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ABSTRACT
Object tracking is a key task in many applications using video analytics. While there is a huge number of algo-
rithms to track objects, there is still a need for new methods to solve the correspondence problem under certain
circumstances. In our article, we assume a very typical but still open scenario: a still image object detector has
already identified the objects to be tracked; thus, we have object labels, confidence values, and bounding boxes in
each video frame captured at a low sampling rate. That is, optical flow methods difficult to be applied (also due
to bad lighting conditions, cluttered or homogeneous areas and strong ego-motion), and moreover, many objects
look similar (having the same category labels). Our proposed approach is based on the Hungarian method and
incorporates the above information into the cost function evaluating the possible pairings of objects. To consider
the uncertainty of the detector, the elements of the confusion matrix also contribute to the cost of pairs, as well
as the probability of spatial translations based on prior observations. As a use case, we apply the algorithm to a
data-set, where images were captured from onboard cameras and traffic signs were detected by RetinaNet. We
analyze the performance with different parameter settings.
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1 INTRODUCTION

While the goal of all object tracking algorithms is to
estimate the trajectory of moving objects, there are sig-
nificant differences between their nature, considering
their prerequisites and tolerance against the different
visual condition. For example, while many algorithms
heavily rely on the optical flow or velocity and find
the corresponding areas using the analysis of image
features of candidate regions (e.g. [Bewley2016],
[Ma2019]), others try to involve texture-based object
detection more deeply (for example [Ning2017] and
[Wang2019]). When the camera is moving in a 3D
space, and the image features of the relevant objects
to be tracked are similar, multiple object tracking
becomes very difficult and even can require efforts
to neutralize camera motion [Czúni2012]. That is
a reason that under such circumstances, the second
approach seems much more appealing.
In our article, we process outdoor videos captured
from onboard cameras, and different objects, mostly
traffic signs, are to be detected and tracked. Besides
the problems encountered from various factors, such
as the cluttered environment, possible occlusions,
scale variation, image noise, and low contrast, the
temporal sampling rate may be too low in the case of
high-speed ego-motion. Moreover, the same object

classes often have multiple appearances; thus, optical
flow methods (e.g. CAMShift, Kanade-Lucas-Tomasi,
Horn-Schunck, etc.) can not be applied efficiently. Fig.
1 illustrates when the car is turning, and the optical
flow (generated by [Farneback2003]) looks turbulent
due to the rotational and translational motion of the
camera, the complicated structure of the 3D scene,
low contrast regions, and camera independent object
motion.

We assume a very typical but still open processing
pipeline scenario for object tracking: a still image
object detector has already identified the objects to
be tracked; thus, we have object labels, confidence
values, and bounding boxes in each video frame
captured at a given sampling rate. The task is to find
the correspondence between the bounding boxes (or
declare there is no such match).
Our proposed approach is based on the Hungarian
method [Kuhn1955] and incorporates the above infor-
mation into the cost function evaluating the possible
pairings of objects. To consider the uncertainty of the
detection, the elements of the confusion matrix (error
matrix) of the detector also contribute to the cost of
pairs, as well as the probability of spatial translations
based on prior observations.
In the next section, we overview related papers, then
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Figure 1: Optical flow computed by [Farneback2003]
when the car is turning.

in Section 3 we describe the data-set and the object
detection method. Section 4 contains the theoretic
details of our proposal, while in Section 5 we analyze
the performance with different parameter settings.

2 ABOUT TRACKING METHODS
There are many aspects to categorize the large number
of approaches such as stereo or monocular, model-
based or model-free, multiple target or single-target,
casual or bi-directional, and long-term or short-term
trackers.
Since there is a larger variety and number of tracking
algorithms, we can not give a comprehensive overview
in our short article. We focus on those found the
most similar or the recent ones lacking optical flow
calculations but using neural networks.
[Huang2008] describes a three-level hierarchical
tracking method for multiple objects: at low-level,
short tracks are generated for further analysis; at the
middle-level, these tracks are further processed to form
longer trajectories based on the Hungarian method;
while at the highest level, a scene structure model
(including three maps for entries, exits and scene
occluders) is created. This high-level step implements
scene knowledge-based reasoning to reduce trajectory
fragmentation and prevent possible identity switches.
The method only uses colour histograms, position and
size, no other information from the detector itself.
[Henriques2011] also applies the Hungarian method
but focuses on the ability to model multiple objects that
are merged into a single measurement and track them
as a group. The solution is based on a graph structure
that encodes these multiple-match events. Since object
identities are lost when objects merge, the problem of
tracking individual objects across groups is posed as a
standard optimal assignment problem.
A good recent example to combine different

