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In finite element calculations, the integral forms are usually evaluated using nested loops over elements, and over
quadrature points. Many such forms (e.g. linear or multi-linear) can be expressed in a compact way, without the
explicit loops, using a single tensor contraction expression by employing the Einstein summation convention. To
automate this process and leverage existing high performance codes, we first introduce a notation allowing
trivial differentiation of multi-linear finite element forms. Based on that we propose and describe a new tran-
spiler from Einstein summation based expressions, augmented to allow defining multi-linear finite element weak
forms, to regular tensor contraction expressions. The resulting expressions are compatible with a number of
Python scientific computing packages, that implement, optimize and in some cases parallelize the general tensor
contractions. We assess the performance of those packages, as well as the influence of operand memory layouts
and tensor contraction paths optimizations on the elapsed time and memory requirements of the finite element
form evaluations. We also compare the efficiency of the transpiled weak form implementations to the C-based
functions available in the finite element package SfePy.

Tensor contractions
Weak form transpiler
Numerical performance study

1. Introduction

The Einstein summation convention, abbreviated as einsum in the
following text according to the eponymous function of NumPy [15], is a
powerful and concise way of writing linear algebra or tensor contraction
expressions and as such it has received attention from computer science
related communities. Large einsum-related research is going on in tensor
networks applicable in machine learning or quantum physics calcula-
tions, see e.g. [12,17,19,25,27].

In the finite element method (FEM), a mathematical model defined
using partial differential equations (PDEs) is transformed to a weak
(integral) formulation and then discretized, see e.g. [31]. In the dis-
cretization, the unknown continuous functions from
infinite-dimensional ~ function spaces are approximated by
finite-dimensional vectors of coefficients — the degrees of freedom
(DOFs) — that are used as linear combination coefficients of basis
functions with small support over the individual finite elements that
cover the solution domain. This leads to the necessity of evaluating the
weak form integrals over each element using a numerical quadrature,
usually using nested loops over elements, and over quadrature points.
Fast evaluation of the weak form integrals is crucial for efficient calcu-
lations, especially when using higher order polynomials/curves for the
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basis and hence the approximated variables. Many such integral forms
(e.g. all linear or multi-linear) can be written using a single tensor
contraction, or einsum, expression.

In recent years machine learning techniques and related contractions
of large tensor networks started to be involved in the solution of PDEs
using various approaches such as collocation or energy minimization
approaches, see e.g. [26]. In contrast with that we wish to use the tensor
contraction expressions directly in the classical FEM to evaluate the
weak forms of PDEs. However, unlike the huge tensor networks in ma-
chine learning or quantum calculations [12], the einsum expressions in
the FE context consist usually of only a few (e.g. three or four) tensors
and the contractions have low numerical intensity. This complicates use
of modern parallel architectures such as GPUs and is subject to an
ongoing research [29]. Nevertheless, einsums are successfully used, for
example, in the pure Python finite element package scikit-fem [13],
where vectorized FE assembling (cf. [24]) is employed for fast integral
form evaluations.

In this paper we assess several Python scientific computing packages,
that implement, optimize and in some cases parallelize the general
tensor contractions using the einsum semantics. The tested packages are:
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e NumPy [15], with the basic implementation and some contraction
optimizations using a version of opt_einsum;

e opt einsum [28], with state-of-the-art contraction optimization
strategies;

e Dask [11], which can use opt_einsum as a backend, can parallelize
the calculation and allows out-of-core calculations with very large
data.

e JAX [7], with JIT compilation' and possible parallel execution or
automatic GPU transfer and einsum optimization for GPUS in spirit
of [29].

The used tensor contraction packages require rectangular (non-rag-
ged) arrays, which limits a single einsum call to a set of finite elements of
the same shape and approximation order. Applying the einsum seman-
tics in the context of p- or hp-adaptivity [2] or XFEM [6,21] would
require an additional sorting/grouping of the same element kinds
together. Such situation is not considered in this paper.

The calculation speed and memory requirements of the various
strategies are evaluated using several integral forms common in solving
multi-physical problems and compared with the C-based implementa-
tion available in the finite element package SfePy [10]. SfePy is used by
our team for solving relatively small (~ 10® DOFs), but still physically
relevant, multiphysical and multiscale problems on a single computer
and so far targets only CPU computations.

We present mostly the single-thread performance of the above
packages because that is directly influenced by the contraction path
optimality in terms of the number of floating point operations (flops)
and use of BLAS [5], nevertheless results with enables multi-threading
are presented in Appendix A.

While we compare the performance with a particular FE solver
(SfePy), the obtained results do not depend on that and are relevant to
general audience for the following reasons. The local element tensors
and resulting vectors/matrices are tied to the mathematical problem and
thus are essentially the same in every FE code. We analyze effects of the
memory layout of the tensors on the time and memory requirements of
the tensor contractions. The tensor contractions in einsum function
syntax are generated by a simple “weak form to einsum” transpiler that
we introduce in Section 5. This description/implementation of multi-
linear forms does not abstract out the details (basis functions evalu-
ated in quadrature points etc. are numpy arrays) and can be reused. The
calculations are pure-Python from user’s perspective, and while our
approach is smaller in scope than e.g. libCEED, it might offer a simple
yet efficient way of implementing the local matrix action operator [3].

The paper is structured as follows: first, in Section 2 several notions
that are used throughout the text are explained. In Section 3 we discuss
factors that influence the speed of tensor contractions from the
perspective of local FE evaluations. Then in Section 4 we recall some
basic FE concepts necessary for the subsequent text and establish the
relation to einsum expressions, and in Section 5 we introduce the tran-
spiler from generalized einsum-like expressions, suitable for describing
multi-linear finite element weak forms, to regular einsum/tensor
contraction expressions. Finally, we present the results of many nu-
merical simulations in Section 6 allowing us to assess the performance of
the several einsum implementations mentioned above and conclude the
paper in Section 7.

2. Explanation of basic concepts

The presented topic combines aspects of computer science, numeri-
cal approximation of PDEs and software engineering. This section pur-
ports to define the common ground necessary for readers of different
backgrounds to understand the following parts.

A transpiler (or source-to-source compiler) translates input in a

L JIT compilation = Just in time compilation.
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programming/domain specific language to another language that works
at approximately the same level of abstraction, unlike a traditional
compiler that translates from a higher level programming language to a
lower level programming language. In Section 5 we use this term to
denote our translator from generalized einsum-like notation to regular
einsum function notation.

By einsum expressions we mean both the mathematical way of
expressing implicit summation by repeated indices (the Einstein sum-
mation convention), such as

Aj =By Cy = ZBiAij )

k=1

where A, B and C are second order tensors (matrices), B has n columns
and C has n rows, and, more specifically, the syntax and arguments used
to call einsum functions of Python packages such as NumPy [15]. The
above matrix multiplication in this syntax is

A =einsum(‘ik,kj->ij’, B, C).

This operation is called tensor contraction and the index k is the
contraction index or axis. Many common linear algebra operations can
be expressed using the einsum syntax, for example (A is a matrix, u, v

vectors with compatible dimensions):

trace of A einsum(‘ii’, A)
diagonal of A einsum(‘ii->i’, A)
transposition of A einsum(‘ij->3ji’, A)
outer product of u, v

bilinear form A applied to u, v

einsum(‘i,j->ij’, u, v)

einsum(‘'i,ij,j->", u, A, v)

All multi-linear (linear, bilinear, etc.) forms that are defined using
such multiplicative expressions can be expressed in this syntax. More
examples specific to FE evaluations are given in Section 5.3.

3. What influences tensor contraction speed

Evaluating tensor expressions brings various trade-offs between the
numerical intensity/number of flops, the memory consumption and
access patterns, intermediate/temporary array sizes etc. In this Section
we consider several factors that influence the evaluation speed of the
weak form einsum expressions and address some of the trade-offs. The
effects of memory layouts are presented in Section 3.1. Tensor
contraction paths and related optimizations are introduced in Section
3.2.

3.1. Memory layout of operands

The einsum operands are initially, irrespective of the package used
for performing the calculations, always stored in NumPy’s n-dimen-
sional array objects (ndarray class). A NumPy array is a continuous
one-dimensional segment of memory that can be accessed using an
indexing scheme that maps n integer indices into the location of a fixed-
size item (e.g. a 64 bit floating point number) in the block. The ranges in
which the indices can vary is specified by the shape of the array (do, -,
d, 1) [15].

Among many schemes of arranging items of an n-dimensional array
in a one-dimensional block, NumPy uses a flexible strided indexing
scheme where an offset of an item (io, -+, i, 1) from the beginning of the
memory block is given by

n

foffset = E Sif

k=1

where the integers s specify the array strides. The most common strides

are given by the row-major order (as in C), where the leftmost index
. . n-1

varies the fastest, i.e. s = Hj:k 1

Fortran or Matlab), where the rightmost index varies the fastest, i.e. sy =

d;, or the column major order (as in
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Fig. 1. Dependence of the naive flops counts per FE cell on the FE approximation order for several weak forms considered in Section 6. Left: residual mode, i.e.
evaluation of the weak form action on a vector. Right: matrix mode, i.e. evaluation of the local element matrices.

1o d.

The term memory layout can refer both to the layout in terms of the
strides (row-major order, column major order,...) and to the order of the
array dimensions. In this work we assume all operands to be in a
contiguous block of memory in the row-major order, and by layout we
denote the various permutations of array dimensions.’

The operand layout significantly influences the speed of the tensor
contractions, as will be shown in Section 6.4. For illustration, let us
consider the multiplication of two matrices: for all i, k, Cx = >7;A;Bj.
Having the innermost loop index j vary along a contiguous block of
memory is usually much faster than when, for fixed i,k, the jth and (j +
1)th items of A and B are not next to each other in memory for all j, as
data access patterns with high locality help avoiding memory cache
misses.

3.2. Tensor contraction path optimization

For einsum expressions with more than two operands, a number of
possibilities exist of how, or in what order, to perform the tensor con-
tractions. The naive flops cost, corresponding to a for loop for each index
in the expression, is proportional to the product of all operand shapes,
and quickly grows prohibitive. Even though in the context of this work
the multi-linear weak form expressions have less than 10 operands
(unlike the machine learning networks), the naive calculation time and
memory requirements are not feasible for all but the simplest forms, see
Fig. 1. It is much faster to contract a subset of operands at a time, which
massively reduces the flops and intermediate array sizes and also allows
BLAS use, see [28]. An ordered list of operands to contract at a time is
called a contraction path.

