple.com/fonts/TrueType-Reference-Manual/

https://developer.apple.com/fonts/TrueType-Reference-Manual/
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using Bézier curves, one has either the locality of changes, or the smoothness of
the resulting geometry, not both.

To overcome the above mentioned problems (and a few other issues, see [107]),
B-spline curves13 have been introduced into the fields of computer graphics and
geometry description. Splines are defined as piecewise polynomial curves [145].
The term “B-spline” is a bit overloaded, as it denotes both the most local basis
of the spline functional space with regard to the required degree and smoothness
of the curve (see e.g. [108], the “B” in the name stands for basis), as well as the
curves spanned by such a basis, similarly to Bézier curves.

The key component of the theory of B-splines is the knot vector.

Definition 3.47 (Knot vector). The knot vector k of length dim (k) is a non-
decreasing sequence of real numbers {k1,k2, . . . ,kdim (k)} of length dim (k). The
members of the knot vector are called knots.

Note that the subsequent knots can be equal. This option will be later useful
for the Bézier extraction.

We will use sets of knot vector in the following text: to make the notation clear,
we will use ki for the i-th vector from a given set of vectors, and ki for the i-th
(scalar) member of the vector k when confusion may arise. For a grid of vectors K
made from vectors ki the notation ki,j denotes the j-th item of the i-th vector.

Each knot vector determines a corresponding B-spline basis:

Definition 3.48 (B-spline basis). The B-spline basis of the order n for the knot
vector k with the length dim (k) is a set of functions

Bk,n =
[
β(k,n,i), for i ∈ {1, . . . , dim (k)− n− 1}

]
, (3.68)

recurrently defined as a convolution of a B-splines basis of degree n − 1 by the
Cox-de Boor formula:

β(k,0,i)(t) = 1 for k(i) ≤ t ≤ k(i+1) ,

= 0 otherwise ,

β(k,n,i)(t) = t− k(i)

k(i+n) − k(i)
β(k,n−1,i) + k(i+n) − t

k(i+n+1) − k(i+1)
β(k,n−1,i+1) . (3.69)

Note that while there are n+ 1 overlapping basis functions in the interior of
the knot vector for a basis of the degree n, the first n and the last n knot spans
are covered by less basis functions. Therefore, these knots are commonly called the
outer knots and only the interior knot span is used for the definition of the B-spline
curve. It is the knot span, where the B-spline basis forms the partition of unity
[146]. An example of a B-spline basis for an uniform (in its interior) knot vector
can be seen in Fig. 3.13.

Definition 3.49 (B-spline curve). The B-spline (curve) of the degree n with the
basis Bk,n in a vector space V is the function ξ(x) :

[
k(n+1),k(dim (k)−n−1)

]
→ V,

13Isaac Jacob Schoenberg, inventor of the splines, named the curves by the tool used for drawing
smooth curves used by shipbuilders.
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Figure 3.13: An example of recursive convolutions of B-splines and NURBS bases
of degree n for the knot vector k = {1, 2, . . . , (9 − n − 1), (9 − n), . . . }, where
the last knot 9 − n is n-times repeated, and the symmetrical NURBS weights
given by w(i, n) = min(i, dim (k) − n − i)2, which yield the following pattern:
{1, 4, 9, . . . , 9, 4, 1}. The grayed parts of the graphs are either the outer knots, knot
spans not used for B-spline curves, or the knot span not covered by the knot vector.
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determined by dim (k)− n− 1 control points P = {~pi ∈ V, i ∈ {1, 2, . . . , dim (k)−
n − 1}} (or in matrix notation P ∈ V(dim (k)−n−1)), and defined by the following
linear combination of the control points and the basis:

ξ(t) =
dim (k)−n∑
i=n+1

β(k,n,i)(t)~pi = BT
k,n(t)P . (3.70)

B-splines can be easily extended to several dimensions as B-spline surfaces,
B-spline solids (etc. . . ) using a tensor product of B-splines. Such a tensor product is
called the (B-spline) patch. First, we define a domain for the patch basis functions.

Definition 3.50 (B-splines patch domain). Let K be a grid from a set of knot
vectors kj, that spans the bases Bkj ,n(j) of degrees n ∈ Nj. Then the B-splines patch
domain DK,n is the Cartesian product of the inner knot spans of the basis

DK,n =
(
k

(1+n1)
1 , k

(dim (k1)−n1)
1

)
×
(
k

(1+n2)
2 , k

(dim (k2)−n2)
2

)
× . . .

. . .×
(
k

(1+nj)
j , k

(dim (kj)−nj)
j

)
. (3.71)

Using the domain, we can define B-splines patch basis:

Definition 3.51 (B-spline patch basis). Given a grid from j knot vectors K = {kl},
indexed by a multiindex i, the B-spline patch basis of orders n ∈ Nj is defined as
the tensor product of the appropriate B-spline bases:

BK,n = Bk1,n1 ⊗Bk2,n2 ⊗ . . .⊗Bkj ,nj , (3.72)

where the members of the basis are the functions βK,n,i : DK,n → Vdim (n), which
are expressed as

∀i : β(K,n,i)(t) =
∏
j

β(kj ,nj ,ij)(tj) . (3.73)

The B-spline patch is then just a generalization of the B-spline curve for several
dimensions:

Definition 3.52 (B-spline patch). The B-spline patch for the basis BK,n deter-
mined by a grid of control points {~pi} = P ∈ Vdim (BK,n) is defined as the function
ξ : DK,n → V by

ξ (t) =
∑

i
β(k1,n1,i1)(t1)β(k2,n2,i2)(t2) . . . β(kj ,nj ,ij)(tj)Pi1,i2,...,ij =

=
∑

i
β(K,n,i )(t)~pi =

∏
j

B(kj ,nj ,) (tj)
T P . (3.74)

Because the B-spline curves cannot describe a circle exactly, they have been
further generalized to NURBS — non-uniform rational B-splines. Here, the basis
is defined not only by the knot, but also by weights of the knots (see Fig. 3.13 for
an example of the difference):
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Figure 3.14: A NURBS in a n-dimensional space can be expressed as a projection
of a B-spline in a (n+ 1)-dimensional space to a hyperplane defined by xn+1 = 1
(i.e. perpendicular to the extra axis), where each weight of the NURBS basis is
transformed to a coordinate in the extra dimension of the corresponding control
point.

Definition 3.53 (NURBS). The NURBS basis of the order n for a given knot
vector k and weights w ∈ Rdim (k) is defined as

η(k,w,n,i)(t) = wiβ(k,n,i)(t)∑
l wlβ(k,n,l)

(t) . (3.75)

The NURBS curve is the spline spanned by the NURBS basis in the same way as
the Bézier or B-spline curves.

The NURBS curves can be generalized to several dimensions as NURBS patches
in a similar way as B-splines. However, since the basis functions contain the normal-
ization term (the delimiter in 3.75), the NURBS patch basis is not a straightforward
tensor product of NURBS (curve) bases as in the case of B-splines. To build a
NURBS patch basis as a tensor product, one must employ the property, that a
NURBS curve can be viewed as a B-spline curve in the space of the dimension
higher by one [147] — see Fig. 3.14). It also simply follows from this fact, that the
NURBS basis also forms the partition of unity.

For the sake of simplicity, we will follow a simpler and more common approach
of defining a multidimensional NURBS basis, which is not formally the tensor
product of one-dimensional bases.

Definition 3.54 (NURBS patch basis). Given a knot vectors and the appropriate
spline patch basis as in Definition 3.26, and a Cartesian product of weights as the
matrix W = w1×w2 . . .×wj, the NURBS patch basis NK,W,n is a set of functions
η(x)(K,W,n,i ) : DK,n → V indexed by the multiindex i and defined as

η(K,W,n,i)(~t) =
Wi

∏
j β(kj,nj ,ij)(tj)∑

i′Wi′
∏
j β(kj ,nj ,i′j)(tj)

. (3.76)
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The definition of the NURBS patch differs from the B-spline patch definition
only in the use of NURBS patch basis.

Definition 3.55 (NURBS patch). Given the NURBS patch basis NK,W,n and a
set of control points {~pi} = P ∈ Vdim (N(K,W,n)), the NURBS patch is the function
µ : DK,n → Vdim (n) defined as

µ (t) =
∑

i
η(K,W,n,i )(t)~pi . (3.77)

3.3.2 Implementation of isogeometric analysis
In the case of electronic structure calculations, where a rather simple volume
domain needs to be described — a box is often sufficient — only a single patch
is commonly needed.14 Therefore in later development we will consider only one
patch.

In isogeometric analysis, the NURBS patch basis defined in the previous section
is used for the discretization of both the geometry and the fields. The patch domain
can be seen as equivalent to a reference element. The coordinates ~x on the patch
domain take the role of reference coordinates and (3.77) serves as the reference
mapping. A degree of freedom is associated with each basis function of the patch
and a function ψ : Ω→ C is discretized as

ψ(~x) .=
∑

i
vi η(K,W,n,i)(~x), v ∈ Cdim (NK,W,n) , (3.78)

where v is the vector of the degrees of freedom.

Bézier extraction

The NURBS patch basis is a global basis — supports of the basis functions can
cover the whole patch. The Bézier extraction technique can be used to localize the
NURBS patch basis onto “elements”, defined by non-zero knot spans, that can be
used for an integral evaluation and assembling in the FEM sense.

The result of the Bézier extraction is a local basis, defined on each knot span
“element”, that is independent on the knots, weights and control points of the patch
geometry: thus, the same basis is shared by all knot grid elements, which makes
the implementation of the IGA very similar to the FEM. Only the main idea of
the Bézier extraction will be presented here, see [99, 149] for the full explanation.

It can be easily shown, that the order n Bézier curves are just a special case of
the B-spline curves with the following specific knot vector:

kBézier = {0, . . . , 0︸ ︷︷ ︸
p+1

, 1, . . . , 1︸ ︷︷ ︸
p+1

} . (3.79)

Since the NURBS can be described as higher-dimensional B-splines, the same idea
can be used also for the NURBS.

14Some techniques use patches for local refinement, see e.g. [148], such an approach could be
used for electronic structure calculation with advantage. However, SfePy does not yet support
this technique.
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Figure 3.15: Example of the Bézier extraction — the NURBS of the third degree
with uniform weights.
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We can see in Figure 3.15, how repeating inner knots leads to the formation of
a basis local to each knot span. The Bézier extraction is based on the fact, that it
is possible to insert knots into a knot vector without changing the geometric or
parametric properties of the curve by computing the new set of control points by
the knot insertion algorithm [99]. Each multiplicity of a knot in the knot vectors
lowers the continuity of the basis by one degree and makes the basis functions
more localized. If the multiplicities of the interior knots equal to the degree of
the NURBS, the basis is fully localized, like in the FEM. Such a basis can be
transformed to the interval [0, 1], then it is equal to the Bernstein polynomial basis
(see (3.66)).

The key point of the Bézier extraction is the description of the transformation
of the basis function when a knot is (de)multiplied. The transformation — called
the Bézier extraction operator — can be exploited to divide a NURBS patch into
“finite elements with Bernstein basis”, to evaluate expressions using this Bernstein
basis on a reference element, and then, using the inversion of the Bézier extraction
operator, to transform the results back to the original NURBS space. Thus, the
Bézier extraction operator can be seen as a reference mapping between the local
Bernstein basis and a (spatial part of a) global NURBS basis. For the description
of the operator and further details see [99].

This approach allows us to treat the IGA nearly in the same way as the FEM
— the computation differs only in the use of different shape functions and in the
use of the mapping between the local and global basis. The shape functions are
now given by the tensor product of Bernstein polynomials on a reference square or
cube. Both the coordinates and the reference mapping are compound: we have the
mapping from the reference element to a given knot span element and a mapping
from the knot span element to a real volume within the NURBS patch.

The use of the Bernstein basis is not necessary in this approach. The Bézier
extraction has been an inspiration for the Lagrange extraction, that maps the
B-splines directly to the Lagrange nodal basis [143], which allows even greater
unification of FEM and IGA programming code bases: in this case, the shape
functions are the same, only the reference mappings differ. However, this technique
is not implemented in SfePy and thus nor in FENNEC.

Note, that the idea of the Bézier extraction allows constructing a basis with a
decreased continuity using multiple knots in the knot vector.
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3.4 Convergence analysis of various FEM and
IGA bases

The Lagrange basis, described in Section 3.2.2, is the most common, however not
the only possible basis for the FEM. Another option is e.g. the Bernstein polynomial
basis defined in the previous section, or the hierarchical (Lobatto) basis, which will
be introduced later. Moreover, even for a given basis type (e.g. Lagrange), there are
several choices: the element geometry, the basis (polynomial) order etc. Therefore,
the most suitable basis in our context of the electronic structure calculations should
be found.

The purpose of this section is to compare the bases offered by the SfePy package
[150] with respect to our application. This section has two parts. In the first part,
we summarize the properties of FEM and IGA bases and their differences. The
second part of the section contains the convergence analysis of the bases performed
on using calculations of the nitrogen atom electronic structure.

Please bear in mind, that this brief summary is far from a fully exhaustive
enumeration of all possible variants of the finite element method and all their
variants and modifications, it is rather a brief analysis of commonly used disrete
function spaces and their main properties, especially with regard to their use within
electronic structure calculations and to the possibilities provided by the finite
element framework SfePy, which has been used as the FE framework for FENNEC.
The wide range of possible FEM bases and their exact description can be found in
the references (e.g. [103]).

3.4.1 Classification of bases
The following properties are common to (nearly) all possible finite element bases
and follow from the previous topics.

. Small support The FEM and IGA basis functions have the small support.
It is the reason for the sparsity of the resulting matrices, as it has been shown
in Section 3.2.3.

. Non-orthogonality FEM bases are non-orthogonal: a scalar product of two
different basis functions is not zero. Scalar products of the basis functions
form the mass matrix :

Definition 3.56 (Mass matrix). The Mass matrix corresponding to the finite
element basis ϕi is the matrix M defined by

Mij =
∫

Ω
ϕiϕ

+
j = (ϕi · ϕj ) . (3.80)

For an orthonormal basis, the mass matrix would be the identity matrix.
However, neither the NURBS basis (as can be easily seen from the non-
negativity of NURBS), nor the commonly used FEM bases are orthonormal
nor orthogonal.
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. Polynomiality In general, shape functions on a finite element can be con-
structed using any functions and not just polynomials (e.g. [151]). However,
the vast majority of finite element bases are polynomial. Only one non-
polynomial basis will be considered in this work: the NURBS basis used in
the IGA. However, since NURBS bases are projections of polynomial B-spline
bases, they share many characteristics of the polynomial bases (e.g. the
degree).

. Partition of unity Both shape functions and FEM bases usually form the
partition of unity, meaning a constant function can be represented exactly.

Differences of finite element bases

The following properties are characteristic for each particular basis kind.

. Dimension The dimension of basis functions — whether they are suitable
to describe functions on curves, surfaces, or volumes (or higher-order spaces).

. Reference element shape A “topological” shape of a finite element deter-
mines the type of the underlying reference element. The most commonly
used shapes for 3D finite elements are tetrahedra and hexahedra.
Tetrahedral elements offer a great meshing flexibility and the possibility to
refine a mesh without ill-shaped elements or hanging nodes. As a trade-off,
the (Lagrange) shape functions on hexahedra have higher order terms (e.g.
tri-linear instead of just linear, see Fig. 3.7), and therefore provide (as we
will see) a substantially better approximation of discretized functions.
This classification is not directly applicable to IGA patches, however, since
the IGA basis is given by a tensor product, it can be viewed as a special case
of a hexahedral mesh with possibly curved faces: the Bézier extraction even
emphasizes the analogy.

. Basis type Shape functions can be constructed in many ways. SfePy offers
two standard types: the Lagrange (or nodal) basis and the Lobatto (or
hierarchical) basis.
The Lagrange basis has been introduced in Section 3.2.2. This type of basis
allows cheap projections into the basis (see Section 3.2.3).
The disadvantage of the Lagrange basis is the fact, that the basis functions
are not hierachical: a higher-order basis does not include the functions from
the bases of lower orders. This property is not desirable in the case when
the p-adaptivity is employed: when elements with different basis orders are
used in the FE space. In such a case a hierarchical basis can be used with
advantage. The construction of the Lobatto basis — a hierarchical basis
implemented in SfePy — can be found e.g. in [115, 152].
Another types of bases are the NURBS bases described in the previous section,
or serendipity elements (see Section 3.2.2).
An example of 2D Lagrange bases is shown in Fig 3.6, see [153] for examples
of hierarchical bases.
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. Basis order Since all considered bases are polynomial, we can classify them
according to the highest degree of the polynomial that is included in them.
Generally, the higher the order of the basis is, the more functions belong
to an element and overlap, which results in the greater fill-in of resulting
matrices. On the other hand, higher degree polynomials usually offer a better
approximation of functions and thus better convergence, so for the best
computational efficiency, the sweet-spot should be found. We will denote
linear, quadratics, etc. bases as P1, P2. . . and tri-linear, tri-quadratics etc.
as Q1, Q2. . . An example of Lagrange bases of various orders is in Fig. 3.6.

. Continuity As mentioned in Section 3.2.3, bases can be classified by the
continuity of derivatives of their basis functions. Whereas all the available
FEM bases in SfePy belong to C0, the single patch IGA bases can be easily
constructed with a desired degree of continuity: an IGA basis of order n can
belong to any class from C0 to Cn−1 (see the Bézier extraction in the previous
section).

. Fill-in and sparsity pattern An important property of a basis is the
number of overlapping functions, that depends on the order of the basis. This
property determines the amount of sparsity of the resulting matrices and
their sparsity pattern (see Fig. 3.10 on page 84 for an example).
Only adjacent element basis functions overlap in the FEM. On the contrary, in
the one dimensional case, a member of the Cn IGA basis overlaps max(n+ 1)
“elements” (see Fig. 3.15 on page 93). Therefore, higher-continuity-degree
(IGA) bases have a substantially greater fill-in.

3.4.2 Convergence and efficiency analysis of FEM and IGA
bases

In this section, the suitability of the various types of bases for electronic structure
calculations by FENNEC will be examined. For this purpose, sample computations
using FENNEC have been performed and the convergence of the DFT cycle has
been analyzed.

Metric

To find the best suitable basis for electronic structure calculations, first, the right
metric should be found.

All the considered metrics are based on a single iteration of the DFT self-
consistent cycle (see chapter 2.5 on page 36) and do not include the number of
iterations of the DFT cycle needed to converge. This decision has two reasons.
First, the numbers of iterations do not differ for bases with a similar precision.
Second, a more precise approximation leads to fewer iterations than a less precise
one. It is partially caused by the chosen initial charge density, that is constructed
using the radial atom density, but our experience with the calculations shows, that
a more “physical” setup (including the accuracy of an approximation) leads usually
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Figure 3.16: Average time of an iteration of the DFT cycle with regard to the matrix
size (left) and to the number of nonzeros (right) — a comparison of tetrahedra and
hexahedra.
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Figure 3.17: The time of an iteration of the DFT cycle to compute the nitrogen
atom with regard to the matrix size (left) and to the number of nonzeros (right) —
a comparison of FEM and IGA.
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to a better convergence of the DFT cycle. Therefore, judgments based on the
number of iterations for different accuracies of approximation could be misleading.

For measuring the computational demands for a given basis, several metrics
can be used. The natural one seems to be the computation time on a reference
hardware. However, such a metric is too implementation-dependent: using different
eigenvalue solvers or better optimization of the crucial part of computing, etc.
would affect the results, just as the platform-specific properties (sizes of caches,
implementation of mathematical libraries, etc.). Thus, this metric will be used
primarily only for confirming that the other chosen metrics are reasonable — see
Fig. 3.16 and 3.17.

The next possible metric could be the number of finite elements. Nonetheless,
this metric is unsatisfactory: different basis types yield different numbers of basis
functions for the same mesh, and thus, for the same number of finite elements (see
Fig. 3.6). Hence, this metric is not able to distinguish such cases.

The elapsed time for electronic structure calculations using the FEM depends
predominantly on the performance of the underlying linear algebra solvers. Since
the matrices resulting from the discretization are sparse, the performance of the
solvers depends not only on the dimension of the resulting matrices but on the
number of nonzeros of the matrices, too. Two metrics suggest themselves naturally:

number of degrees of freedom (matrix size) the number of degrees of free-
dom (abbreviated as DoF’s) is the number of basis functions used in the
computation. This number is equal to the dimension of the resulting matrices
and determines memory requirements for storing vectors.

number of (structural) nonzeros the number of (structural) nonzeros (abbre-
viated as NNzs), which determines both the number of scalar multiplications
needed for one matrix-vector multiplication and the memory requirements
for matrix storage.

The obtained elapsed times in Fig. 3.16 indicate that the number of DoF’s
seems to better predict the computational time for different shapes of the bases,
but it does not predict well the computation time ratio for different degrees of
bases on hexahedral meshes. On the other hand, the number-of-nonzeros metric
underestimates the required time for tetrahedra.

The DoF’s metric does not perform very well for the case of IGA bases with a
higher degree of continuity of derivatives (see Fig. 3.17), which is caused by the
fact, that these bases have a too low ratio number of DoF’s/NNzs (see Fig. 3.18) — an
increasing continuity of IGA bases causes a greater fill-in of matrices since NURBS
basis elements overlap more “elements” (see Fig. 3.15 on page 93). Therefore, the
component of the complexity depending on the number of nonzeros prevails in this
case.

Another observation is that the DoF’s metric is better asymptotically for the
FEM bases, while the NNzs metric yields better results for smaller matrices: this
phenomenon is caused by the used eigenvalue solvers and thus it is implementation-
dependent. To conclude, none of the suggested metrics by themselves are fully
satisfactory, but their combination covers the important aspects of the bases
comparisons. Thus, both metrics will be used in the following analysis.
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We can also notice that the performance of the current implementation of the
IGA is noticeably slower than the FEM, especially for a higher degree of continuity
of derivatives. We are not sure if this is solely due the more demanding evaluation of
the NURBS basis as compared to polynomials, or also with a possible under-optimal
implementation of the IGA in SfePy.

The dependence of the number of nonzeros on the matrix size can be seen in
Fig. 3.18. Since the number of nonzeros depends on the matrix size and on the
number of overlapping basis functions (which is determined by the basis type), the
resulting dependence is nearly linear.

Criteria, considered bases and setup of the evaluation

To pick the best basis for an electronic structure calculation, the following bases have
been evaluated. First the tetrahedral and hexahedral elements have been compared
using Lagrange polynomial bases of the degrees up to five or four, respectively.
Then the Lagrange and Lobatto bases have been compared on hexahedral elements
(which yielded better results in the previous comparison).

We have already described, that SfePy offers two techniques that can “improve”
the basic FEM method: h-adaptivity (mesh refinement) and IGA: those were
compared with the “basic” FEM to demonstrate their advantages. Since they
cannot be used together yet, they have been compared with a “standard case” and
with each other to pick the best possibility.
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Figure 3.18: The dependence of the number of nonzeros on the matrix size – a
comparison of tetraheadra and hexahedra (left) and FEM and IGA (right).
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Setup of the analyssis The uniform hexahedral meshes covered a cube of a side
of 32 atomic units and were uniformly divided to n× n× n elements.

The same setup has been used for the IGA — the patches have been generated
using uniform knot grids, which yielded the patches equivalent to uniform hexahedral
meshes. The uniform tetrahedral meshes have proven to be uncompetitive, therefore,
they were not included in the comparison. However, the advantage of tetrahedra
is that those can be easily refined. To reflect this behavior, adaptively refined
tetrahedral meshes covering the same volume as above were used for comparison
with the hexahedral meshes.

For the adaptively refined hexahedral mesh case, the uniform cube mesh covering
the same volume as above with the element edge size 4 a.u was generated. The
mesh was then refined by a varying number of steps, see Section 3.2.1 for the details
of the refined mesh creation.

A nitrogen atom was placed in the center of each mesh, the initial charge
density was set to the density obtained from a radial computation and the DFT
self-consistent cycle was then run. If the cycle converged, the resulting eigenvalues
and the charge density were compared with the results from the radial computation.

We analyzed the convergence results to find the most suitable basis for the
electronic structure calculations. The ideal basis has to be not only the most
efficient (in terms of the metrics mentioned above), but it also has to have the
following properties:

DFT cycle stability The fundamental property required is that a basis must
not to spoil the convergence of the DFT cycle (by numerical instabilities)
or of the eigenvalue solver. Otherwise the computation time is substantially
prolonged or even the DFT cycle fails to converge.
These criteria were fulfilled by nearly all the considered bases: only several
cases of a refined tetrahedral mesh had problems with the convergence.

(discretization) stability The computed quantities should converge with respect
to the number of degrees of freedom (the size of the basis). We considered the
speed of convergence of the resulting charge density and the first eigenvalue.
No significant differences were observed between the convergence results ob-
tained from the first and the second eigenvalues except the refined hexahedral
mesh case.

consistency The computed quantities should be a good approximation of the
real ones. Because the exact solution of the problem on the cube are not
known, the results from a radial computation (obtained by the LDAT code
for creating pseudopotentials [20]) are used as the reference values. They
necessarily differed a bit, due to different boundary conditions, however its
precision is sufficient for our purpose.

monotonicity The monotonicity of the convergence with respect to the mesh
element size is another desirable property that allows approximating better
the computational error.
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Figure 3.19: The error of the Nitrogen atom charge density with regard to number
of DoFs (left) and NNzs (right) — a comparison of hexahedra and tetrahedra.
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Figure 3.20: The first eigenvalue of the Nitrogen atom with regard to number
of DoFs (left) and NNzs (right) — a comparison of hexahedra and tetrahedra.
The solid red line denotes the expected value −0.6749627 obtained from a radial
computation.
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Comparison of hexahedra and tetrahedra

The results shown in Fig. 3.19 indicate that none of the considered bases spoils the
DFT convergence for a sufficiently rich (at least 10.000 DoFs) basis. There are some
missing results for large tetrahedral elements of a higher order, because matrices
generated by those setups caused that the eigenvalue solver did not converge.

The convergence of eigenvalues in Fig. 3.20 is much worse in the case of
tetrahedral bases than for any of the hexahedral bases, and it is not monotone. The
oscillations, similar to those that the tetrahedral meshes suffer, can also be observed
on the coarse hexahedral meshes. However, the hexahedra meshes convergence
stabilizes much earlier. Therefore, we can conclude that for the purposes of the
DFT self-consistence calculations, the tetrahedral bases are not suitable.

The better performance of hexahedral elements comes probably from higher
polynomial order and thus the higher precision of, e.g. the tri-cubic shape functions
on hexahedra than the cubic functions on tetrahedra (which have comparable
numbers of DoFs for comparable element sizes).15

The hexahedral meshes proved so decisively advantageous in comparison with
the tetrahedral meshes that the latter were rejected in the early stages of the
FENNEC development. The purpose of the above comparison was to find a suitable
element/basis type, not to do a theoretical analysis of the finite elements. The
obtained results were sufficient for this aim, so no further effort was devoted to
re-examine the phenomena.

Comparison of the polynomial orders

Figures 3.20 and 3.19 illustrate also the impact of the degree of the hexahedral
bases on the convergence results: the convergence improves with increasing the
polynomial order up to three. The basis of the third and the fourth degrees have
nearly the same quality with respect to the matrix size, however, the basis of the
third degree is better in terms of the number of nonzeros.

If we consider that and that smaller elements for comparable numbers of degrees
of freedom provide a greater freedom in the meshing, and the better performance
of third-degree bases in the case of refined meshes (see Fig. 3.25 bellow), we can
conclude that the third-degree polynomials seem to be the best from the considered
polynomial orders.

