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ABSTRACT
This paper presents a deep convolutional neural network (CNN) based method that automatically segments arc-
like structures of coronal loops from the intensity images of Sun’s corona. The method explores multiple U-Net
architecture variants which enable segmentation of coronal loop structures of active regions from NASA’s Solar
Dynamic Observatory (SDO) imagery. The effectiveness of the method is evaluated through experiments on both
synthetic and real images, and the results show that the method segments the coronal loop structures accurately.
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1 INTRODUCTION
Feature segmentation has been studied in many sci-
entific and application domains (e.g., [bps05, cng09,
slh13, bbb18, lel18, zll19, zmo20]) as it supports new
findings for the feature of interests or other further im-
portant information discovery. For example, Cao et
al. [cng09] introduced a new randomized Hough trans-
form method that enabled segmentation of aurora struc-
tures which can help other geophysical studies. A med-
ical application (i.e., segmentation of brain tumor) of
random forest and level set methods was recently pre-
sented [lel18]. In this paper, we consider the automated
feature segmentation in the solar physics application.

The study of solar activities is of great importance for
understanding their effects on Earth. For example,
these activities can impact terrestrial communication
or geospace weather. The solar scientists gain insights
of these solar activities by examining the curvilinear
features that appear in the outermost layer of the Sun’s
atmosphere. These curvilinear features are called
the coronal loops. These are the traces of the solar
magnetic field that drives the Sun’s activities [lng06].
The solar scientists study the coronal loops from solar
imagery to analyze scientifically important phenom-
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Figure 1: An example of solar image with a close up on
a coronal loop region. (We have added the close up part
of the image from NASA’s SDO solar image.)

ena, such as the controversial coronal heating [ssc02,
scb03], coronal mass ejections [pjh12], or solar
storms [gbm90]. Figure 1 shows an example of a
solar image with a close up on coronal loops. In the
figure, the white arching structures are the coronal
loops. Automated segmentation of these coronal loops
can greatly help the solar scientists enable an efficient
and consistent analysis of a large number of coronal
images. Nevertheless, automated coronal loop segmen-
tation is very challenging since the coronal loops have
irregular shapes, widths, and orientations, as well as
varying intensities without clear outer boundary. In
addition, the loops overlap and there are image noises.

In this paper, we present a deep convolutional neural
network-based method for the coronal loop segmenta-
tion. The method employs a U-Net architecture [rfb15]
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by considering different depths and widths in the arci-
tecture for its accurate segmentation of coronal loops.
To our knowledge, our method is the first attempt to
utilize deep learning for coronal loop segmentation.

This paper is organized as follows. In Section 2, the
related work is discussed. Section 3 describes our new
method of coronal loop segmentation. The experimen-
tal results of applying the new method to synthetic data
and real coronal images are presented in Section 4. Sec-
tion 5 concludes this paper and discusses future work.

2 RELATED WORK
Processing of satellite and observatory-collected im-
agery (e.g., [and99, kng04]), including coronal loop
segmentations, has been investigated by many studies.
In this section, the related work in convolutional neu-
ral networks and the prior efforts on automated coronal
loop segmentation are discussed.

2.1 Convolutional Neural Networks for
Image Segmentation

In the deep learning era, convolutional neural networks
(CNNs) have achieved state-of-the-art performance on
a wide variety of challenging tasks, such as classifi-
cation (e.g., [ksh12, kaz15, slj15]), object detection
(e.g., [gdd14, est14]), and object segmentation (e.g.,
[zjr15, bhc15]. Among them, image segmentation is
usually considered to be the most difficult one. Instead
of classifying one image-level label or a limited num-
ber of bounding boxes, image segmentation requires a
model to predict one label for each image pixel. In
other words, image segmentation is the process of par-
titioning an image into multiple segments (sets of pix-
els). In most cases, a segmentation model directly takes
an entire image as its input and outputs its segmenta-
tion result in the form of pixel mask(s). Specifically,
segmentation tasks can be further categorized into se-
mantic segmentation and instance segmentation. Se-
mantic segmentation involves predicting image pixels
to defined categories. That is to say, objects of the same
class are treated as a single entity. On the other hand,
instance segmentation predicts each pixel to belong to
distinct individual objects/instances. In this paper, we
focus on semantic segmentation– we aim to determine
whether each pixel is either coronal loop pixel or not.