The considered packages support various methods of contraction
path optimizations. The resulting path is a sequence of index tuples
(usually pairs), denoting the positions of operands to contract in a list of
operands, see below. While the contraction path optimization algo-
rithms themselves introduce an intrinsic overhead, the resulting
contraction paths strongly influence the elapsed time and memory
consumption, especially as the problem size increases and the optimi-
zation overhead becomes amortized.

For illustration let us compare the naive and optimized contraction
paths of a chained dot product A;BjCy, i.e. the einsum expression
einsum(‘ij, jk,k1->il’, A, B, C),whereAis2 x 2,Bis2 x 5,C
is 5x 2. In this case, opt einsum [28] contraction path optimization
results in the following:

2 Both terms are related: an array of shape (m,n) in the row-major order has
exactly the same arrangement of items in memory as an array of shape (n,m) in
the column-major order.

Complete contraction:
Naive scaling: 4
Optimized scaling: 3

i3, 3k, k1->i1

Naive FLOP count: 1.200e+2
Optimized FLOP count: 5.600e+1
Theoretical speedup: 2.143e+0

Largest intermediate: 4.000e+0 elements

scaling BLAS current remaining
3 GEMM k1l,jk->13j ij,1j->1i1
3 GEMM 1j,ij->il il->il

That is, instead of the naive four nested loops, it is faster to first
contract the Band C: D = einsum(‘kl, jk->3j1’, B, C), three nested
loops, and then to contract the result with A: einsum('jl,ij->11’,
D, A), again three nested loops. The flops count of the naive algorithm is
120, while the optimized flops count is reported to be 56, providing a
theoretical speed-up of about two. Furthermore, the two-step contrac-
tion allows using the fast function GEMM of a BLAS implementation.
More examples of tensor contraction paths from the FE form evaluation
context are shown in Section 5.3.

4. FE Evaluation and einsum

In this Section we recall some very basic FEM concepts that will be
needed in subsequent text, details can be found e.g. in [31]. In partic-
ular, the concepts are reviewed using vector functions (scalar functions
correspond to a single component) and two example weak forms: the
vector dot product/mass matrix weak form and the convective term
weak form from Navier-Stokes equations. We propose a unified notation
that allows straightforward translation to einsum expressions as well as
a trivial differentiation of those expressions.

4.1. Notation

Let us denote u,v two vector functions from suitable function spaces
(e.g. HY(Q) in the case of elasticity, HI(Q) in the case of fluid flow
problems). For simplicity, we assume both functions to be from the same
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space of functions V,(Q): a space of functions that are zero on the
boundary 0Q. In the FEM and related methods, the continuous functions
are approximated by functions defined using a finite set of degrees of
freedom (DOFs) and a finite element basis. A component u;, i =1, -+,D
can be expressed as the linear combination

u; (g) ~ul (,1) = ufg, ({) ) (&)

where u{-‘, k=1, N are the discrete DOFs and ¢ (5) are the basis

functions — for example piece-wise polynomials with a small support in
the case of FEM. The discrete functions u" v" are substituted in the weak
form of a PDE in question and a discrete problem is obtained, in terms of
weak form integrals. The integrals need to be evaluated over the solution
domain Q, resp. its approximation Q" that is covered by non-
overlapping cells — the elements. The total integral is then the sum of
the element contributions.

The actual elements T, that can have various shapes, sizes and ori-
entations in space, are often mapped to a reference (unit) element T,
where the integration using a numerical quadrature takes place. Let us
denote x the coordinates in space and ¢ the coordinates in the reference

Require: F
Require: cells,gps
Require: v, u
Require: d
1: function EvaL_resiuaL(cells, gps, F, v, u, d)
Ne, Mgy < get_shape(cells,v,u,d)
r « zeros((ng, ngy))
4 for i. in cells do
5 for £ in gps do
6: rlic,:] & rlie,:] +d.J(&) - F(ic,&,v,u,d)
7: end for -
8
9
0:

end for
return r

10: end function
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element, then the mapping is defined as F°:{-x; x € Tg; xi(§) =

X]i( P (§), where x¥, k = 1, ---, N are the coordinates of T. vertices, br (g)

are the basis functions restricted to the reference element® and the Ja-

cobian matrix of F is J§ (g) = {%‘} Applying F¢ to § € T,, we have also

" (g) ~ u! (;) = upy (g) . @)

This allows evaluating weak form integrals on the reference element.
Thus the basis functions have well defined restrictions ¢ (g) to the

elements — the forms can be evaluated independently in the individual
elements, in a (parallel) loop. An example of such a loop is in Algorithm
1. This particular loop evaluates a weak form integral in each cell using a
numerical quadrature for a given DOF vector u. For linear forms, it is
equivalent to the matrix-vector action of the form, i.e. Mu. The same
loop structure can be seen also in Algorithm 2, which evaluates the weak
form derivative w.r.t. u, i.e. the matrix M for linear forms. Both functions
return arrays of values for the given set of cells, the actual assembling to
a global vector/sparse matrix is not shown.

> A weak form evaluation function.
> Lists of FE mesh cells and reference cell quadrature points.
> FE variables

> material parameters, reference mappings (Jacobian J) and other data

> get result array shape

> allocate result array

> loop over cells

> loop over cell quadrature points
> evaluate and integrate F

Algorithm 1. Basic finite element loop algorithm for evaluating local element contributions to a global residual vector, i.e. the action of the form on a DOF vector u.

The quadrature weights are incorporated in the element reference mapping Jacobian J (g)

1: function EvaL_MATRIX(cells, gps, F, v, u, d)
2 Ry Ny, Nge < get_shape(cells, v, u, d)
3 M « zeros((n.,ngr, ng.))
for i. in cells do
for £ in gps do

Mli.,::] &« Mlic,:: 1 +d.J(E) - BF(iL.,é, v,u,d)/ou

end for
return M

4
5
6
7: end for
8
9

10: end function

> get result array shape

> allocate result array

> loop over cells

> loop over cell quadrature points

> evaluate and integrate g—F
u

Algorithm 2. Basic finite element loop algorithm for evaluating local element contributions to a global matrix, i.e. the derivative of the form w.r.t. a DOF vector u.

The quadrature weights are incorporated in the element reference mapping Jacobian J (g)

3 For the sake of notation simplicity, we assume isoparametric elements here,
i.e. the same basis functions for the variables and the reference element map-
ping. We also use the same basis for each vector component.
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In the following we will be interested in both modes of evaluation.
The global matrices are required e.g. when using a direct linear system
solver, while the matrix action/residual form can be used in connection
with iterative solvers that do not need the global sparse matrix explic-
itly, only its application to a vector.

In compiled languages, such as Fortran or C++, the integrals over a
group of elements can be calculated in a loop. In Python (and other
interpreted languages), the loops are very slow — that is why NumPy
and other packages allowing fast vectorized calculations were intro-
duced. Considering this, our aim is to evaluate a FE expression by a
single call vectorized over many elements, unlike the aforementioned
listings. Below we expand on the already introduced notation to allow
formulating the evaluation loops using einsum functions in a straight-
forward and efficient way. The notation facilitates using scalar H!(Q)
basis functions with vector variables, which saves both time and mem-
ory during calculations.

Traditionally the DOFs of all components will be stored in a vector —
a 1D array: (2) in matrix notation, for D = 3, has the following form:

u
uy
¢ - py O - 0 0 - 0 ué
ﬂh(é) —lo 0 ¢, ~ ¢y 0O — 0
0 - 0 0 0 ¢ - Py o ®
uj
_u}_
é 0 07[u
DN
=10 ¢ 0f|w|=@(u=y @)W,
00 ¢]lu -

where ¢ (argument ¢ omitted) is the vector of scalar basis functions
evaluated in £ and d)(g) is the D x DN matrix, whose columns can be

interpreted as vector basis functions (®); corresponding to items of the
DOF vector u of size DN. Because all components of u in (3) are
approximated using the same scalar basis functions, it can be rearranged
as follows:

o) - |ut |0 =vw ().

where U is the N x D matrix with columns formed by component DOF
vectors u;. In our weak form to einsum transpiler in Section 5, we use the
compact expression (4) as well as a tensor (three-dimensional array of

Table 1
The generalized einsum-like notation.
symbol meaning example
0 scalar P
i ith vector component u;
i.j gradient: derivative of ith vector component w.  du;
r.t. jth coordinate component ox;
i:j symmetric gradient 1 (0w Oy
2\0x;  ox;
s(i:j)- vector storage of symmetric second order Cauchy strain
>I tensor, I is the vector component

tensor e (g)

Advances in Engineering Software 159 (2021) 103033

shape D x D x N) form of the basis functions matrix d>(§) of (3)

b by 0 - 0 0 - 0
G (ﬁ) —|lo - o b - Py 0 -« 0
0 0 0 - 0 by

= {oi, (i)} ’

where i,j =1,--,D and k = 1, ---, N. This allows distinguishing the
indices of u? components from the DOF components u]’.‘, by rewriting (2)

(©))

as
G AGE ©)

The expression (6) will be used when differentiating a form w.r.t. the
DOFs and enables using scalar H!(Q) basis functions with vector vari-
ables as mentioned earlier in this Section. In the relation (3) the result of
differentiation w.r.t. the DOFs is obvious: it is the matrix ®. But to avoid
forming this rather sparse matrix explicitly, (6) can be used, accompa-
nied with a subsequent reshape operation (j,k)-J,j =1,-+,D,k =1,-,
N,J =1,--,DN.

4.2. Example weak forms

One of the most common forms is the one corresponding to the vector
dot product/mass matrix, used e.g. for I, projections, in elastodynamics
and elsewhere. Evaluating this form in an element T¢, in the context of
vector variables, means calculating

me(ve) = [ (e)u(s) = [ ()] @

Substituting the FE approximation (2), applied to both v; and u;, into (7)

yields
r ()]

ot () = [V (&) (2)
-y ( /T 0 (£) (8] (¢) D ur ®)

The expression (8) is suitable for calculating the dot product of two
known vector functions V%, u”, i.e. a scalar value, but to evaluate either a
weak form residual or matrix, either the traditional matrix relation (3)
can be used

Table 2
Examples of multi-linear weak form definitions.
description definition weak form
expression
vector dot product (*i,i’, v, u) _f.,.v,-ui
weighted vector dot (*ij,i,3°, M, v, u) JrviMiu
product
weak Laplacian (’0.1,0.1", v, u) | dv du
Tax,» 6xi
Navier-Stokes (*i,i.3,3’, v, u, u) fv-oﬂu-
convection o 7
Stokes coupling (*i.i,0’, v, p) ] %
Toxil
divergence operator (*i.i%, v) f dv;
dei
transposed Stokes (*1.1,0°, u, Q) f %
coupling Tq dx;

(*IK,s(i:j)->I,s(k:1)-
>K’, D, v, u)
(“IK,s(k:1)->K’, D, u)

linear elasticity

ol
(s

Cauchy stress
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Table 3
Memory layout specification letters.
letter axis
c cells
q quadrature points
v variable component
g gradient component
d local DOF (basis, node)
0 all material axes

ot () = ([0 (c)o(e)

which requires working with ®7 (g), or the form (6) can be employed:

m (w) =V, ( [ (€)oua (€)1 (2) D U =Mty . (10)

followed by a simple reshape operation ak—I, bm—J, which does not
need to copy/move data, if the reshaping of Mypm corresponds to its
memory storage scheme (e.g. row-major contiguous).