Lobatto versus Lagrange bases

Only small differences can be observed for the Lobatto and Lagrange bases. They
yield nearly identical results for charge density convergence (see Fig. 3.21), whereas
the resulting first eigenvalues slightly differ (see Fig. 3.22) for higher-order bases.
This is rather expected behavior since the Lobatto and Lagrange bases are the same
for the first degree and their differences grow with their degree. The results of the

15An unverified hypothesis is, that a part of the oscillations on tetrahedra may come from the
fact, that the nitrogen atom has only the radial symmetric s orbitals and p orbitals, that are
in some sense perpendicular to each other. Therefore, a hexahedral meshes maybe could better
retain the symmetry of the wave functions than a tetrahedral mesh.
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Figure 3.21: The error of the Nitrogen atom charge density with regard to number
of DoFs (left) and NNZs (right) — a comparison of the nodal Lagrange and
hierarchical Lobatto bases.
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Figure 3.22: The first eigenvalue of the Nitrogen atom with regard to number of
DoFs (left) and NNZs (right) — a comparison of the nodal Lagrange and hierarchical
Lobatto bases. The solid red line denotes the expected value −0.6749627 obtained
from a radial computation.
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Lagrange bases are slightly better both in the accuracy (the error with regard to
the reference value) and the convergence speed, therefore if p-adaptivity (different
orders of shape functions in different finite elements) is not employed, a nodal basis
seems to be a slightly better choice. However, this observation should be further
verified on more complex problems, since the hierarchical bases are known to be
better conditioned than Lagrange ones.[154, 155]

Comparison of FEM and IGA

The C0 IGA bases and their Lagrange counterparts (see Figs. 3.23 and 3.24) yield
nearly the same results: the FEM results are almost obscured in the graphs. The
IGA C0 bases are in fact Bernstein polynomial bases (see Section 3.3.1). Both
the Bernstein and Lagrange bases are tensor products of polynomials (see section
3.2.2), therefore, they have the same pattern of structural nonzeros, which may
explain the nearly identical results.

A richer picture offers the comparison of FEM and IGA bases with respect to
the degree of continuity of their derivatives: the more continuous bases offer faster
and more monotone convergence and especially more exact results than the C0

computations. The best bases seem to be again the ones of the third degree, with
the maximally possible C2 continuity. The monotonicity and smoothness of the
convergence curves of the IGA bases with continuous derivatives, compared to C0

cases, seem to be substantially better as well.

Comparison of uniform and refined meshes

The last comparison will demonstrate the advantages and disadvantages of the
refined meshes. In Figs. 3.25 and 3.26, a smaller number of data points for
the refined meshes is depicted. The presented results show the convergence with
regard to the refinement level of a single uniform mesh, which limits the number of
the possible meshes. More configurations could be generated by refining another
“starting” mesh, but those would converge to a slightly different results (due to
having boundary elements of different sizes and thus different boundary conditions
in some sense).

We can see a slightly larger error of the eigenvalues for the refined cases. This
is caused by a coarse mesh on the border of the volume domain, which results
in a slightly worse approximation of wave functions tails. The selected algorithm
for generating finer meshes refines only the already well-described center of the
domain, so the results begin to stagnate earlier than in uniform mesh cases.

The second-degree polynomials on the refined meshes perform substantially
better than the third-degree polynomials for a relatively small price of a slightly
less precise eigenvalues. The second-degree polynomials on the small elements near
the atomic center are able to describe the wave function precisely and there is a
substantial saving of degrees of freedom in the elements on the border, which cover
only smooth and easily describable tails of wave functions.

However, the ratio of “border” and ”inner’ elements is smaller for large structures,
and the chemical bonds can stretch the wave functions more away from atomic
centers in such cases. Thus, the second-order bases that in this case yield good
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Figure 3.23: The error of a Nitrogen atom charge density with regard to number of
DoFs (left) and NNZs (right) — comparison of IGA and FEM.
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Figure 3.24: The first eigenvalue of a Nitrogen atom with regard to number of
DoFs (left) and NNZs (right) — a comparison of IGA and FEM. Red line denotes
the expected value −0.6749627 obtained from a radial computation.
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Figure 3.25: The error of a Nitrogen atom charge density with regard to number of
DoFs (left) and NNZs (right) — a comparison of uniform and refined meshes.
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Figure 3.26: The first eigenvalue of a Nitrogen atom with regard to number of
DoFs (left) and NNZs (right) — a comparison of uniform and refined meshes. Red
line denotes the expected value −0.6749627 obtained from a radial computation.
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Figure 3.27: The second eigenvalue of a Nitrogen atom with regard to number of
DoFs (left) and NNZs (right) — a comparison of uniform and refined meshes. Red
line denotes the expected value −0.26738512 given from a radial computation.

results, could (and according to our experience sometimes do) yield not so good
results in practice.

Since the third-degree polynomials offer a slightly better precision, the decision
which degree to choose could be done with the property of the studied material on
mind: the third degree seems to be the more robust choice, whereas the second-
degree polynomials on he refined meshes could offer substantial speedup in some
cases, but their accuracy should be verified.

From the very good performance of the second-degree polynomials on the refined
meshes, it follows that the p-adaptivity — different orders of shape functions in
different elements — might bring a substantial decrease of computational demands.
It is one of the viable options for our further research, and would require the
implementation of the p- or hp-adaptivity into the SfePy package.

Comparison of refined FEM and uniform IGA

Since the number of matrix nonzeros is a substantially better metric for the IGA
than the number of DoF’s (see Fig. 3.17), it can be concluded from the results in
Fig. 3.25 and 3.26 that the refined quadratic FEM (both for the eigenvalues and
the charge density) and the cubic FEM (for the charge density) outperform the
IGA. The performance benefit for the refined meshes over the IGA was confirmed
by the comparison of the second eigenvalues in Fig. 3.27.
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The performance advantage of the both refined mesh cases suggests that the
best results might be obtained using refined IGA computations. Unfortunately,
such an option is not implemented in SfePy yet.

3.4.3 Conclusions of the analysis
As we have seen, for electronic structure calculations the hexahedral elements are
a much better choice than the tetrahedral elements. The Bernstein and Lagrange
polynomial bases yield the same results, whereas the hierarchical Lobatto basis is a
bit inferior for higher degrees of polynomials, however, this claim should be further
verified on more complex electronic structures since the theoretical results claim
the opposite.

The best degree for the basis polynomials seems to be three for uniform meshes.
For a refined hexahedral mesh, the third degree is a robust choice, but the second-
order polynomials could offer a substantial speedup in some cases. The higher
degree of continuity brings a major advantage for computations, however the lack
of possibility to refine the IGA patches in our current implementation makes the
refined FEM the best choice.

Therefore, in the current state of development, the best choice for a common
computation seems to be to use the cubic hexahedral FEM elements. For large
structures with high computational demands it can be a viable option to employ the
second-degree polynomials, but the accuracy should be further verified. The IGA
computation could serve as a useful tool for checking, whether the discontinuity of
the derivatives does not spoil the computed results.

If the further development of SfePy includes incorporating refined elements in the
IGA, the advantages of the IGA will probably prevail, thus, it is one of the promising
improvements and aims of our further research. Likewise, an implementation of
the full hp-adaptivity of the FEM meshes would be very desirable, as the current
h-refinement implementation does not fully cover the different requirements for the
precision in various regions of the computation domain.

An implementation of serendipity elements might be another good topic, as
those elements have fewer degrees of freedom for the same polynomial degree
than the Lagrange bases, especially for higher-degree bases. There is of course
a drawback of the serendipity elements: they poorly treat the mesh deformation
[105]. However, our adaptively refined hexahedral meshes have only the undeformed
elements, so the serendipity elements would remain complete [105].
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4. Solving the Kohn-Sham
equations using the finite element
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This chapter is dedicated to the application of the finite element method for
solving the Kohn-Sham equations (2.44). Unlike the Poisson equation, the Kohn-
Sham equations contain singularities, which lead to numerical difficulties. We use
a method of pseudopotentials to overcome the problem, however, the approach
brings another problem into play: pseudopotentials harm the sparsity of the
resulting matrices. To retain the sparsity of the resulting matrices, a special form
of pseudopotentials (called separable or Kleinman-Bylander) is used, which allows
to formulate the discretized equations as a rank-k-update eigenvalue problem.

The chapter begins with a derivation of the weak form of the Kohn-Sham
equations (2.44) and their discretization using the FEM (using a common approach,
the derivation follows [156]). The end of the first section is dedicated to the
properties of these discretized equations and related numerical problems.

The second section describes the pseudopotentials, their basic properties, and
their l-dependent and separable form. The separable form is used to transform
dense matrices coming from the Kohn-Sham equations to a sparse rank-k-update
problem. This section also includes a mathematical formulation of transforming
pseudopotentials into a separable form and a brief description of a corresponding
algorithm.

The last section of this chapter contains a brief study aimed at finding a suitable
number of projectors used for creating a separable pseudopotential.

The beginning of this chapter is mainly an application of known facts to a
given problem: the idea of eliminating singularities of all-electron calculations by
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replacing atomic cores by pseudopotentials [157] was originally published nearly
a hundred years ago [158, 159] and can be found in many textbooks, e.g. [10].
The used separable form of pseudopotentials was originally proposed in [160].
Later parts of the chapter, primarily the pure algebraic formulation of separable
pseudopotentials using B-orthogonality and their application to the finite element
method are one of the key novelties of the newly developed method. Also, the
study in the third chapter is an original work.

4.1 Discretization of the Kohn-Sham equations
In order to use the finite element method for solving the Kohn-Sham equations
(2.44), the equations must be transformed into the weak form (see (3.8)) first and
then discretized by the finite element method. We will follow a similar approach as
in Section 3.1.

4.1.1 Weak form of the Kohn-Sham equations
Denoting

V = VH + Vxc + Vext , (4.1)

the Kohn-Shamm equations (2.44) can be expressed as(
−1

2∇
2 + V

)
ψ = eψ . (4.2)

To transform (4.2) to the weak form (see Eg. (3.8)), let us multiply the equation
by a test function φ ∈ W0(Ω) and integrate over the domain Ω:∫

Ω

(
−1

2∇
2ψφ+ + V ψφ+

)
=
∫

Ω
eψφ+ . (4.3)

By applying the first Green identity ((3.15) on page 58) to the first term of (4.3)
we obtain∫

Ω

(1
2(∇ψ) · (∇φ+) + (V ψ)φ+

)
−
∫

Ω

1
2∇ · ((∇ψ)φ+) =

∫
Ω
eψφ+ . (4.4)

The application of the Gauss’s theorem ((3.17) on page 59) results in
∫

Ω

(1
2(∇ψ) · (∇φ+) + (V ψ)φ+

)
−
∫
∂Ω

1
2(∇ψ)φ+ n =

∫
Ω
eψφ+ , (4.5)

where ∂Ω denotes the boundary of Ω. The test function is zero on the boundary,
so the second term vanishes:∫

Ω

(1
2(∇ψ) · (∇φ+) + (V ψ)φ+

)
= e

∫
Ω
ψφ+ . (4.6)
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4.1.2 Discretization of the Kohn-Sham equations by FEM
Having the zero boundary finite element space Wh0(Ω) (see Definition 3.11 on page
59), the solution ψ and the test function φ fromW0(Ω) in (4.6) can be approximated
using a finite element basis ϕi of Wh0(Ω) with the dimension n = dimWh0(Ω) as

ψ
.=
∑
i

uiϕi , φ
.=
∑
j

vjϕj , i, j ∈ 1, . . . , n . (4.7)

Substituting the approximations (4.7) into the weak Kohn-Sham equations (4.6)
yields

∫
Ω

(1
2
(
∇
∑

uiϕi
)
·
(
∇
∑

vjϕ
+
j

)
+
(
V
∑

uiϕi
)∑

vjϕ
+
j

)
=

e
∫

Ω

∑
uiϕi

∑
vjϕ

+
j , (4.8)

or in the scalar product notation, denoting
∫

Ω ςϕ+ = (ς · ϕ),

1
2
(
∇
∑

uiϕi · ∇
∑

vjϕj
)

+
(
V
∑

uiϕi ·
∑

vjϕj
)

=

e
(∑

uiϕi ·
∑

vjϕj
)
. (4.9)

Satisfying (4.9) for all φ ∈ Wh0(Ω) is equivalent to satisfying it for all ϕi from
the basis of Wh0(Ω). This yields n linear equations for j = 1 . . . n

1
2
(
∇
∑

uiϕi · ∇ϕj
)

+
(
V
∑

uiϕi · ϕj
)

= e
(∑

uiϕi · ϕj
)
. (4.10)

This can be rewritten, due to the linearity of the used operators, as

∑
ui

(1
2(∇ϕi · ∇ϕj ) + (V ϕi · ϕj )

)
= e

∑
ui(ϕi · ϕj ) . (4.11)

Such system of equations can be written in the matrix form

Lu + V u = eMu , (4.12)

where the particular matrices are

Lij =
∫

Ω

1
2(∇ϕi)(∇ϕ+

j ) , (4.13)

Vij =
∫

Ω
(V ϕi)ϕ+

j , (4.14)

Mij =
∫

Ω
ϕiϕ

+
j . (4.15)

The discretization of the Kohn-Sham equations thus leads to the generalized
eigenvalue problem.
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4.1.3 Singularity of Coulombic potentials
The FE formulation derived in the previous section has a fundamental issue: the
eigenvalue problem (4.12) can be solved, but it does not yield acceptable results.
Let us first identify the issue.

The problematic part of the Kohn-Sham equations lies in the, on the first sight
very simple, Coulombic potential Vext. The potential consists of the sum of the
electrostatic potentials of the atomic nuclei (recall (2.16))

Vext(~x) = Vion(~x) =
∑

j=1...number of atoms
− zj
‖~x− ~cj‖

=
∑

V j
ion(~x) , (4.16)

and therefore it has a singularity at the place of each atomic nucleus. Such a
singularity is very undesirable for many reasons:

. the Gauss integration scheme is precise for polynomials — see Section 3.2.2.
But the integration of a rational function is neither precise nor convergent in
the scheme. Thus, the result of the numerical integration of such a function is
very dependent on the “random” (with regard to the atomic center) position
of integration points. When doing a geometry optimization with a singular
potential, the computed energy of the system would vary not due to physical
laws, but due to misuse of the numerical integration.

. Any approximation of the potential singularity requires a very rich basis and
consequently a high number of degrees of freedom, which greatly increases
the computational demands.

. The potential singularity attracts electrons. As a consequence, some electrons
are strictly localized near the singularity and thus they have (according to
the Heisenberg uncertainty principle, see e.g. [62]) very high energies. Such
electrons (called core electrons) are so firmly tied to the atomic nucleus, that
the effect of their surrounding on them is nearly negligible — they do not
create bonds with other electrons.
On the other hand valence electrons, which create bonds with other atoms,
do not have such a strict localization and their energies are several orders of
magnitude smaller. However, these energies are the quantities that define the
properties of a calculated material: the difference of the energy of the bonded
and non-bonded electron determines the strength of the bond and the sign of
the difference determines the attractivity or repulsivity of the bond.
To obtain the most energy efficient configuration of a sample, the configuration
with the lowest total energy (given by (2.37)) has to be found. However, this
energy is predominantly determined by the (nearly unchanging) energy of the
core electrons. Thus, we have to subtract two large numbers to obtain the
differences in the small valence energies1. Such an approach has unavoidable
numerical problems: first, computers use floating point numbers with a finite

1The comparing of total energies is only a demonstration of the problem. In fact, the lowest
energy state can be more easily determined using forces, however, the problem of large energies is
principal, it spoils any similar approach.
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number of decimal digits, and second, even the smallest numerical error
(which is unavoidable) in the energies of core electrons totally overshadows
the differences of the valence energies.

From the above discussion it clearly follows that the problem of potential
singularities needs to be treated to make the Kohn-Sham equations solvable in
practice. Several approaches have been developed to overcome this problem, e.g.
the frozen core approach (core electrons do not change their wave functions nor
energies during the computation) or adding special basis functions that describe
well the solutions around the singularity. Pseudopotentials are one of the most
successful methods for removing the singularities: their use eliminates core electrons
completely from the computation, and thus not only it solves all the above mentioned
issues, but it also reduces the number of the degrees of freedom in the computation.
[158, 159, 15].

4.2 Pseudopotentials
The computationally efficient discretization of the Kohn-Sham equations used
by FENNEC is based on pseudopotentials, which have been first constructed by
Fermi [158] and Hellman [159]. The basic properties of pseudopotentials will be
summarized in this section.

The following description of pseudopotentials does not strictly follow the process
of their construction (which can be found e.g. in [15, 161]; th proof of the correctness
of the approach can be found in [162]), but it only emphasizes the main idea.

Pseudopotentials are constructed using screened all-electron potentials. The
term all-electron means a potential that includes the all, i.e. both core and valence,
electrons of an atom, while screened means that the potential includes a Hartree
and an exchange-correlation potential of all electrons in the system.
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Figure 4.1: Example of a nitrogen pseudopotential with rc = 1.8a.u.
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However, the resulting pseudopotential needs to be unscreened, i.e. with the
Hartree and the exchange-correlation potential of valence electrons subtracted.
These potentials (their sum is called unscreen potential Vunscreen) in the computed
system depend on the actual charge density and are included in the Kohn-Sham
equations separately. Thus, this section will be focused on the resulting unscreened
pseudopotential and its properties as those are important for the practical solvability
of the resulting matrix problem.

4.2.1 Fundamental properties of pseudopotentials
According to the Born-Oppenheimer approximation, we can treat atomic nuclei
and electrons separately. Since core electrons have so high energies (due to atomic
nuclei potentials) that they are nearly not influenced by valence electrons, we
can even separate (or decouple, see equation (2.18) on page 25) core and valence
electrons. Having two objects with an opposite charge in one place — atomic nuclei
and core electrons — both of them separated from valence electrons, a natural idea
is to merge them to a single object, called atomic core.

The effect of an atomic core on valence electrons can be described by an
(unscreened) potential Vcore. Such a potential consists of an electrostatic potential
of atomic nuclei and electrostatic (Hartree) and exchange-correlation potentials of
core electrons.

The core electrons are strictly localized near the atomic nuclei and sum of their
charges can be considered as spherically symmetric.2 Therefore, the core potential
Vcore is nearly equal to the classical Coulomb potential in distances greater than a
given distance r0 from the atomic center (according to conventions, atom nuclei
have a negative charge whereas electrons have a positive one)

Vcore ≈
Z ′

r
∀r > r0 , where Z ′ = Znuclei + number of core electrons.

(4.17)
The radius r0 is in fact from a theoretical point of view infinite, since there is some
nonzero probability, that even a core electron could be found at any distance from
its atom nucleus. Therefore, the equality (4.17) does not hold exactly. However,
the difference from the true Coulomb potential is negligible already in a small
distance from the atomic center, much smaller than the range of valence electrons
is.

Treating the atomic core as a single rigid object (this approach is called frozen
core approximation) resolves the problem with high energies of core electrons
because the Kohn-Sham equations with frozen atomic cores describe only the
valence electrons. However, the problem with the potential singularity in the atomic
center remains. Therefore the pseudopotential approach has been developed: a
potential of each atomic core is replaced by an artificial potential Vps having no

2It might not be perfectly symmetric in some cases, but the violation of the symmetry is
mostly negligible. If it is not, the electron with the symmetry violated should be included among
valence electrons. Moreover, the symmetry supposes that the division of the electrons into core
and valence ones does not separate electrons from the same electron shell belonging to the same
l-space (see Def. 4.7).
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singularity, that is called pseudopotential and emulates the original core potential,
i.e. the energies of wave functions are retained, as well as some other important
properties of the original potential (e.g. scattering properties [162]).

Solutions of the Kohn-Sham equations with pseudopotentials are called pseudo-
wave functions, and an atomic core with a pseudopotential instead of a potential is
called pseudocore. However, the prefix pseudo is often omitted, if there is confusion
is not likely.

The pseudopotential should satisfy the following requirements[161]:

1. A pseudocore should have the same electrostatic charge as the (original)
atomic core. From the Poisson equation for the atomic core (see (5.14)) it
follows that from some distance, the cut-off radius rc, from the atomic center
a pseudopotential has to be equal to the corresponding core potential.

Vps(r) = Vcore(r) ≈
Z ′

r
∀r > rc . (4.18)

Within the radius rc the Vps(r) and Vcore(r) differ. Note that the equality
with the Coulomb potential does not hold exactly: as it has been stated, even
the atomic core potential is not a true Coulomb potential. Moreover, the
radius rc can be shorter than the distance r0, up to which a non-negligible
charge of the core electrons reaches. Such an overlap of charge density of
core electrons is called core tail.

2. On rc, a pseudopotential must be smoothly connected to the potential of
the atomic core. To achieve this, the value and derivatives of the screened
pseudopotential must equal those of the screened potential of the atomic core
on rc. Pseudopotentials used in FENNEC are constructed in such a way that
the first and the second derivatives agree.

3. The pseudo-wave functions should “emulate” the (original) wave functions.
Therefore the values and the derivatives3 (in our case the first and the second)
of pseudo-wave functions and the corresponding wave functions should match
on rc.

4. The charge of each pseudo-wave function inside rc should match the charge
of its corresponding wave function:∫ rc

0
ψ+
pseudoψpseudo =

∫ rc

0
ψ+ψ . (4.19)

Pseudopotentials with this property are called norm conserving. Although
not all kinds of pseudopotentials are norm conserving, the property is highly
desirable (otherwise we would have to make not so easy corrections accounting
for the missing or excessing charge inside rc).

The assumption that core electrons do not interact with the surrounding
environment is nearly exact, but it is not completely true: a reaction of core

3Commonly logarithmic derivatives are used, as they are norm-independent.
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electrons can be observed in some cases (e.g. core-level shifts can occur [163]),
and it cannot be generally neglected. Therefore the newly developed method uses
the environment reflecting pseudopotentials [164, 20] that are capable of including
effects of valence electrons on atomic cores.

Properties of pseudopotentials

Since a pseudopotential combines an atomic nucleus and its core electrons together,
the solution of the Kohn-Sham equations with pseudopotentials contains only the
valence electrons of the system. This fact substantially lowers the number of re-
quested eigenvalues and eigenvectors and so substantially reduces the computational
demands of used iterative solvers.

Smoothing of the wave functions is another desirable effect of pseudopotentials.
Because the core electrons disappear from the solution and so the valence electrons
do not have to be orthogonal to them (see the Pauli exclusion principle (2.12) on
page 24), the wave functions have fewer oscillations in the atomic core region. For
example, the radial component of the 2s valence electron wave functions of nitrogen
has a single node (an intersection with zero). The same wave function computed
using pseudopotentials does not have to be orthogonal to the 1s core electron state
and so it has no nodes at all. The more oscillation the function has, the steeper it
is and so it needs a richer basis to be described accurately. Therefore, the use of
pseudopotentials further reduces the computational demands.

There are many criteria on how to classify pseudopotentials, three the most
important being:

transferability Each potential is constructed for wave functions of some energy,
for which the pseudopotential acts exactly as the all-electron potential. The more
the energy of a wave function differs, the greater is a difference between the effect
of the all-electron potential and the pseudopotential.

Transferability of a pseudopotential denotes the energy range, for which the
pseudopotential is acceptable for computing: the more transferable the potential is,
the wider the range of energies is for which the pseudopotential is acceptable.

softness A pseudopotential is constructed in order to eliminate the singularity,
to reduce the steepness of the potential. The softer (the less steep) the potential
is, the fewer basis function are needed for its description. Unfortunately, since
a softer pseudopotential is less similar to the original potential, it is usually less
transferable.

radius rc The cut-off radius rc, where the pseudopotential starts to differ from
the all-electron potential, is significant for the properties of the pseudopotential.
Generally, the smaller rc, the more similar the pseudopotential is to its corresponding
all-electron potential: a pseudopotential with a smaller rc is usually deeper, but it
has better transferability. A good choice of rc depends on the type of atom and
the solved problem.
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4.2.2 L-dependent pseudopotentials
The introduction of pseudopotentials cures all the problems mentioned earlier, but it
causes another problem: a pseudopotential that satisfies the previous requirements
cannot be constructed as local (see Definition 2.1 on page 21). This claim has
not been proven, however, all attempts to make local pseudopotentials have been
unsuccessful — there must be a nonlocal effect of the potential inside the rc
radius. Since only local (pseudo)potentials must be used to retain sparsity of the
matrices arising from finite element discretization (see Theorem 3.5 on page 83),
the pseudopotentials have to be reformulated so that the sparsity is preserved.

Below we introduce a common class of pseudopotentials called l-dependent
pseudopotentials. The nonlocality of l-dependent pseudopotentials lies in the
projections into l-subspaces. Details of constructing l-dependent pseudopotentials
can be found in [165].

The spherical harmonic functions and l-spaces

It is natural to use spherical coordinates for describing spherically symmetric
potentials of atomic cores. The spherical coordinates allow us to express R3 as a
direct product of angular and radial spaces.4

Definition 4.1 (Radial space). The radial space R+
0 is a subspace of R defined by

R+
0 = {x ∈ R : x ≥ 0}.

Definition 4.2 (Angular space). The angular space is a space on the surface of a
sphere: (−π/2, π/2) (elevation θ) ×[0, 2π) (azimuth ϕ) +{[−π/2, 0], [π/2, 0]} (poles).

The projections into l-spaces can be defined in the following way (the following
definitions can be found e.g. in [166]).

Definition 4.3 (Legendre polynomials). The Legendre polynomials Pn are solu-
tions of the Legendre equation

d

dx

[
(1− x2) d

dx
Pn(x)

]
+ n(n+ 1)Pn(x) = 0. (4.20)

Definition 4.4 (Legendre associated polynomials). The Legendre associated poly-
nomials are solutions of the general Legendre equation

(1− x2) d
2

dx2P
m
l (x)− 2x d

dx
Pm
l (x) +

[
l(l + 1)− m2

1− x2

]
Pm
l (x) = 0 (4.21)

and can be expressed as

Pm
l (x) = (−1)m(1− x2)m/2 d

m

dxm
(Pl(x)) . (4.22)

4To be fully correct, the ambiguity at r = 0 should be solved.
5source: https://commons.wikimedia.org/wiki/File:Spherical_Harmonics.png

https://commons.wikimedia.org/wiki/File:Spherical_Harmonics.png


4 Solving the Kohn-Sham equations using FEM 118

Figure 4.2: The spherical harmonics functions5

Definition 4.5 (Spherical harmonic functions). The spherical harmonic functions
or spherical harmonics are the angular portion of the solution to Laplace’s equation
in spherical coordinates and can be found as eigenfunctions of the eigenvalue problem

r2∇2Yl,m = −l(l + 1)Yl,m , (4.23)

where r is the radius of the sphere. The spherical harmonic functions can be
expressed as

Yl,m(θ, ϕ) =

√√√√2l + 1
4π

(l −m)!
(l +m)!P

m
l (cos θ)eimϕ . (4.24)

Note that the eigenvalues l of the spherical Laplace equation are nonnegative
integers and the eigenvectors are the angular solutions of the stationary Schrödinger
equation (2.10) in spherical potentials (see e.g. [167]). Moreover, they are orthogo-
nal ∫

Y +
l,mYl′,m′ = δl,l′δm,m′ (4.25)

and form a full basis of the angular space. It is not difficult to prove (see e.g.
[62]) the following theorem using the above-mentioned properties of the spherical
harmonic functions:

Theorem 4.1 (Radial-angular decomposition theorem). Each solution of the
stationary Schrödinger equation in a spherical symmetric potential can be written
as a product of a spherical harmonics and a radial function

ψl,m,n(r, θ, ϕ) = Yl,m(θ, ϕ)ψRad
l,m,n(r) . (4.26)
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Solutions described by the theorem are the well known atomic orbitals and the
parameters l,m, n are called quantum numbers.