Various deep CNN architectures have been proposed
for image segmentation, such as SegNet [bhc15]
(which is a deep encorder-decoder architecture),
Piecewise CRF-CNN [lsv16] (which exploits piece-
wise training based on fully convolutional neural
networks (FCNN) [lsd15]), efficient neural network
(ENet) [pck16] (which is a compact encoder-decorder
architecture), and MaskRCNN [hgd17] (which extends
Faster R-CNN by adding a branch for predicting
an object masks in parallel). These segmentation

networks are used in many fields such as medical
image analysis [kk16], real-time segmentation of
dash cam video using ENet [pck16], and satellite
image segmentation using SegNet [bhc15]. One of
the most widely used CNNs for segmentation is the
U-Net [rfb15]. It is usually used for medical image
segmentation, such as retina blood vessels detection in
retina fundus images [ru18] and brain tumor detection
in MRI images [dyl17].

2.2 Coronal Loop Segmentation
The methods by Lee et al. (i.e., Oriented Connectivity-
based Method (OCM) and Daynamic Aperture-
based Method (DAM)) [lng06a, lng06b] were the
very first two coronal loop segmentation methods.
OCM [lng06a] utilized external estimates of the
magnetic fields’ local orientation to enable a construc-
tive edge linking-based coronal loop segmentation.
DAM [lng06b] exploited the Gaussian-like shape of
loop’s cross-sectional intensity profiles. In particular,
DAM segments the loops via a search through the
image for regions whose intensity profiles are well
fitted by a Ruled Gaussian Surface (RGS). The method
joins (i.e., to construct loops) fitted RGSs only if
they have similar orientation, which is determined by
applying principal component analysis on the RGSs.
Aschwanden [asc10] presented the oriented-directivity
loop tracing method [asc10], which exploited direc-
tional information for guiding the tracing of the loops,
similar to the OCM, but makes use only of the local di-
rectivity and the curvature radius constraints in corona
loop tracing. The curvature radius constraint enabled
loop tracing by providing estimates of loop direction
range based on previously-traced loop segment.
There are other studies that included coronal loop
segmentation. Durak et al. [dns09, dns10] devel-
oped a solar loop mining system for coronal loop
segmentation, which included a block-by-block loop
segmentation to retrieve images with coronal loops
from a large number of solar image datasets. McAteer
et al.’s 2D Wavelet-Transform Modulus Maxima
Method [mka10] exploited the derivative of a 2D
Wavelet-based smoothing function as an edge detector
in segmenting coronal loop structures.
Other traditional computer vision-based method for
coronal loop segmentation included the Snake-based
approach [let11]. The approach used a greedy
minimization-based active contour models (snakes)
for coronal loop segmentation. Specifically, the
Gaussian-like shapes of the coronal loop’s cross-
sectional intensity profile were used to refine the
snake’s position.
Recently, Zhiming [zxz19] proposed a new coronal
loop segementation method. The method exploited a
clustering algorithm using approximated local direc-
tionality based on a match and image enhancing filters.
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3 DEEP CORONAL LOOP SEGMEN-
TATION

In this section, we introduce the new deep learning-
based coronal loop segmentation method.

Our method exploits variants of the U-Net [rfb15] to
segment coronal loop structures. The U-Net was de-
veloped by Ronneberger et al. for biomedical image
segmentation. There are some similarities between
solar images and biomedical images. For example,
both kinds of images usually contain complicated fine-
grained patterns of the imaged features (e.g., brain ves-
sels and solar loops). Specifically, we adopt U-Net like
architectures due to their following advantages for seg-
mentation:

• To segment delicate object patterns, the U-Net
makes use of skip-architectures which combine
deeper high-level features from decoding layers
with relatively low-level features from encoding
layers. At the same time, the location and con-
text information from the down-sampling and
up-sampling paths are better combined, which plays
a key role in predicting a good segmentation map.

• Since there are no dense layers, images of different
sizes can be used as input (unlike fully connected
layers, convolutional kernels are independent of in-
put image’s size).

• The U-Net architecture can lead to precise
segmentations with small numbers of training
images [rfb15].

In our method, variants of U-Net architecture were ex-
ploited. Specifically, different depths and widths in the
architecture layers were considered. This inspiration
was from [tl19] where the authors experimented with
model scaling on MobileNets and ResNets for image
classification tasks. They identified that carefully bal-
ancing network depth, width, and resolution can result
in improvement of classification accuracy. However, in
our method, the original resolution was kept in order
not to lose any image information nor to inject extra
(and usually unreliable) information through interpola-
tion.