The form (8) has a very simple structure, so it can be readily seen that
the mass matrix corresponding to vector variables is formed by D blocks

of the scalar mass matrix ( fT¢k( )(/)m( ) J¢ (g) ,), but the tensor form

(10) enables a straightforward (tangent) matrix evaluation of more
complex forms too, for example the convective term below.

The convective term weak form of the Navier-Stokes equations is
non-linear, if the advection velocity coincides with the flow velocity, but
its structure is that of a multi-linear term. In an element T¢ it is defined

c(sms) = ()20 o) - [0 2 ()

where z%(g) can by expressed in terms of ¢ using g;‘ (g) =

J”(g)’)u = (v),My(u),, ()]

(11)

% (é)JkJ (g) Substituting the tensor FE approximation (6) into (11)

yields (the argument ¢ is omitted for brevity)
cﬁ(\’ ) v‘/ R ,,, 7 U3l ] a2

which allows trivial differentiation w.r.t. u, we just omit u} and then u™
from the expression and sum the two terms together:

hresh .
()( o= kf7( ia DS ‘bdx m5ﬂ¢m+5la¢kub6‘hdxl icPm >|‘Il|
m 199 ¢
/( iathid u,—u G+ St ’5,L¢ )IJ [,

where in the second identity we replaced back u'8;. by u" and Ué’sib by u%,

13)

i.e. used the compact expression (4).

The weak form to einsum transpiler described in Section 5 allows
automatic transformation of the description corresponding to the left-
hand side of (11) to an einsum-ready descriptions of the discretized
form (12) and (13).

5. Weak form to einsum transpiler
In this Section we propose a generalized einsum-like notation suit-

able for describing weak form integrals and introduce a transpiler that
can translate expressions in this notation to regular einsum expressions
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and operands.

The generalized einsum-like syntax that we propose is both close to
the mathematical notation and explicit in what tensor axes are con-
tracted, i.e. the weak form definitions are self-documenting, compare e.
g. with the very versatile [14] Unified Form Language [1] from the
FEniCS project, where named symbolic operators such as inner or
grad are used.

5.1. Overview

Let us denote by p a scalar unknown variable and by q the corre-
sponding test function. Similarly, u = {1;}, v = {v;} term a vector un-
known and test variable pair.

In the proposed implementation, we generalize the einsum notation
with symbols for derivatives and other quantities summarized in
Table 1. Using those symbols it is possible to define all the (multi-)linear
terms available in SfePy in a unified and easy manner. Several example
definitions are shown in Table 2 — five of those weak form expressions
are the subject of the performance analysis in the next Section.

The generalized einsum-like expressions are transformed to regular
einsum expressions using a simple transpiler with the following features:

several einsum evaluation backends, see Section 5.2;

arbitrary memory layout of the operands;

easy automatic differentiation, thanks to (multi-)linearity of the
considered weak forms;

various evaluation modes (see below).

The following evaluation modes, a feature available in SfePy, are
supported:

e ‘weak’ modes for expressions involving a test variable:
- ‘residual’ mode corresponding to the operator/matrix application
to a DOF vector without the global sparse matrix assembly;
- ‘matrix’ mode returning the local element matrices — derivatives
of the expression w.r.t. a given variable;
e ‘eval’ mode returning the integral value in case all variables passed
to the evaluation function have associated DOFs, i.e. no test variables
are in the argument list.

All weak forms shown in Table 2 support all the above evaluation
modes automatically, with the exception of the Cauchy stress expres-
sion: this form has no test variables and cannot be called in a ‘weak"
mode, only evaluated.

The transpiler allows performing simple transformations of the ex-
pressions and operands, namely:

Memory layout application: the required memory layout of einsum
operands can be specified using a letter symbol for each operand
axis, listed in Table 3.

Expression slicing: to reduce memory usage, an expression can be
evaluated in a loop one cell at a time.

e Operand conversion: operands can be retyped to dask arrays with
chunks defined in terms of cell slices.

Transformations of expression indices and special operand storage:
see the linear elasticity weak form example in Section 5.3.

The weak form evaluation function implementing the above features
is outlined in Algorithm 3. In the actual implementation, results of
various algorithm steps (e.g. the expression transpilation) are cached to
speed up subsequent evaluations.
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Require: ge

Require: data

Require: layout

Require: backend

1: function EvALUATE(ge, data, backend)

ee « transpile(ge)
eval_einsum «— get_function(backend)
ops « get_operands(data)
shape « get_output_shape(ee,ops)
ee,ops < apply_layout(ee,ops)
ee,ops < transform(ee, ops, backend)
paths « get_paths(ee, ops, backend)
return eval_einsum(shape, ee, ops, paths)

end function

S0 X IFD>INRERN

1

Advances in Engineering Software 159 (2021) 103033

> the generalized einsum-like expression of a weak form

> FE variables, material parameters, reference mappings etc.
> operands memory layout

> einsum expression evaluation backend

> transpile ge to einsum expression (backend independent)
> backend-dependent evaluation function
> operands from FE data

> apply layout, does not change output shape
> do backend-dependent transformations
> get optimized contraction paths

Algorithm 3. Outline of the weak form evaluation function based on the weak form to einsum transpiler.

5.2. Backends

A backend terms an expression evaluation function tailored for the
specific library. The following backends are currently supported, the
abbreviations in parentheses are used in Section 6:

Table 4
Symbols used in the expression examples.
variable. meaning
array
v.det a reference mapping Jacobian J multiplied by quadrature weights
u.bf basis functions y; corresponding to the approximation of u
u-bfg % corresponding to the approximation of u
1
ul the identity matrix
u.dofs the DOFs of u in the matrix form U
u.Psg a tensor of shape (D,D,D(D + 1)/2) expressing the vector storage of
the symmetric gradient
ml_m2.arg an array m2 of a material m1
Table 5

‘numpy’ (np): the expression evaluation function uses numpy .
einsum().

‘numpy_loop’ (npl): numpy.einsum() is applied to a sliced
expression sequentially one cell at a time.

’opt_einsum’ (oe): the expression evaluation function uses
opt_einsum.contract (), more path optimization options are
available than with *numpy;

’opt_einsum_loop’ (oel): like ’numpy_loop’ but with
opt_einsum.contract().

’jax’ (jx): the expression evaluation function uses jax.numpy.
einsum () and is JIT-compiled using jax.jit ().

’jax_vmap’ (jxv): the expression evaluation function uses jax.
numpy . einsum(), is JIT-compiled using jax.jit () and vector-
ized using jax.vmap (), which leads to a similar behavior to the
’*_loop’ backends.

’dask_single’ (das), ’dask_threads’ (dat): the expression
evaluation function uses dask.array.einsum(), explicitly
without or with multiple threads.

The numbers of cells n., FE approximation orders, numbers of quadrature points, DOF counts per component, number of evaluation repetitions and the array sizes of

the scalar and vector weak form residuals |rs|, |r,| and matrices |M;|, |M,|.

#cells order #QP #DOFs/comp. repeat [rs| [MB] |M;| [MB] |ry| [MB] |M,| [MB]
1024 1 8 4100 6 0.1 0.5 0.2 4.7

2 27 18,441 6 0.2 6.0 0.7 53.7

3 64 49,168 5 0.5 33.6 1.6 302.0

4 125 102,425 5 1.0 128.0 3.1 1,152.0

5 216 184,356 4 1.8 382.2 5.3 3,439.9
2048 1 8 8196 6 0.1 1.0 0.4 9.4

2 27 36,873 6 0.4 11.9 1.3 107.5

3 64 98,320 5 1.0 67.1 3.1 604.0

4 125 204,825 4 2.0 256.0 6.1 2,304.0
4096 1 8 16,388 6 0.3 2.1 0.8 18.9

2 27 73,737 6 0.9 23.9 2.7 215.0

3 64 196,624 5 2.1 134.2 6.3 1,208.0
8192 1 8 32,772 6 0.5 4.2 1.6 37.7

2 27 147,465 5 1.8 47.8 5.3 430.0

3 64 393,232 4 4.2 268.4 12.6 2,415.9
16,384 1 8 65,540 6 1.0 8.4 3.1 75.5

2 27 294,921 5 3.5 95.6 10.6 860.0
32,768 1 8 131,076 6 2.1 16.8 6.3 151.0

2 27 589,833 5 7.1 191.1 21.2 1,719.9
65,536 1 8 262,148 6 4.2 33.6 12.6 302.0

2 27 1,179,657 5 14.2 382.2 42.5 3,439.9
131,072 1 8 524,292 6 8.4 67.1 25.2 604.0
262,144 1 8 1,048,580 5 16.8 134.2 50.3 1,208.0
524,288 1 8 2,097,156 5 33.6 268.4 100.7 2,415.9
1,048,576 1 8 4,194,308 5 67.1 536.9 201.3 4,831.8
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Fig. 2. Reference implementation performance in evaluating the five selected weak forms denoted by markers. Left: residual mode, right: matrix mode, top: the
elapsed time mean without the worst case T, , bottom: the maximum memory consumption with respect to the repeat parameter M™*. The highest values for each

color-coded approximation order are annotated by arrows.

e opt_einsum_dask_single’ (oedas), ’opt_einsum_dask_th-
reads’ (oedat): like opt_einsum’, but the operands are converted
to dask arrays with chunks defined in terms of cell slices and dask is
used by opt einsum to do the contraction, either without or with
multiple threads. The ’auto’ chunk size is used by default, i.e.
suitable sizes are determined by dask.

5.3. Expression examples

Several examples below illustrate the functioning of the transpiler.
The default layout, compatible with SfePy, is used, i.e. the row-major
storage of arrays with the cqgvd0 array axes order. The following
symbols defined in Table 4 will be used in the explanation.