modalities in the tracking-by-detection domain is
[Karunasekera2019], where a dissimilarity measure
based on object motion, appearance (colour histogram),
structure (Local Binary Pattern), and size was used;
assignment is solved by the Hungarian method.
In contrast to [Karunasekera2019], in [Bewley2016]
an efficient, while relatively simple and lightweight
tracker, for multiple objects with constant velocity, was
described using variations of Faster Region CNNs, and
the plain old Kalman-filter and the Hungarian method.
The main idea was to use the very efficient CNNs for
the detection of objects, instead of using hand-crafted
visual features of classical appearance-based trackers.
Not surprisingly, it was found that the detection quality
had a significant impact on tracking performance. Our
proposal is also a simple tracker, but we incorporate the
properties of detected objects (namely the confidence
and the probability of confusions) into the solution
of the correspondence problem. Moreover, since our
tracker handles velocity in a probabilistic manner,
linear or constant motion is not assumed.
There are approaches where both the spatial and
temporal domains of tracking are fused by deep
neural networks. For example [Ning2017] proposes
a method to extend the deep neural network learning
and analysis into the spatio-temporal domain by
combining Yolo and LSTM networks. The spatially
and temporally deep method applies regression and
can effectively tackle problems of occlusions and
motion blur. [Jiang2018] also applies Yolo and LSTMs
but in a very different way. Each object has its own
tracker, regarded as an agent, trained by utilizing deep
reinforcement learning, where LSTM is used to predict
parameters (motion and scale) of the observed object.
Data association between the output of Yolo and the
trackers is also done by an LSTM. The drawback
of this technique is that besides Yolo the LSTMs
should also be trained according to the environments.
[Wang2019] introduces SiamMask performing both
real-time visual object tracking and semi-supervised
video object segmentation. Once trained, it relies on a
single bounding box initialization and operates online,
and can produce object segmentation masks and rotated
bounding boxes at high-speed. Unfortunately, both
methods can handle only a single object at a time.
While most approaches follow a sequential strategy
as detection then tracking, some new DNNs try to
fuse the two steps. For example in [WangZ2019]
a Feature Pyramid Network is used to find objects
with their bounding boxes with a constraint that the
distance between observations of the same identity in
consecutive frames should be smaller than the distance
between different identities. Unfortunately, this does
not hold in many cases for our videos.
For readers with more interest to overview this field
we propose to check earlier papers [Cannons2008],
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[Smeulders2013] or [Fiaz2019] published more re-
cently.
Our proposed solution will be a monocular, model-free,
multiple target, causal, and short-term tracker. What is
more important that we are not applying optical flow
(only accumulated statistics about the motion of the
camera), can utilize any object detection mechanism,
which produces bounding boxes and confidence values,
making our algorithm well-suited, as a post processing
step, in many image processing pipelines.

3 THE BENCHMARK DATA-SET
Automotive applications require fast and accurate
detection of street objects, traffic signs are among the
key elements. While the detection and classification of
traffic signs on some existing data-sets can reach good
performance [Lim2017], there are many circumstances
where results are still poor [Temel2019]. Also the
number of classes is not really limited since there are
many composite objects or unique designs which make
existing methods easily fail.

3.1 The Hun158 and Hun169 Data-sets
The Hun158 benchmark data-set contains 158 different
classes of Hungarian road traffic signs and some
typical street objects (e.g. bus stops, dust-bins, etc.). It
comprises pixel-wise segmented objects on 3440 image
frames of size 1280×720 and 1920×1080 resolutions.
The number of annotated objects is 13300, each has at
least 20 appearances. The Hun169 data-set contains 20
videos of 37462 frames with 61274 annotated objects
from 168 classes. In Hun169 objects are denoted by
bounding boxes, videos were recorded at 15 and 30
FPS. There is no overlapping between Hun158 and
Hun169.

3.2 Object Detection
On all the frames of Hun158 we computed the bounding
boxes and trained the RetinaNet [Lin2017]. See Fig. 2
for the illustration of two subsequent frames with de-
tected objects.

RetinaNet [Lin2017], as a popular dense detector
network, is one of the best single-stage object detection
model that has been proven to work efficiently with
dense and small scale objects. The main new features
of RetinaNet were the application of Feature Pyramid
Networks and Focal Loss. By these enhancements it
could reach the performance of previous single-stage
detectors (e.g. Yolo, SSD) while it exceeds the accu-
racy of the existing state-of-the-art two-stage detectors

Figure 2: Typical results of the detection on two con-
secutive frames.