To be more specific, our method utilized varying archi-
tectures of U-Net by using deeper or shallower variants,
which included more or fewer layers, respectively. In
addition, the width of the U-Net was varied by chang-
ing the number of filters in each convolutional layer.
The variation in network width and depth allowed the
network to better extract coronal loops while maintain-
ing high generalization ability (i.e., without suffering
from overfitting). Here, we note that the input image
size used in this study was 512×512.

Figure 2: U-Net A: variation in width showing a nar-
rower network. The dimensions of each layer and the
operations are shown.

Our first U-Net architecture is shown in Figure 2. We
denote this network the U-Net A. The down-sampling
path has five convolutional blocks. Every block has
two convolutional layers (stride of 1) before non-linear
rectifier activation. Over the first five blocks, while
the number of 3×3 filters (also the number of 2D fea-
ture maps) is increased from 32 to 512. For the down-
sampling, max pooling with a stride of 2×2 is applied
to the end of every block except for the last one, so
the size of feature maps decreases from 512×512 to
32×32. In the up-sampling path, every block starts with
a deconvolutional layer with filter size of 3×3 and stride
of 2×2, which doubles the size of feature maps in both
dimensions but reduces the number of feature maps by
two. Over the upsampling path, the size of feature maps
increases from 32×32 to 512×512. It is worth noting
that at the start of every up-sampling block, the fea-
ture maps from the last block are concatenated with
the feature maps produced by the corresponding encod-
ing block to form this block’s input. This operation is
shown as gray “concatenate” arrows in Figure 2. When
necessary, we used zero padding to keep the dimensions
of the 2D feature maps to be concatenated the same.
This is different from the original U-Net architecture.
Each of the following convolutional layers reduces the
number of feature maps by two. Finally, a 1×1 convo-
lutional layer is used to reduce the number of feature
maps to one, which corresponds to a binary map, one
for foreground and another for the background.

Our second U-Net architecture is shown in Fig-
ure 3. We denote this network the U-Net B. The
down-sampling path has four convolutional blocks.
Every block has two convolutional layers (filter size:
3×3, stride: 1) and a non-linear rectification. The
down-sampling path increases the number of feature
maps from 1 to 256. As in the down-sampling path
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Figure 3: U-Net B: variation in width showing a shal-
lower and narrower network. The dimensions of each
layer and the operations are shown.

Figure 4: U-Net C: variation in width showing a deeper
network. The dimensions of each layer and the opera-
tions are shown.

of the previous architecture, max pooling with a stride
of 2×2 is applied to the end of every block except
for the last one. As a result, the size of feature maps
decreases from 512×512 to 64×64. In the up-sampling
path, every block starts with a deconvolutional layer
with a filter size of 3×3 and a stride of 2×2. The
upsampled features are then concatenated with the
feature maps generated by the corresponding encoder
block. The concatenation process and later convolu-
tions are similar to the previous architecture. Each
up-sampling block doubles the dimension while halves
the number of feature maps. From the first decovo-
lution/upsampling block to the end, the dimension of
feature maps increases from 64×64 to 512×512.

Our third network is shown in Figure 4. We denote
this network the U-Net C. The down-sampling path has
six convolutional blocks. Every block has two convo-
lutional layers with a filter size of 3×3 and a stride
of 1, followed by non-linear rectification. The down-

Figure 5: U-Net D: variation in width showing a nar-
rower network. The dimensions of each layer and the
operations are shown.

sampling path increases the number of feature maps
from 1 to 1024. Similar to the previous architecture,
max pooling with stride 2×2 is applied at the end of
every down sampling block except for the last one.
Through the down-sampling path, the dimension of fea-
ture maps decreases from 512×512 to 16×16. In the
reverse up-sampling path, similar to previous architec-
tures, the dimension of feature maps increases from
16×16 back to 512×512.

Finally, our forth network architecture is shown in Fig-
ure 5. We denote this network the U-Net D. The down-
sampling path has five convolutional blocks. Every
block has two convolutional layers (with a filter size
of 3×3, stride of 1) and non-linear rectifier activation.
This can be considered as a skinnier version of U-Net
A. The convolutional layers in the first encoder block
have only 16 filters. The number of filters in each con-
volutional layer doubles every time we advance to the
next block. As a result, the up-sampling path increases
the number of feature maps to 256.