5.3.1. Weak laplacian expression

The weak Laplacian integral defined by the expression (*0.i,0.1",
v, u) gets translated in the matrix mode to einsum(‘'cq, cqjd,
cgje->cde’, v.det, v.bfg, u.bfg), where det is the reference
element mapping Jacobian and bfg is the matrix of basis functions
gradients, as defined in Table 4. For a particular case of 1024 tri-
quadratic hexahedral elements, the data sizes are:

cde (1024, 27, 27) =

v.det cqg (1024, 27)
v.bfg cqgjd (1024, 27, 3, 27)
u.bfg cgje (1024, 27, 3, 27)

path: [(0, 1), (0, 1)]

That is, the integral is over 1024 cells with 27 quadrature points
each, j denotes the three components of the gradients and there are 27
DOFs per cell. The last line shows the contraction path resulting from the
greedy optimization algorithm implemented in NumPy’s einsum()
function: a pair (i,j) denotes a contraction of operands i, j, then the

operand i is removed from the list of operands and the operand j is
replaced by the contraction result. This process is repeated until all the
contractions are evaluated and a single operand, the result, remains.

Using either the ‘numpy_1loop’ or the ‘opt_einsum_loop’ back-
end causes the expression to be compiled to einsum(‘q, gjd, gje-
>de’, v.det[c], v.bfglcl, u.bfglc]) that is evaluated for each
cell c¢. In Section 6 we demonstrate that this slicing approach is an
efficient method when applied to FE approximation orders greater or
equal to three, regardless the weak form.

5.3.2. Vector dot product expression

The dot product of vector variables, discussed in Section 4.2 is
defined by the expression (‘i,i’, v, u), which is transpiled to

einsum(‘cq,qd, ir,ge, is->crdse’, v.det, v.bf, v.I, u.
bf, u.I) in the matrix mode, with data sizes for 1024 tri-linear hex-
ahedral elements

crdse (1024, 3, 8, 3, 8) =

v.det cqg (1024, 8)
v.bf qgd (8, 8)
v.I ir (3, 3)
u.bf qe (8, 8)
u.I is (3, 3)

path: [(2, 4), (0, 1), (0, 2), (0, 1)] and to einsum(‘cq,
qd,ir,ge,cie->crd’, v.det, v.bf, v.I, u.bf, u.dofs) in the
vector mode, with data sizes

crd (1024, 3, 8) =

v.det cqg (1024, 8)
v.bf qgd (8, 8)

v.I ir (3, 3)

u.bf ge (8, 8)
u.dofs cie (1024, 3, 8)



R. Cimrman

Advances in Engineering Software 159 (2021) 103033

Laplacian

]03 4

21535.7  22657.9

160304

16549.3

104 -
363p.8
10%
@ 10°
= 10 s
10° <
102 4
107" 4
-~ fenics " - fenics
102 5= S sfepy 10" 4 O —5— sfepy
10° 101 10° 108 109 10* 10° 10°
#cells #cells
NS convective
24887.4 256470 oo,
108 ¥ ¥ 13358.9
10*
1024 = : . A 39.
o
Z = 10%4
£y ]
= —1
10() -
102 4 —3
—4
—5
1071 -~ fenics “- fenics
—5— sfepy —E5— sfepy
10° 10* 10° 100 10° 10" 10° 106

#cells

#cells

Fig. 3. Performance of matrix mode evaluations of the SfePy reference implementation (circles) in comparison with FEniCS (crosses) for various approximation
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Table 6

The SfePy/FEniCS ratios of the elapsed time mean without the worst case " and the memory consumption M™= for the weak Laplacian and convective term weak
forms for various approximation orders. The values correspond to medians over various numbers of mesh cells, see Fig. 3.

Laplacian NS convective
1 2 3 4 5 1 2 3 4 5
WW VW
med(Tsfepy /Tomics) 0.50 0.42 0.34 0.63 0.83 1.06 1.49 3.20 3.33 4.65
med(M;’;:;y 1.75 1.96 216 217 2.04 1.06 0.93 1.00 0.99 -

path: [(3, 4), (0, 3), (0, 2), (0, 1)]
Note that the same expressions work also with scalar variables, but
the transpilation result is different.

5.3.3. Linear elasticity expression

The last example covers the linear elasticity weak form and illus-
trates the transformations of expression indices and a special operand
storage. The form is defined using the second order Cauchy strain tensor
(a.k.a. symmetric gradient)

() L (o
\7) 2\oxy  ox
and the fourth order tensor Dyy with elastic coefficients. Exploiting

symmetry of those tensors allows a substantial memory saving: in 3D, e;
is commonly stored as a vector of 6 components instead of a 3 x3 matrix,

and Dy is stored as a 6 x 6 matrix, instead of the full tensor with 81
items. This storage and shape transformation is supported by our tran-
spiler via the s (i : j) ->1I syntax, meaning a symmetric storage subset is
taken from the tensor indices i, j and the result is put into a 1D array with
the index I. Hence the linear elasticity weak form is defined simply using
the expression (‘IK,s(i:j)->I,s(k:1)->K’, D, v, u), that is
compiled to einsum(‘cq,cgje,rjI,cqlk,cqglf, slK->cresf’,
v.det, v.bfg, v.Psg, m_D.arg, u.bfg, u.Psg)in the matrix
mode, with data sizes for 1024 tri-linear hexahedral elements
cresf (1024, 3, 8, 3, 8) =

v.det cqg (1024, 8)
v.bfg cgje (1024, 8, 3, 8)
v.Psg rjI (3, 3, 6)

m_D.arg cgIK
u.bfg cqglf
u.Psg slK

(1024, 8, 6, 6)
(1024, 8, 3, 8)
(3,3,6)
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Table 7

The fastest layouts per FE approximation order and backend in the case of the
weak Laplacian einsum expression, T /Ty terms the relative speed-up of the
fastest layout w.r.t. the default layout.

order lib ™ /T:_""’ layout ™ /T’;W
1 das 1.65 cdgq 0.54
jx 0.58 cgqd 0.79
jxv 12.91 cdgq 0.54
np 1.33 cdgq 0.50
npl 57.76 cgqd 0.95
oe 1.27 cdgq 0.48
oedas 1.70 cdgq 0.54
oel 60.52 gedq 0.79
2 das 1.12 cdgq 0.43
jx 0.87 cdgq 0.87
jxv 1.83 cgaqd 0.91
np 0.95 cdgq 0.39
npl 3.42 cgqd 0.98
oe 1.06 cdgq 0.41
oedas 1.94 cdgq 0.56
oel 4.87 cqgd 0.99
3 das 0.88 cdgq 0.35
jx 0.50 cgaqd 0.78
jxv 0.51 cgqd 0.81
np 0.82 cdgq 0.33
npl 0.75 gedq 0.99
oe 0.83 cdgq 0.33
oedas 0.97 cdgq 0.36
oel 0.87 cgdq 0.98

path: [(0, 1), (0, 1), (0, 1, 2, 3)]

The above contraction path corresponds again to the greedy opti-
mization algorithm implemented in NumPy’s einsum () function. Bet-
ter performance can be obtained in this case e.g. by using the dynamic
programming optimization algorithm of opt einsum’s contract ()
function, which returns the following path:

path: [ (0, 4), (2, 3), (1, 3), (1, 2), (0, 1)]

Note also the special tensor Psg of shape (D,D,D(D + 1)/2) which
extracts the basis function gradient components and stores them in a
vector. This tensor has only D nonzeros (ones), however this sparsity is
not exploited. Consequently, the current performance of the linear
elastic form einsum expression is not optimal. Nevertheless, the ability
to express this term using a single simple expression is very convenient.

6. Performance evaluation results

Five representative weak forms from Table 2 were chosen for
studying elapsed time and memory consumption of the einsum evalua-
tion backends from Section 5.2, namely the vector dot product,
weighted vector dot product, weak Laplacian, Navier Stokes convection
and linear elasticity terms. For comparison, their counterparts from
SfePy were used, all implemented using a hand-crafted C code, called
from Python via SfePy’s lightweight Cython [4] wrapper. The reference
implementation evaluates the forms cell-by-cell, and thus requires a
very small memory additional to that occupied by the operands and the
resulting array.

The einsum backend performance measurements were executed on a
Linux workstation with the AMD Ryzen Threadripper 1920X 12-Core
Processor, 32 GB RAM and Python version 3.8.5, NumPy 1.20.1,
opt_einsum 3.3.0, JAX 0.2.9, Dask 2021.02.0 and SfePy 2021.1 (devel-
opment version) installed.

We were interested mostly in the single-thread performance of the
einsum backends because that was directly influenced by the
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contraction path optimality in terms of the number of floating point
operations (flops) and some of the calculations were memory-
demanding — the largest tasks used all the available RAM. To ensure
single-threaded execution of all backends, the relevant environment
variables were set appropriately and the CPU affinity parameter was set
to a single value® Vice-versa, the environment variables and affinity
were unset in the potentially multi-threaded runs in Appendix A.

A 1D bar made of a varying number of 3D hexahedral cells served as
the finite element mesh. Note that the mesh topology is irrelevant for
matrix mode linear weak form evaluations — it plays some role only for
the nonlinear convective term form and for residual mode evaluations:
the mesh cell connectivity is used to index the DOF vector. On this mesh,
the finite element approximations of orders from 1 to 5 were defined.
The used cell and DOF counts for the five forms are summarized in
Table 5: the scalar weak Laplacian form employs variables with a single
component per quadrature point, the other, vector, forms contain vari-
ables with three components per quadrature point, i.e. the largest vector
problem involved 12,582,924 DOFs. For the sake of the performance
measurements, the same numbers of quadrature points as given in the
table were applied to integrating all the five weak forms, although in
practice those numbers would lead to inexact integration e.g. in the
convective term case.

Note that only the form evaluations (einsum function calls), leading
to arrays of dense vectors/matrices, were measured, not the subsequent
FE assembling into the global residual vector or sparse matrix forming
the linear system, except the comparison results in Section 6.3. The re-
siduals rs, r,, in Table 5 are arrays of shapes (n,ng4-), where ng, is the
number of DOFs in one cell (the number of shape functions), the
matrices M;, M, have shapes (n,ng,ng.), i.e. the local element matrices
are ng. X ng. and ng., ng. depend on the approximation order and the type
of the weak form, see also Algorithms 1, 2 in Section 4.1.