Sometimes it is useful to use the spherical harmonics in their real form:

Definition 4.6 (Real spherical harmonics). The real spherical harmonics (or real
spherical harmonic functions) Yl,m are the functions defined by

Yl,m =



i√
2

(Yl,m − (−1)m Yl,−m) if m < 0 ,

Yl,0 if m = 0 ,
1√
2

(Yl,−m + (−1)m Yl,m) if m > 0.

(4.27)

The real spherical harmonics have the same properties as the complex ones,
and moreover they form a basis of the space of real functions on the angular space.

Definition 4.7 (Angular l-spaces). Angular l-spaces Ll are the subspaces of the
space of real functions on the angular space given by the orthogonal decomposition
using the real spherical harmonic functions:

Ll = span{Yl,m : m ∈ {−l . . . l}} . (4.28)

Definition 4.7 gives us a hint how to build the projectors to a given l-space6:

Definition 4.8 (L-space projection). For a given l ∈ N, the l-space projection is
given by the following projector Pl:

Pl(ψ(r, θ, ϕ)) =
l∑

m=−l

(
Yl,m ×

∫
θ,ϕ

Y +
l,mψ

)
. (4.29)

The use of the times symbol (×) should emphasize the fact, that functions of
different coordinates are multiplied in (4.29): the spherical harmonics are functions
of angles, while the result of the integral is a radial function.

L-dependent pseudopotentials

According to the radial-angular decomposition theorem 4.1, each wave function of
an isolated atom is strictly localized in its l-space and so it can be subscripted by
l. The value l is related to the angular momentum of the wave function [62]: the
number of nodes of a spherical harmonic function is given by its l (see Fig. 4.2).
Therefore, the higher is the l, the higher the energy of the first wave function (by
energy) from this l-space is.

In more complex structures than just an isolated atom, the spherical symmetry
of the charge density is broken. However, still the potential of an atomic nucleus
(or a pseudopotential) causes that the angular parts of wave functions near an
atomic core lie in a few l-spaces with the lowest l to minimize their energy. The

6Here a confusion can arise, as Pn is commonly used both for the projectors and for the
Legendre polynomials. As the Legendre polynomials will not appear in the following discussion,
the established notation will be used.
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next important point is the observation, that the nonlocality is only needed to
emulate the singularity of a potential. Therefore it is sufficient to limit the nonlocal
effect of the pseudopotential only for the (spatial) part of the radial space, where
the pseudopotential differs from its original potential.

This observation leads naturally to splitting the potential to a long-range local
and a short-range nonlocal part

Vps = Vloc + Vnl where Vloc is local and ∀r > rc : Vnl(r) = 0 . (4.30)

The idea of an l-dependent pseudopotential lies in expressing the nonlocal part of
the pseudopotential Vnl as radial functions, applied to a given l-projection of the
wave functions.

Definition 4.9 (L-dependent pseudopotential). The L-dependent pseudopotential
is a potential, given by (4.30), where its long-range part Vloc is local and its nonlocal
part Vnl is given by a set of radial functions {Rl}:

Vnl =
∑
l

Vl =
∑
l

RlPl =
∑
l,m

RlYl,mY
+
l,m , (4.31)

where
∀l,∀x > rc : Rl(x) = 0 . (4.32)

Such a decomposition into l-spaces is, in fact, the decomposition of the operator
in the basis of spherical harmonics Yl,m, whose radial components are the same for
the same l. Generally, such a decomposition has an infinite dimension (and so the
sum is generally infinite). Thus, this approach is possible (or better it is efficient)
only due to the specific nature of atomic core potentials, that pulls in a majority
of the charge into the lowest l-subspaces.

Maybe the decomposition is more clearly written in the bra-ket notation, as
it expresses explicitly that the projection is done via the scalar product (in the
angular space) of spherical harmonic functions with the function it is applied on:

Vnl =
∑
l,m

Rl |Yl,m〉〈Yl,m| .

The operator |Yl,m〉〈Yl,m| forms a dense matrix, which also illuminates the nature
of nonlocality of the l-dependent pseudopotentials.

Construction of l-dependent pseudopotentials

A brief and inexact summary of the pseudopotentials construction will be described
here, just for the sake of completeness. For the exact description, please see the
mentioned literature.

The construction of an l-dependent pseudopotential for a given atom consists
of creating Rl potentials for each l-space included in the potential. Rl are usually
created by optimizing coefficients of a basis (e.g. often some kind of Gauss
functions are used), constrained so that the requirements listed in Section 4.2.1
are fulfilled. The used basis and the used optimization criteria (e.g. the depth of
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the pseudopotential and its maximal steepness) differ according to a given method.
This optimization is performed in each l-subspace independently on the other
l-subspaces.

After the radial functions Rl are obtained, their average can be used as the local
part of the potential (or the local part can be constructed in a more sophisticated
way to better approximate the higher, in the pseudopotential not included l-spaces).
The last step is to unscreen the potential: subtract the Hartree and the exchange-
correlation potentials (see (2.41) and (2.42) on page 30) from the local part of the
pseudopotential.

4.2.3 Separable pseudopotentials
The decomposition to the l-spaces allows us to restrict the nonlocality of the
operator but does not solve the problem with the matrix sparsity. Moreover — the
evaluation of Pl projectors requires a spherical integration. Such a task is possible,
but it is computationally demanding and has substantial drawbacks if a FEM
basis is used for the discretization (see the results in Section 5.4.2), so we need a
more efficient formulation of l-dependent pseudopotentials. This appears to be a
separable pseudopotential, which will be described in the following text.

Separable pseudopotentials are a well-known form of pseudopotentials [160],
and the decomposition of an operator using B-orthogonality has been probably
described as well since it is a not so surprising idea. Yet the connection of these
two concepts leading to a pure algebraic description of separable pseudopotentials,
as well as some of the applications of the presented description, e.g. extending
the projectors basis by energy derivatives for a better transferability of separable
pseudopotentials, cannot be found in literature (however the presented ideas were
surely behind the scene).

B-orthogonality

Let us first visit the field of linear algebra. We will generalize the concept of
orthonormality for an “indefinite scalar product”. Since we already discretized the
equations, we will formulate the approach in a finite-dimensional vectors space,
however, it is possible to use the same approach in an infinite-dimensional space
prior to the discretization.

Definition 4.10 (B-scalar product). Given a vector space V with a scalar product
(∗ · ∗) and a Hermitian operator B. Then B-scalar product is defined as

(u · v)B = (u · Bv) . (4.33)

It can be also easily proven that the B-scalar product for a positive definite
matrix B fulfills the definition of a scalar product. For an indefinite matrix, the
B-scalar product obeys the definition of the scalar product only on its “positive
definite subspace”. Hence, we define a Hermitian form — a relaxed version of the
scalar product, that is applicable even to indefinite matrices.

Definition 4.11 (Hermitian form). Let T is a field and V is a vector space. Then
the Hermitian form is the function χ(V×V)→ T, that has the following properties:
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1) χ(x + y,v + w) = χ(x,v) + χ(x,w) + χ(y,v) + χ(y,w)

2) χ(ax, by) = abχ(x,y)

3) χ(x,y) = χ(y,x)

Note that the definition of the Hermitian form for the case of real numbers does
not differ from the definition of the bilinear form.

Lemma 1 (B-scalar product). The B-scalar product as defined in Definition 4.10
is the Hermitian form.

A proof of the Lemma is only a technical verification of the definition of the
Hermitian form (Definition 4.11).

Definition 4.12 (B-orthonormality). Given a Hermitian operator B, vectors u
and v are B-orthogonal, if

(u · v)B = 0 . (4.34)

Given a set of vectors V , they are B-orthonormal if

V +(BV ) = I , (4.35)

where I is the identity matrix.

This definition is valid only for positive definite matrices, so we again define a
relaxed version of the same concept:

Definition 4.13 (B-pseudoorthonormality). Given a set of vectors V and a Her-
mitian operator B, vectors V are B-pseudoorthonormal if there exists a diagonal
matrix D that contains only numbers {−1, 0, 1} on its diagonal7 such that

V +(BV ) = D . (4.36)

Definition 4.14 (Definitness matrix). The matrix D from Definition 4.13 is called
the definitness matrix of B and V .

The construction of a separable pseudopotential is based on the following
theorem:

Theorem 4.2 (B-orthogonal decomposition). Given a linear Hermitian operator
B on a vector space V with a B-pseudoorthonormal basis V . Then

((BV )D(BV )+)V = B(D2V ) (4.37)

where D is the definitness matrix of B and V .
7The minus one is allowed for the case of real numbers. In the case of complex numbers, the

factor -1 can be dissolved into the basis. Note that since the operator is Hermitian, its eigenvalues
are real and thus such a decomposition is possible.
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Proof.

(BVD(BV )+)V = BVD(V +B+V ) = BVD(V +BV )+ = BVDD+ = BD2V
(4.38)

Since D2 is the identity except for the elements of the basis V which are B-
orthogonal to themselves (that are in the kernel (or null space) of the operator B),
this theorem gives us the recipe how to decompose an operator B into a basis V .

Provided that we are able to select the subspace with a sufficiently low dimension,
where we need the operator to be described, we can choose a basis of the subspace,
B-orthonormalize it and decompose the operator using the theorem.

In this manner, we obtain an approximation of the operator, that will be
exact on the given subspace, while the decomposed operator will be equal to zero
for functions orthogonal to the given subspace. The construction of separable
pseudopotentials just follows this idea.

Generating separable pseudopotentials from l-dependent pseudopoten-
tials

We have already stated that the potentials of atomic nuclei (and pseudopotentials
too) are so deep, that their influence (nearly) overrides the other potentials inside
the radius rc around the atomic core. As a result, not only the spherical symmetry
of the core charge density is enforced by the atomic core inside the radius, but even
valence wave functions do not differ too much from the shapes of wave functions of
an isolated atom in this region.

Moreover, due to the Pauli principle (see (2.13)), wave functions belonging to a
single l-subspace are orthogonal and so they form a basis in the radial space. Since
they are orthogonal, each radial wave function has a different number of nodes,
and, same as for the angular space, the fewer nodes a function has, the smaller
its energy is. If we denote n the number of nodes of a radial wave function, the
energies of wave functions with equal sums l+n are similar: this fact is the essence
of the chemical orbital notation e.g. 2s, 1p, etc.

Therefore, we have a natural choice for the radial space, where we need to
describe the nonlocal part of a pseudopotential for a given l: we can take the
first few lowest-energy wave functions of the isolated atom, use them to create
a Vl-pseudoorthonormal basis and then apply the B-orthogonal decomposition
theorem 4.2. These steps together form Algorithm 4.1 for generating the separable
pseudopotential for a given l.

Definition 4.15 (Projectors). The radial functions νl,i generated by Algorithm 4.1
are called projectors.

We can summarize the previous development into a short theorem:

Theorem 4.3 (Separable pseudopotential). Let Rl be a nonlocal radial part of
a pseudopotential for a given l and let ψi be the radial wave functions computed
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Algorithm 4.1: Generating a separable pseudopotential

1: procedure Separable pseudopotential(Rl, Vloc + Vunscreen)
2: ψi = Solve the Khon-Sham equations for (Rl + Vloc + Vunscreen))
3: νl,i, di = Rl-orthonormalize(ψi)
4: νl,i = Rlνl,i
5: return νl,i, di

with that pseudopotential and l. Then there exists a separable pseudopotential νl,i
generated by Algorithm 4.1, so that it holds

∀ψ ∈ span ({ψi}) : Rlψ =
∑
i

νl,idi(νl,i · ψ ) . (4.39)

The simple consequence of the theorem is that the radial nonlocal part Rl of a
given l-dependent pseudopotential for a given l can be approximated as

Rl =
∑
i

diνl,iν
+
l,i , (4.40)

or in the bra-ket notation

Rl =
∑
i

di |νl,i〉〈νl,i| (4.41)

and the approximation is exact for the wave functions, from which the projectors
νl,i have been constructed (whereas the approximation is effectively zero for all
other (orthogonal) wave functions).

Application of separable pseudopotentials

Unlike the l-dependent pseudopotentials, where the decomposition was done in
order to restrict the nonlocality to the angular part of the pseudopotential, the
decomposition to the separable potential has a rather different purpose. Notice
that there is a certain symmetry in the expression of the projectors Pl (see (4.31))
and so in the angular part of Vl:

Vl(ψ(r, θ, ϕ)) = Rl(r)(Plψ)(r, θ, ϕ) = Rl(r)
l∑

m=−l

(
Yl,m

(
Y +
l,m · ψ

))
(r, θ, ϕ) ,

(4.42)

or it might be more visible in the bra-ket notation:

|Vl |ψ〉 = |Rl〉 |Yl,m〉〈Yl,m| . (4.43)

Using the separable pseudopotential approach (4.40), a very similar symmetry
appears in the radial part (4.41) as well. In the following expressions, × operator
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is used to emphasise the fact, that the multiplication results in a function with the
domain given by a direct product of the domains of the coefficients of the product).

(νl,i × Yl,m) (r, θ, ϕ) = νl,i(r)Yl,m(θ, ϕ) (4.44)

Thus, the Vl operator can be written as:

Vl =
∑
i

diνl,iν
+
l,i ×

l∑
m=−l

(
Yl,mY

+
l,m

)
=

∑
i,m

di (νl,i × Yl,m) (ν+
l,i × Y +

l,m) =
∑
i,m

di (νl,i × Yl,m) (νl,i × Yl,m)+ (4.45)

Using the decomposition (4.45), the nonlocal — dense — part of the matrix of
the discretized Kohn-Sham equations (4.14) can be expressed as

(ϕj · Vnlϕk ) =
ϕj · ∑

l

∑
i,m

di (νl,i × Yl,m) (νl,i × Yl,m)+ ϕk

 =

∑
l

∑
i,m

di

ϕj · (νl,i × Yl,m) (νl,i × Yl,m)+ ϕk

 =

∑
l

∑
i,m

di

(
ϕj · (νl,i × Yl,m) (ϕk · (νl,i × Yl,m))

:::::::::::::::::::

)
. (4.46)

The term underlined by a wavy line is a scalar number given by the inner product.
Therefore, using the following property of inner product [168]

(u · av) = a(u · v) , (4.47)

where the overline denotes a complex conjugation, we can rephrase (4.46) as

∑
l

∑
i,m

di(ϕj · (νl,i × Yl,m) (ϕk · (νl,i × Yl,m))) =
∑
l

∑
i,m

di(ϕj · (νl,i × Yl,m))(ϕk · (νl,i × Yl,m)) . (4.48)

The symmetry is clearly visible in the previous expression, thus, we can denote:

Ui,j,l,m = (ϕj · (νl,i × Yl,m)) . (4.49)

Now we can express the discretized Kohn-Sham equations (4.12) in a computation-
ally efficient way as

Lu + Vlocu + UDU+u = eMu , (4.50)

where U ∈ Rn×k and k is the total number of projectors from all atomic cores.
Therefore, using separable pseudopotentials, we transform the dense generalized
eigenvalue problem to the sparse rank-k-update generalized eigenvalue problem.
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Definition 4.16 (Rank-k-update (generalized) eigenvalue problem). A rank-k-
update problem is an eigenvalue problem with dimension n of the form

Au + UDV u = λBu , (4.51)

where the matrix U has the shape n× k, the matrix D is k × k and the matrix V
is k × n. For the generalized problem the matrix B is not the identity matrix.

The form of the rank-k-update problem is computationally efficient — we
can even precompute U ∈ Rm×n once at the start of the DFT cycle, since the
pseudopotential does not depend on an actual charge density, and thus does not
change during DFT iterations. Hence, we resolved the issue presented at the
beginning of the section.

4.3 Finding a suitable size of the radial basis for
generating separable pseudopotentials

In order to make the computation with separable pseudopotentials efficient, the
dimension of the updates U (from (4.50)) must be kept as low as possible. Thus it
is crucial to make a proper choice of the radial basis ψi for Algorithm 4.1. This
section should answer the question, how to construct the projectors and how many
of them are needed to describe a pseudopotential well.

Of course, the suitable number of projectors differs from case to case, so there
is no general answer to the stated question. However, some guidelines for efficient
use of FENNEC can be obtained from the data following below. Moreover, the
methodology used in this section can be used for verifying that the number of
projectors is suitable in a particular case. The following work is also a methodical
preparation for a quality evaluation of the pseudopotentials generated using a newly
developed code for pseudopotential construction, written by my colleague Robert
Cimrman.

4.3.1 Test setup
To evaluate the suitable number of projectors, the charge density of given systems
was computed with a high number of projectors to obtain the reference charge
density. The adaptive hexahedral mesh (see Section 3.2.1) with cubic elements
was used, with the edge length of the smallest elements equal to 0.5 a.u. Then
(using the same initial charge density) the number of projectors was decreased
progressively and the L2 norms of the differences of the resulting charge densities
from the reference one were being evaluated.

Since the state of a system is given by the charge density (see the First
Hohenberg-Kohn theorem 2.2), a small error in the charge density is sufficient to
have a computation precise “enough”. This claim (which is stated “intuitively”
here, since its exact formulation would require sophisticated error analysis of the
whole computation chain) is further confirmed by the work presented in the next
chapter: see Fig. 5.7 on page 154 for the relationship between the error in the
charge density and the error in the force.
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All the used pseudopotentials were generated using LDAT routines for gen-
erating environment reflecting l-dependent pseudopotentials [20]. However, the
pseudopotentials were not adapted for the charge density of the computed samples
(see [20]) if it is not said otherwise: the purpose of the test is not to demonstrate
the quality of fine-tuned pseudopotentials, but just to evaluate the effect of raising
or lowering of the number of projectors in “real cases” where the ability of a
pseudopotential fine-tuning is often limited (e.g. during geometry optimizations,
where the energies of wave functions change with changes of the geometry).

The conversion from the l-dependent to separable form was done using routines
included in FENNEC by Algorithm 4.1.

A number of systems were evaluated in this way: e.g. various dimers (e.g. nitric
oxide and titanium nitride), carbon dioxide, and a few more complex molecules
(dicyanocyanamide, tetrafluoromethane, fluorouracil). Stretched dimers have wave
functions with different energies, therefore, the dimers were computed with various
interatomic distances to detect a possible loss of transferability during the separable
pseudopotentials generation.

The molecules were selected “randomly”, taking into account the chemical
elements included in the material samples, which we plan to compute in our further
research. Some of them were picked with an assumption that a given phenomenon
to be demonstrated could appear.

Choice of projectors

In the previous section (4.2.3) it has been explained, that a natural choice is to
take the first few radial solutions of the Kohn-Sham equations (2.44) (for a given
atomic l-pseudopotential) as the basis for the decomposition. In this section, we
try to find an answer to the question, what number of projectors is commonly
sufficient in the calculations.

Moreover, the following approach for the radial basis construction will be put into
the test: we already mentioned the property of transferability of a pseudopotential.
Since the separable form of the pseudopotential limits to a great extent the number
of wave functions, that are “seen” by the pseudopotential (see the discussion below
(4.41)), its transferability can be even lower than the transferability of the original
pseudopotential. Especially for a single projector, the transferability is often very
low.[169]

Therefore, it seems to be a viable approach to enrich the basis by a derivative
of the atomic wave function with respect to its energy. Similar approaches have
already been published, e.g. Chou suggests including more wave functions with
different energies [170], but we are not aware of a publication using the energy
derivatives.

4.3.2 Test results
The results of the performed numerical tests show some common patterns: therefore
we will not present all the performed computations, but only the examples of the
patterns observed during our tests.
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Figure 4.3: Analysis of the charge density convergence with regard to the number
of projectors for the Nitrogen pseudopotential in various compounds.
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Nitrogen pseudopotential and geometry of the molecule The first tested
pseudopotential was for Nitrogen, which had appeared unproblematic in our previ-
ous practical computations (e.g. it provided the correct molecular distances, see
Fig. 5.2 on page 148). We can see in Fig. 4.3, that already two projectors lead to
sufficiently precise results.

The l = 1 part of the pseudopotential exhibits the highest sensitivity to the
number of projectors, and moreover it does not converge monotonically. As it
could be expected, the l = 2 part of the pseudopotential, whose eigenstates are not
occupied, requires a smaller number of projectors to achieve the same precision.

Two similar molecules, NO and NO2, were computed, to verify, whether the
used mesh (a refined hexahedral mesh with regular hexahedrons, see Section 3.2.1)
brings a "preferred direction bias” into the computation or not.

If that were the case, the results for those molecules would differ, since one
of them is linear (has the angle 180° between the bonds) and the second is not.
However, the observed differences were small, which indicates that the bias is not
significant (at least in this particular case).

Titanium pseudopotential Titanium is a transition metal, and those are known
to cause “computational difficulties”. This phenomenon — related probably to
the fact that there is only a narrow energy gap between 3d (l = 3) and 4s
(l = 0) electrons — was “proven” again by the following calculations of titanium
dioxide and titanium nitride, in which titanium shows much larger sensitivity (in a
computational sense) than both the elements from the previous case.

The first case in Fig. 4.4 for l = 2, denoted as titanium dioxide with the “bad”
pseudopotential, is presented here to show results of an unsatisfactory pseudopo-
tential. A very low transferability of the potential makes the computation unstable
and the results were very different for any lower number of projectors and any used
order of numerical quadrature.



4.3 Analysis of the suitable size of a radial basis for PSP 129

1× 10−8

1× 10−7

1× 10−6

1× 10−5

0.0001

0.001

0.01

0.1

1

0 1 2 3 4 5 6 7

∫ (ρ
−
ρ

re
f)

2

Number of projectors

TiO2, bad PSP, q.o. = 6
TiO2, bad PSP, q.o. = 8
TiO2, bad PSP, q.o. = 10
TiO2, good PSP, q.o. = 6
TiO2, good PSP, q.o. = 8
TiO2, good PSP, q.o. = 10

TiN, good PSP, q.o. = 6
TiN, good PSP, q.o. = 8
TiN, good PSP, q.o. = 10

Figure 4.4: Analysis of the l = 2 nonlocal part of Titanium pseudopotentials and
the effect of quadrature order on the precision of the computation.

Better results, presented as the “good pseudopotential” in Fig. 4.4 for l = 2,
were obtained with a pseudopotential tuned for the titanium nitride (see the
environment reflecting pseudopotentials in [20]). Only two projectors for each l
have been necessary to achieve an acceptable precision in the case of titanium
nitride. For a (by the charge distribution) relatively similar molecule of titanium
dioxide (both of them have a covalent bond), substantially more projectors and a
high quadrature order have to be used to achieve a similar precision, because the
pseudopotential was tuned for TiN and not TiO2...

Note that in this case the states for l=2 are occupied and the results for l01
were similia.

These results suggest (or maybe better confirm), that the transferability of a
pseudopotential is a very substantial property of the pseudopotential, and that
the construction of a special (environment reflecting) pseudopotential for the
particular atomic position [20] is one of the first approaches, that one could try
if computational difficulties occur (e.g. when a slow convergence/divergence or
unphysical results are observed).

Moreover, the results suggest the following hypothesis. Better results could
possibly be obtained, if the projectors would be based not on the isolated atomic
wave functions (which, however, reflect the environment, for which the pseudopo-
tential has already been tuned, see [20]), but on the actual wave functions from
a computed material (or if the projection basis would be enriched by such wave
functions). This hypothesis will be examined by our further research.

Analysis of the quadrature order Another important observation can be
demonstrated on the case of the titanium pseudopotentials. It is derived at the
end of Section 3.2.2 that a suitable numerical quadrature for the density functional
theory terms evaluated using cubic finite elements should be at least of the fourth
order.
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Figure 4.5: Hydrogen pseudopotentials in nitric acid and carbon pseudopotential in
carbon oxide: projectors with and without the energy derivative. The logarithmic
scale on the y axis is compressed below 1 × 10−10 to emphasize the important
region.

However, if we consider the use of pseudopotentials, this is no longer valid.
Spherical harmonic functions (4.23) are not polynomial, but rational functions (of
coordinates and radius) and therefore the Gauss integration scheme is not exact for
them (see Section 3.2.2). This behavior is especially important for pseudopotentials
with a higher l, where the directionality of the potential and so the “rationality” of
the projectors are more substantial.

Therefore, to use a higher-order quadrature to make the approximation more
precise seems to be a viable approach. This hypothesis is supported by the presented
sample calculations: see again Fig. 4.4. In the case of titanium oxide, the accuracy
substantially increases with a given number of projectors if a higher quadrature
order is used.

Surprisingly, this behavior did not appear in the case of titanium nitride, where
mainly the first two projectors are substantial. There could be two reasons: first,
the inaccuracy of the quadrature is random — a rational function may or may not
be well-approximated by a polynomial. If only a few projectors are needed, there is
a greater chance, that all of them can be well-approximated. And second: the error
of the approximation is amplified by the loss of the orthogonality of the projectors,
which is unavoidable in finite precision arithmetic for more projectors than two.

Projectors created using energy derivatives The idea of using energy deriva-
tives for the construction of projectors was tested. To a given number of projectors
for a given pseudopotential, made from the first n atomic wave functions, one
“derivative projector”, constructed using a numerical (with δ = 0.1Eh) energy
derivative of the ground state wave function ψ

∂ψ(e)
∂e

= ψ(e+ δ)− ψ(e− δ)
2δ , (4.52)

was added.
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This approach yields surprisingly nearly identical results as adding one more
(excited) wave function in most of the cases — apparently, both kinds of projectors
act as a similar enrichment of the basis. Those cases are not presented as the
differences are negligible and the lines would coincide.

Only in a few cases the “derivative projectors” performed better than the
standard ones, e.g. for a hydrogen pseudopotential in the case of nitric acid, see
Fig. 4.5. The results obtained with a carbon pseudopotential in carbon oxide were
ambiguous, the derivative slightly improved the precision for l = 0, the results were
nearly identical for l = 1, but for l = 2 including the energy derivative worsened
the results.
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Figure 4.6: Dependence of the sums of eigenvalue solver times from iterations of
the DFT cycle on the number of projectors in each l-m space. The results were
computed using eight cores of 2 × 6 core Xeon E5645 [171], clocked at 2.4Ghz
with 800Mhz DDR3 memory. The adaptive hexahedral mesh (see Section 3.2.1)
and Jadamilu eigenvalue problem solver (see Section 6.3.2) were used for the
computation. The two- and more-projectors setups included the energy derivatives.

Performance analysis To decide how many projectors to use, the knowledge of
the impact of the number projectors on the performance is important. Therefore, a
brief analysis is presented below. We will focus on the performance of an eigenvalue
solver, which consumes the majority of the computational time.

Unlike in the convergence analysis in Section 3.4.2, there is no theoretical
parameter (like the matrix dimension or the number of nonzeros), that could be
used as a metric for the performance of the eigenvalue solver, so we will compare
real elapsed times. The resulting times for a given number of projectors for a single
l-m space8 are presented in Fig. 4.6.

The performance of the eigenvalue solver depends on many things: the used
computer architecture (size and organizations of cache, implementation of memory
controller etc. . . ), the used solver, the used underlying BLAS library, etc. The
elapsed times should be thus taken only in mutual relations. On the other hand,

8The total number of projectors in the system was (1 + 3 + 5) ∗ n ∗ number of atoms.
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the performance of any iterative solvers always depends on the matrix-vector
multiplication performance, therefore, the presented results give a reasonable
guess of the relative performance penalty for including more projectors into a
computation.