4 RESULTS

In this section, the results of our method are presented.
The experimental setup is discussed first followed by
the experimental results on synthetic data and real im-
ages with their analysis. Our experiments were tested
on a Windows OS PC with 2.6 GHz, Intel Core i7 CPU
and 16 GB RAM. We have test over 3,000 synthetic
images and over 150 real images in our experiments.
Specifically, we have used each 150 images as a set with
90% of the images for training/validation, and 10% of
testing.

ISSN 2464-4617 (print) 
SSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3101 WSCG 2021 Proceedings

230 ISBN 978-80-86943-34-3DOI:10.24132/CSRN.2021.3101.25



4.1 Experimental Setup
4.1.1 Training Details
The input images and their corresponding segmenta-
tion ground truth masks were used to train the network.
During the training process, the binary cross-entropy
was used as the cost function of the network since there
are only two classes (i.e., coronal loop and non-coronal
loop). The adaptive moment estimator (Adam) [kib14]
was used to minimize the cost function. In general,
Adam utilizes the first and second moments of gradi-
ents for updating and correcting moving average of the
current gradients. The parameters of our Adam opti-
mizer were set as: learning rate = 0.002 and the max-
imum number of epochs = 500. We used Keras call-
backs to implement learning rate decay and to reduce
it to 0.0002. Early stopping was implemented when
the validation loss did not improve for 5 consecutive
epochs. Only best weights were saved. We used a batch
size of 4 for training. (In our experiments, the training
took about 2 hours and about 5 hours for synthetic and
real images, respectively. Here, we note that we did not
utilize any GPUs in this work.)

4.1.2 Evaluation Metrics
The evaluation has been done using accuracy and recall.
Accuracy is the ratio of predictions our model predicted
correctly. Recall refers to the ratio of total relevant re-
sults correctly classified by our method.

4.1.3 Thresholding
After training, a network produces a value between 0
to 1 for each pixel. 0 represents non-loop pixel and
1 represents for coronal loop pixel. Upon examina-
tion of accuracy, recall, and precision on our synthetic
data, the sum of the standard deviation and the mean
of all predicted values was used as the threshold to de-
cide whether to classify a pixel as non-loop or coro-
nal loop pixel. (Figure 6 shows the effect of thresh-
olding on various segmentation metrics.) For real so-
lar images, since there exists a large variation in the
background and non-loop intensity, we adopted adap-
tive local thresholding [srs11] (also known as dynamic

Figure 6: Effect of threshold on various segmentation
metrics.

thresholding). It determines thresholds in regions with
a characteristic size “block size” surrounding each pixel
(i.e., local neighborhoods). Each threshold value is the
weighted mean of the local neighborhood minus an off-
set value. We used a block size of 21.

4.2 Synthetic Data Tests
For synthetic data tests, we have simulated the coronal
images using various combinations of image parame-
ters. In our data, randomly generated parabola curve
sets with (1) varying number of curves, (2) varying
curve widths, (3) varying combinnation of image noises
(i.e., Gaussian noise with different stanadard deviations
and salt & peper noise) were considered.

Figure 7 shows an example set of synthetic data seg-
mentation results. In the figure, segmentation results
with higher noise levels are shown from left column to
right and from top row to bottom (e.g., subfigure (a)
has the least amount of noise and subfigure (l) has the
highest amount of noise) and the U-Net segmentation
results are shown as the red overlays. As shown in the
figure, while some mislabel of loops pixels were shown
when the noise levels were high, our method segmented
the loops very accurately.

Figure 8 summarizes the performance metric evaluation
for image parameters. Figure 8 (a) shows the accuracy
and recall when different number of loops/curves were
used. While slightly lower performance was shown
when more number of loops were considered, the U-
Net still achieved very high accuracy and recall. Fig-
ure 8 (b) and (c) show the performance metric surfaces
for noise levels. As shown in the figures, the U-Net
achieved very high accuracy and recall. (Here, we note
that the false positives were about 0.014 on average
with its standard deviation of 0.002.)

Table 1 lists the performance metrics on synthetic data
for different numbers of layers and filters in the net-
work. As shown in the table, the U-Net achieved very
high accuracy and recall, and acceptable precision. The
performance was the highest when six layers and 32 fil-
ters were used in the U-Net.