In relation to the reference implementation performance in Section
6.3, we first explore the influence of the operand memory layouts on the
performance of the weak Laplacian and Navier-Stokes convection forms
in Section 6.4 and then report both relative and absolute results for all
the five forms in Section 6.5, considering only the default, SfePy-
compatible, layout. All data presented below are available in the form
of Pandas DataFrames [20] online [9].

6.1. Measuring memory consumption

A time-based memory usage including child processes was tracked
using memory_profiler, version 0.58.0 [23]. The individual evaluation
functions were tagged in the data, and the memory consumption of a
function was defined as the maximum minus minimum in the tagged
interval of that function. The sampling periods from 0.001 s to 0.1 s were
used, depending on the problem size. Due to the time-based sampling
nature of the memory tracking, values for very small problems may be
skewed. In such cases the memory requirements were negligible with
respect to the available memory. On the other hand, memory con-
sumption values for large problems, which are of most interest, were
measured accurately.

6.2. Choice of performance indicators

The first evaluation of a weak form using the Algorithm 3 is slower
then subsequent evaluations because of the necessary first-time steps.
Each weak form was evaluated using a single backend/optimization
combination several times according to the repeat parameter for various
mesh sizes and function approximation orders, see Table 5. To omit the
additional setup time of the first evaluation, which is amortized e.g. in
practical time-dependent problems, the mean elapsed times reported

4 It is a known issue (https://github.com/google/jax/issues/1539) that JAX
cannot run using a single thread, so the affinity workaround was used.
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Fig. 4. Elapsed time and memory requirements of the weak Laplacian einsum expression depending on the operand memory layouts for 8192 cells, FE approximation
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(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

below are the means without the worst case, denoted T" ", the worst case
being the largest elapsed time among each set of repeated evaluations.
This is important especially for the JAX-based backends because of the
JIT-compilation during the first call. On the other hand, the memory
consumption is given as the maximum over the repeated evaluations,
denoted M™3*, because it determines whether a problem can be calcu-
lated within available RAM or not. Although not included in the paper,
the complete data [9] contain all the other statistics (means, minima,
maxima, ranks etc.)

6.3. Reference implementation performance

The reference implementation performance in evaluating the five
selected weak forms is illustrated in Fig. 2. The reference results shown,

i.e. the elapsed time mean without the worst case T:VW [s] and the

11

maximum memory consumption M [MB], are with respect to the
repeat parameter in Table 5.

The results demonstrate a linear dependence of the elapsed times as
well as the memory consumption on the number of mesh cells. For small
meshes and the approximation order 1 it is apparent — especially in the
residual mode, where the resulting arrays are much smaller than in the
matrix mode — that there is a small fixed time overhead and that this
overhead is amortized for more than 10* cells. Similarly, the memory
sampling measurements are not very accurate for very fast evaluations/
small data even with the sampling period of 0.001 s, however, for larger
data (e.g. the matrix mode) the measurements are reliable enough for
comparison purposes. The relative data in subsequent sections are w.r.t.
the results shown in Fig. 2.

Comparison with FEniCS

The aim of this auxiliary study is not to provide a comprehensive
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Table 8

The fastest layouts per FE approximation order and backend in the case of the
weak convective term einsum expression, T /Ty terms the relative speed-up
of the fastest layout w.r.t. the default layout.

order lib ™ /T:_""’ layout ™ /T’;W

1 das 1.05 vdgeq 0.82
jx 0.47 cqgdv 0.98
jxv 3.71 cqgvd 1.00
np 2.18 gvdeq 0.89
npl 25.73 cdgqv 1.00
oe 0.58 vdeqg 0.82
oedas 1.00 dveqg 0.88
oel 32.74 cqgdv 0.99

2 das 0.82 cgdqv 0.95
jx 0.18 cqgdv 0.96
jxv 0.28 veqgd 0.99
np 1.25 gdveq 0.98
npl 0.92 cvdgq 0.98
oe 0.19 cgvdq 0.85
oedas 0.28 cgvdq 0.90
oel 1.20 gedqv 0.95

comparison, indeed the results discussed below were obtained using a
single software/hardware configuration, but to provide a broader
context of the our main results in the following sections. We compare the
serial performance of the reference implementation in SfePy with a
widely acknowledged and used package FEniCS [18], version 2019.1.0.
The weak Laplacian and convective term weak forms were used for the
comparison. The results presented in Fig. 3 show the elapsed time mean

without the worst case T [s] with respect to five repetitions and the
maximum memory consumption M™# [MB] (max. - min. consumption
over all the repetitions together). Unlike results in Fig. 2, the measure-
ments correspond to combined weak form data allocation, evaluation
and assembling to a sparse matrix, i.e. the whole procedure of FEM
application to a weak form. The memory sampling measurements were
done with the sampling period of 0.001 seconds. The results are sum-
marized in Table 6, where the ratios SfePy/FEniCS are given for all
approximation orders, using medians over the various numbers of mesh
cells. Missing data are due to the time-out of 2000 seconds and/or
insufficient memory.

The evaluation and assembling of the matrix corresponding to the
weak Laplacian is faster in SfePy, almost three times for the order 3: the
T"™ ratios in Table 6 are decreasing up to the order 3 and then again
increasing. However, SfePy needed about two times more memory than
FEniCS, which caused calculation failures for several higher-order/large
number of cells cases (missing circles in Fig. 3 top left). On the other
hand, in the case of the convective term the memory consumption of
both packages was comparable. The calculation speed was also essen-
tially the same for the order 1, but SfePy was getting progressively worse
with the increasing order: up to four and half times for the order 5,
where SfePy timed-out and so the corresponding memory consumption
data points are missing. Analogous behavior was observed also for the
vector dot form (not shown here for brevity). To conclude, SfePy
assembling performance seemed on par with FEniCS for low order ap-
proximations, and worse for higher order approximations with about the
same memory requirements. Faster SfePy performance when assembling
the weak Laplacian was connected with higher memory consumption. It
is worth noting that the weak form evaluation algorithm based on the
developments of Section 5 offers a significant performance boost w.r.t.
the SfePy reference implementation especially for higher order ap-
proximations, as will be demonstrated in the following text.
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6.4. Influence of tensor memory layouts

This section explores the influence of the various possible memory
layouts on the weak form evaluation performance, to establish the po-
sition of the default, SfePy-compatible, layout within other possible
layouts. The default layout elapsed time mean without the worst case is
denoted by Ty".

The default layout specification is constructed as follows. The scalar
basis function gradient tensor has 4 dimensions (cells, quadrature
points, gradient components, DOFs) and the layout cggd (L,). The DOFs
tensor has 3 dimensions (cells, variable components, cell DOFs) with the
layout cvd (L,). Material parameter tensors default layout is cq0 (L3),
where 0 is a placeholder for any number of axes. Compressing the three
specifications into a single string yields the default specification
cggvd0. Other possible memory layouts of the weak form einsum
expression operands were generated by permuting the layout specifi-
cation letters of L1, Ly, L3 and compressing them together, leading to 216
different layouts®, that were applied to the operands of the matrix mode
einsum expression of the weak Laplacian and convective terms.

6.4.1. Weak laplacian layouts

The results below were obtained by a parametric study involving
1461 calculations run using soops [8], all with the mesh of 8192 cells.
The FE approximation order 3 runs had a time-out set to 50 seconds for 4
repetitions, the order 1 and 2 runs used 6 and 5 repetitions, respectively,
and no time-out. The number of runs that timed-out is excluded from the
calculations count.

The dependence of the weak Laplacian einsum expression evaluation
performance on the operand memory layouts is first summarized in
Table 7, where the fastest layouts for each FE approximation order and
einsum backend are listed, together with T /T, and T"" /Ty . The
layouts are specified using permutations of the reduced default layout
cqgd, because the FE space is scalar (no v) and the weak form has no
material parameters (no 0).

Elapsed time and memory requirements of the individual backends
are shown in Fig. 4 for the FE approximation orders 1 (top), 2 (middle)
and 3 (bottom). Both T /T, with T"" and M™/M™> with M™* are
provided. The libraries and contraction paths are indicated in y axis
labels. The contraction paths are used instead of the optimization al-
gorithms because the paths actually significantly influence the perfor-
mance, and furthermore the optimization time was negligible. The paths
are written in a condensed way, where e.g. 12.01 corresponds to the [(1,
2),(0,1)], see Section 5.3. Note that several optimization algorithms can
lead to a single contraction path, so each (library, path) pair corresponds
to the number of calculations equal to 216 layouts times the number of
optimizations with the given path. However, only the values at most 4 x
slower than the reference SfePy implementation are shown in Fig. 4,
with the corresponding memory consumption. To reduce the color/
marker legend size, only positions of cq axes are indicated in the legend,
* denotes any letter from gd. For comparison, a hand-written weak
Laplacian element matrix evaluation loop implementation, JIT-
compiled using Numba (version 0.52.0) [16], was included in this study.

6.4.2. Weak convective term layouts

The results below were obtained by a parametric study involving
3602 calculations run using soops [8], all with the mesh of 8192 cells.
The FE approximation order 1 and 2 runs used 6 and 5 repetitions,
respectively, and no time-out.

The dependence of the weak convective term expression evaluation
performance on the operand memory layouts is first summarized in
Table 8, where the fastest layouts for each FE approximation order and
einsum backend are listed, together with T /T, and T"" /Ty . The

5 This is less than 4!3!3! because the operand layouts L; share letters.
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Fig. 5. Elapsed time and memory requirements of the weak convective term einsum expression depending on the operand memory layouts for 8192 cells, FE
approximation orders 1 (top), 2 (bottom). Left: (relative) elapsed time mean without the worst case [ /T;"W, ™). Right: (relative) maximum memory con-
sumption (M™* /M, M™). The reference values obtained by SfePy are marked by vertical red lines. The libraries and contraction paths are indicated in y axis
labels, see Table 9. The colors/markers indicate positions of cell and quadrature axes in the layout string, the SfePy layout is marked by black crosses among einsum
expression backends. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

layouts are specified using permutations of the reduced default layout
cggvd, because the weak form has no material parameters (no 0).
Elapsed time and memory requirements of the individual backends
are shown in Fig. 5 for the FE approximation orders 1 (top), 2 (bottom).
Both T /T with T"" and M™*/M™>* with M™* are shown. The li-
braries and contraction paths are indicated in y axis labels. Again the
values at most 4x slower than the reference SfePy implementation are
shown, with the corresponding memory consumption. To reduce the
color/marker legend size, only positions of cq axes are indicated in the
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legend, * denotes any letter from gvd. Abbreviations given in Table 9
are used to save space, the plus sign denotes addition of two einsum
expressions due to the convective term nonlinearity.