The results are pretty consistent: the elapsed time for seven projectors is about
twice as large than for a single projector (the only exception, the case of six
projectors, will be discussed later). The implementation of the rank-k-updates
could be improved by utilizing some block-sparse matrix storage format, however,
the presented results show, that the performance of the rank-k-update matrix-
vector multiplication is not a problem, or at least not the problem that should be
addressed now.

Remark on ghost states The exceptionally high computation times for six
projectors in Fig. 4.6 are caused by ghost states. By the term ghost states we
mean the non-physical electron states, caused as another unwanted side-effect of
numerical errors. The reasons of their appearance can be various, e.g. so-called
spurious eigenvalues from eigenvalue solvers (e.g. [172]), that are mainly due to
the loss of orthogonality during solver iterations [173]. Eigenvalue solvers often
incorporate their own methods for the suppression of the spurious eigenvalues, e.g.
the reorthogonalization in Lanczos solvers [173] or the purification [174].

In the current case, the source of the ghost states is similar: theB-orthogonalization
of projectors (see Definition 4.10 on page 121). The orthogonalization is done in
the radial space — and the inexactness of the Gauss integration scheme for rational
functions causes a non-orthogonality of the resulting 3D projectors, which leads to
the ghost states appearance.

The ghost states appear only for a single number of projectors in most cases:
adding one or more projectors causes them to disappear again. Most often this
number of projectors is six. The ghost states also appear more often in the cases,
where the projectors include the energy derivatives. The reason might be a lack
of a “natural orthogonality” of the derivative to the other projectors: atomic
wave functions are orthogonal, while their energy derivatives are not, and the
orthogonality apparently reduces the numerical errors from the finite precision
arithmetic during the B-orthogonalization.

The problem could be solved by some kind of reorthogonalization, either in
the radial or 3D space. This problem can be easily solved by not choosing the
numbers of projectors that suffer from the issue. Thus, there was no need for a
deeper examination of the matter and resolving the issue rigorously.

4.3.3 Conclusions and recommendations
We can see from the results that there is no general rule on how to determine
the “best” number of projectors. The more a pseudopotential fits the computed
case, the fewer projectors are usually needed. Two or three projectors yield often
sufficiently precise results, however, it should be verified even with pseudopotentials
tuned to a particular case [20] that adding a projector does not (significantly)
change the results.
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The use of a single projector can be recommended only if the required precision
is low and/or when the l-space of the projector is unoccupied (this result is in
agreement with the recommendations of the other authors [169]). For the same
reason, it is not recommended to use pseudopotential formats, that allow only a
single projector for an l-space. The overestimation of the number of projectors is
also not recommended since the performance suffers and the hazard that ghost
states appear increases with the number of projectors.

The implementation of the matrix-vector multiplications with the rank-k-
updates matrix has not been fully optimized yet. Thus, if the performance penalty
for using too many projectors becomes an issue, there is a space for performance
improvement. However, the performance of the solver itself is substantially more cru-
cial than the number of projectors, so implementing more sophisticated algorithms
for this multiplication is not necessary in the current state of development.

A computation with the projectors requires a higher order of the numerical
quadrature. The results also suggest that the required number of projectors is not
dependent on the orientations of atomic bonds with regard to the mesh. Adding
a projector built from the energy derivative seems to have a similar effect on the
precision as adding one projector built from an excited state. In some cases the
energy derivative projectors perform better, but such cases are not common.
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Geometry optimization, structure optimization or structure relaxation, means an
optimization of atomic positions with respect to the internal energy of the system.
Such a task requires an efficient evaluation of two quantities: of the total energy of
the system and of the derivatives of the total energy with respect to the position
of the atomic sites, which mans (called after two famous physicist and authors of
one useful theorem) Hellmann-Feynman forces.

In this chapter, efficient formulas for both the total energy and Hellmann-
Feynman forces will be derived. Using the Kohn-Sham equations for the total energy
evaluation is a well-known trick [175]) and it can be used for evaluating the Hellmann-
Feynman forces, too. A theoretical novelty in this chapter is the application of
the Hellmann-Feynman theorem in the finite element method in combination with
pseudopotentials. The used approach and the resulting expressions have not been
published in the literature yet.

The most difficult part of the calculation of the Hellmann-Feynman forces is
the evaluation of the term arising from the gradient of nonlocal pseudopotentials
because the derivatives of pseudopotentials include (among other terms) also the
derivatives of the projection operators to l-subspaces which result in singularities.
In this work, I have proposed a new expression for evaluating this part of the force,
based on differentiating the wavefunctions instead of the projectors.
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The new expression for Hellmann-Feynman forces in finite elements is verified by
comparing equilibrium atomic positions (i.e. positions with zero forces) to minima
of total energies, to results obtained via other computational approaches, and to
experimental values (for nitric oxide, carbon dioxide, and tetrafluoromethane) and
by comparing vibrational frequencies (of carbon dioxide). The convergence property
of the expression is analyzed and the expression is compared to other previously
published approaches to the non-local contribution to HF forces as regards accuracy
and computational demands. This comparison shows the advantages of the new
formula in accuracy or/and computational efficiency compared to so far published
formulas.

The first section of this chapter contains several alternatives on how to express
total energy in finite element discretization with pseudopotentials. The second
section contains some theoretical background for the force calculations within
density functional theory: the well known Hellmann-Feynman theorem and a
discussion of the incomplete basis set correction.

In the third section, an efficient and numerically stable way for evaluating both
the local and non-local parts of the Hellmann-Feynman forces within the finite
element method is described. Special attention is dedicated to the non-local part,
giving a brief overview of various approaches to calculations of nonlocal components
of HF forces and illustrates the importance of incorporating all subcomponents of
the nonlocal parts.

The last section presents the results of sample calculations that demonstrate the
correctness of the formula and contains a brief convergence and error analysis in
comparison with other approaches. The theoretical computational demands of the
compared methods are analyzed too. The error of the computed Hellmann-Feynman
forces is analyzed with respect to the stopping criteria of the DFT iterations and
with respect to the mesh element size and number of basis functions, and the
fluctuations of the results obtained by various methods are compared.

5.1 Total energy for pseudopotentials
In the second chapter, we derived the expression (2.37) for the total energy of the
solution to Kohn-Sham equations (2.44). It can be formulated using the energy
operator He, commonly called Hamiltonian:

Eρ =
∑
i

〈ψi|He|ψi〉 =
n∑
i=1

∫
ψ+
i

1
2∇

2ψi +
∫
Vextρ+

∫
EH(ρ) +

∫
Exc(ρ) . (5.1)

To perform the geometry optimization correctly, two additional facts should
be considered: First, moving the atomic sites, the energy Ei-i of repulsion among
atomic cores will begin to change and it must be taken into account in optimizing
the total energy of the system. Moreover, the smearing of the occupation of one-
electron states (see equation 2.50 on page 34) has to be incorporated into the total
energy expression.

Denoting the total energy including Ei-i by Etot, we can express it as

Etot = Eρ + Ei-i =
n∑
i=1

wi

∫
ψ+
i

1
2∇

2ψi +
∫
Vextρ+

∫
EH(ρ) +

∫
Exc(ρ) + Ei-i . (5.2)
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If we denote the parts of the total energy expression as

Ekin =
n∑
i=1

wi

∫
ψ+
i

1
2∇

2ψi (5.3)

Eext =
∫
Vextρ (5.4)

EH =
∫
EH(ρ) (5.5)

Exc =
∫
Exc(ρ) . (5.6)

the expression for total energy will be

Etot = Ekin + Eext + EH + Exc + Ei-i (5.7)

5.1.1 The terms of the total energy

Energy of pseudopotentials Using pseudopotentials, the energy Eext must be
expressed accordingly to the equations 4.30 and 4.31 on page 120:

Eext =
∑
j

∫
V j
locρ+

∑
i,j,l

wi

∫
ψ+
i R

j
lP

j
l ψi =

∑
E j
loc +

∑
j,l

E j,l
nl (5.8)

where i runs over all occupied eigenvectors, j over all atomic sites and l over
l-subspaces related to the given atomic site. We can denote

Eloc =
∑

V j
locρ (5.9)

Enl =
∑
i,j,l

wi

∫
ψ+
i R

j
lP

j
l ψi . (5.10)

Hartree energy Because the expression for Hartree energy EH contains double
integral (let’s recall its definition in equation 2.46 on page 31)

EH =
∫
EH = 1

2

∫
y

∫
x

ρ(x)ρ(y)
‖x− y‖

(5.11)

it is more convenient to evaluate it using the Hartree potential

EH = 1
2

∫
VHρ (5.12)

Note the factor one half: as the electron-electron repulsion acts on both the electrons,
they share the energy of the force. Not to count the energy of an electron-electron
pair twice, the resulting expression should be divided by two.
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Ion-ion energy The energy of atomic nuclei repulsion is given by a Coulombic
interaction:

Ei-i = 1
2
∑
a6=b

ZaZb
‖xa − xb‖

. (5.13)

Pseudopotentials smooth the potentials of atomic nuclei by replacing them by
atomic cores (since the atomic core represents the nucleus together with non-valence
electrons and dissolves the singularity). Asymptotic behaviour is the same as (5.13),
but for more precise total energy calculations, a real charge-potential energy should
be taken into account.

Since the nonlocal parts of a pseudopotential are short-range and they vanishes
in distances of other nuclei, only the local long-range potential is to be considered.
Thus, core charges be put into effect using the Poisson equation

ρaion = − 1
4π∇

2V a
loc (5.14)

and the energy can be expressed as (e.g. [176])

Ei-i = 1
2
∑
a6=b

∫
V a
ionρ

b
ion . (5.15)

The number of terms in the sum in the equation 5.15 grows quadratically with the
number of atoms. Defining

Vion =
∑
b

V b
ion ρion =

∑
a

ρaion , (5.16)

a simple transformation can be used

1
2
∑
a6=b

∫
V a
ionρ

b
ion = 1

2

∑
a,b

∫
V a
ionρ

b
ion −

∑
a

∫
V a
ionρ

a
ion

 =

1
2

(
Vionρion −

∑
a

∫
V a
ionρ

a
ion

)
, (5.17)

which results in the expression with a linear dependency on the number of atomic
cores.

5.1.2 Efficient computation of total energy

The evaluation of the energy of nonlocal pseudopotentials Enl requires computation-
ally demanding spherical integration, which should be avoided in FEM calculations.
Moreover, it is desirable to avoid these terms in assembling the Hamiltonian matrix,
too. The spherical integration could be avoided either using the rank-k-update
approach, or by substituting the Kohn-Sham equations into the total energy ex-
pression.
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Direct approach using separable pseudopotentials and Laplace matrix

The separable form of the nonlocal part of a pseudopotential V l
nl is defined in

chapter 4.2.3 by equation 4.45 as:

V l
nl =

∑
n,m

dn |νl,n × Yl,m〉〈νl,n × Yl,m| . (5.18)

If we express a wavefunction ψ in a finite element basis ϕk

ψ = akϕk , (5.19)

we can write the energy of nonlocal parts of a pseudopotential V l
nl as

Enl(V l
nl) =

∑
i

wi

∫
ψ+
i R

j
lP

j
l ψi (5.20)

=
∑

i,k,n,m

wi

∫
(ak,iϕk)+ dn (νl,n × Yl,m)

∫
(νl,n × Yl,m)+ak,iϕk (5.21)

=
∑

i,k,n,m

wi|ak,i|2
∫
ϕ+
k dn (νl,n × Yl,m)

∫
(νl,n × Yl,m)+ϕk . (5.22)

If we precompute the following set of vectors

ul,n,m,k = ϕ+
k (νl,n × Yl,m) = (ϕk · νl,n × Yl,m ) , (5.23)

we can express the nonlocal pseudopotential part of the total energy (5.20) as

Enl(V l
nl) =

∑
n,m,k,i

wi|ak,i|2(ul,n,m,k · ul,n,m,k ) . (5.24)

The first kinetic term of (5.2) can be easily expressed using the Laplace matrix
L of the finite element basis:

∑
i

wiψ
+
i

1
2∇

2ψi =
∑
i,k

wi (ai,kϕk)+ 1
2∇

2ai,kϕk =
∑
i

(ai · Lai ) (5.25)

The Laplace matrix L can be already precomputed during the DFT selfconsistent
cycle. Consequently, the kinetic energy expression can be easily evaluated without
the need for assembling the matrix again in each iteration. All the remaining terms
in (5.2) can be simply expressed as products of appropriate potentials with the
charge density.

Total energy computing using Kohn-Sham equations

Another way to avoid the demanding spherical integration is to integrate Kohn-
Sham equations (2.44):

1
2∇

2ψi +
∑
j

V j
locψi +

∑
j,l

∫
V j
l P

j
l ψi + VHψi + Vxcψi = eiψi , (5.26)
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with ψ+
i∫

ψ+
i

1
2∇

2ψi +
∑
j

∫
ψ+
i V

j
locψi +

∑
j,l

∫
ψ+
i V

j,l
nl P

j
l ψi +

∫
ψ+
i (VH +Vxc)ψi = e

∫
ψ+
i ψi .

(5.27)
Because the wavefunctions are normalized, the right side of the equation is equal
to ei — i.e. the Kohn-Sham energies of wavefunctions. Note that they are not the
true energies of the electrons — although there are some relations in between (so,
e.g. the eigenstates are occupied in the order of their Kohn-Sham energies) — the
total energy of the system cannot be obtained by just summing the Kohn-Sham
energies.

Since the Kohn-Sham equations hold for all theirs solutions, we can substitute
each solution into equation (5.27) and perform a weighted (to incorporate smearing)
sum of the resulting equations. We obtain

n∑
i=1

wi

∫
ψ+
i

1
2∇

2ψ +
∑
j

∫
Vlocρ+

∑
i,j,l

wi

∫
ψ+
i V

j
l P

j
l ψi +

∫
(VH + Vxc)ρ =

∑
i

wiei

(5.28)
Denoting

EVxc =
∫
Vxcρ , (5.29)

The summed equations (5.28) can be expressed as

Ekin + Eloc + Enl + 2EH + EVxc =
∑
i

wiei (5.30)

and the equation (5.2) as

Ekin + Eloc + Enl + EH + Exc + Ei-i = Etot . (5.31)

Substracting them yields

−EH − EVxc + Exc = e−
∑
i

wiei (5.32)

and we obtain the final expression for the total energy:

Etot =
∑
i

wiei − EH − EVxc + Exc + Ei-i =

∑
i

wiei +
∫ (

Exc − Vxc −
1
2VH

)
ρ + 1

2

(∫
Vionρion −

∑
a

∫
V a
ionρ

a
ion

)
. (5.33)

The final expression contains only few integrals that can be evaluated easily and
without substantial computational demands. Unlike the “direct approach” (Eq.
5.2), this expression does not contain wavefunctions, but only the charge density.
Therefore, its evaluation requires only scalar products fo vectors — not the matrix
elements — and thus it is a more efficient way to evaluate the total energy. However,
both of the approaches are useful, as equality of their results is a good check of the
convergence of the DFT calculation.
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Total energy using ionic charge

Pask and Sterne in [175] introduced another transformation for total energy. Their
approach aims at periodical structures and its motivation is to avoid integrals that
diverge in an infinite periodical space. Such an issue is not applicable in real space
calculations for a finite sample, but the presented transformation offers numerical
benefits even in real space.

First, let us define the electrostatic energy as

Ees = EH + Eloc + Ei-i (5.34)

Applying (5.17) and using the following “symmetry” or electron-ion forces:

Eloc =
∫
Vionρ =

∫
VHρion (5.35)

the electrostatic energy can be expressed as

Ees = 1
2

∫
VHρ+

∫
Vionρ+ 1

2

(∫
Vionρion −

∑
a

∫
V a
ionρ

a
ion

)

= 1
2

(∫
VHρ+

∫
(Vionρ+ ρionVH) +

∫
Vionρion −

∑
a

∫
V a
ionρ

a
ion

)

= 1
2

(∫
(VH + Vion)(ρ+ ρion)−

∑
a

∫
V a
ionρ

a
ion

)
(5.36)

Note that such expression, in fact, averages the two ways mentioned above to
calculate Eloc term (see Eq. 5.35). Since these two ways diverge in opposite
direction from the correct value of the total energy in practise, such method
commonly offers lower numerical errors in a total energy calculation. Such an Eloc
energy averaging can be done both in “Kohn-Sham way” of computing the total
energy as well as in the case of applying the separable pseudopotentials.

5.2 Hellmann-Feynman forces
For an efficient structure optimization, the forces acting on atoms are needed
besides the total energy of the system.

The forces acting on atomic nuclei (or on atomic cores, in case of pseudopoten-
tials) — commonly called Hellmann-Feynman forces and abbreviated as HF-forces
— can be calculated in the same way as in classical physics, i.e. as a negative
gradient of the potential energy with respect to the positions of the atomic sites.
The total energy Etot plays the role of potential energy in this case.

It has been already stated (see Eq. 5.1) that the total energy of the system is
determined by the “electronic” part of the Hamiltonian

He = 1
2∇

2 +
∑
j

Vloc +
∑
j,l

V j,l
nl + EH + Exc (5.37)
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and by the external potential, that yields the external energy Ei-i. Denoting the
gradient with respect to the position of the a-th atomic site by ∇a, we can express
the gradient of the equation (2.37) as

f = −∇aEtot = −∇a
(∑

i

wi

∫
ψiHeψi + Ei-i

)
(5.38)

Because a move of any atomic center results in a change of wavefunctions and
eigenvalues, a direct calculation of the gradient would mean running the costly
DFT convergence cycle both for the original system and for the system with the
atomic core moved. Because such a computation would have to be done for each of
the three axes and for each of the atomic sites in the system to get the complete
set of forces, another approach has been found: Hellmann-Feynman theorem [177]
makes the evaluation of the equation (5.38) much simpler.

Theorem 5.1 (Hellmann-Feynman theorem). Let x be a parameter which the
Hamiltonian He is dependent on (e.g. a position of an atomic centre). Then it
holds, for each ground state wavefunction ψi,

deψi
dx

= d
∫
ψ+
i Heψi
dx

=
∫
ψ+
i

dHe

dx
ψi . (5.39)

This theorem can be rephrased as: the derivative of the total energy w.r.t.
atomic position can be calculated as if the charge density remained frozen (i.e.
unchanged while moving the atomic site).

The commonly cited proof of the theorem (see e.g. the original proof in [177])
considers the theorem as a direct consequence of the variational principle. This
approach uses a bit vague assumptions, however. A meticulous reader thus may be
interested in a fully mathematical exact proof of the theorem, as it is built in [178].
Nevertheless, the intuitive variational approach is sufficient for our needs and it is
much more intelligible than the fully rigorous proof, so we will follow it.

Proof. By the chain rule, it holds

deψi(x)
dx

= ∂eψi
∂x

+ ∂eψi
∂ψi

dψi
dx

. (5.40)

The variational principle (see theorem 2.1 on page 26) states, that ∂Etot
∂ψ

is zero
for a ground state, so the second term vanishes. Therefore, as ψ is not directly
dependent on x, holds

dEtot(x)
dx

= ∂Etot

∂x
=
∫
ψ+∂He

∂x
ψ =

∫
ψ+dHe

dx
ψ . (5.41)
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5.2.1 Supplementary terms to the Hellmann-Feynman forces
The argumentation above relies on an important assumption: that the wavefunctions
are the true ground state wavefunctions of a given Hamiltonian. In practice, when
a discretization scheme is used in the calculation, the wavefunctions are not exact
ground state wavefunctions, but only their projections to the given (e.g. finite
element) subspace. Moreover, the charge density has some convergence error.
Therefore, the Hellmann-Feynman theorem could be applied just with caution,
since both of these facts may (or may not) spoil the particular force calculation. If
they do, the correction terms that cure the issue should be applied. In the following
text, the questions of the necessity of such corrections will be discussed for our
case.

Incomplete basis set correction If the charge density described by a finite
basis differs from the true charge density, the Hellmann-Feyman theorem does not
hold and the gradients of the wavefunctions should be incorporated:

∇aEρ = ∇a
∑
i

wi 〈ψi|H|ψi〉 =
∑
i

wi

(
〈ψi|H|ψi〉+ 2 Re 〈∇aψi|H|ψi〉

)
. (5.42)

The extra (second) term is called incomplete basis set correction, abrreviated as
IBS, or Pulay force1 according to the name of the author who introduced the
correction [179].

The need for IBS correction arise particularly in the case of basis dependent
on structure geometry, as e.g. basis created from atomic orbitals in LMTO [14]
or LAPW class methods [13, 180, 181]. In those methods, the corresponding
basis functions are moved with the relevant atomic site to retain the capability
of the basis to describe the wavefunctions. As it is described in [180], this basis
transformation can be used for the approximation of the IBS term:

fIBS = −
∑

wici,jci,k

(
2 Re

〈
dϕi
da

∣∣∣∣∣H − ei
∣∣∣∣∣ϕj
〉

+
〈
ϕ

∣∣∣∣∣d∇2

da

∣∣∣∣∣ϕj
〉)

(5.43)

For the case of the atomic-position-independent basis (e.g. planewaves) the approx-
imation (5.43) of the IBS term is zero, since the gradient of the basis functions with
respect to the change of atomic positions is zero. These facts lead to the commonly
shared and cited belief that the IBS term should be considered for “non-fixed”
bases only. This statement is nearly right in practice: e.g. planewaves calculations
do not usually show significant error in forces. However, this argumentation is not
completely correct.

Imagine a movable basis of atomic orbitals and the corresponding HF force
calculated for a given atomic position. We can fix the basis in the space — i.e. to
make it independent of the current position of atomic sites — move the atom slightly
and perform the DFT cycle and evaluate the forces again. Of course, it will change
nothing (except for the ion-ion interaction): the basis, the wavefunctions, and the
“electronic” part of the forces — everything remains the same. The force will still

1Some authors denote only the approximation of the force given by (5.43) as Pulay force.
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contain the error that requires IBS correction (5.43). It is not surprising since
the expression (5.39) for the HF force is independent on any basis transformation
carried out during geometry optimizations. What is changing during the geometry
optimization iterations is just the approximation of the Hamiltonian, not the
electronic part of the Hamiltonian itself.

The force expresses a measurable physical quantity that should be, for a given
geometry, evaluated as precisely as possible, and it must be independent of any
particular choice of the basis: if the way of discretization changed the value of the
force, it would mean that the calculation is wrong.

It clearly follows from the reasoning above that the gradient in the (5.43) should
not be necessarily taken with respect to the actual move of the basis. Optimally, it
should be evaluated in terms of the basis transformation, which can describe the
moved wavefunctions most precisely. The better the transformation is handled, the
more exact force will be obtained — even though it could or could not match with
the actual transformation of the basis performed during the structure optimization.
For an atomic-position-dependent basis, selecting the same transformation for
generating the IBS term as it is applied in the structure optimization process is a
reasonable choice, which yields (5.43).

For planewaves, where the “completeness” of the basis does not change with
respect to atomic positions, no need for incorporating any transformation into the
force calculation commonly arise, which results in zero IBS term — providing that
the IBS errors are effectively averaged out [182]. However, for a coarse planewave
basis set (low energy cutoff) the IBS term could be noticeable (see [183]). The
importance of the IBS correction grows if the volume of the first Brillouin zone
changes during structure optimization, since the change of the volume causes
changes in the energies of the basis wavefunctions.[182] In such cases, the IBS
correction can reduce the force fluctuations, and therefore it can improve the
convergence of the forces.[184]

Thus, the Eq. (5.43) should be understood in the following way: the IBS
correction does not follow from the movement of the basis elements, but that the
movement of the basis elements can be used as a good approximation to the IBS
terms. It is not surprising that in the original article introducing the Puylay forces
[179], the “right direction” of argumentation is applied, while the real essence of
the problem is obfuscated in some later works of other authors.

FEM basis is built so that it is as independent of atomic positions as possible.
So it could be expected to behave like planewaves. And, indeed, the numerical
experiments confirm that the calculation of HF forces converges to the correct
values (see e.g. Fig. 5.7 and 5.6). Therefore we assume that the IBS term is
insignificant in our case and it can be neglected. Possible incorporating some form
of IBS correction could result in lower requirements on the mesh fineness and,
consequently, possibly lower computational demands, which is opened for further
research at present time.
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Non-self-consistency correction For the sake of completeness, another correc-
tion called non-self-consistency correction should be mentioned [185, 186]:

fNSC = −
∫

(∇aρ)(Vext − V ′ext) (5.44)

It is aimed at the difference between the calculated and the actual ground states that
is brought about by just a finite precision that the DFT self-consistent cycle always
converge with. In the expression above, Vext and V ′ext potentials correspond to the
charge density computed during the last iteration and the ideal (hypothetically
fully converged) ground state charge density, respectively. This correction should
lower the requirements for the convergence precision of the DFT cycle, which could
be useful particularly during the early iterations of geometry optimization.

However, our numeric experiments show a pretty nice correlation between the
convergence error and the HF forces error (see Fig. 5.4). Therefore the benefit of
this correction was not expected to be worth implementing at the current stage of
the FENNEC development. It is planned as a rather independent task to be done
e.g. by a student in his/her bachelor or master thesis.

5.3 Applying HF-theorem within the finite ele-
ment method with pseudopotentials

According to (5.39) there is no implicit (via the dependence of the wavefunctions)
dependence of the HF force on the position of the atomic centres. Therefore the
gradient of the total energy contains only the terms with explicit dependence on
atomic positions and its evaluation seems to be straightforward in principle, as
have been published in [2]:

∇aEtot =
∫
∇aV a

locρ+
∑
l,i

wi

∫
ψ+
i ∇a

(
V a,l
nl P

a
l

)
ψi +∇aEi-i . (5.45)

However, in the case of pseudopotentials, this expression leads to the necessity
of differentiating the projections to l-subspaces in which case the numerical errors
arise due to singularities of the gradients of spherical harmonics at atomic centers.
Therefore, this task requires special attention. First, we will discuss other – simpler
– parts of the expression (5.45).

5.3.1 Local parts of Hellmann-Feynman force
The first term of (5.45) is the local part of electron-ion interaction (see Eq. 4.30
on page 120). The gradient of the local ion potential can be easily evaluated as the
partial derivative of the potential in the radial space multiplied by the unit vector
in direction from the atomic center, i.e. unit vector of the position relative to the
atomic center: ∫

∇aV a
locρ =

∫ ∂V a
loc(r)
∂r

x− ca
r

ρ . (5.46)

Only slightly more effort is required to evaluate the last term of (5.45) expressing
the repulsion of atomic nuclei/cores. Without using pseudopotentials, this term
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∇aEi-i − fC =
∫
∇aV a
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∑
j 6=a

ρjion − za
∑
j 6=a

zj/r
2

∇aEi-i − fC =
∫ ∑

i 6=a
V i
loc∇aρaion − za

∑
j 6=a

zj/r
2

Figure 5.1: Two ways of calculating ion-ion repulsive forces on carbon (pseudopotential)
cores of CO2 molecule: Interatomic distances between the carbon atom and oxygen
atoms (molecule is stretched symmetrically) are shown on the x axis and differences
between the calculated force and the point-charge Coulombic force on the y axis. Note
the numerical instabilities for the second method and the fact, that the core ion-ion
forces differ substantially from the Coulombic force in common interatomic distances.
(Stronger oscillations of the second method around the expected equilibrium distance are
caused by finer sampling in this region).

would shrink to the classical Coulombic force between point charges. However, the
pseudopotential smooths the charge of the nucleus and the actual force differs from
the pure point-charges Coulombic term, as can be seen in Fig. 5.1. Therefore, the
ion-ion force is derived by differentiating the ion-ion term of the total energy by
expression proposed e.g. in [31].