Table 1: Accuracy (Acc.) & Recall (Re.c) & Precision
(Pre.) on Synthetic Data: U-Net B on First Row, U-Net
D on Second Row, U-Net A on Third Row, U-Net C on
Fifth Row

Data Layers Filters Acc. Rec. Pre.
4 32 0.97 0.85 0.81

Syn. 5 16 0.98 0.91 0.76
5 32 0.97 0.82 0.80

Data 5 64 0.97 0.80 0.79
6 32 0.98 0.96 0.81

ISSN 2464-4617 (print) 
SSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3101 WSCG 2021 Proceedings

231 ISBN 978-80-86943-34-3DOI:10.24132/CSRN.2021.3101.25



(a) G=1.0 & S&P=0.035 (b) G=1.0 & S&P=0.075 (c) G=1.0 & S&P=0.150 (d) G=1.0 & S&P=0.300

(e) G=2.0 & S&P=0.035 (f) G=2.0 & S&P=0.075 (g) G=2.0 & S&P=0.150 (h) G=2.0 & S&P=0.300

(i) G=3.0 & S&P=0.035 (j) G=3.0 & S&P=0.075 (k) G=3.0 & S&P=0.150 (l) G=3.0 & S&P=0.300

Figure 7: Results on synthetic data with varying noise levels: Gaussian (G) noise and Salt & Pepper (S&P) noise

4.3 Real Image Tests
For real image tests, we have used the coronal loop im-
ages from the NASA’s SDO satellite. Specifically, we
have cropped the Active Regions (i.e., where most coro-
nal loops appear) of size 512×512 from the SDO’s full
disk solar image of size 4096×4096. For the training
of network, we have used the manually-traced coro-
nal loops as the ground truth masks. (The use of the
manually-traced masks is typical when there is no true
ground truth in real images.) We have also found that
using unsharpmasked images, instead of raw images,
produced the better performance results.
Figure 9 shows the test results of two real coronal im-
ages. Subfigures (a) and (e) are the raw images, (b) and
(f) are the unsharpmasked images, (c) and (g) are the
U-Net segmented loops, and (d) and (h) are the images
with segmented result overlays in red, respectively. As
shown in the figure, the U-Net produced very accurate
segmentation results.
Table 2 lists the performance metrics on real coronal
image for different numbers of layers and filters in the
network. As shown in the table, the U-Net achieved

very high accuracy and reasonable recall. The perfor-
mance was the highest when six layers and 32 filters
were used in the U-Net.

Table 2: Accuracy & Recall on Real Images: U-Net B
on First Row, U-Net D on Second Row, U-Net A on
Third Row, U-Net C on Fifth Row

Data Layers Filters Accuracy Recall
4 32 0.86 0.53

Real 5 16 0.87 0.51
5 32 0.86 0.53

Images 5 64 0.87 0.51
6 32 0.90 0.55

5 CONCLUSION
In this paper, the U-Net-based deep convolutional neu-
ral network for solar coronal loop segmentation was
explored. Our method is the first attempt to utilize
a deep learning model in coronal loop segmentation.
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(a) Performance On # of Loops/Curves

(b) Accuracy on Noise (c) Recall on Noise

Figure 8: Analysis on Synthetic Data Tests

(a) Raw Coronal Image (b) Unsharpmasked Image (c) Segmented Loops (d) Results Overlaid

(e) Raw Coronal Image (f) Unsharpmasked Image (g) Segmented Loops (h) Results Overlaid

Figure 9: Results on real coronal image: (a, e) raw images, (d, f) unsharpmasked images, (c, g) segmented loops,
(d, h) segmented results overlaid in red on image
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The method explored the variants of the U-net architec-
ture to enable accurate segmentation of coronal loops.
Through evaluation of the method, we have shown that
the U-Net can provide consistent and accurate seg-
mentation results of the loops. On synthetic data, the
method achieved about 0.98 accuracy and 0.96 recall.
On real coronal images, the method achieved about 0.90
accuracy and 0.55 recall.

In the future, we plan to investigate ways to further
improve the performance, and perform effectiveness
comparisons with other coronal loop segmentations.
In addition, the method will be considered for high
performance computing (e.g., GPU processing). We
also hope to explore applications of our U-Net to other
scientifically-interesting features that exhibit similar
image characteristics.
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