6.4.3. Layouts discussion
Based on the above results, the following observations were made:

e For each approximation order, there was a single contraction path
per library/optimization pair, independent of the layout.
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Table 9
The mapping of convective term einsum expression contraction paths to short
labels in Fig. 5.

contraction paths abbreviations
01,02,12,03,02,01+01,02,04,13,02,01 01
01,02,12,03,02,01+06,04,02,03,02,01 02
03,34,34,03,01,01+03,12,01,12,02,01 03
03,34,34,03,01,01+15,13,14,03,02,01 04
03,34,34,03,01,01+34,05,14,23,01,01 05
24,34,04,13,02,01+01,02,04,02,01,01 06
24,34,04,13,02,01+01,02,04,13,01,01 07
24,34,04,13,02,01+05,05,02,03,02,01 08
24,34,04,13,02,01+06,04,02,03,02,01 09
24,34,04,13,02,01+06,13,14,23,02,01 10
24,34,04,13,02,01+15,13,14,13,02,01 11
24,34,04,13,02,01+24,25,34,03,12,01 12
24,34,24,01,12,01+24,01,03,13,01,01 13
24,34,24,03,02,01+34,45,34,23,02,01 14
56,35,01,23,01,01+34,01,34,13,02,01 15
56,35,01,23,01,01+34,05,14,23,02,01 16
56,35,23,01,02,01+34,25,34,01,02,01 17
56,35,23,01,02,01+34,25,34,01,20,01 18

e The layouts were both slower and faster than the default
cggvdolayout. Although there was not a single best layout, some
patterns can be observed in Figs. 4, 5. According to Table 7, cdgg
was 14 x , and cggd 6x the fastest layout for the weak Laplacian,
while, according to Table 8, cqgdv was 3 x , and cgvdg 2 x the
fastest layout for the weak convective term.

e In the weak Laplacian case, 37.3%, of layouts were no more than 4 x
slower and 3.2% were faster than the reference implementation for
the approximation order 1 while for the approximation orders 2 it
was 27.0% and 1.9%, respectively. For the approximation order 3,
due to the 50 s time-out, all layouts times were within the 4 x limit
and 49.1% were faster than the reference implementation. In the
case of the weak convective term, 51.2% resp. 99.1% of layouts were
no more than 4 x slower and 20.1% resp. 44.8% were faster than the
reference implementation for the approximation orders 1 resp. 2.

e In the weak Laplacian case, the jx backend performed the best in
terms of the elapsed time, but required much more memory. For the
approximation order 1, it was the only backend faster than the
reference implementation, together with the hand-written Numba
code, due to the low numerical intensity of the calculations. From the
order 2, np and oe backends started to be competitive and for the
order 3 also the loop-based npl and oel backends with their low
memory footprint, as well as oedas.

e In the weak convective term case, being more computationally
intensive, many oe backend layouts were faster than the reference
implementation already for the approximation order 1, together with
the again fastest jx layouts. For the order 2, also jxv and das, oedas
(lower memory usage than oe) layouts out-performed the reference
implementation.

We can conclude that alternative layouts can be used as another
simple way of speeding the FE weak form evaluation calculations using
einsum expressions, additional to optimized contraction paths.

6.5. Performance of selected weak forms contractions

A parametric study run using soops [8] lead to 6478 finished simu-
lations®, each evaluating a single weak form using a single

© This includes the reference implementation simulations shown in Fig. 2. 26
backend/optimization pairs, 25 mesh size/order combinations, 5 terms and 2
evaluation modes, 6500 in total, 22 failed due to insufficient memory.
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backend/optimization combination several times according to the
repeat parameter for various mesh sizes and function approximation
orders, see Table 5. The default cqgvd0 layout of the weak form einsum
expression operands and result arrays was used.

First the overall results, i.e. the fastest backend for each weak form,
number of cells and FE approximation order, are presented in Section
6.5.1. Because many backends/contraction paths performed similarly,
we provide also a detailed comparison in Sections 6.5.3-6.5.7, where
both the elapsed time differences among the backends/contraction
paths are shown, alongside the memory consumption. The discussions of
evaluation performance are included directly in the respective sections.

6.5.1. Overall results

The overall results are summarized in Table 10 for the residual mode
and in Table 11 for the matrix mode evaluations. For each weak form,
mesh size and FE approximation order, the shortest elapsed time mean
without the worst case T across all backends is given, as well as the

corresponding backend and T /T, .

In the residual mode, the oe and np backends were the fastest for the
weak Laplacian, oe, followed by np and jx for vector dot product weak
form and mostly jx, with several occurrences of oe and np for the other
three weak forms with the exception of the order 4 and 5 of the linear
elastic form, where the loop-based backends npl and oel performed the
best. According to the relative elapsed times means, the evaluations
were mostly faster or comparable with the reference implementation,
except the case of the linear elastic weak form.

In the case of the much more memory demanding matrix mode, the
jx backend was mostly the fastest when evaluating the weak Laplacian,
the convective and the linear elasticity weak forms. Notable exceptions
occurred for the largest mesh size, where the memory-demanding jx was
replaced by oedas (convective term) and oe (elasticity), see also the
detailed analysis in the following sections. Note also that jx was much
slower for small problems in the T metric, because of the JIT initiali-
zation in the first evaluation, omitted in T . The jxv backend, followed
by npl, were mostly the fastest in the case of the vector dot product form,
while for the weighted vector dot product, the oe (most orders 1) and np
(most orders 2) backends were the fastest.

Analogical tables summarizing the results of the simulations without
the single-thread limitation are presented in Appendix A. A detailed
comparison of the backends and tensors contraction paths follows in the
next sections.

6.5.2. Detailed weak form analyses — common settings
Two kinds of figures are presented below for the five selected weak
forms:

e To allow comparison among the five weak forms, the highest
throughput of each backend is presented in Figs. 6-14. The
throughput is defined as the size (in MB) of the resulting array of
vectors (residual mode) or matrices (matrix mode) divided by the
shortest elapsed time means without the worst case T for each
backend, i.e. |r|/T"", resp. [M|/T"", corresponding to the highest
number of megabytes each backend evaluates per second. The
backends are indicated by markers, while the fastest einsum
contraction paths by color. The cell counts (x axis) are grouped by
the approximation orders.

Relative elapsed time means without the worst case T /T, and
relative maximum memory consumption M™#* /M@ are reported in
Figs. 7-15 using the x axis logarithmic scale. The backends are
indicated by markers, while the einsum contraction paths by color,
the same as in the throughput figures. The cell counts (y axis) are
grouped by the approximation orders. Only cases no more than 5x
slower than the reference implementation are shown.
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Table 10
Summary results of residual evaluation mode. For each weak form, mesh size and FE approximation order, the shortest elapsed time mean without the worst case T
[s] across all backends is given, as well as the corresponding backend and T /T, (in parentheses).

#cells order Laplacian v. dot weighted v. dot NS convective elasticity
1024 1 0.01 (0e 0.9) 0.01 (0e 0.9) 0.01 (jx 1.0) 0.01 (jx 1.0) 0.01 (jx 1.1)
2 0.01 (oe 0.9) 0.01 (oe 0.8) 0.01 (jx 0.9) 0.02 (jx 0.8) 0.03 (jx 1.5)
3 0.02 (oe 0.6) 0.02 (jx 0.5) 0.02 (jx 0.5) 0.04 (jx 0.6) 0.12 (jx 1.6)
4 0.06 (oe 0.5) 0.03 (jx 0.3) 0.03 (jx 0.4) 0.11 (jx 0.5) 0.41 (jx 1.8)
5 0.15 (0e 0.4) 0.06 (jx 0.2) 0.07 (jx 0.3) 0.30 (jx 0.5) 0.74 (npl 1.2)
2048 1 0.01 (oe 1.1) 0.01 (jx 1.0) 0.01 (jx 1.0) 0.01 (jx 1.0) 0.02 (jx 1.1)
2 0.02 (np 0.9) 0.02 (jx 0.8) 0.02 (jx 0.8) 0.02 (jx 0.6) 0.06 (jx 1.8)
3 0.04 (np 0.5) 0.02 (jx 0.4) 0.03 (jx 0.5) 0.07 (jx 0.5) 0.22 (jx 1.7)
4 0.11 (0e 0.4) 0.05 (jx 0.3) 0.06 (jx 0.3) 0.20 (jx 0.5) 0.81 (jx 1.8)
4096 1 0.01 (oe 0.9) 0.01 (np 1.0) 0.02 (jx 1.1) 0.01 (jx 0.9) 0.02 (jx 1.1)
2 0.02 (oe 0.8) 0.02 (jx 0.6) 0.02 (jx 0.7) 0.03 (jx 0.5) 0.11 (jx 2.1)
3 0.06 (oe 0.5) 0.04 (jx 0.4) 0.05 (jx 0.4) 0.12 (jx 0.5) 0.45 (jx 1.8)
8192 1 0.01 (oe 1.0) 0.01 (jx 1.0) 0.02 (jx 0.9) 0.02 (jx 0.7) 0.03 (jx 1.2)
2 0.03 (0e 0.7) 0.03 (jx 0.6) 0.04 (jx 0.7) 0.06 (jx 0.6) 0.21 (jx 2.0)
3 0.12 (0e 0.4) 0.07 (jx 0.3) 0.10 (jx 0.5) 0.23 (jx 0.5) 0.82 (jx 1.6)
16,384 1 0.02 (np 1.0) 0.02 (jx 0.9) 0.02 (jx 0.9) 0.02 (jx 0.7) 0.05 (jx 1.3)
2 0.06 (np 0.7) 0.05 (jx 0.5) 0.07 (jx 0.7) 0.10 (jx 0.5) 0.41 (jx 2.0)
32,768 1 0.03 (0e 0.9) 0.03 (jx 0.9) 0.04 (jx 0.9) 0.04 (jx 0.6) 0.09 (jx 1.4)
2 0.10 (oe 0.6) 0.08 (jx 0.5) 0.13 (jx 0.7) 0.19 (jx 0.5) 0.81 (jx 2.1)
65,536 1 0.04 (0e 0.9) 0.05 (jx 0.9) 0.08 (jx 1.1) 0.06 (jx 0.6) 0.17 (jx 1.3)
2 0.20 (oe 0.6) 0.17 (jx 0.5) 0.29 (jx 0.8) 0.39 (jx 0.6) 1.61 (jx 2.1)
131,072 1 0.07 (oe 0.9) 0.08 (0e 0.9) 0.13 (jx 1.0) 0.12 (jx 0.6) 0.33 (jx 1.4)
262,144 1 0.13 (oe 1.0) 0.15 (oe 0.9) 0.30 (jx 1.1) 0.24 (jx 0.6) 0.66 (jx 1.4)
524,288 1 0.26 (oe 0.9) 0.30 (oe 0.9) 0.58 (jx 1.1) 0.47 (jx 0.6) 1.33 (jx 1.5)
1,048,576 1 0.50 (oe 0.9) 0.58 (0e 0.9) 1.13 (jx 1.1) 0.92 (jx 0.5) 2.63 (jx 1.5)
Table 11

Summary results of matrix evaluation mode. For each weak form, mesh size and FE approximation order, the shortest elapsed time mean without the worst case T [s]
across all backends is given, as well as the corresponding backend and T /T:VW (in parentheses).