Expressing the pseudocharge ρaion of the ion a as

− 4πρaion = ∇2V a
ion , (5.47)

we can express the ion-ion energy as

Ei-i = 1
2
∑
i 6=j

∫
V i
locρ

j
ion = 1

2
∑
i

∫
V i
loc
∑
j

ρjion −
1
2
∑
i

∫
V i
locρ

i
ion . (5.48)

Differentiation of Ei-i results in

∇aEi-i = 1
2

∫
∇aV a

loc
∑
j 6=a

ρjion + 1
2

∫ ∑
i 6=a

V i
loc∇aρaion . (5.49)

The two terms in (5.49) express the forces corresponding to charge-potential
and potential-charge interactions, respectively. The charge-potential and potential-
charge forces must match, therefore (5.49) can be evaluated using just one of these
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terms. The second term of (5.49) suffers from much larger numerical errors than
the first one since the gradient of ρion is in fact the third derivative of Vloc — see
(5.47) — and each differentiation introduces numerical errors into the computation,
as can be seen in Fig. 5.1. That is the reason for using just the first term of (5.49)
to evaluate the ion-ion force:

∇aEi-i = 1
2

∫
∇aV a

loc
∑
j 6=a

ρjion + 1
2

∫ ∑
j 6=a

V j
loc∇aρaion =

∫
∇aV a

loc
∑
j 6=a

ρjion . (5.50)

5.3.2 Nonlocal part of Hellmann-Feynman force
The most difficult term of the equation (5.45) is the middle one: the nonlocal part
of electron-ion interaction. If we express a projections Pl to l-subspaces integrating
over spheres (recall definition 4.8 on page 119) as

Pl |ψ〉 =
∑
m

Yl,m

∫
θ,ϕ
Y +
l,mψ =

∑
m

|Yl,m〉〈Yl,m|ψ〉 . (5.51)

then, denoting Vl = V a,l
nl and taking a sample wavefunction ψ, the corresponding

force coming from a given l can be expressed as

〈ψ|∇a (VlPl)|ψ〉 = 〈ψ| (∇aVl)Pl|ψ〉+ 〈ψ|Vl (∇aPl)|ψ〉 , (5.52)

The first term in (5.52) expresses the force originating from the shift of the
potential and the second term expresses the change of the charge density in the
given l-subspace that occurs due to the shift of the center of l−projection.

While the first term of (5.52) can be evaluated by means of spherical projection
relatively easily, the second one is more difficult. If we differentiate the projector
Pl, we obtain the gradient of the spherical harmonic functions

∇aPl = ∇a
∑
m

Yl,m =
∑
m

(|∇aYl,m〉〈Yl,m|+ |Yl,m〉〈∇aYl,m|) , (5.53)

with a singularity (for l > 0) at the origin. The approaches used so far have applied
various strategies to overcome this difficulty. In the original paper describing the
calculation of Hellmann-Feynman forces within DFT [2], the gradient of Yl,m is
silently neglected. In some later works, as e.g. in Quantum Monte Carlo methods
[187], where similar projections occur, authors explicitly claim that such terms can
be neglected. However, in our case, this term forms a substantial part of the force
and must be incorporated into the HFF calculation, as can be seen in Fig. 5.2.

Various ways have been used to avoid the necessity to calculate this problematic
term in literature: the analytic derivatives of planewaves are used in [190, 191]; the
Kohn-Sham equations are used in [192] to avoid the necessity to differentiate the
nonlocal parts of the force, which however implies the necessity to differentiate
the sum of Kohn-Sham energies. It would be neither simple nor computationally
efficient in our case. Another alternative, evaluating the special integrals over
atomic spheres like in the LAPW method [13], would be too computationally
expensive within the general finite element basis.
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Figure 5.2: The importance of the l-subspace projector derivatives in Hellmann-
Feynman forces: Calculated HF-forces and their nonlocal components acting on the
oxygen and nitrogen atoms in a nitric oxide molecule and on the fluorine atom in
tetrafluoromethane, with and without the l-subspace projectors’ derivatives. The
expected interatomic distance (vertical dashed line) is 115pm for nitric oxide [188]
and 131.91pm for CF4 [189].

Probably the closest approach to our one has been published in [193, 194] for
evaluating Hellmann-Feynman forces for the case of a separable (or Kleinmann-
Bylander [160]) form of the pseudopotential νl,n. That approach yields the following
term for the nonlocal energy

∇aEnl = 2 Re
∑
i

wi
∑
n,l,m

〈
ψi |νl,nYl,m〉〈∇a (νl,nYl,m)|ψi

〉
. (5.54)

In some cases, the gradient of the projectors can be expressed analytically (e.g. see
[195] or [196]), but for a general separable pseudopotential, the radial part must be
differentiated numerically.

As the authors of [176] recommend, an improved precision can be achieved if
the projector is decomposed using the vector spherical harmonic functions Yl,mr
(where r is the radius):

∇νl,nYl,m = ∇
(
νl,n
r
Yl,mr

)
=
(
∇νl,n

r

)
Yl,mr + νl,n

r
∇ (Yl,mr) , (5.55)

because such decomposition makes the angular projector analytical in the origin.
As we will see later in Fig. 5.8C, this approach is less suitable for the case of
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l-dependent form of the pseudopotentials (5.54), because the radial part must be
divided by r2 and consequently the numerical accuracy decreases.

It seems, that RMG code [197] maybe use a method similar to our approach
to avoid differentiating projectors. However, the papers describing the method,
e.g. [198], cited by the RMG web page, contain just differentiating of projectors
without further details of this issue.

5.3.3 Evaluating HFF using derivatives of wavefunctions
Since none of the methods mentioned above is fully satisfactory in our case, we
propose another way to calculate the nonlocal terms of HF forces. Our approach
is based on the simple assumption that the movement of an atomic core in any
direction must result in the same force as the movement of the wavefunction (which
is "frozen" due to the Hellmann-Feynman theorem) in the opposite direction. So
instead of differentiating the operator Vl (as in Eq. 5.53), making use of the
Hermiticity of the Vl operator we can state

〈ψ| ∇aVl |ψ〉 = −∇ψ 〈ψ|Vl |ψ〉 = −〈∇ψ|Vl |ψ〉 − 〈ψ|Vl |∇ψ〉 = −2 Re 〈∇ψ|Vl |ψ〉 ,
(5.56)

or, in the case of the separable form of a pseudopotential,

∇aEnl = −2 Re
∑
i

wi
∑
n,l,m

〈
ψ |νl,nYl,m〉〈νl,nYl,m| ∇ψi

〉
. (5.57)

Since the derivative terms of (5.56) and (5.57) are already expressed in the finite
element basis, there are no extra computational demands for evaluating the projec-
tion into the basis and no additional inaccuracies arise since the analytic derivatives
of the element basis functions are available. Moreover, the same expression can be
easily used both for the l-dependent and separable pseudopotentials.

Note that expression 5.56 resembles a bit the incomplete basis set correction
(or the Pulay term, see equation 5.42). Although the formal expressions seem
to be (almost) the same, they express different things. Whereas in our case the
differentiation represents a spatial shift of wavefunctions (in the fixed basis), the
Pulay term means “how the wavefunction changes due to the change of the basis”.
Thus the operator ∇ represent different differential operator in the two equations:
since our basis does not depend on atomic positions, the Pulay term is zero in our
case, but the expression (5.56) is not.

To summarize, the Hellmann-Feynman force within the finite element method
(FEM) in real space can be simply expressed and evaluated as

∇aEtot =
∫
ρ∇aVloc − 2

∑
i

wi Re
∫
∇ψψ

+
i

∑
j,l

V j,l
nl ψi +

∫ ∑
a6=k
∇aV k

locρ
a
ion . (5.58)

5.4 Verification and convergence analysis of the
HF-forces expression

In this section, the newly developed expression will be verified by means of calcula-
tions of interatomic distances in several types of molecules and of the vibrational
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frequency of carbon dioxide. Moreover, the convergence of the method will be
examined. Comparing the method with other approaches, the presence and the
magnitude of unwanted oscillations (due to numerical errors) will be assessed. And
finally, some attention will be paid to the performance of the method in comparison
with other approaches to HF-force calculations.

5.4.1 Verification of the formula
For the verification of the formula, the forces in nitric oxide, carbon dioxide, and
tetrafluoromethane molecules have been computed, varying the interatomic distance
by scale factor β. Adaptivelly stretched hexahedral meshes (see section 3.2.1) with
the base edge length of α a.u. were used for the calculations below. The distance
from any atomic center to the domain boundary was at least 16 a.u.
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Figure 5.3: The calculated HF force acting on the first oxygen atom along the
x-axis in carbon dioxide, varying with the mesh size (the parameter α is the linear
size of the smallest element, in atomic units).
The red E ′tot curves correspond to HFF calculated by differentiating the total
energy numerically, recalculating the wavefunctions for each atomic position (for
comparison with the HF-theorem-based curves, where the wavefunctions are frozen).

The convergence of calculated HF forces in dependence on interatomic distance
for the carbon dioxide molecule is shown in Fig. 5.3. The relative shift of the
equilibrium interatomic distance with respect to the experimental value (116.3pm,
see [188]) is 0.82%, which is comparable to other methods and is in the expectable
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Figure 5.4: The convergence of HF interatomic force in CO2 molecule and in
diatomic TiN, with regard to the mesh element size. The reference value is the
force calculated with the finest mesh (α = 0.45). β denotes spatial scale factor for
interatomic distances w.r.t. the equilibrium position. The error is computed as
the L2 norm of the function fα(β)− fref(β) on interval 〈0.7, 1.4〉. Positive/negative
errors of equilibrium positions are marked by full/empty symbols — circles or
triangles. The reference value for the equilibrium distance of TiN is taken from
the most precise calculation because the diatomic TiN cannot be compared with
common data for crystalline TiN in this respect.

range if we consider applying DFT with a simple form of the XC-functional for a
molecule.

Perhaps a bit surprising result is that the calculated HF forces are much
smoother, i.e. evincing much smaller fluctuations than the numerical derivatives of
calculated total energies. Since the magnitude of the fluctuations of total-energy-
based calculation (via the numerical derivative) is greater than the difference
between this calculation and calculated HF forces, we can conclude that the
calculated HF forces agree with the numerical derivatives of total energy within
the precision of our total-energy-based calculations and that our approach provides
a numerically stable way for calculating HF forces.

The convergence of HF forces and the equilibrium position of atoms in CO2 in
dependence on the mesh element size is shown in Fig. 5.4. The reference values
have been obtained for the finest mesh (α = 0.45).
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The results of similar accuracy have been achieved for the cases of nitric oxide
and tetrafluoromethane molecules, where the relative errors of expected interatomic
distances were only 0.232% and 0.15% w.r.t. the expected values of 115 pm [188]
and 131.91pm [189], respectively, and the deviation of the distance of zero HF
forces compared to the minima of total energy was less than one per mille. The
calculated HF forces for both molecules can be seen in Fig. 5.2 on page 148.

It should be emphasized that the experimental values above were used just as
reference values for comparing the calculations mutually, without making a greater
effort to obtain the best agreement with experimental values. Such an effort —
including the possible use of more sophisticated exchange-correlation terms and
pseudopotential tuning — would lead to even more precise and numerically more
stable results at the cost of some additional computational demands.

The convergence of HF forces w.r.t. the interatomic distance in the diatomic
titanium nitride has been verified, too, in order to test the convergence also for
transition metals. Figs. 5.4, 5.5 show that the errors in the case of diatomic
titanium nitride converge in a similar manner as in the case of carbon dioxide.
The convergence with the mesh element size for TiN seems to be slower than for
CO2, but it should be noted that it always depends on the parameters of the used
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Figure 5.6: Convergence of symmetric vibrational frequencies of CO2 molecule with
the mesh element size (and with the number of degrees of freedom of the basis
that is bound to the mesh element size), compared to other published experimental
and calculated results. The axes are in logarithmic scale, with compressed region
below 105 (on the x-axis) and above 1550 (on the y-axis) to cover the whole
convergence curve while emphasizing the region relevant to the most accurate
results. The convergence properties of the calculations done by other methods,
even if the numbers of degrees of freedom are indicated in the references, can be
roughly compared only in the case of finite differences (denoted by 4), because
of essentially different character of bases and of resulting matrices in the other
methods.
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pseudopotential — softer and less transferable pseudopotentials generally converge
faster.

For a stricter verification of our code and of its convergence properties, the
vibrational frequencies of the symmetric mode (often called v1, see [204]) of carbon
dioxide molecule have been calculated. Since the vibrational frequency is in fact a
derivative of HF force (and the second derivative of the total energy), it is usually
much more sensitive to the computational errors than the equilibrium position and,
therefore, it can be used as a more stringent benchmark for the precision of the
method.

The vibrational frequencies have been calculated from the force acting on carbon
atom displaced by 0.005 a.u., using a simple model of a linear harmonic oscillator.
Our results match the data obtained from the experiment [199] quite well and
document good convergence properties of newly proposed formula — see Fig. 5.6.
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Figure 5.7: Convergence of HF forces with respect to the stopping criterion of the
DFT loop. The DFT error magnitude is computed as L2 norm of the difference
between the input and output charge densities of each DFT iteration. The HF
forces from the last — fully converged (DFT error magnitude < 10−7) — step
of the DFT loop serve as the reference forces FRef

HFF. Empty/full points denote
negative/positive differences with respect to the reference values. β is the spatial
scale factor (stretching the molecule). The Anderson/Pulay mixing scheme [82, 83]
was used in the DFT loop to achieve the self-consistent state.

I also tested the dependence of the HFF error (compared to reference values
obtained from self-consistent states) on the degree of convergence of the DFT loop
(i.e. on the precision of the solution of Kohn-Sham equations). The calculations
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show a nearly linear dependence of the size of the HFF error on the L2 norm of
the DFT error, see Fig. 5.7, regardless of the system and/or spatial stretching of
the system. This dependence can be used as a reasonable estimate of the error of
the HFF calculation. It can be also used for determining the stopping criterion for
the DFT loop, e.g. in geometry optimizations of more complex systems.

It should be noted that the experimental values above are used just as reference
values for comparing the calculations mutually. The differences of calculated
quantities (like the equilibrium distance) from the experimental values are not
significant in this context, because they originate particularly in using a simple form
of the exchange-correlation potential, in some fundamental limitations of applying
the local density approximation for molecules and in limited transferability of the
used pseudopotentials (we used generic pseudopotentials not specifically tuned for
the charge distribution in the molecule).

5.4.2 Convergence and fluctuations of various methods for
computing HF forces

A series of calculations to compare the errors and convergence rates of six methods
for evaluating the nonlocal components of Hellmann-Feynman forces is shown
in Fig. 5.8. Using the series of meshes with varying base element edge length
α (described in the previous section), the results of various methods have been
compared and assessed in comparison with reference values obtained for the finest
mesh (α = 0.7). We can see that all the methods converge to the same solution.
This solution is smooth, stable, and matches the derivative of the total energy (as
verified in the previous section).

Four of the compared methods use separable pseudopotentials (A, B, C, E in
Fig. 5.8) and two of them use l-dependent pseudopotentials (D, F). The methods A
to D express HF-forces directly using the HF theorem (5.39), where the methods A
and D use the approach proposed in this thesis, i.e. differentiating of the wavefunc-
tions (for separable and l-dependent pseudopotential, respectively), whereas B and
C differentiate the projectors of the separable pseudopotentials — in which case
the singularity of the analytical gradient of the separable pseudopotential is treated
by projecting into the FEM basis (B) or using the vector spherical harmonics for
l > 0 (C, see (5.55)).

On the other hand, methods E and F use the numerical differentiation of the total
energy in combination with separable (E) and l-dependent (F) pseudopotentials.
In both cases, wavefunctions — according to the HF theorem (5.39) — remain
“frozen” during differentiating.

We do not consider the numerical differentiation of the total energy with non-
frozen wavefunctions (i.e. without employing the HF theorem) in this section.
The need for recalculating wavefunctions for various atomic positions made such
methods uncompetitive as regards both efficiency and accuracy: computational
demands and the inaccuracies of wavefunctions (numerical as well as arising from
non-fully converged DFT-loop or incompleteness of the FEM basis, see Fig. 5.3)
practically disqualify this approach.
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Figure 5.8: Convergence of the HF-force acting on N atom in NO molecule with
the mesh element size (the parameter α is the linear size of the smallest element, in
atomic units) for various approaches. The curves show the numerical error of HFF
(in Eh/a.u.) related to the reference force obtained using the finest mesh. The x axes
show the interatomic distance (in a.u.), with equilibrium marked by the vertical
dotted line. Small subgraphs show the computational time on a logarithmic scale.
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The Fig. 5.8 is complemented by Tab. 5.1 showing the asymptotic complexity
of operations of the considered methods in terms of the discretization parameters.

5.4.3 Discussion of the methods

At this moment, we can assess the accuracy of the considered methods, taking the
computational demands into account. Note that the oscillations — that can create
false local minima or spoil the convergence of the minimization algorithm — might
interfere with the accuracy of the whole computation more than a constant error
that only shifts the equilibrium position a bit. From this point of view, a worse
precision has been achieved using the expressions that differentiate the separable
pseudopotential, either analytically or numerically (see Fig. 5.8 C and E), compared
to those using the gradient of wavefunctions (A and D).

From the anti-hermiticity of the bilinear form (∗ · ∇∗) it follows

Re (νl,nYl,m · ∇ψi) = −Re (∇νl,nYl,m · ψi) (5.59)

and so, that the calculation using the gradients of the projectors (Fig. 5.8 C)
is mathematically equivalent to our present method (differentiating ψ, Fig. 5.8
A). The two cases differ just by numerical errors caused by differentiating: while
using derivatives of a separable pseudopotential leads to integrating previously
differentiated projectors of the separable pseudopotential, our new method allows
us to do both steps — differentiating and integrating — “at once” during the
finite-element basis assembling. Moreover, the basis functions have polynomial
derivatives that are more suitable for the numerical quadrature [6] used in the FE
assembling than the derivatives of projector functions of separable pseudopotential.
Thus, it is not so surprising that our present method results in smaller numerical
fluctuations, as can be seen comparing Fig. 5.8 A and Fig. 5.8 C.

The poor numerical precision of differentiating separable pseudopotentials (Fig.
5.8 C and E) can be improved by projecting the pseudopotentials into the FEM
basis prior to differentiating, as in (Fig. 5.8 B). This approach eliminates both
sources of errors noted in the previous paragraph. Since the pseudopotentials can be
projected into the FEM basis quite precisely, the resulting error is nearly the same
as in our present method (Fig. 5.8 A). However, the projections of pseudopotentials
into the FEM basis are computationally expensive, whereas the projections of
wavefunctions have been already prepared. Therefore, our newly proposed method
provides a significant improvement in computational efficiency compared to that
approach.

The results obtained using l-dependent potentials (Fig. 5.8 D and F) do
not suffer from the inaccuracy of the gradient evaluation, but they have another
disadvantage: evaluation of the spherical integrals (we use Lebedev quadrature for
integration on spheres, see [205]) is not a natural approach for the finite element
method, therefore its computational expenses do not depend on the mesh size. Or
even worse: for smaller meshes with larger elements, the projection from the real
space to the reference element, which is necessary for evaluating the integral, can
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be more demanding than for finer meshes.2 This behavior — that may look strange
at first sight — is caused by the fact that the same number of integration points
for the radial integration is needed for a fine and for a coarse mesh. Solving the L2

projection on larger elements of the coarse mesh can require more computational
time to achieve the same accuracy of interpolation than solving the same problem
on a finer mesh. This behavior is very disagreeable because it interferes with using
a coarse mesh as a fast and cheap preprocessing for obtaining a reasonable guess
at initial positions of atoms.

In some cases, the numerical derivative of the total energy using the l-dependent
pseudopotentials (Fig. 5.8 F) provides better computational efficiency than the
newly proposed method, which may look strange. However, none of the methods was
implemented with all possible optimizations. In addition, when using a particular
HFF evaluation method in combination with a particular electronic-structure code,
the efficiency of the HFF evaluation depends very much on which quantities have
been already precalculated in the code for other purposes. Therefore the presented
computational times are just indicative and they can rather serve to illustrate
how the computational time scales with the system size than to compare the
methods mutually. The computational expenses for evaluating the matrix elements
of separable pseudopotentials can be substantially reduced by taking the full
advantage of the short-range nature of the non-local pseudopotential components,
evaluating the integrals only on the mesh elements within the spatial scope of
the nonlocal part of each pseudopotential; in that case, ne in Tab. 5.1 would
correspond just to the number of elements within the nonlocal pseudopotential
component support. It could reduce the computational expenses for evaluating the
integrals substantially (as the experience with similar techniques from other codes,
e.g. [197, 17], confirms), whereas that advantage — i.e. evaluating just on the
short-range radial mesh — have been already employed in the case of l-dependent
pseudopotentials.

Moreover, the l-dependent pseudopotentials provide worse precision near the
equilibrium position according to our test calculations, and the numerical derivatives
of the total energy suffer from much larger fluctuations (due to the inaccuracies of
the numerical differentiation), i.e. they are not so smooth, compared to the forces
obtained by differentiating the wavefunctions, as it can be seen in Fig. 5.8 near the
equilibrium position (where the forces were calculated for interatomic distances
varying with a fine step).

Therefore, we conclude that the method A — i.e. differentiating the wavefunc-
tions in combination with separable pseudopotentials — seems to be the most
suitable method for applications within FEM combined with the non-local po-
tentials. The proposed approach provides both sufficient numerical accuracy and
computational efficiency and outperforms the other methods considered within the
scope of this study.

2Our additional numerical tests show a strong dependence of the computational demands on
the geometry of the used mesh.
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Symbol Meaning
nψ number of ψi
nP number of projectors of separable pseudopotential of the

atom
nlm number of l,m components of l-dependent pseudopotential
ne number of elements of the FEM mesh (function of the α

in the graphs above)
nqp number of quadrature points in each element
nbf number of basis functions in a single finite element
nfd number of points used for numerically differentiating etot
nrp number of points in the radial mesh for the projection of

the wavefunctions into the L-space
nap number of points in the angular mesh for the projection

of the wavefunctions into the L-space
ΘP L2 asymptotic complexity of the projection into the FEM

basis
ΘE asymptotic complexity of evaluating a quantity in the

FEM basis in a given point

Method Asymptotic computational time complexity
A nψnPnenbf + nPnenqpnbf
B nψnPnenbf + nPnenqpnbf + nPΘP
C nψnPnenbf + nPnenqpnbf
D nψnlmnenqp + nψnlmnrpnapΘE
E nfdnψnPnenbf
F nfdnψnlmnenqp + nfdnψnlmnrpnapΘE

Table 5.1: The asymptotic complexity of the methods considered in Fig. 5.8 for
computing the non-local part of the HF-forces acting on one atom, in terms of the
discretization parameters.
Both ΘE and ΘP cannot be easily expressed using the quantities above, bacause
they depend in a complicated way on the mesh geometry (especially the dependence
of ΘE on ne is strongly non-monotonic for various meshes covering the same spatial
volume, as can be seen in Fig. 5.8 D and F). The short range character of nonlocal
pseudopotential components is not used in the expressions above; by employing that
feature, ne would correspond just to the number of elements within the nonlocal
pseudopotential component support.

5.4.4 Notes on efficiency with respect to other codes

The accuracy of the calculations increases with decreasing the parameter α (the
smallest mesh edge length), while the problem size in terms of the number of
degrees of freedom (DoF’s) increases as well, proportionally to 1/α3. More DoF’s
usually lead to higher computational demands, but, in the FEM basis, the efficiency
is affected not only by the number of DoF’s but also by the number of non-zero
elements in the Hamiltonian matrix (see section 3.4.2), by the number of the
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rank-k-updates, by the computational demands of projecting quantities to the basis
and by computational demands for finding the reference element coordinates of
points in general positions (the last factor can be hardly expressed in terms of the
DoF’s number because for large elements the solutions are often not faster than for
a larger number of smaller elements).

Therefore — with respect to the more general aims of the comparison — the
details too specific for the particular basis types should be disregarded. In addition,
seen from the viewpoint of the overall computational time, the HFF evaluation is
not the bottleneck for most codes, including FENNEC (the HFF evaluation takes
a few percent of the total elapsed time: below 1% for the largest of the tasks
solved above, and it diminishes progressively with increasing problem size). For the
comparison of HFF evaluation algorithms, their precision, numerical stability, and
the absence of oscillations are much more relevant factors, and these are primarily
demonstrated in this section of the thesis.
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This chapter describes the implementation of the proposed method within the
software package FENNEC, the development of which has been a primary aim of
the doctoral study associated with this thesis.

The aim of this chapter is both to introduce the FENNEC software package, and
to share experience with the used programming languages, libraries, solvers etc. . . ,
obtained during the development of the package. This text is far from providing a
full description of FENNEC; still, I hope that the following brief introduction of the
framework can demonstrate the complexity of the package and the large veriety of
problems to be solved during the development. This chapter is also intended to
serve as a brief introduction for potential new FENNEC users and/or developers.

In the first section of this chapter, the architecture of FENNEC is described. The
second section discusses the programming languages, libraries, and parallelization
techniques used in FENNEC. The third section is focused on the linear algebra
solvers that are crucial to the FENNEC performance. The short last section describes
the current work in progress and the future plans for further development and
extensions of FENNEC.

6.1 Description of the FENNEC software package

The FENNEC software package is implemented in Python1 programming language,
which allows fast prototyping of software. Crucial performance routines of FENNEC
are written in Cython [206] or Fortran. The framework SfePy[207], developed
and maintained at the University of West Bohemia, is used for finite element
discretization and assembling.

1http://www.python.org



6 FENNEC software package 162
Figure 6.1: Architecture of FENNEC package – relations of main entities in the
package.
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The architecture of FENNEC consists of the framework kernel and plugins.
The relatively small kernel provides primary services for the plugins, their loading
and communications. All the key routines for electronic structure calculations
are implemented in plugins. That architecture makes possible to customize easily
the program flow (e.g. to add preprocessing and postprocessing, to perform the
geometry optimization instead of plain DFT loop iteration etc.). Also it makes easy
to replace any code segment by an alternative implementation (e.g. to incoporate
a new eigenvalue solver or a new XC potential, etc.) and it makes the package on
the whole highly configurable, customizable and expandable. A larger discussion of
the advantages and disadvantages of the proposed architecture will be discussed
below, after the introduction to the program code.

6.1.1 Basic description of the FENNEC architeture
The basic scheme of the essential parts of the FENNEC architecture can be seen
in Fig. 6.1. For better understanding of that scheme, a short description of the
objects of the FENNEC framework is provided on the following pages.

As we can notice on Fig. 6.1, three are three types of objects in FENNEC. The
first and the most important are the plugins and the objects that plugins provide:
as e.g. Actions or event handlers called Hooks. Special types of plugins can also
define the types of atomic sites, create a mesh for a computation, etc.

The second group of objects consists of all objects containing computational
data, environment settings and the configuration of atomic sites.

The objects in the third group are FENNEC kernel objects — i.e. the objects
that provide the basic functionality: loading the program, plugins, and libraries and
setting the environment. These objects also mediate interactions among plugins.