(R-CNN variants). Beside the Feature Pyramid Net-
work it has two subnetworks: one for regression of the
precise allocation of the bounding boxes, and the other
one for classification (labeling). We used VGG19 as
the backbone of RetinaNet.
Testing on the Hun169 we could reach about 0.805mAP
(considering only objects of size larger than 10 pixels
in any dimension). Most of the errors came from small
objects and detections of such traffic signs which were
missing from the trained classes (appearing as FP -
false positives).
On Fig. 3 our large sized confusion (158×158) matrix
(CM) with a magnified part can be seen to allow
visualization of the performance of the detector. Each
column of the matrix represents the instances in an
actual class (for identifying the traffic road signs) while
each row represents the instances in a predicted class
by detectors. Black colors denote values zero or near
to zero, while lighter colors in the main diagonal of
matrix denote a large number of instances. The values
are the averaged values of the aggregated matrix which
was generated from 18 confusion matrices and derived
from testing of the 18 videos.

3.3 Data-set for Tracking
For multi-object tracking purposes we used 20 videos
from Hun169; Table 1 summarizes information about
the training and testing parts (objects larger than 10
pixels were filtered out). During training of the tracking
algorithm, statistical information was gathered about
the size and position of the objects in the Ground Truth
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(GT annotation) data and the probabilities of possible
confusions of the detector ran antecedently.

Videos (@15 or 30 FPS) training testing
Number of videos 18 2
Names of videos HUN_ V01 - V18 V19, V20
Length of video (min:sec) 22:59 6:30
Number of frames 20703 11741
Number of objects 728 361
Number of bounding boxes 31455 20416

Table 1: Training and testing data-set for tracking.

Figure 3: Illustration of the confusion matrix of the ap-
plied object detector at confidence threshold level 0.5
based on 18 videos of the Hun158 data-set.

4 TRACKING OF BOUNDING BOXES
We employ the Hungarian method to find the optimal
correspondence between detected objects of two frames
using the following cost function. Let us define the cost
of pairing detections i and j from frame k and k+1:

(1)

Ci, j = α(1−CM(L (dk,i),L (dk+1, j)))

+ β
φ∆A(∆A)
max(φ∆A)

+ γ
φ∆y(∆y)

max(φ∆y)

+ δ (1− pi p j) ,

where L (dk,i) is the class label of the ith detection on
the kth frame, CM is the confusion matrix (for illustra-
tion see Fig. 3), ∆A and ∆y are the differences between
bounding boxes’ area and y coordinates in consecutive
frames, φ∆A and φ∆y are the corresponding probability
density function assuming normal distributions, and pi
is the confidence value of the ith detection. All terms are

between 0 and 1, grid-search is used to find their opti-
mal settings, resulting in the best MOTA (Multiple Ob-
ject Tracking Accuracy) [Stiefelhagen2006] value. The
algorithm used for multiple object tracking is given in
Algorithm 1.

Algorithm 1: Multiple Bounding Box Tracking
algorithm
Input: D = {D0,D1, · · · , DF−1}
Initialize: AT = ø,FT = ø
for f = 0 to F−1 do

while at ∈ AT do
t = atlast
d = Hun_Method(ATlast ,D f , t),d ∈ D f
if d < T h then

push d to at
remove d from D f

else
add at to FT
remove at from AT

while d ∈ D f do
start new track list with d and insert into
AT

while at ∈ AT do
add at to FT

Result: FT

The proposed algorithm requires a training phase to de-
termine its main parameters, however, these parameters
are easy to obtain (and are based on a larger set of image
sequences as given in the next section). Since no mo-
tion flow is computed between the consecutive frames,
we can rely purely on information given by the detector
(coordinates of bounding boxes, labels, confusion ma-
trix, and the detection’s confidence values). The pro-
posed algorithm has the following parameters:

• F : the number of frames in the sequence,
• D f : list of detections on the frame f , 0≤ f < F ,
• D: list of Di, 0≤ i < F ,
• AT : active tracks; at ∈ AT ,
• atlast : last element of AT ,
• FT : finished tracks,
• T h: threshold of the costs.

5 EXPERIMENTS
Demonstrating the usability of our algorithm, we used
the benchmark data-set described in Section 3.3. Nor-
malized histograms of the area changes and y-direction
displacements of the 37163 bounding boxes of the 18
training videos (see Table 1) were computed to fit the
normal distributions, as shown in Fig. 4, and in Table 2.