#cells order Laplacian v. dot weighted v. dot NS convective elasticity
1024 1 0.01 (jx 1.0) 0.02 (jx 1.0) 0.02 (jx 1.0) 0.02 (jx 0.8) 0.03 (jx 1.4)
2 0.04 (jx 1.0) 0.10 (np 0.5) 0.10 (np 0.5) 0.14 (jx 0.4) 0.37 (jx 1.5)
3 0.24 (jx 0.6) 0.33 (npl 0.0) 0.73 (np 0.1) 0.83 (jx 0.1) 1.99 (jx 0.4)
4 1.72 (jx 0.3) 1.29 (npl 0.0) 3.57 (jx 0.1) 4.38 (jxv 0.1) 13.89 (jx 0.4)
5 5.07 (jx 0.2) 4.78 (npl 0.0) 15.53 (jx 0.1) 17.71 (jx 0.0) 46.30 (jx 0.3)
2048 1 0.01 (jx 1.0) 0.02 (jx 1.0) 0.02 (np 0.9) 0.02 (jx 0.7) 0.05 (jx 1.7)
2 0.07 (jx 0.9) 0.18 (jx 0.5) 0.18 (np 0.5) 0.27 (jx 0.4) 0.70 (jx 1.4)
3 0.49 (jx 0.7) 0.65 (npl 0.0) 1.45 (jx 0.1) 1.62 (jx 0.1) 4.01 (jx 0.4)
4 3.48 (npl 0.3) 2.54 (npl 0.0) 7.18 (jx 0.1) 8.60 (jxv 0.0) 27.70 (jx 0.4)
4096 1 0.02 (jx 1.0) 0.05 (jx 1.4) 0.03 (oe 0.9) 0.04 (jx 0.6) 0.09 (jx 1.9)
2 0.12 (jx 0.9) 0.39 (jxv 0.6) 0.34 (np 0.5) 0.53 (jx 0.4) 1.39 (jx 1.4)
3 1.01 (jxv 0.7) 1.27 (npl 0.0) 2.92 (np 0.1) 3.31 (jx 0.1) 8.25 (jx 0.4)
8192 1 0.02 (jx 1.0) 0.06 (jx 1.2) 0.05 (0e 0.9) 0.08 (jx 0.7) 0.19 (jx 2.2)
2 0.25 (jx 1.0) 0.69 (jxv 0.5) 0.66 (np 0.5) 1.05 (jx 0.4) 2.79 (jx 1.4)
3 1.85 (jx 0.6) 2.55 (npl 0.0) 5.70 (jx 0.1) 6.50 (jx 0.1) 15.97 (jx 0.4)
16,384 1 0.04 (jx 1.1) 0.19 (jxv 1.9) 0.10 (oe 0.8) 0.14 (jx 0.7) 0.34 (jx 2.2)
2 0.47 (jx 0.9) 1.21 (jxv 0.5) 1.33 (np 0.5) 2.04 (jxv 0.3) 5.44 (jx 1.4)
32,768 1 0.06 (jx 1.1) 0.28 (jxv 1.5) 0.18 (0e 0.8) 0.28 (jx 0.6) 0.67 (jx 2.3)
2 0.95 (jx 1.0) 2.26 (jxv 0.4) 2.66 (np 0.5) 3.94 (jxv 0.3) 11.12 (jx 1.5)
65,536 1 0.13 (jx 1.2) 0.44 (jxv 1.2) 0.35 (0e 0.9) 0.54 (jx 0.7) 1.32 (jx 2.2)
2 1.84 (jx 0.9) 4.74 (jxv 0.5) 5.29 (np 0.5) 7.70 (jxv 0.3) 22.29 (jx 1.4)
131,072 1 0.24 (jx 1.2) 0.79 (jxv 1.2) 0.68 (0e 0.9) 1.07 (jx 0.6) 2.62 (jx 2.3)
262,144 1 0.46 (jx 1.2) 1.49 (jxv 1.1) 1.39 (0e 0.9) 2.11 (jx 0.7) 5.23 (jx 2.3)
524,288 1 0.95 (jx 1.3) 2.87 (jxv 1.1) 2.79 (0e 0.9) 4.30 (jx 0.7) 10.55 (jx 2.4)
1,048,576 1 1.86 (jx 1.3) 5.64 (jxv 1.1) 5.56 (oe 0.9) 13.75 (oedas 1.0) 57.33 (oe 6.4)
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Fig. 7. Relative elapsed time and memory requirements of the weak Laplacian einsum expression w.r.t. the reference implementation. Left: residual mode, right:
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6.5.3. Weak laplacian

The performance of the einsum backends applied to the evaluation of
the weak Laplacian einsum expression is shown in Figs. 6 (evaluation
throughput) and 7 (relative performance).

In the residual mode, the oe backend was the fastest in most cases,
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followed by np and das with oedas. It was faster than the reference
implementation even for the order 1. From the order 2, also das and
oedas, and for the order 5 also npl, oel backends out-performed the
reference implementation. The memory consumption was in general
higher than the reference one for smaller data, while for large problems

5: 1024 4
4: 2048 1
1024 1
8192 1

3: 4096
2048 1
1024 1
65536 1
32768 1
16384
2: 8192 1
4096
2048 1
1024 4
1048576
524288 1
262144 4
131072 4
65536 1
1: 32768 1
16384
8192 1
4096
2048 1
1024 4

: 1024 1
1 2048
1024 A
8192 1
3: 4096
2048 1
1024 4
65536 1
32768 1
16384 1

2: 8192
4096
2048 1
1024 4
1048576 1
524288
262144 4
1310721
65536 1

1: 32768 A
16384
8192 1
4096
2048 1
1024 4

N

1\]'““"/1’\['_"““
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grouped by the approximation orders.
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Fig. 10. The highest throughput of each backend (number of megabytes evaluated per second) for the vector dot product einsum expression. Left: residual mode
evaluations |r|/T"", right: matrix mode evaluations [M|/T"". The backends are indicated by markers, the einsum contraction paths by color. The cell counts (x axis)
are grouped by the approximation orders.
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by the approximation orders.
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Fig. 14. The highest throughput of each backend (number of megabytes evaluated per second) for the weak linear elasticity term einsum expression. Left: residual
mode evaluations |r|/T"", right: matrix mode evaluations |[M|/T"". The backends are indicated by markers, the einsum contraction paths by color. The cell counts (x
axis) are grouped by the approximation orders.
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several backends had a lower memory footprint: the das, oedas backends
due to array chunking, and npl, oel thanks to looping over the mesh
cells.

In the matrix mode, the jx backend was the fastest and out-performed
the reference implementation from the order 2. From the order 3, also
npl, oel and jxv backends were faster than the reference implementation.
The cell loop backends (npl, oel) performance seemed to be less
dependent on the particular contraction paths. We attribute this to the
fact that the restriction of the operands to a cell is small and so also the
temporary allocations are small — compare with the huge memory
consumption differences among the contraction paths of other back-
ends. The npl backend was faster than oel, probably due to a simpler
code path, important again for the small cell-restricted data.

6.5.4. Weak convective term

The performance of the einsum backends applied to the evaluation of
the weak convective term einsum expression is shown in Figs. 8 (eval-
uation throughput) and 9 (relative performance).

In the residual mode, the jx backend was the fastest by a large
margin, followed by jxv. The jx backend out-performed the reference
implementation, while jxv only in some cases and all the other backends
were slower (mostly no more than 2 x ). However, the fastest contrac-
tion paths memory consumption of jx, jxv was up to 10 x more than
reference consumption. For higher order approximations, npl, oel, das,
oedas but also eo and np approached the reference times and had lower
memory consumption.

In the matrix mode, the jx backend was again the fastest, but its lead
over jxv, oedas or oe was small from the order 2. The jx backend was
faster than the reference implementation from the order 1, jxv, oedas
and oe from the order 2 and essentially all backends from the order 3.
The npl, oel backends performed very well from the order 3, and unlike
other backends (especially jx, jxv) had a lower memory consumption
than the reference implementation. Overall the memory consumption
stayed less than 5x reference, in contrast to the weak Laplacian in the
previous section.

6.5.5. Vector dot product

The performance of the einsum backends applied to the evaluation of
the vector dot product einsum expression is shown in Figs. 10 (evalua-
tion throughput) and 11 (relative performance).

In the residual mode, the jx backend was the fastest, together with oe
for the order 1, where it out-performed the reference implementation.
From the order 2 also np, oedas, das and from the order 3 jxv backends
were faster than the reference code. The memory consumption mostly
stayed less than 5x reference, except jx, jxv and oe for some contraction
paths.

In the matrix mode, jxv replaced jx as the overall fastest backend for
orders 1, 2, but from the order 3 it was replaced by npl and oel. The jxv,
npl backends were faster than the reference implementation from the
order 2, jx from the order 3 and das, oedas from the order 4. The memory
requirements stayed within 3x reference, npl and oel backends had
memory consumption lower than reference from the order 3.

6.5.6. Weighted vector dot product

The performance of the einsum backends applied to the evaluation of
the weighted vector dot product einsum expression is shown in Figs. 12
(evaluation throughput) and 13 (relative performance).

In the residual mode, the jx backend was the fastest, followed by oe
and np. From the order 2 it consistently out-performed the reference
implementation, from the order 3 also oe, np, oedas and jxv and from the
order 4 also das. The memory consumption stayed mostly less than 5 x
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reference.

In the matrix mode, most backends performed well. The oe and np
backends were the fastest in most cases and out-performed the reference
implementation. From the order 2 also jx, oedas, das and jxv, from the
order 3 npl and oel were faster than the reference code. The jx and jxv
backends were the fastest from the order 4. The memory consumption
stayed mostly less than 3x reference, the npl and oel backends had
smaller footprint from the order 3.