Plugins and the entities provided by them

FENNEC plugins are small classes2, that provide the functionality needed for DFT
calculations (e.g. solvers, smearing routines), definitions of pseudopotentials and/or
the geometry data of the calculated sample, and the data that control the flow of
the computation. The plugins can be loaded either from the command line (to
specify the atomic structure and/or other problem characteristics, or to configure
the program flow) or from other plugins (if some particular functionality is needed).

To be as independent as possible, the plugins do not typically communicate
directly with each other. They just provide an implementation of a particular
functionality (as, e.g., the routine for smearing) or a description of an entity (e.g.
a format of a pseudopotential) that can be requested by other plugins via kernel
objects. This indirect communication allows us to replace easily the parts of the
functionality for the desired implementation (e.g. to change the XC potential, to
add an external potential etc.).

Among the entities provided by the plugins, it belongs:

Action The main tool for cooperating among plugins are actions: the routines
that are callable by other plugins. Each action should implement just one

2In the sense of object-oriented programming, see e.g. [208]
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task: all the needed subtasks should be performed by calling the proper
Actions from other plugins.

For example (with a little simplification), a plugin that implements the
DFT loop takes care only of the DFT loop, and it contains three tasks:
(1) initialization of the loop (e.g. obtaining the initial charge density), (2)
calculation of the output charge density from the input one, and (3) mixing
the output charge density into a new input one.

All these task are provided by other plugins via action. Thus, the DFT loop
plugin consists just of few lines: first it uses an Action dft_mixer to obtain
the object that perform the actual mixing, then it prepares a DFT cycle using
an Action dft_prepare_iteration that initializes the charge density and
finally it uses the mixer on the Action dft_iteration. After each iteration,
the DFT loop plugin checks the dft_convergence Variable (provided by an
other plugin), whether the charge density is converged sufficiently or not.

We can notice that the DFT loop itself does not know at all, what it actually
iterates — it can iterate both the potential or the charge density (see potential
mixing on page 2.5.2). Or better, it is even not allowed to know, since this
“knowledge” would introduce unnecessary dependency and therefore it would
break the effort to be as isolated as it can be plugin paradigm.

Variable (definition) The concept of plugins and actions takes into account that
many quantities are needed more than once during calculation: e.g. the
Hartree potential is needed both for evaluating the Kohn-Sham matrix and
for the total energy calculations.

The decomposition into plugins, and the fact that the flow of the computation
is not fixed, require a mechanism for specifying which quantities should be
stored for later use and how long they should be stored. For that purpose,
the concept of variables has been introduced: each plugin can state that there
is a quantity of a given name and type (e.g. scalar number, function on the
volume, or assembled matrix). The definition of a variable is done by creating
and registering an “example variable”. The actual Variable that holds data
for a particular calculations is created by cloning the example one.

The definition can further specify whether the quantity is spin-dependent
(its value differs for each spin) or not, it can contain default value of the
variable (either fixed one or lazy-evaluated by a function: e.g. the sum of
the isolated-atom charge densities of the atoms in the sample is the default
value of the charge density) and it is usually connected with an Action that
computes the quantity when it is needed.

A plugin that defines the variable also prescribes, whether the variable remains
unchanged during iterations (e.g. atomic core potentials), or if it has its scope
limited to one iteration. If the latter case holds, the variable is automatically
cleared at the start of the new iteration to retain memory efficiency. However,
any plugin can ask a variable to store one or more its previous values (e.g.
Kohn-Sham equation solver requests from the wave functions variable to
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retain its value from the previous iteration, since it uses them as a first-guess
for underlying eigenvalue solver).
The concept of the modification of variable properties by another plugin is
used more times in FENNEC. Another example could be the default value
of the charge density again: whereas one plugin defines the charge density
variable, its default value (superposition of atomic densities) is defined by
a different plugin. If the user needed, he could create and load his own
implementation of the default value, which overrides the default one.

Hook Another method how plugins can react to the activity performed by other
plugins are Hooks. They can be viewed as event handlers: any plugin can
register a handling routine — Hook — for an event with a given name. Any
plugin can trigger an event anytime: then all the corresponding Hooks are
called with the arguments provided by the triggering plugin.
This mechanism is used e.g. for postprocessing of DFT iteration: at the end
of each iteration the dft_iteration_end Hook is triggered. The hook can
be and is handled by many plugins: the summary of the results gained so
far can be displayed, HF-forces or total energy can be evaluated, the current
state of the computation can be saved, etc.

Program step The flow of the computation by FENNEC is not fixed. Instead,
each Plugin can define tasks that should be performed.
Usually just one “program plugin” is loaded, which defines the main objective
of the computation (e.g. whether to do single DFT cycle or to optimize
atomic geometry), while other plugins can modify the flow of computation:
e.g. they can add initialization of some data (e.g. the plugin can determine
the geometry of atomic sites), some preprocessing (e.g. to compute initial
atom density for better convergence of the main DFT loop) or postprocessing
(e.g. visualization of results).

(Atomic) Core type FENNEC needs to know the properties of atoms in the
structure under study. Each atom has its type: e.g. the carbon on the surface,
the carbon in the bulk, the oxygen ion, etc. These types are described by
Core type object, which is created by Core format according to the definition
(e.g. given XML file). The Core type does not take care of spin: Spin-aware
Core format should create one Core type object for each spin and link them
together. This approach allows using both spin-aware and spin-less potentials
in the same manner without increasing the complexity of the FENNEC class
structure.

Potential Each Core type contains (besides other properties) a pseudopotential
for each described L-subspace, and local and unscreen potential (the XC-term
associated with the valence charge density subtracted for “unscreening”),
shared by all L-spaces: each of them is described by a Potential object. Un-
screen potential is required only in the case of a L-dependent pseudopotential
when it is used to generate a separable form of the potential.
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Potential format FENNEC can use various types of pseudopotentials. New po-
tential formats can be defined by plugins. If they are placed in the proper
directory, they are automatically loaded and used, if needed.
The pseudopotential format may emerge in two forms: The simpler one
consists of the radial potentials that together form the pseudopotential (local
ion potential, unscreen, and the potentials for each described L) in separate
files. In such a case, it is sufficient to create a new Potential format with just
one method for reading the potential from a file. The filenames, where the
potentials should be read from, are given by a definition of properties of an
actual type of atom (see later), which allows combining even potentials of
different formats.

Core format If the potential format is more complex — e.g. a XML file that
contains all the individual atomic L-potentials — a new Core format can be
created. Core format should employ Potential formats (e.g. dedicating them
a particular item in the XML file) for creating the Potentials objects and
then combine them to one Core type object.

Equation Any plugin can define equations: prescriptions for SfePy framework how
to assemble matrices and vectors: how to discretize a given equation using
finite element (or IGA). For the details of SfePy configurating, see its well-
done tutorial3. Equations (similarly as all other parts of SfePy configurations)
can be defined in plugins in the SfePy config file. This property allows very
easy use of any SfePy functionality to FENNEC developer.

Tests Each good software should be covered by tests. The tests in FENNEC are
implemented as special plugins4 They mimic most of the behavior of well-
established test frameworks as PyUnit5, making available all the functionality
of FENNEC framework in the tests. This makes very simple to write the tests,
especially the integration ones.
E.g. testing translation symmetry of a computation (except for border effects)
can be written on a few lines — see the following example pseudocode:

Create_cube_mesh
Add_an_atom_to_the_centre
Run_dft_cycle
Move_the_atom_slightly
Run_dft_cycle
Compare_the_results

where each line is either a calling of an action, or calling a function provided
by the FENNEC kernel. A test writer can also use a parallelization easily: e.g.
to run the Run_dft_cycle in the previous example in parallel mode to make
the tests faster.

3http://sfepy.org/doc-devel/tutorial.html
4They are not shown on the scheme Fig. 6.1, for the sake of readability of the scheme.
5http://pyunit.sourceforge.net/pyunit.html

http://sfepy.org/doc-devel/tutorial.html
http://pyunit.sourceforge.net/pyunit.html
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Computation related objects

FENNEC is not restricted to one computation at a given time. E.g. for the purpose
of multigrid computation, two computation can be run “simultaneously” and
transfer the results there and back. This property is also useful for loading the
instance of another computation during a computation, e.g. for obtaining initial
charge density. To be able to work with more instances of computation at a time,
FENNEC has to hold computational separately from plugins in their own data
structures.

The objects associated to a particular calculation can be further subdivided
into three groups: (1) objects that hold the configuration of atomic sites (geometry,
potentials), (2) objects that provide actual implementations of finite element
methods routines (e.g. assembling of the matrices) for a given mesh and (3) objects
that store the computational data (charge density etc...).

Structures that define the atomic sites configuration As can be seen in
Fig. 6.1 (yellow part), there are three main types of atomic-site-related objects:
formats (that describe how a pseudopotential is stored), types (pseudopotentials
themselves), and instances (declarations: “an atomic site placed here has this
pseudopotential”). Formats and types have been discussed above; being defined
framework-wide, only actual instances of atomic sites can vary for each calculations.

Cores The root object for storing informations about the studied structure. It
holds one or more Cores.

Core This object contains all the data related to a particular atomic site: po-
sition, number of valence electrons and possible constraints for geometry
optimizations. . .
The constraints can be easily specified in various coordinates, e.g., for axially
symmetrical material, the radial distance of an atom in cylindrical coordinates
can be optimized, letting its angular coordinate fixed, and reflect the changes
of the radial coordinate of this “reference” atom to the other symmetrical
atoms.

Core spin instance To hide the differences among calculations with and without
spin as much as possible, each core owns separate “property object” for each
spin. If it is a spin-aware core type, it owns two of such objects; otherwise, it
owns one that serves for both spins. This design allows both to use spinless
cores in spin-aware (SDFT) computation and vice versa.
Default properties of a Core spin instance are provided by a Core type (e.g.
local potential of the core), however, one can modify them if it is needed.

Potential instance This object describe a potential of a Core spin instance for
a given L-space. Just as Core spin instance, Potential instance inherits
defaults properties from Potential (e.g. number of used projectors for its
transformation to a separable pseudopotential), but all the properties could
be redefined.
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Finite element method objects In fact, there are many classes describing the
discretization of the problem in the SfePy framework. Only a few of them will
be mentioned here — the ones which are directly created within the FENNEC
framework. For full documentation of the SfePy framework see SfePy webpages,
which contains very elaborate documentation.6

Problem Problem object holds all necessary information about a particular dis-
cretized problem. This object is inherited7 from SfePy problem object and
extended by some useful methods.
This object serves as a container for all FEM/IGA related functionality: it
holds FEM/IGA description of the volume and description of the discretized
equations, and it provides an interface to the SfePy finite element framework
(for interpolating, matrices assembling. . . )

Domain Each computation needs to have a Domain defined: a volume, where
the calculation is performed, and its discretization. The domain can be
determined either by a FEM mesh or, in the case of isogeometric analysis, by
an IGA patch.
The meshes are created by plugins on demand: several plugins exist that
can generate various meshes (see chapter 3.2.1). The mesh creating plugin
can take the positions of the atomic sites into account. One configuration
of a mesh generating plugin is thus suitable for a large scale of problems.
Therefore, the meshing in the FENNEC package is usually reduced to the
checking of automatically generated mesh, either visually using the mesh
visualization plugin, and/or by a sample calculation.
The form of the FEM discretization also depends on the degree of the used
basis, which can be determined in options. Therefore, a mesh generating
plugin should provide the mesh only: the domain (SfePy object FEMDomain) is
automatically created from it, according to the options.8 IGA patches contain
both the description of the volume and the definition of the corresponding
basis (see section 3.3); therefore patch generating plugins have to provide
directly an instance of SfePy IGADomain.

SfePy equation The Equation object mentioned above contains just a definition
of an equation. The actual implementation of the equation — its discretization
in a given Domain — is described by this SfePy object which is automatically
created from the definition for a particular Problem object if it is needed.

Objects that hold computational data The last ones of computation-related
objects are the objects that hold the quantities occuring in the calculation, e.g.
charge density, potentials, etc.

6http://sfepy.org
7In the sense of the class inheritance in object-oriented programming.
8In the case of the mesh with hanging nodes, the data related to the hanging nodes must be

provided in addition to the mesh definition itself, due to actual implementation of hanging nodes
in the SfePy framework.

http://sfepy.org
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Context Context is the main object for a computation. It is associated with its
Problem, however, more contexts can exist for one Problem.
Since the values of many quantities differ in each iteration, Context does not
directly own data; it just serves as a container for Iterations. However, since
just the data from the last iteration are usually needed, there is a syntactic
sugar9: the data can be read directly from Context which returns the data
related to the last iteration.

Iteration The object Iteration holds data valid for just one iteration of a DFT
cycle. It contains Variables for spin-undependent data, and one or two Spins
for spin-dependent ones.

Spin Spin is a container for spin-dependent data. This object is employed even in
spin-restricted calculation (see section 2.4.2), to make the spin and spinless
calculation as much similar as possible. Therefore the calculation with
and without spin differs just in the number of Spin objects contained in
each Iteration: the spinless calculation utilizes one Spin only, whereas a
SDFT calculation two Spins. The actual computation of quantities that are
potentially spin-dependent is performed by a cycle over the Spins.
Spin object also expose all (spinless) variables from its parent Iteration.
Therefore, one can pass Spin to all routines that excepts Iteration.

Variable Both the variable containers — Iterations and Spins — hold Variables,
i.e. the instances of Variable definitions prescribed by plugins. The variables
are created on-demand: when a new unknown variable is requested, FENNEC
looks for its prescription and creates the variable according to it. The
prescriptions are contained in plugins. To be loaded automatically, the plugin
should have the same name as the variable.

Options To allow to configure each calculation independently (e.g. set the DFT
loop precision, solver precision, etc.) each Context holds its Options object.
The Options objects are hierarchical: any option undefined in a child Option
object is inherited from its parent. In most cases, the hierarchy has two levels:
all the Context Options inherit from a Global options object, but there can
be any level of nesting (e.g. a child Options object can be created to change
some configuration temporarily).

FENNEC kernel objects

The last-mentioned group of FENNEC objects is kernel objects: objects that
provide all necessary functions for the already mentioned functionality. Unlike
other mentioned objects, they are typically instantiated just once and they live
during the entire run of the program.10.

9An easy way how to express something.
10But they are not true singletons, since theoretically they can be constructed (e.g. for the

purpose of testing) more times.
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Application The Application object represent the core of the whole package.
When the program is started, the Application loads all other core objects,
prepares the environment, initializes Global options, loads all plugins given
by command line and/or configuration file and then runs the Program.

Program After the initialization of the Application, the program flow is no longer
fixed, but vary according to the loaded plugins. The loaded plugins register
the requested task by the Program plugin (typically during the initialization
of the plugin) and the Program object stores the requested tasks and runs
them in the proper order.

Plugins The Plugins object takes care of all the required tasks, looking for plugins
and loading them. Generally, a plugin can be loaded by its name. FENNEC
looks for it in the subdirectories of plugin directories (several plugin directories
can exist, e.g. one directory provided by the FENNEC framework itself and
the second one containing one-time plugin scripts written by a FENNEC user).
If there is no class with a “camelized” name of a plugin in the loaded plugin
file, the plugin class is created from functions contained in the file. This
property allows creating very simple plugins (commonly containing just one
or two function calls) without bothering about importing proper base class
and all the complex functionality behind plugins.
However, there is still an option to define a Plugin as a “true class” to utilize
any of the extended functionality provided by the FENNEC.

Global options This object stores global and/or default options, which are in-
herited by all Context Option objects. E.g. the degree of the used FEM
basis, the order of the numerical quadrature, the convergence threshold of
a DFT cycle, etc. belong to those options. A FENNEC user can change the
options via command-line argument or in a config file. Plugins can change
these options and/or define their own ones.

Actions, Hooks, Equations, Variables definitions Containers for objects of
given types. All of them support dynamic loading if the user (or a plugin)
requests a so-far-unknown one. Exception for the Hooks object: unlike the
others, there is no requirement for a hook to exists. Thus, calling unknown
hook does not result in searching for its implementation. This behavior
is used e.g. for an easy debugging of the code: calling the hook breaks
does nothing unless the plugin breaks is loaded11: in such a case, the hook
causes the debugger to be run. This allows having predefined breakpoints on
important places of the code and activating them on demand easily, without
any modification of the code.

Database All the Core types are stored in Database. The atomic configuration is
stored in a tree structure to allow to store the values in common for more
atomic types in one place. The tree structure of Database can be mirrored in
the filesystem, where the data files containing the potentials should be placed.

11With the same argument as the hook is called with.
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The common use is to define the properties of a given chemical element as a
tree node, and its variants (e.g. the potentials that reflect different locations
of the particular atom in the calculated structure) as child nodes.

6.1.2 Discussion of the FENNEC architecture
We could notice the whole FENNEC package is built around plugins — each plugin
is a small independent piece of code, that solves just one thing. The kernel of
the package consists just of a few, mostly general-purpose, objects. Therefore the
kernel functionality could be easily adopted for solving a particular type of problem
using FEM or IGA, even not related to the electronic structure calculation at all.

All other non-plugin objects serve primarily as data storage. Therefore, nearly
all the key functionality of the FENNEC package is contained in plugins: e.g. DFT
loop, mixing, the DFT iteration itself, evaluating of the functionals (XC, Hartree)
etc.

This approach provides the following advantages:

Architecture quality The plugin architecture naturally leads to partitioning
of the code to as-independent-as-possible routines. Therefore, the code is
clearly arranged and straightforward, compared to common monolithic code,
having a minimum amount of hidden dependencies that would hinder from
understanding the code, possible reusing an old functionality or implementing
a new one.

Code cleanliness Concepts of plugins simplifies the code in many cases. For
example, to implement the capability to iterate charge density or potential
in the DFT loop, the monolithic code would be typically interspersed with
if-clauses “potential or charge”. In plugin architecture, the natural way of
implementing the loop is to write two simple plugins: the implementation
of a DFT iteration with potential mixing and the implementation of charge
density mixing: both of the implementations consist just of a few lines of
code because all underlying “common” functionality is provided by the other
plugins.
Code cleanliness can be, of course, achived within a non-plugin architecture
as well if it is well designed. Nevertheless, even well designed monolithic code
must be explicitly written with the possibility in mind to replace a particular
implementation of the routine with another. The plugin architecture naturally
leads the developer to separate independent tasks and provides him all the
necessary tools to do such a decomposition without greater effort, which
significantly contributes to code cleanliness.

Extensibility and modifiability In a plugin architecture, any piece of code can
be easily (temporarily or permanently) replaced by another version. This
allows easy comparison of different implementations of the same functionality
(e.g. different XC functional library, different mixing algorithms, and so
on), just by loading an appropriate plugin, which can be done just by one
command-line argument. This property is very useful for developing, where a
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comparison of a newly created implementation with a reference one is often
needed, as well as for an ordinary use (e.g. for switching eigenvalue solvers if
the default one does not converge in a problematic case, or to include another
XC functional to the program without the necessity of any code modification).

Easy test writing The plugin architecture — especially the concept of actions —
provides a straightforward way to developers of mocking (replacing a function
by “fake” implementation returning precomputed data) the functionality.
Dependency injection, which is a common approach recommended for mocking,
often leads to the necessity of passing many arguments through routines,
which makes the program much worse readable, while the simpler use of
singletons leads to a far less flexible code.

Configurability The partitioning of the functionality into plugins makes the
program easy customizable since each plugin can receive its own set of options.
The plugins thus create natural “namespaces” for program options, which
makes the configuration very easy: associating the parameters with plugins
allows a user to easily find all the options related to a given functionality.
Such property also allows to expose (make available) nearly all possible
configurations as plugin parameters to the user, which results in a very high
degree of customizability, whereas the program is usable — owing to default
values — even without (nearly) any configuration options in common cases.
The plugins’ parameters also form the basic self-explanatory documentation
of the plugins.

Powerfull but still simple The plugin architecture is used for defining the func-
tionality as well as for defining the solved problem itself (e.g. for defining
the geometry of a calculated structure). Thus, while entering a common
configuration remains simple and easy, either via commandline, e.g.:

> dft dimer=’(N,O)’,bond_length=’115pm’

or via simple plugin scripts:

def init(self):
self.application.set_atom_conf([
(’N’, -115,0,0),
(’O’, 0,0,0)
], units =’pm’)

— still the full power of the Python language is available for all the necessary
preprocessing (e.g. for determining a complex geometry of a deformed
semiperiodical structure) without the necessity of using any external tool.

The selected architecture has, of course, also some drawbacks. The independence
of plugins leads to the necessity to pass all the data between plugins somehow,
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since the client of a plugin cannot in principle know which data the “server plugin”
needs to perform the requested calculation. While one implementation of a given
routine could use a certain quantity as input, another implementation can use more
of them or different ones.

This problem has been solved by the introduction of Context objects, which
holds all the quantities in the computation and that is able to evaluate them
“lazily” (on demand) via Actions and Variables. This solution violates another
paradigm of good programming — “to pass only the data actually needed to the
called routines” — but the other possible solution — to change the implementation
of the caller each time a callee is changed — is substantially worse. Since the
different implementations of many routines (e.g. XC functional or total energy
evaluation) often require different sets of input parameters, no better way seems to
be available.

Another concept used in the code that can be viewed as controversial is the
concept of autoloading of plugins and automatic evaluation of variables. It can
be viewed as a violation of the basic (and reasonable) Python law “Better explicit
than implicit”12. It can exhibit unexpected behavior in some cases — e.g. the
variable that is used with a hope to be a “fast input guess” might be automatically
(and “costly”) computed, if a user forgot to specify not to do it. Moreover, the
implementation of autoloading relies on adding (on the fly) objects (variables,
equations) to the existing instances of the SfePy problem, which has required a
certain amount of work on patches to the SfePy package to enable that functionality.

However, if the concept of autoloading were not employed, the extensive granu-
larity of the code providing most of the benefits mentioned above, would require
a lot of “load a dependent plugin” commands, which would ruin the readability
of the code. Moreover, autoloading is very useful for interactive computing (e.g.
during manual postprocessing of computed data in Python shell).

Thus, the concept of autoloading, despite the disadvantages mentioned above,
substantially simplifies the code and facilitates a developer to focus on the solved
problem and not on the implementation details. It assists in keeping the code clean
and clearly arranged and enables faster development of new functionalities within
the framework. Awareness of the drawbacks mentioned above helps to design the
architecture and the interaction among plugins so that the consequences of the
drawbacks could be mitigated.

To conclude, all the problems mentioned above do not represent important
issues, compared to the benefits provided by the chosen architecture: the plu-
gin architecture very simplifies both the use of the framework and its further
development.

6.2 Used programming languages and libraries
This section discusses the used programming languages and libraries. The discus-
sion reflects my experience with software development (in several programming
languages) and it is, of course, presented from my subjective point of view. The

12https://www.python.org/dev/peps/pep-0020/

https://www.python.org/dev/peps/pep-0020/


6 FENNEC software package 174

Figure 6.2: Charge density of fullerene C60 calculated using FENNEC and visualised
using SfePy and Maya-Vi.

following contemplation should not be taken as proven facts, but just as experience
obtained during the development of such a not-so-small framework. I believe that
sharing experience and developer skills is useful and that the summary of the
experience collected during the development can help other scientific developers to
find the right tools for their work.

FENNEC is written in Python 3 [209] using its standard implementation
CPython13. The choice of Python 314 was justified primarily by the need for
problem-free compatibility with SfePy finite-element framework[207, 150], and for
cooperation with SfePy author — Robert Cimrman from the University of West
Bohemia. The language proved itself to be worthy of that choice. Even if the
language has its weak points, the development in Python is substantially faster
than in other languages that I’m experienced with. Not only compared to the
compiled languages like C, C++, Delphi, or Fortran (where it is expectable) but
also with the interpreted ones, which are aimed at rapid development, e.g. Java or
PHP.

The result of comparison with PHP15 seems weird since PHP language (nearly
unused in the scientific community) is very frequently used by commercial compa-
nies developing (mostly web-based) software, where using of the most productive
languages would be expected. However, this observation is affected by the local sit-

13https://www.python.org/
14Originally, FENNEC have been developed in Python 2, but the project was migrated to the

Python 3 not to become obsolte
15http://php.org

https://www.python.org/
http://php.org
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Figure 6.3: Architecture of the FENNEC framework – the main used libraries and
their main relations and dependencies. Python libraries are shown in blue, compiled
(Fortran, C or C++) ones in green.
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Figure 6.4: Charge density of CF4 calculated using FENNEC and visualised using
SfePy and Maya-Vi.

uation in the Czech Republic, the worldwide statistic shows the growing popularity
of Python16 already overcoming the PHP popularity [210].

These facts confirm the quality of the language: especially very clean and
idiomatic design of the language should be mentioned, which facilitates keeping
the code readable and speeds up the development.

One of the strong points of the Python language is the strong community around
it, especially a large scientific community which develops many useful scientific
libraries for Python. First of all, the following ones should be mentioned: NumPy
[211], which provides reasonable fast linear algebra and large data manipulation
routines, and SciPy [212], the extension of NumPy, which provides an implementa-
tion of many useful algorithms from many scientific fields. Also, the visualization
framework Maya-Vi [213], based on the VTK library [214] is worth mentioning,
and, of course, SfePy framework itself, upon which is FENNEC built. The basic
scheme of the framework and its library dependencies can be seen in Fig. 6.3. A
list of main used libraries can be found in appendix A.

Another strong property of Python language is the possibility to stop the
program execution and to drop to a Python shell at any point of the code, just by
calling one simple function. In the stopped program, not only one can debug the
current execution (as it is common in other languages) but he can run a full-fledged
Python interactive shell, too. This “trifle” in fact very simplifies a programmer life,
since it allows rapid prototyping and debugging without the necessity to run the
program again and again to correct all bugs in the code.

To assess also the weaknesses of the Python language, I should mention especially
the one-threaded nature of the CPython implementation of Python (other Python
implementations are not compatible with many needed libraries) due to using
so-called “global interpret lock” (GIL) during accessing any language object. This

16http://pypl.github.io/PYPL.html

http://pypl.github.io/PYPL.html
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is a pretty big problem, as the performance requires the parallel implementation of
the crucial parts of code. The parallelization will be discussed in the next section.

The only other more serious issue concerning Python that I encounter during
the development is a bit tricky implementation of AsyncIo17 — part of the language
that allows programming in coroutines. Coroutines are tasks that can be run
semi-parallel — just one coroutine can be active at a given moment, but when a
one is waiting for something (e.g. for data from a subprocess), it can put itself to
sleep and another coroutine can be run (or resumed). This concept very simplifies
running of some parallel task, but the Python implementation has some subtleties
and the code is sometimes hard to debug.

The Javascript implementation of the coroutines, from which the Python Asyn-
cIo has been inspired, is simpler to use, better designed, and moreover multithreaded
(using worker threads, see e.g. [215]). If we consider not too complicated C to
Javascript binding, modern Javascript (despite its origin as web-based language)
would be a surprisingly handy tool for scientific computing, if there were similar
library background like in Python. However, the lack of useful scientific libraries
(particularly an equivalent of NumPy) means that a large amount of work would
be necessary to build a suitable environment for scientific computing.

Another language which is worth mentioning, is a relatively new language called
Julia [216]. This language takes over many good properties mentioned above of both
Javascript (fast just-in-time compiler, easy threading, well designed coroutines) and
Python/Cython (environment for numerical computing, code block definitions via
indentations, very easy binding of external functions); and its primary aiming for
numerical computing makes it a very promising language for developing scientific
applications.

Python and compiled languages A comparison of Python with compiled
languages has obvious results: interpreted languages as Python are designed for
rapid development, while the compiled ones like C, C++, or Fortran offer better
performance. This general rule has of course some exceptions, when in certain
cases just in time compilers are able to beat the statically compiled code18, but it
holds in common cases.