To measure the accuracy we use MOTA
[Stiefelhagen2006], which is a widely used met-
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Figure 4: Normal distributions and their parameters fit-
ted to the ∆A’s and ∆y’s normalized histograms, mea-
sured on 18 training videos.

ric to evaluate the performance of multiple object
tracking algorithms. It combines three sources of errors
as FP (false positive), FN (false negative), and IDSW
(identity switch):

MOTA = 1− ∑k(FNk +FPk + IDSWk)

∑k GTk
, (2)

where GTk denotes the number of Ground Truth objects
at frame k. The grid-based parameter search range is
from 0 to 1 for all four parameters, using a step size of
0.2. The average MOTA value of the test videos was
maximal at parameter values α = 1, β = 0.6, γ = 0.6,
and δ = 0.2. The evaluation of tracking on videos
shows that changes in parameters influence tracking
outcomes, but the standard deviation is relatively small

φ∆A φ∆y
mean 2.5363 3.6472
standard deviation 4.88180 8.00638
max 0.2953 0.4168

Table 2: Parameters estimated on the 18 training se-
quences.

as seen in Table 3 above. The standard deviation is cal-
culated at the parameters for the best MOTA values per
video over the entire grid. Analyzing the diagrams in
Fig. 5, we note that δ should be set to a relatively low
value to reach high MOTA, thus the confidence value
of detection should not be given much weight. The
method is less sensitive to changes in α, β and γ .

Figure 5: Parameter tests for MOTA with three fixed
values. (α = 1, β = 0.6γ = 0.6, δ = 0.2)

6 CONCLUSIONS AND FUTURE
WORK

In our article we described a tracking-by-detection
method based on the outputs of an arbitrary object
detector. Instead of using explicit textural features we
rely on the confusion matrix of the detector to involve
the possible similarity in appearance (which is very
common for traffic signs). Motion is represented by
the distribution of the vertical motion component of
the detected bounding boxes accumulated in a training
phase, thus no optical flow is needed, and there can
be large changes in coordinates. This fits well to
situations, where there is non-constant, often large
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Video Recall Precision F-measure mAP MOTA Std. dev.
(MOTA)

HUN_V01 0.8339 0.6658 0.7404 0.854 0.6728 0.0921
HUN_V02 0.6950 0.8487 0.7642 0.714 0.6595 0.1345
HUN_V03 0.7120 0.6758 0.6935 0.705 0.6754 0.0905
HUN_V04 0.8683 0.7694 0.8158 0.885 0.6133 0.1421
HUN_V05 0.7460 0.6396 0.6887 0.772 0.5956 0.0920
HUN_V06 0.9075 0.7762 0.8367 0.906 0.7223 0.0555
HUN_V07 0.7465 0.8419 0.7913 0.833 0.5440 0.0571
HUN_V08 0.7615 0.8022 0.7813 0.812 0.5922 0.1261
HUN_V09 0.8403 0.7368 0.7852 0.817 0.7248 0.1103
HUN_V10 0.9845 0.7737 0.8665 0.992 0.6155 0.0975
HUN_V11 0.4876 0.7269 0.5837 0.547 0.4201 0.0494
HUN_V12 0.7500 0.6970 0.7225 0.792 0.6624 0.1082
HUN_V13 0.5902 0.7451 0.6586 0.704 0.5561 0.0979
HUN_V14 0.7456 0.8200 0.7810 0.826 0.5481 0.1234
HUN_V15 0.7594 0.7988 0.7786 0.818 0.5465 0.0823
HUN_V16 0.6550 0.7042 0.6787 0.690 0.4671 0.1587
HUN_V17 0.9502 0.7744 0.8534 0.952 0.7778 0.1041
HUN_V18 0.8441 0.8169 0.8303 0.885 0.6032 0.1928
HUN_V19 0.4483 0.6274 0.5229 0.651 0.4143 0.1472
HUN_V20 0.4553 0.7078 0.5541 0.617 0.4404 0.0616

Table 3: The results of detection (at threshold 0.5) and tracking for 18 training and 2 test videos (α = 1, β =
0.6, γ = 0.6, δ = 0.2).

velocity and the camera has strong ego-motion (e.g.
on-board car cameras).
We tested the proposed approach on a data-set of
large number of object classes, sometimes with strong
similarity. RetinaNet is a good candidate detector
for such tasks. The complexity of tracking is very
low, since the proposed cost function contains simple
functions of pre-computed variables.
As future work we plan to compare it to other methods
for speed and accuracy.
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