Therefore, the performance-crucial parts of the framework have to be written
in a compiled language. The routines extending solvers capabilities to solve rank-
n-update problems have been written in Fortran [217], since the used solvers
themselves are written in Fortran, too. The Python-Fortran interface has been
built using f2py utility, which is part of the NumPy package [211].

Secondly, the Cython language [218] has been used for that purpose, as it makes
the process simpler and more error-prone and, moreover, it provides more options
and tighter binding of the compiled and interpreted world. The use of Cython for
other performance-crucial parts (e.g. for calculation of border conditions for the
Hartree potential) has been motivated by a very easy Python-Cython “integration”
and by an easy transformation of the optimized code from Python to Cython.

17https://docs.python.org/3/library/asyncio.html
18E.g. see e.g. https://julialang.org/benchmarks/ or https://hhvm.com/blog/2027/

faster-and-cheaper-the-evolution-of-the-hhvm-jit

https://julialang.org/benchmarks/
https://hhvm.com/blog/2027/faster-and-cheaper-the-evolution-of-the-hhvm-jit
https://hhvm.com/blog/2027/faster-and-cheaper-the-evolution-of-the-hhvm-jit
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Not only my experience shows that the parts of code that are necessary to
be written in a compiled language are either large independent algorithms, (e.g.
eigenvalue solver) — for which the best strategy is to use a library developed
by specialists in the given field — or pretty small routines — that can be easily
transformed to a compiled language. Especially Cython [206], Numexpr [219] or
Numba [220] are very useful for this purpose.

The benefits from the rapid development in Python exceed many times the
necessary work to bind the compiled and interpreted parts of the code. Python
is commonly used as a rapid glue, which allows fast development of the software,
providing many ways for optimizing performance-crucial parts of the developed
software.

To conclude, Python is a well-accepted language in the scientific community,
and (not only from my point of view, see e.g. [221]) the use of Python is very
recommendable for the purpose of developing scientific software.

6.2.1 Parallelization
A modern scientific software must allow parallelization to achieve a good perfor-
mance on multicore processors and multinode clusters. However, several pretty
different concepts are hidden behind the word “parallelization”, the use of which in
FENNEC will be discussed in this section.

The first possible level of parallelization can be called library parallelization. It
is also sometimes called “BLAS parallelization”, but the concept is not specific to
the BLAS numerical libraries. In this concept, the program itself is single-threaded,
but it uses libraries that can perform some operations (e.g. matrix multiplication
and other matrix operations in the case of BLAS) using library worker threads.
Usually, the implementation of this level of parallelism consists just in linking
the right library. Cython [218] routines, parallelized using Cython “range(...,
parallel=True)” or OpenMP [222], or Numba [220] compiled routines, can be
included under this term, as such pieces of code can be viewed as library functions.

The previously described concept is sometimes also called thread-level parallelism,
although this term also denotes a substantially different concept. In a “true thread-
level parallelization”, more time-consuming tasks are computed simultaneously
by parallel threads. Unlike the “library parallelization”, where one small part of
the code is parallelized and one task is computed by more threads, in thread-level
parallelism, the threads do not cooperate on one task, but each thread solves a
different task. As a consequence, this concept does not suffer from locking issues
and work distribution overheads (at least compared with the previous case) and
therefore it provides a substantially greater performance benefit generally. Such a
concept would allow e.g. to compute spin-related quantities in two (independent)
threads.

There are authors that do not recommend the thread-level parallelization at
all (e.g. [223, 224]). Even if the criticism of thread-level parallelism comes mostly
from network-related-software developers and not from the high performance
computing community, some of their arguments are valid globally: e.g. that
thread-level parallelism is very hard to debug and that a well-designed process-level
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parallelization can utilize the parallel computational facilities in the same way as
threads.

The second claim should be especially emphasized, since in many cases, the
implementation of thread-level parallelism just delays implementation of a process
level parallelism, which is, unlike the thread-level one, easily expandable to more
computational nodes. However, there is still one indisputable advantage of thread-
level parallelism: a possibility to pass large data between threads easily without
greater performance penalty — so the thread-level parallelism has (in my opinion)
its rank in scientific computing.

The process-level parallelism is the highest level of parallelism (from a cer-
tain point of view) since it can, and usually does, utilize more computer nodes,
and thus requires a coarse work distribution to overcome the slow interprocess
communication.

It should be distinguished, whether the processes run on the same machine,
or have to communicate over a network (no matter if over common Ethernet or
over a high-performance network as e.g. Infiniband or Omni-Path, which generally
provide higher throughput or shorter latency, e.g. [225, 226]). In practice, both the
one-node and the network process-level parallelization require the same approach.
Thud, it is a good strategy to skip the one-node level completely. Moreover, many
libraries for this type of parallelization — from a de facto standard MPI (Message
Passing Interface) [227] that should be mentioned here — totally hide the differences
between one- and more-nodes parallelization.

The accelerator parallelism is the concept that stands a bit aside from the
mentioned others. Graphics cards — i.e. the most commonly used accelerators —
similarly as e.g. neural network accelerators, are suitable only for specific tasks,
while the remaining parts of the code must be still computed sequentially using CPU.
From this point of view, the accelerator parallelism is alike the library parallelism.
On the other hand, the overhead of data transfers between an accelerator and
main memory is by no means negligible, which recalls much more process-level
parallelism than the library parallelism.

Parallelization in the FENNEC framework

FENNEC employs two levels of parallelism at present time. The first is the library
parallelism. The main usage of this type of parallelization is a threaded imple-
mentation of the BLAS library (library for fast matrix-vector and matrix-matrix
operation). We have good experience with the OpenBLAS [228], however, any
BLAS implementation can be used. According to our tests, MKL achieves similar
speed as OpenBLAS on our heterogeneous (both AMD- and Intel-CPU cluster),
whereas ATLAS [229] and AMCL [230] were slower. The new AMD BLAS library
has not been tested yet. However, BLAS implementation is so dependent on both
the used compiler and on the CPU architecture, that just a much larger and more
rigorous analysis could claim general validity.

The library level of parallelism is used in FENNEC with no problems in many
cases — e.g. in computing boundary conditions of the Poisson equation. However,
in the case of eigenvalue solver, the performance of which is crucial for the package,
the effect of this level of parallelization is limited.
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The thread-level parallelism is not employed in FENNEC since it brings no
advantage for CPU intensive tasks for a program written in CPython due to its
GIL. Therefore, the next level of parallelism implemented in the FENNEC is the
process level parallelization. The parallelization is implemented using a classical
client-server design pattern, where a number of workers “server” processes can be
started and the tasks can be distributed to them.

The configuration of the worker processes is given by a plugin, therefore it
is easy to specify the nodes of a cluster where the processes should be started,
and the number of used CPU cores — either manually, or e.g. using environment
variables provided by a batch system (e.g. SLURM [231], which our group has
good experiences with).

The communication between client and server has been written using AsyncIo
routines and employs the already described concept of Actions and Variables:
client can run any Actions on any server; there are actions defined to read and
write Variables for setting up the server process and for retrieving results from it.
FENNEC developers have at disposal the methods to scatter Actions with a given
set of arguments across worker processes, as well as the methods to queue different
Actions to be successively called on the free worker processes.

This concept allows easy large scale parallelization, e.g. to evaluate HF forces
for several configurations of atomic structures: it is sufficient to write a small plugin
that defines an action, and scatter the set of arguments of the action across the
plugins. The concept is very similar to the MPI parallelization mentioned above,
but it is tighter bound to FENNEC, which makes it a bit simpler to set up and use.

Moreover, MPI has not been used intentionally for two reasons: First, having
Actions and Variables available as communication language between processes, it is
relatively easy to add the required functionality for parallelization. Second, the MPI
is utilized by some eigenvalue solvers (see the next section). The performance of the
eigenvalue solver is crucial for the performance of FENNEC. From the architecture
point of view, eigenvalue solver parallelization lies on a lower level than e.g. the
parallelization of computations of different configurations of a material sample.
It is simpler (both for a user and a developer) to differentiate these two levels of
parallelism. Thus, the standard way for utilization process-level parallelization has
been reserved for the performance-crucial eigenvalue solvers, which makes both
their implementation and use simpler. The use of MPI for eigenvalue solvers will
be further discussed in the next section, dedicated to solvers.

And finally, since the cluster, where the FENNEC is primarily used, is not
equipped with (computational) graphics cards, the FENNEC currently does not
employ any form of the accelerator parallelism. Accelerators could be utilized for
an acceleration of some linear algebra routines, which could be easily implemented
either as a special solver plugin. With the increasing speed of GPU-CPU commu-
nication and/or existence of GPU that shares its memory with the main CPU, it
may be also worth employing the GPU accelerated BLAS. However, we have not
enough programming time capacity for attempts in this direction.

There are of course other parallelization libraries, undiscussed yet and unused
in FENNEC, that are worth considering for a scientific developer. Among the most
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interesting I can mention DASK [232], a library for parallel computation (not only)
with NumPy arrays.

To conclude: leaving aside the linear algebra solver that will be discussed in
the next section, the parallelization of the FENNEC software in the current state of
development generally fulfills all the needs for a large scale computation.

6.3 Linear algebra problems and used solvers
This section is dedicated to solving linear algebra problems and to linear algebra
solvers employed in the FENNEC framework. The solvers truly deserve their own
section, since their performance is crucial for the performance of the whole package.

The eigenvalue problem solving is the most time-demanding task in the whole
DFT calculation: solving of the eigenvalue problem takes up more than 95% of
the time in large scale tasks. Therefore, the attention is paid primarily to this
problem. Solving a rank-k-update eigenvalue problem had been one of the main
topics of my master thesis several years ago. Thus, I describe the used algorithms
here just briefly. For a more detailed discussion of the topic, I refer the reader
either to my thesis [233] or to some of many books covering this topic, e.g. [118,
234, 235]. Especially for the case of the Krylov subspace algorithms, I recommend
the book Krylov Subspace Methods — principle and analysis [6] that provides very
deep insight into the inside of the Lanczos algorithm enriched by historical context.

As it has been already explained in the second chapter, two differential equations
have to be solved in each DFT iteration. The first is the Poisson equation 2.47,
whose discretization yields a system of linear equations (see the equation 3.29
in chapter 3.1.2). The second and the more important ones are the Kohn-Sham
equations 2.44, which results in a rank-k-eigenvalue problem (see 4.50 in chapter
4).

6.3.1 Common background: direct and iterative solvers
There are two basic kinds of both eigenvalue and linear system solvers: the direct
solvers and the iterative ones (see e.g. [118, 233]) — their brief comparison can
be seen on the Tab. 6.1. The direct ones are usually based on a factorization
of the matrix and thus they generally require a large amount of memory for
storing factorized matrix (factorization does not generally retain sparsity) and a
not negligible time for performing the factorization. Therefore, they are suitable in
the cases when a large number of solutions for one matrix is needed.

Iterative solvers have a pretty different nature. Iterative solvers algorithms (at
least the well known ones) can be again divided into two groups: to the methods
that iterates vector or block of vectors till they converge to the solution(s) (e.g.
power or conjugate gradient method), or to the ones that build a subspace iteratively,
into which is the problem projected to obtain the solution (for example Krylov
subspace methods).

The iterative nature of such algorithms determine their properties: as they
iterate only a few vectors at once (or add them to projection space, respectively),
iterative solvers can offer only a limited number of solutions in each run. On the
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Table 6.1: Comparison of direct and iterative solver types — common properties

Linear problem solver type
direct iterative

number of computed
eigenvalues/right hand
sides

many or all a limited number

required operations factorization
matrix-vector multiplication
(and linear system solving for

eigenvalue solver)
the control of the result
precision available no yes

parallelization not so good very good
memory consumption
(for sparse matrices) high low

time for the first solu-
tion high moderate

time for next sollutions low moderate

other hand, they offer several advantages: they are generally much more memory
efficient, they can be more easily parallelized and they do not require “pre-warming”
time for factorization of the matrix as the direct solvers. Moreover, they offer
precision control: one can stop the iterations as soon as the requested precision
is achieved. Therefore, if only a few (with regard to the dimension of the matrix)
solutions of the problem are needed, the iterative solvers are generally a better
choice.

From the previous discussion follows that the iterative solvers are more appro-
priate both for the Poisson problem same as for eigenvalue problem arising from the
Kohn-Sham equations discretization since in both cases only one or few solutions
are needed.

6.3.2 Eigenvalue solvers
We will see that finding a suitable linear solver for the Poisson problem is not so
difficult task, as there are many libraries for solving this type of problem. The
more difficult situation has been in the case of the rank-k-eigenvalue problem, as
there is no existing library for such a problem available, and therefore an existing
eigenvalue solver (and as we will see, solvers) have had to be extended to cover
this type of problem. Moreover, the performance of the whole package stands on
the performance of the eigenvalue solver.

Spectral transformations and Sherman-Morrison-Woodbury identity

Iterative eigenvalue solvers generally converge to eigenvalues with the largest
magnitudes. This can be easily demonstrated on the simple power method: method
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that iteratively computes vector xn = Anx0, till it converges to an eigenvector. If
we use a basis consisting from the matrix eigenvectors [λ0, λ1, . . . , λn] and set x0
(in this basis) to the vector of ones, it holds that

xn = [λn0 , λn1 , . . . , λnn] (6.1)

Therefore, during multiplication, the largest magnitude eigenvalue components
outweigh the others during consequent multiplications. (The proof is a bit more
technically difficult for an unsymmetrical matrix case, see [233], but essentially the
same). Since matrix multiplication is behind the scene somehow in all iterative
algorithms, this behavior is more or less common for them.

However, we are interested in the ground states with such energies, which
lie around zero. Therefore it is not viable to use a “naive” approach for solving
generalized eigenvalue problem as the simple one:

Ax = λBx −→ B−1Ax = λx (6.2)

Instead, we must utilize a spectrum transformation to make the desired eigen-
values the magnitude-largest one. For the purpose, a form of shift and invert
transformation is commonly used. E.g. in Blzpack [174] the following one is used

B(A− σB)−1Bx = λ′Bx , (6.3)

where the eigenvalues are transformed as

λ = 1
λ− σ

. (6.4)

A shift and invert transformation is commonly built in into the package providing
the eigenvalue solver. However, it requires matrix inversion, thus in the case of
rank-k-update problem the inversion of rank-k-update must be treated. To do so,
the Sherman-Morrison-Woodbury identity [236] is utilized.

Theorem 6.1 (Sherman-Morrison-Woodbury identity). Given matrices A ∈ Cn×n,
U ∈ Cn×k, V ∈ Ck×n, C ∈ Ck×k it holds that

(A+ UCV )−1 = A−1 − A−1U
(
C−1 + V A−1U

)−1
V A−1 (6.5)

Proof. This identity can be easily proved by multiplication of the equation with
A+ UCV , which results in the identity matrix on the both sides.

The necessity of the inverting the matrix (A− σB) – since the inverted matrix
is needed only for multiplication of vectors – can be (and usually it is) replaced by
solving a system of linear equations. Therefore, we have just obtained a second linear
system problem that has to be solved during the DFT iteration cycle. However, we
let these linear systems aside and we will pay attention to the eigenvalue problem,
first.
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Reverse communication strategy

The requirement to solve rank-k-update problem limits the solvers that can be
used in the FENNEC package: using the Sherman-Morrison-Woodbury formula we
can still exploit the sparsity of the matrices, however, we need solver that let the
user handle the matrix multiplication and inversion himself.

A common mechanism used for the purpose is reverse communication strategy:
the solver interrupts its operation each time, when it needs to perform multiplication
(either by matrix or by shifted and inverted matrix), and it returns program flow
back to calling routine with a request for multiplication. It is the responsibility
of the user of the solver to perform the requested operation and call the solver
function again.

From the solvers providing such (or alike) interface, we choose (for a detailed
description and the analysis of possible algorithms, see [233]) the BLZPACK
[174] that implements Lanczos algorithm [235]. As the properties of the solver
were unsatisfactory for the later stages of the DFT cycle (see page 186), we also
implemented the JADAMILU [237] that implements Jacobi-Davidson algorithm
[238, 239].

Blzpack

Blzpack [174] is an implementation of a block Lanczos algorithm [235] that projects
an eigenvalue problem

Ax = λx (6.6)
into an iterativelly built subspace

Kn
V,A = {V,AV,A2V, . . . , An−1} , (6.7)

where V is a block of a few start vectors, typically of size from two to six. It
can be easily verified that in the case of one start vector, matrix A projected
into the subspace Kn

V,A has zero lower triangle up to the diagonal next to the
main diagonal of the matrix — such matrix is called upper Hessenberg. Due to
the symmetry of the matrix A, the projected matrix has to be symmetrical, too:
therefore, it is tridiagonal. Such a matrix has very interesting properties, see [6],
and its tridiagonal structure has very desirable properties for solving the projected
eigenvalue problem.

Moreover, since the subspace is formed by vectors Anv, it can be viewed as
a generalization of the power method, where all the information obtained during
calculation are preserved and used. Thus, the convergence of the method is much
superior to the simple power method.19

However, several problems linked to the loss of the orthogonality during itera-
tions (caused by finite precision arithmetic) spoil the theoretical estimations of the
convergence. The estimation of the convergence rate in the finite precision arith-
metic is still subject of research (see e.g. [240]), thus the popularity of the algorithm
is based on the very good practical experiences obtained with this algorithm.

19The exact reason for (at least theoretical) excellent convergence of Lanczos method has in
fact far deeper roots, however, their discussion is beyond the scope of the thesis, for more details
see e.g. mentioned [6].
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The block variant of the algorithm allows a better parallelization of the algorithm
[235] and especially it improves the convergence of the method in the case of
clustered eigenvalues: i.e. if there are multiple eigenvectors with the same or nearly
the same corresponding eigenvalue.[241]

Blzpack was the first eigenvalue solver implemented into the FENNEC. However,
since it uses only a small block, and therefore even a small block of starting vectors,
it cannot fully reuse the solution from the previous DFT iteration. Moreover,
it tends to miss some eigenvalues, especially in the later iterations, and that
undesirable property spoils the convergence. Therefore, another eigenvalue solver
has to been implemented.

Jadamilu

Jadamilu solver [237] is an implementation of the Jacobi-Davidson method [238,
242, 239]. Jacobi-Davidson method consists of building the subspace Pi iteratively,
into which the problem is projected. The eigenvalues and eigenvectors are computed
in this subspace, same as in the Lanczos method — they are called Ritz vector and
Ritz values or together Ritz pairs.

The subspace is iteratively enlarged using following correction equation:

(I −Buiui
+)(A− νB)(I − uiui

+B) = ri , (6.8)

where I is the identity matrix, ui and σi form an ith Ritz pair, ν is an approximation
of a wanted eigenvalue (user given in the first iterations, later updated by the
computed Ritz values) and ri is the residuum corresponding to ui:

ri = Aui − σiui (6.9)

The correction equation 6.8 has a simple meaning: to enrich the space by the
correction for the error, but only by the component orthogonal to the current
estimation of the eigenvector. For

This scheme is a basic scheme of Jacobi-Davidson algorithm for a computation
of one eigenvector. For computing more of them, a block version of algorithm
or/and a deflation have to be incorporated into the algorithm, see e.g. [243]. For
computing eigenvalues in the interior of the spectrum harmonic Ritz values —
eigenvectors of shifted and inverted matrix (A− νB)−1 — could be utilized for a
better precision of the eigenpairs approximation [244].

The strong part of the Jadamilu solver should be the built-in preconditioning
(using ILUPACK [245]) for the in JADAMILU built-in symmetric quasi minimal
residuum solver [118] that solves the correction equation. The preconditioner is
based on incomplete LU factorization [237] of the matrix. However, it cannot take
the rank-k-update into account and therefore it does not perform well in our case.

Thus, we use JADAMILU with a user-supplied preconditioner based on shift
and invert (see Eq. 6.3):

P = (A− σB) , (6.10)

using a fixed σ during the whole eigensolver run. σ must be chosen so that the
resulting preconditioner is positive definite, therefore, it should be lower than the
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lowest expected eigenvalue. On the other hand, too low values of σ lead to worse
convergence. The good “guesses” for σ are between −6 and −10 for the majority
of the matrices resulting from the discretization described in the previous chapters
for the first iteration. λ − 2 appears to be a good guess for σ in the subsequent
iterations, where λ is the lowest eigenvalue from the previous iteration.

Requested precision of the eigenvalue solvers

It is not necessary to solve early iterations of the DFT cycle in full precision.
To save computational time, the required precision of the eigenvalue solver is set
according to the convergence criterium.

The default criterium for convergence is the L2 norm of the error of the charge
density (the difference between input and output charge density). First, the
convergence criterium is transformed into a convergence rate. The convergence rate
is expressed as a dimensionless number from interval 〈0, 1〉, where 1 means fully
converged calculation (when convergence criteria reach eρ) and 0 means totally
unconverged calculation (the error is greater than 1). The convergence error is
mapped logarithmically to the convergence rate between these two bounds

In FENNEC, there are four (user configurable) options affecting the transforma-
tion of the convergence rate to the solver precision: cmin, cmax and emin, emax. cmin
(cmin) defines bound for the convergence rate, where the minimal (maximal) solver
precision emin (emax) is used. Exponential mapping from the convergence rate to
the solver precision is then used within the bounds (cmin, cmax).

‖ρout − ρin‖
logarithmic
mapping−−−−−−−−→
〈1,eρ〉

convergence rate
〈0, 1〉

exponential
mapping−−−−−−−−→
〈cmin,cmax〉

solver precision
〈emin, emax〉

(6.11)

Comparison of the used solvers

The two solvers are used since each of them offers different properties. It has been
already noted, that Blzpack iterates only small block of vectors and, thus, it is not
able to fully reuse eigenvectors from the previous DFT iteration as an estimation
of the newly computed eigenvectors.

The Jadamilu solver constructs the projection space by iterating a large block
of vectors. This block can be initialized by the results of the previous iterations,
and the larger iterated block (compared to Blzpack) is less prone to the missing of
an eigenvalue. However, Jadamilu algorithm turned out to be less robust: in the
case when only inexact estimations of the solutions (or none at all) are available,
the solver sometimes does not converge at all, and the necessity of guess the value
σ makes the Jadamilu less robust in the first iterations of the DFT cycle.

We can see in Fig. 6.5 that in the first iterations, where no or poor estimations
of the eigenvectors from previous iterations are available, and only low precision
is requested, BLZPACK performs betters than JADAMILU. The picture rapidly
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Figure 6.5: Performance comparison of BLZPACK � and JADAMILU � solvers
for iterations of DFT cycle for Flourouracil and Nitric Oxide for various meshes.
DOFs denotes the number of degrees of freedom: the dimension of matrices of the
resulting generalized eigenvalue problem. Computation was performed on 2×6-core
Xeon E5645 [171] with 800Mhz DDR3 memory.

changes in the later iterations, where JADAMILU can fully utilize the eigenvectors
from previous iterations.

From the previous follows that it is the best strategy to start with the BLZPACK
solver and after few first iterations (typically one to two) switches to JADAMILU.
The moment when FENNEC switch from BLZPACK to JADAMILU is configurable
(by the iteration number or by the convergence rate).
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6.3.3 Linear system solvers
There are two linear systems that have to be solved: the Poisson equation 2.47,
and the linear system for shift and invert transformation (Eq. 6.3) in BLZPACK
or preconditioning in JADAMILU, respectively. Although both of the systems
are sparse and with the same matrix structure, the requirements for the solver
are quite different: the boundary conditions change each iteration for the Poisson
equation, therefore only one result for each “Poisson matrix” is needed. In the case
of the shift and invert operation and preconditioner, there have to be solved many
right-hand sides for the same matrix.

For one-time solving of the Poisson equation, an iterative solver is the best
choice, again. We had utilized SciPy [212] conjugate gradient algorithm [118], but
its performance was unsatisfactory for larger problems. PETSc [246] implementa-
tion of the conjugate gradient, preconditioned by ICC [247] incomplete Cholesky
factorization, provides much better performance and makes the time needed for
solving Poisson equation insignificant relative to the time needed for solving the
eigenvalue problem. E.g. there were totally 305 seconds (average 34 seconds for a
problem) spent in Poisson equation solver in the largest problem on the Fig. 6.5,
compared to 12.974 seconds needed to solve all eigenvalue problems in the same
DFT cycle (average 1441 second per one eigenvalue problem).

The required precision for the linear system solver is set to the required precision
for eigenvalue solver multiplied by 1× 10−3, as this threshold seems safe according
to the performed test runs: a higher multiplicator than 1× 10−2 leads to a slower
convergence of the DFT cycle.

For the shift and invert/preconditioning case, where many right-hand sides of
the same matrix have to be solved, a direct solver is a better choice, as long as the
memory requirements could be fulfilled. First, FENNEC utilized the MA47 library
for that purpose [248], which we have later replaced by newer and substantially
faster MA57 library [140]. Both the libraries do a sparse factorization of a matrix
that is then used for solving the linear system.

The prewarming factorization time (76 seconds in the mentioned case) of MA57,
which is the largest disadvantage of the direct solver, is negligible to the total time
of the eigenvalue solver and it is well amortized: there is e.g. average 3274 requests
for linear problem solving per one DFT cycle iteration for BLZPACK respectively
2031 requests for preconditioning for JADAMILU (for the same problem as in
the previous paragraph). Computational time for solving one right-hand side is
lower than one second. The greater memory requirements of the direct solver do
not matter here too, as it is still low compared to the memory requirements of
eigenvalue solvers.

6.4 The current and the future work

To conclude, FENNEC is a mature software package for electronic structure calcula-
tions. Its open plugin-based architecture allows both its easy use as well as its easy
further development. In a near future, we plan to incorporate new routines for
relativistic pseudopotentials that are already developed by other members of our
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team. These pseudopotentials also allow us to put spin density functional theory
calculations into practice.

Other possibilities to improve the FENNEC package are mostly outlined in the
thesis: further research and improvement of a mixing algorithm and utilizing of a
more sophisticated geometry relaxation solvers (see the next section), implementa-
tion of partially periodical boundary conditions, utilizing of FEM p-adaptivity or
IGA locally refined patches.

A special field for improvements is the solvers since they determine the perfor-
mance of the package. Thus, I summarize their evaluation and current and future
work in a special subsection.

6.4.1 Evaluation of the solvers and the work in progress
The achieved computational times mentioned above prove that the used linear
system solvers, both the PetSc implementation of the conjugate gradient and MA57
for matrix factorization, provide fully satisfactory performance.

The performance of the eigenvalue solvers is, in the current state of the FENNEC
package development, the main field for enhancing the FENNEC package now, since
Blzpack is worth to use only for first few iterations and both Blzpack and Jadamilu
are only parallelized using multithreaded BLAS. Therefore, a more powerful or
MPI parallelized solver would enlarge the set of problems, on which FENNEC is
applicable.

We20 have already done several steps in this field. The solvers have been
incorporated into the system of FENNEC plugins, which allows switching among
the solvers easily. Second, we created the “eigenvalue-solver-independent” interface
to MA57 and to routines for Sherman-Morrison-Woodbury identity. Third, we have
rewritten the interface for currently used solvers from Fortran to Cython, using
the mentioned interfaces, and we have compared the performance of the old and
the new implementation of the solvers, which proves that the new routines are a
slightly faster than the original ones (mainly due to employing better routines for
sparse matrix manipulation).

All these steps have been done to have a framework for an as-easy-as-possible
incorporating new eigenvalue solvers into the FENNEC, the benchmark tests then
show that the performance of our new routines is reasonable.

The first eigenvalue solver to be incorporated into the FENNEC package is
FEAST solver [249]: this solver has been already used for some DFT calculations
[250] and it is MPI parallelized. In the current stage of the development, the MPI
version of the Feast performs multiple better than Jadamilu on the same number
of processor cores (however, only on more cores). Unfortunately, it is not yet able
to compute all eigenvalues in the interval, which leads to instability of the DFT
cycle. Therefore, further research in this area will be required to overcome this
problem and to incorporate the FEAST solver into FENNEC.

If the FEAST will show as a dead end, we want to try solvers from the SLEPc
package [251] or a promising approach presented in [252].

20Substantial part of the work on this field has been done in cooperation with my younger
college Vojtěch Fišer.
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During the development of the new solvers interface, the not-fully-satisfactory
performance of SciPy implementation of the sparse matrix-vector multiplication
have been identified. Therefore, the implementation has been replaced by our own
version, which performs better in some cases, and we plan to try and possibly
incorporate even more either sophisticated sparse format whose authors claims that
the formats allow faster multiplication [253, 254] or a sparse BLAS implementation
provided by CPU manufacturers [255, 256].

However, although the solvers are one of the main fields that requires further
development of the package, FENNEC is even in its current state capable of solving
real scale problems, as it is demonstrated in the next chapter.
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7. Graphene fragment
deformation study
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This chapter presents the results of the study of graphene fragment deformation,
obtained using the FENNEC software package. The study has been performed
during preparing a new grant application, in which the ab-initio computation
will be linked with molecular dynamics to give more insight into the behavior of
graphene and possibly other modern 2D materials.

This chapter has three sections. The first one contains theoretical motivation
for the study. The theoretical background presented in this short section is based
on the text of our (unpublished) grant appliance, which I am a co-author of, and
which has been reused with approval of its main author Otakar Frank.

The next section contains the setup of the calculations and the results of the
study are presented in the third section. Both the sections are original.

7.1 Motivation for the study
Graphene is a modern and promising material, frequently used in electronics,
photonics, and optoelectronics, energy storage and conversion, or sensing [257].
Mechanical deformations can cause drastic changes of 2D materials properties —
from (opto)electronic to magnetic, chemical, or mechanical [258, 259]. For example,
the in-plane tension causes decreasing of a band gap energy, changing the character
of the gap from direct to indirect (where direct gap means that excitation of the
electron does not change its momentum, while indirect excitation leads to the
change of the momentum being a source of phonons).

In addition, the deformation effects comprise also all kinds of topographical
distortions like ripples, wrinkles, folds or crumples [260]. These corrugations are
almost omnipresent because of the low bending rigidity of 2D materials and they
form and change readily upon even minuscule stress. Nanometer-sized ripples cause
a dramatic decrease in mobility. Larger wrinkles and folds can generate a plethora
of effects like gauge fields, energy funneling, or quantum confinement. There is
a dire need to control the appearance and dimensions of such structures. Non-
homogeneous deformation gradients causing energy funneling [261] or deformation
singularities causing single-photon emitters [262] can be created either statically
using a properly designed substrate or dynamically using AFM nanoindentation.
However, the theoretical description of such phenomena suffers from various levels
of approximation.
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The effects of strain on the crystal lattice of 2D materials can be monitored
directly by Raman spectroscopy [263]: e.g. for in-plane compression and wrin-
kling [264], a coupling of phonons to the electronic structure [265], manipulating
the interaction in twisted bilayers [266] or quantifying Fermi level shift together
with shear and hydrostatic stress from the Raman spectra [267].

Naturally, the obtained information is limited by diffraction, collected from an
area of several hundreds of nanometers in diameter. Even though it is possible to
derive spatially better-resolved data by fine-step mapping, as have been shown for
graphene suspended over nanopillars with 250nm separation [268], the limit still
stays within hundreds of nanometers. To break the limit, Atomic Force Microscopy
(AFM) or Scanning Tunneling Microscopy (STM) with plasmonically active tips
(gold, silver) can be coupled to Raman spectroscope for Tip-Enhanced Raman
Spectroscopy (TERS) or Photoluminescence (TEPL). The spatial resolution of
these near-field methods is driven by the diameter of the tip.

The experimental approach can be viewed as global: only properties of a
relatively big fragment of the material can be observed and the resolution of
the measurement is limited. This limitation of the experimental approach for
a better understanding of the properties of 2D materials can be overcome by
the computational approach, which however has the opposite limitation: the
computational demands rise sharply with the number of electrons and atomic sites
in the sample under study. Thus, the computational approach provides an insight
into “local” properties, limited by the computationally manageable size of the
sample. The experimental data are available for the samples with millions of atoms,
while the ab-initio calculations can provide answers up to hundreds or thousands
of atoms. Therefore, another method is needed to fill the gap between experiment
and ab-initio calculations.

The atomistic simulations by MD technique, e.g. [269, 270], can treat up
to billions of atoms (≈ volume of a few cubic microns). Advanced interaction
potentials can have their parameters adjusted according to results of ab-initio (first
principles) quantum mechanical calculations [271], as well as empirically according
to important experimental data like elastic constants, vacancy formation energy,
cohesion energy, etc., see [272]. Also those data can be, however, calculated from
the first principles [273].

The classical atomistic MD methods are very successful in modeling various
macroscopic mechanical properties [274], including the propagation of the acoustic
waves and providing correct phonon frequencies, but — lacking electronic structure
information — in principle cannot provide material properties linked with electronic
states (i.e. electric and optical properties). Moreover, since this approach relies
on semi-empirical parameterization, even the mechanical properties may not be
reflected correctly in non-standard situations for which the interaction potentials
have not been adjusted.

Therefore neither ab-inito approach nor molecular dynamics are sufficient to
calculate all desired properties of such a large material structure. Our approach
is to bi-directionally link the ab-initio calculations using FENNEC and molecular
dynamics together: first, the local properties of the material will be computed
using ab-initio calculations. The results will serve as input for molecular dynamics
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Figure 7.1: Deformed graphene fragment: spatial structure. The central red atom
have been displaced, the positions of the green and cyan atoms (in the twelve
optimized atoms case) have been optimized.

(for fitting potentials). Using molecular dynamics, the geometry of the material
structure will be obtained — and this geometry will serve as input for next ab-initio
calculations being able to determine various (e.g. the electric and optical) properties
of the material.

The first steps of the mentioned approach are described in this chapter: it
contains results of relaxation of deformed graphene fragment using software package
FENNEC. The following calculations are the proof of concept: example geometry,
where the forces acting on the central atom of the fragment are determined.
The forces will be then (by our specialist on the molecular dynamics) fitted into
the molecular dynamics potentials. The result will be self-consistent multiscale
computation, where the data obtained using ab-initio calculations should serve as
input for molecular dynamics, and conversely, the results of molecular dynamics
should determine more realistic geometry structures for ab-initio calculations to
update and refine the parameters used for generating molecular dynamics potentials.

7.2 Graphene layer deformation
To determine the force needed to tear off the graphene layer using a point-acting
force, a geometry of graphene layer fragments has been optimized for various
displacements of the central atom. The computed graphene layer fragment consists
of 37 carbon atoms: there are included all the fourth neighbors of the central atoms
so that each atom belongs to at least one complete hexagon (see Fig. 7.1).

The following results have been computed using hexahedral mesh (see chapter
3.2.1 and Fig. 7.2) and environment-reflecting pseudopotentials [20] with rc radius
1.5 a.u. (see section 4.2.1). The force acting on the central atom has been computed
as follows: the central atom has been displaced in the z-axis and his position has
been fixed. Then a geometry optimization of the positions of his three or twelve
nearest neighbors has been performed.

The setup of the study, of course, does not have the ambition to describe a
real deformation of the graphene — of course, any real deformation would take a
much larger area of the graphene than the one atom and computing of such a large
sample exceeds the computational capabilities of any current ab-inito computational
method.
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The aim of this study is to prove that the FENNEC applied to the graphene is
able to obtain physically reasonable results and thus they can be used as inputs for
constructing molecular dynamic potentials. For the purpose, the case with three
optimized atoms has been computed using well established ab-initio plane-wave
DFT code ABINIT [16]. ABINIT setup differs a bit from FENNEC setup: since it is
software for computing periodical structures, the computed sample has been infinite
graphene layers in a cell of a size 5x5 atoms. The layers have been positioned 20
atomic units apart. For a better comparison of the results, the forces acting on the
central atoms have been computed using FENNEC also in a fixed geometry setup,
with the positions of atoms were obtained from the ABINIT calculation.

7.2.1 Results of the computation and their discussion
As we can see in Fig. 7.3, the result forces on the central atom obtained using
FENNEC and ABINIT for the same geometry are similar. Since ABINIT is periodic
code, whereas FENNEC compute finite graphene fragment, the boundary conditions
are necessarily different in these two cases and a small difference of the force is
expectable. Such a difference has been really observed — especially for a greater
deformation, which disturbs the charge density to greater distances — but its
magnitude seems to be reasonable.

A maximal observed force for ABINIT has been slightly greater (−0.206 Eh/a.u.)
than the one for FENNEC (−0.183 Eh/a.u.). In the case of the fixed position, FENNEC,
the maximum of the force is slightly shifted to a greater displacement of the central
atom compared to the ABINIT results. When the positions of the atoms were
relaxed using FENNEC, the three optimized atoms have been attracted back to
the layer earlier (see Fig. 7.4), which results in a shift of the maxima of the force,
its magnitude, however, remains nearly the same (in fact it grows a little). The
differences of the forces on the three atoms in this region were very small, which
allows the boundary conditions to affect more the results.

The differences of the forces obtained by optimizing the positions of three and
twelve atoms are expectable: more “layers” of optimized atoms causes the force to

Figure 7.2: A mesh for the graphene fragment computation.
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Figure 7.3: Computed forces on the central atom of a deformed graphene fragment.
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grow slower, allows the greater displacement of the central atom, and the maximal
force acting on the central atom is a lower, as the charge density is more “diluted”
in the maximum of the force due to greater spatial displacement.

The computations serve as proof of concept and demonstration of the capability
of the FENNEC code to obtain reasonable forces from graphene fragment and to
obtain experiences with the computation. The comparison with the ABINIT for
the same geometry proves, that the results obtained with FENNEC are reasonable.
Moreover, for further calculations and research, the following experiences and
recommendations could be stated:

. The best mesh seems to be the one with a base cube size corresponding to
the diameter of the hexagon: this choice allows the automatic adaptation
algorithm (see algorithm 3.3 on page 70) to generate a mesh with as the same
level of refinement around all atoms as possible (see Fig. 7.2).

. In the three atoms optimized case, the optimization has been performed
using Anderson mixing (see section 2.5 on page 36). For the twelve atom
case, this algorithm failed to optimize the positions properly. The Verlet
algorithm (molecular dynamic with dampening) [275] performs better in this
case, however, further improvement in the performance could be probably
achieved by using a more sophisticated algorithm, e.g. some form [276]. A
good trade-off between speed and stability [277] seems to offer a modification
of Verlet scheme called FIRE [278, 279], often used for this purpose (e.g.
[280]) is well-known BFGS method [79].
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Figure 7.4: The displacement of the nearest neighbors of the central atom in the
z-axis during the deformation of graphene fragment.
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. Use of pseudopotentials tuned for the specific positions in the structure (we
use a different pseudopotential for the tip and the three nearest atoms) leads
to better results, same as a more-than-one-projector separable pseudopotential
substantially lowers the differences between results obtained by ABINIT and
FENNEC, which further confirms the results from section 4.3.

Conclusion of the study

To conclude FENNEC proves, that is able not only to compute reasonable forces for
samples of a size that is necessary for constructing molecular dynamics potentials,
but it is also able to perform geometry optimizations, which are more computation-
ally demanding task than just force computing. The resulting forces differ a bit
from the reference calculation, but the differences of the results are fully acceptable,
taking into consideration the differences between the two methods and from them
following the differences of the setups of calculations.

The performance of the package could be further improved by utilizing more
sophisticated geometry optimization algorithms (and/or eigenvalue solvers, see the
previous chapter), but even in the current state of development FENNEC is capable
of solving real-scaled problems.
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Figure 7.5: Deformation of graphene fragment: wire model of its relaxed structure
and corresponding charge densities for the various displacement of the central (red)
atom. Positions of all the other atoms except the border ones (blue) have been
optimized to have zero HF-forces.
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Figure 7.6: A deformed graphene fragment for the displacement of the central atom
equal to 4.535 a.u. and twelve optimized atomic positions. Color layers denotes
the levels of charge density. Notice the low density of charge between the central
atom and its neighbors: it signals, that the bonds are nearly torned off and the
attractive force have started to decline.
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Conclusion
This thesis describes the development of a new method for electronic structure cal-
culation, its implementation into the software package FENNEC and the application
of the package to the problem of graphene fragment deformation.

The new method is designed for calculating aperiodic materials (even with
charge neutrality violation) using a general basis and, by that, to fill the gap
between the existing well-established methods.

FENNEC represents a new approach, but it is based on well-established elements:
(i) the density functional theory (which replaces the multi-electron Schrödinger
equation with a set of Kohn-Sham single-electron equation), (ii) discretization by the
finite element method (FEM) providing a general basis and excellent convergence
control, and (iii) environment-reflecting pseudopotentials.

Another possibility for the discretization that the newly proposed method offers
is an isogeometric analysis (IGA) that provides continuous derivations up to the
order of the basis minus one.

The thesis includes a suitability analysis of FEM and IGA bases for electronic
structure calculations using FENNEC. The results show, that the best bases are
tri-cubic FEM bases on hexahedra elements, especially with the use of refined
meshes. Tri-quadratic bases can — in some refined cases — outperform tri-cubic
ones, but their accuracy should be verified. IGA offers both smooth convergence
and continuous derivatives at the costs of higher computational demands.

To obtain a computationally efficient expression of the discretized equations, a
separable form of l-dependent pseudopotentials is used. The implementation of
separable pseudopotentials into the discretized Kohn-Sham equations results in a
rank-k-update generalized eigenvalue problem. This problem is solved by iterative
solvers using the Sherman-Morrison-Woodbury formula. Since the early and later
stages of the computation require different properties of the used solver, the new
method utilizes two solvers, based on implementing different algorithms: the
Lanczos algorithm and the Jacobi-Davidson algorithm. For a better parallelization
and the overall performance of the package, the FEAST solver will be incorporated
as a third possibility in the near future.

During the implementation of the method, many problems had to be solved and
new techniques had to be developed for usage within the new framework: Formulas
for the total energy of the system, and for gradients of the total energy called
Hellmann-Feynman forces, were derived and implemented for efficient geometry
optimizations. Whereas the obtained formula for the total energy does not differ
very much from the formulas used by other authors, the derived formula for the
Hellmann-Feynman forces is original. This formula presents very good properties
as regards convergence, performance, and accuracy.

For efficient mixing in a DFT self-consistent cycle, a new mixing algorithm was
developed. This adaptive-Anderson mixing provides an automatic adaptation of
the mixing coefficient which would have to be guessed otherwise. This algorithm
was tested not only in FENNEC but also in another DFT code based on KKR
approach.
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For transforming an l-dependent pseudopotentials into its separable form, a new
algebraic description based on B-orthogonality has been developed, offering insight
into the suitability of bases used for the transformation. The recommendations for
the choice of the number of projectors were obtained and the option of including
energy derivative into the basis was implemented and analyzed.

The entire method was implemented in Python using finite element framework
SfePy [207] and many other numerical libraries into the FENNEC package, which
is still being expanded. The package architecture is characterized by an open
and extensible architecture based on plugins, which provides many benefits for
developers and users. A short discussion of the package architecture and design
principles is included in the thesis, and the crucial properties and parts of the
package determining its performance are presented: the used linear algebra solvers
and parallelism of the package.

FENNEC is a highly useful tool for computing electronic structure. This fact
has been demonstrated on a sample computation of a deformed fragment of a
graphene layer. The geometry of the fragment deformed by a point force acting on
the central atom was determined and the force required for tearing the fragment
was calculated. These computations will be used in further research for modeling
molecular dynamics potentials. The ability of FENNEC to do a geometry optimiza-
tion of real material samples proved that it is already a mature software, prepared
for real use.

The main goal and the most important result of my doctoral studies is the
FENNEC framework itself: a still developed but already mature software package
for electronic structure calculations of aperiodic materials.

During its development, various results were published and presented, see the
appendix J. Some of them can be highlighted, e.g.: the newly proposed formula for
Hellmann-Feynman forces and its analysis [281] published in Computer Physics
Communications 1, the convergence study of isogeometric analysis and finite element
method applied on the Kohn-Sham equations [106] (in Applied Mathematics and
Computation2) and the not yet published a new adaptive mixing scheme for a
self-consistent problem, presented in the second chapter of this thesis (part of this
work have been published in [282]).

There are several fields, where FENNEC could be further developed. First, the
efficiency of FENNEC could be further improved by employing a more parallelized
eigenvalue solver, as proposed in the sixth chapter. We also plan to incorporate
routines for creating relativistic and spin-aware pseudopotentials which are already
developed by our college Robert Cimrman. The implementation of (partial) periodic
boundary conditions (e.g. for calculations on infinite strings) could be handy, too.
We also consider enriching the SfePy package and FENNEC by p-adaptivity and/or
by a refined version of isogeometric analysis.

1The journal is in Q1 quartile for the year 2019 both in General Physics and Astronomy and
Hardware and Architecture according to Scopus (https://www.scopus.com/sourceid/13184,
visited 20/6/2020).

2The journal is in Q1 quartile for the year 2019 both in Applied Mathematics and Computa-
tional Mathematics, according to Scopus (https://www.scopus.com/sourceid/25170, visited
20/6/2020).

https://www.scopus.com/sourceid/13184
https://www.scopus.com/sourceid/25170
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Beside FENNEC improvements, the work on the implementation of the algorithm
opens some interesting questions, which will be the subject of our future research.
E.g. there is a possibility, that the smoothness of computed Hellmann-Feynman
forces with a FEM basis could be further improved by incorporating the so-called
IBS term (which is discussed in the fifth chapter), in spite of the fact that our
basis is not dependent on atomic positions. The new adaptive-Anderson mixing
algorithm, proposed in the third chapter, deserves a deeper theoretical background,
which could lead to an even more efficient and robust adaptation scheme. The
options for constructing the basis for transforming a potential into its separable
form should be examined more thoroughly.

Research in all of the suggested fields (whose list is far from complete) is far
beyond available capacity of our research group. Thus, we will need to incorporate
new colleagues who would help us mainly in the applications of the FENNEC
package to “real world” problems.

In the near future, we plan (in cooperation with other research groups) to use
FENNEC for forces calculations in deformed graphene fragments and other 2D
materials. These forces will be used for tuning up the Finis-Sinclair-like interaction
potentials (see e.g. [283]) in molecular dynamics for a better understanding of
the behavior of deformed layered material. Therefore, our effort will probably be
aimed at improving the FENNEC efficiency (solvers and mixing algorithms) and at
the routines for creating fully relativistic pseudopotentials, which will enable us to
study a wider range of materials.
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B Notation
As the thesis covers different fields of science with different conventions of mathe-
matical notation, it is useful to summarize the notation used through the thesis.

Symbol Meaning
N,R,C natural, real and complex numbers
U,V vector spaces U = span{v1,v2 . . .vi}
L,H spaces of functions
a, b, c, . . . scalars a ∈ R or a ∈ C
~x, ~y, ~z, . . . spatial vectors v ∈ R3

x,y, z, . . . vectors v ∈ Rn or v ∈ Cn

f , g , ψ, θ functions and wavefunctions ψ ∈ L
E energy (scalar value)
U, V operators, matrices (in finite space), or potential functions

(V (ψ))(x) = V (ψ(x))
r, θ, ϕ spherical coordinates r ∈ R+

0 , θ ∈ 〈−π/2, π/2〉, ϕ ∈ 〈0, 2π)
ψ+, V + a complex conjugate of a function ψ or conjugate transpose of a

matrix V V +
i,j = Vj,i

(u · v) a scalar product (u · v) ∈ R
〈u|v〉 a scalar product in bra-ket notation
〈u|A|v〉 a scalar product with an operator in bra-ket notation

〈u|A|v〉 =
∫

u+Av
U×V a direct product of vector spaces dim(U×V)=dim(U)+dim(V)
ψ × φ direct product of functions ψ(x)× φ(y) = ψ(x)φ(y)

(ψ : Rn → R)× (φ : Rm → R) = σ : Rn+m → R

‖x‖, ‖ψ‖ L2 norm ‖x‖ = (x · x )
1
2 , ‖ψ‖ = (

∫
x ψψ

+)
1
2

Pn, P
m
l ,

Ylm

the Legendre and the associated Legendre polynomials and
the spherical harmonic functions3

Ω,Ωh, ∂Ωh the volume, discretized volume, and its boundary
ϕ, ϑ elements of basis of space of solution ϕ ∈ Ω
∇ the gradient operator ∇ψ = ∑

i
δψ/δxiei

∇2 the Laplace operator ∇2ψ = 4ψ = ∑
i
δ2ψ/δx2

i∫
Ω ,
∫

integral over volume, dx, and Ω are omitted for the sake of sim-
plicity, if no confusion can arise

3Pl denotes also projector to given l-space.
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C List of used shortcuts
a.u. (Hartree) atomic unit (of length)
CSR Compressed sparse row
DoF(’s) Degree(s) of freedom
DFT Density functional theory
e.g. exempli gratia (for example)
Eq. Equation
Eh Hartree unit of energy
FEM Finite element method
Fig. Figure
GIL (Python) global interpret lock
HF(F) Hellmann-Feynman (forces)
i.e. id est (in other words)
IGA Isogeometric analisis
NNzs Number of nonzeros
NURBS Non-uniform rational B-spline
PDE Partial differential equation
psp. Pseudopotential
SDFT Spin density functional theory
Tab. Table
w.r.t. with regard to
XC Exchange-correlation

D List of algorithms

2.1 Spin-restricted density functional theory . . . . . . . . . . . . . . 36
2.2 Adaptive Anderson mixing . . . . . . . . . . . . . . . . . . . . . . 51

3.1 Adaptive tetrahedral mesh . . . . . . . . . . . . . . . . . . . . . . 67
3.2 Adaptive hexahedral mesh . . . . . . . . . . . . . . . . . . . . . . 68
3.3 Adaptive hexahedral mesh . . . . . . . . . . . . . . . . . . . . . . 69

4.1 Generating a separable pseudopotential . . . . . . . . . . . . . . . 124

E List of tables

5.1 The asymptotic complexity of the HF-forces computation . . . . . . 159

6.1 Comparison of direct and iterative solver types . . . . . . . . . . . . 182
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Summary
A new ab-inito method and the related computer code has been developed within
this work — in accordance with its aims — for calculating electronic states and
structural properties of (primarily) nonperiodic, possibly electrically charged, ma-
terial structures. This method has been implemented into the software package
FENNEC.

The new method fills a gap among the current well-established methods and
represents a counterpart of what the plane-wave method is within the class of the
methods employing the Bloch’s theorem (for materials with translational symmetry).
The newly developed method is based on the density functional theory (DFT), the
finite element method, or isogeometric analysis as an option, and environment-
reflecting separable pseudopotentials, and it provides an excellent convergence
control within a general, in principle arbitrarily precise basis.

During the development of the method, a new precise and computationally
efficient formula for evaluating Hellmann-Feynman forces has been derived, im-
plemented, and used for geometry optimizations. Its advantages and very good
convergence properties have been demonstrated in sample calculations.

Among other originals results of this work, a purely algebraic description of sep-
arable pseudopotentials should be mentioned. This description allows constructing
a projection basis to achieve any required accuracy.

Besides that, an adaptive version of the Anderson iteration scheme, which solves
the problem of choosing the right mixing parameter (an approximation of the
Jacobian) in the DFT loop, has been proposed, implemented, and analyzed.

Discretization of the Kohn-Sham equations using the finite element methods
leads to a rank-k-update generalized eigenvalue problem, for solving of which an
efficient method had to be developed: to find the appropriate eigenvalue solvers,
integrate them into the FENNEC software package, and make them capable to solve
the rank-k-update problem.

The convergence properties of that method in dependence on various technical
parameters — i.e. the finite element shape, basis type, and the order and number
of projectors for separable pseudopotentials — have been examined and analyzed
to determine the best options for the new method.

The newly created method has been implemented using the Python finite
element framework SfePy (and many other libraries) into the software package
FENNEC. This software package is characterized by a modular plugin architecture
which significantly simplifies its further development and makes its usage easy.
FENNEC has been used, among other tasks, e.g. for geometry optimization of a
deformed graphene fragment and calculations of forces in it as a preparation for
the ab-initio construction of force-interaction molecular dynamics potentials.
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Shrnutí práce
V této práci — v souladu s jejím cílem — byla vyvinuta nová ab-inito metoda a
odpovídající software pro výpočet elektronových stavů a strukturních vlastností
(primárně) neperiodických, popřípadně elektricky nabitých, materiálových struktur.
Tato nová metoda zaplňuje mezeru mezi současnými běžně užívanými metodami a
představuje protějšek toho, čím je metoda rovinných vln mezi metodami užívajícími
Blochův teorém (sloužícími pro výpočet materiálů s translační symetrií). Nová
metoda je založena na teorii funkcionálu hustoty, metodě konečných prvků, popř.
volitelně na isogeometrické analýze, a prostředí-reflektujících pseudopotenciálů, a
nabízí výtečnou kontrolu konvergence díky obecné, v principu libovolně přesné
bazi.

Během vývoje metody byla vyvinuta, implementována a pro geometrické op-
timalizace použita nová formulace výpočtu Hellmann-Feynmanových sil. Její
přednosti, především výtečná konvergence, byly demonstrovány na ukázkových
výpočtech.

Mezi další originální výsledky této práce patří čistě algebraické vyjádření sepa-
rabilní formy pseudopotenciálů. Tento popis umožňuje konstrukci projekční báze
tak, že jde dosáhnout libovolné požadované přesnosti.

Mimo to byla navržena, implementována a analyzována adaptivní verze Ander-
sonova iterativního algoritmu, která řeší problém výběru mixovacího parametru
(počátečního odhadu jakobiánu) v DFT selfkonsistentním cyklu.

Diskretizace Kohn-Shamových rovnic za pomoci metody konečných prvků vede
k rank-k-update problému vlastních čísel, pro jehož řešení bylo třeba vyvinout
efektivní metodu: najít vhodné řešiče, integrovat je do softwarového balíku FENNEC
a rozšířit možnosti těchto řešičů o řešení rank-k-update problému.

Byly zkoumány a analyzovány konvergenční vlastnosti této metody v závislosti
na různých technických parametrech — např. tvaru konečných elementů, typu báze
a jejím řádu, počtu projektorů separabilních pseudopotenciálů — a touto cestou
byly získány optimální hodnoty přinášející nejlepší výpočetní výkon a přesnost.

Tato metoda byla implementována v jazyce Python s využitím konečněprvkového
rámce SfePy do softwarového balíku FENNEC. Tento software se vyznačuje mod-
ulární architekturou založenou na pluginech, která podstatně usnadňuje jeho další
vývoj i přispívá k jeho velmi snadnému používání. Jako demonstrace schopností
tohoto software je v práci prezentovaná optimalizace geometrie fragmentu grafenové
vrstvy a výpočet sil potřebných na odtržení atomu z této vrstvy. Tyto výpočty
budou sloužit k ab-initio konstrukci interakčních potenciálů pro simulace grafenu
pomocí molekulární dynamiky.
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