6.5.7. Linear elasticity

The performance of the einsum backends applied to the evaluation of
the weak linear elasticity term einsum expression is shown in Figs. 14
(evaluation throughput) and 15 (relative performance).

In the residual mode, the jx backend was the fastest but mostly
almost 2x slower than the reference implementation. For the order 5,
the npl and oel backends performed better than jx, but they were still
slower than the reference code. The memory consumption of oel, npl
and das was smaller and of oedas, das smaller or comparable to the
reference implementation. Overall it mostly stayed less than 5x refer-
ence, except for jx and jxv from the order 3, where it reached almost 30 x
reference values.

In the matrix mode, the jx, jxv backends performed the best and were
faster than reference from the order 3, together with the oel backend.
The memory consumption was mostly less than 7x reference values.

The relatively low performance in this case, especially in the residual
mode, was caused by not exploiting the sparsity of the Psg tensor, see
the last paragraph of Section 5.3.3.

7. Conclusion

In this paper, we proposed and described a simple transpiler from
generalized einsum-like expressions, suitable for describing multi-linear
finite element weak forms, to regular tensor contraction expressions. We
applied the transpiler and presented a very simple implementation of
several standard weak forms. The transpiler supports several Python
libraries as backends implementing the einsum function which allowed
us to perform a large numerical study comparing the backends (NumPy,
opt_einsum, Dask and JAX) mutually and with the reference imple-
mentations of the weak forms in the finite element SfePy.

An indispensable feature of the backends was their ability to opti-
mize the tensor contraction paths. Our study confirmed that using
contraction paths optimizations is crucial for good performance. How-
ever, the theoretical speedup, as e.g. calculated by opt_einsum, was
found to be not a good metric for estimating performance when applied
to simple einsum expressions occurring in the FE calculations — here the
additional memory consumed by temporary storage was much more
important. This was also one of the motivations for realizing the pre-
sented numerical study.

Concerning the study results, we first studied the influence of the
memory layout of the expression operands on the evaluation perfor-
mance, to establish the position of the default, SfePy compatible layout,
with other possible layouts. We found that marked improvements could
be achieved by using alternative memory layouts.

Then five selected weak forms were evaluated for various mesh sizes
and FE approximation orders using the default layout. The evaluations
were repeated several times for each parameter set and statistics such as
means without the worst case were computed.

Significant differences in performance were found between the re-
sidual (operator/matrix application to a DOF vector without the global
sparse matrix assembly) and matrix (calculating local element matrices)
evaluation modes as well as among the various weak forms — no single
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backend/contraction path was the best in all the cases.

Overall, JAX based backends were the fastest, but very memory
demanding. The JIT compilation warm-up was disregarded by omitting
the worst case repetition in calculating the elapsed time mean. Without
this, the JAX backends were much slower for small problems. GPU/TPU
performance was not considered in this study.

A good compromise between speed and memory overhead w.r.t. the
reference implementation was achieved by using the opt einsum or
NumPy backends. Especially their cell-loop based variants had very low
memory requirements and offered good performance for FE approxi-
mation orders greater or equal to three in the matrix evaluation mode.
Also the Dask-based backends were suitable for large problems, where
the automatic chunking of operands decreased the memory consump-
tion. Dask allows out-of-core calculations with data not fitting into RAM,
but this feature was not used in this study.

In many cases the einsum expression based evaluations were faster
than the reference implementation (a hand-crafted C code, called from
Python via SfePy’s lightweight Cython wrappers) which is in our
opinion a good result considering the simplicity of the transpiler
implementation and especially of the weak form definitions. For forms
with low numerical intensity (e.g. the weak Laplacian in matrix mode)
or unused sparsity (the linear elasticity term), going beyond einsum
might be required for further speed-up. A very preliminary result
included in the memory layouts study indicates that using Numba might
be promising.

The transpiler and einsum expression based weak form imple-
mentations are available in SfePy from version 2021.1, allowing a rapid
prototyping of multi-physical finite element models and subsequent
calculations in various fields such as biomechanics [30] or solid state
physics [22]. All data used in preparation of this paper are available
online [9].
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Appendix A. Performance of Selected Weak Forms Contractions
with Threads

This appendix complements Section 6.5 by using the same setup but
the single-threaded execution was not enforced — default settings of
each backend library were in effect. Two additional backends — dat and
oedat — were included, i.e. Dask based backends with multiple threads
enabled.

A parametric study run using soops [8] lead to 8326 finished simu-
lations’, each evaluating a single weak form using a single back-
end/optimization combination several times according to the repeat
parameter for various mesh sizes and function approximation orders, see
Table 5. The default cqgvd0 layout of the weak form einsum expression
operands and result arrays was used.

The overall results are summarized in Table A.12 for the residual
mode and in Table A.13 for the matrix mode evaluations. The evaluation
throughput of the einsum backends applied to the evaluation of five
selected einsum expression is shown in Figs. A.16-A.20.

Summary results of residual evaluation mode, no single-thread limitation. For each weak form, mesh size and FE approximation order, the shortest elapsed time mean

without the worst case T" " [s] across all backends is given, as well as the corresponding backend and T /T,

FRWW

(in parentheses).

#cells order Laplacian v. dot weighted v. dot NS convective elasticity
1024 1 0.01 (oe 1.0) 0.01 (oe 1.0) 0.01 (jx 1.0) 0.01 (jx 1.0) 0.02 (jx 1.2)

2 0.01 (np 0.9) 0.01 (np 0.9) 0.02 (jx 1.0) 0.02 (jx 0.9) 0.04 (jx 1.6)

3 0.02 (oe 0.6) 0.02 (jx 0.4) 0.02 (jx 0.6) 0.04 (jx 0.6) 0.09 (jx 1.3)

4 0.05 (dat 0.3) 0.02 (jx 0.2) 0.03 (jx 0.3) 0.11 (dat 0.5) 0.20 (dat 0.8)

5 0.12 (oedat 0.3) 0.03 (jx 0.1) 0.04 (jx 0.2) 0.19 (dat 0.3) 0.25 (oedat 0.4)
2048 1 0.01 (0e 1.0) 0.01 (np 1.0) 0.01 (jx 1.1) 0.02 (jx 1.1) 0.02 (jx 1.4)

2 0.02 (0e 0.8) 0.01 (jx 0.7) 0.02 (jx 0.8) 0.03 (jx 0.8) 0.06 (jx 1.7)

3 0.04 (0e 0.5) 0.02 (jx 0.3) 0.03 (jx 0.4) 0.07 (jx 0.5) 0.17 (jx 1.2)

4 0.06 (dat 0.2) 0.03 (jx 0.1) 0.04 (jx 0.2) 0.15 (dat 0.3) 0.22 (dat 0.5)
4096 1 0.01 (0e 1.0) 0.01 (np 1.0) 0.02 (0e 1.2) 0.02 (jx 1.2) 0.03 (jx 1.5)

2 0.02 (oe 0.8) 0.02 (jx 0.6) 0.02 (jx 0.7) 0.04 (jx 0.7) 0.09 (jx 1.6)

3 0.05 (dat 0.3) 0.03 (jx 0.2) 0.04 (jx 0.4) 0.12 (jx 0.5) 0.25 (dat 0.9)

4 0.09 (oedat 0.2) 0.04 (jx 0.1) 0.08 (jx 0.2) 0.19 (dat 0.2) 0.32 (oedat 0.3)
8192 1 0.01 (np 1.0) 0.02 (jx 1.0) 0.02 (jx 1.0) 0.02 (jx 1.0) 0.03 (jx 1.3)

2 0.04 (oe 0.7) 0.02 (jx 0.5) 0.03 (jx 0.6) 0.06 (jx 0.6) 0.17 (jx 1.5)

3 0.06 (dat 0.2) 0.04 (jx 0.2) 0.08 (jx 0.3) 0.16 (dat 0.3) 0.28 (dat 0.5)
16,384 1 0.02 (0e 1.0) 0.02 (jx 0.9) 0.03 (jx 0.9) 0.03 (jx 1.0) 0.06 (jx 1.5)

2 0.04 (dat 0.5) 0.03 (jx 0.4) 0.06 (jx 0.6) 0.10 (jx 0.5) 0.27 (dat 1.3)

3 0.10 (dat 0.2) 0.06 (jx 0.1) 0.12 (jx 0.3) 0.23 (dat 0.2) 0.42 (oedat 0.4)

22

(continued on next page)

7 This includes the reference implementation simulations shown in Fig. 2. 31
backend/optimization pairs, 27 mesh size/order combinations, 5 terms and 2
evaluation modes, 8370 in total, 44 failed due to insufficient memory.
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Table A.12 (continued)
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#cells order Laplacian v. dot weighted v. dot NS convective elasticity
32,768 1 0.03 (0e 1.0) 0.02 (jx 0.8) 0.04 (jx 0.9) 0.04 (jx 0.7) 0.10 (jx 1.5)

2 0.06 (dat 0.4) 0.05 (jx 0.3) 0.10 (jx 0.5) 0.15 (dat 0.4) 0.33 (dat 0.8)
65,536 1 0.04 (0e 0.9) 0.03 (jx 0.6) 0.07 (jx 0.9) 0.07 (jx 0.7) 0.18 (jx 1.4)

2 0.10 (dat 0.3) 0.09 (jx 0.3) 0.19 (jx 0.5) 0.22 (dat 0.3) 0.50 (oedat 0.6)
131,072 1 0.07 (dat 0.9) 0.05 (jx 0.6) 0.11 (jx 0.8) 0.12 (jx 0.6) 0.33 (jx 1.4)
262,144 1 0.08 (dat 0.6) 0.10 (jx 0.6) 0.22 (jx 0.8) 0.24 (jx 0.6) 0.57 (dat 1.2)
524,288 1 0.15 (oedat 0.5) 0.18 (jx 0.6) 0.42 (jx 0.8) 0.38 (dat 0.5) 0.87 (dat 0.9)
1,048,576 1 0.23 (dat 0.4) 0.35 (jx 0.6) 0.81 (jx 0.8) 0.60 (dat 0.4) 1.68 (oedat 0.9)

Table A.13

Summary results of matrix evaluation mode, no single-thread limitation. For each weak form, mesh size and FE approximation order, the shortest elapsed time mean

without the worst case T [s] across all backends is given, as well as the corresponding backend and ™ /T:VW (in parentheses).

#cells order Laplacian v. dot weighted v. dot NS convective elasticity
1024 1 0.01 (jx 1.0) 0.01 (jx 0.9) 0.02 (oe 1.0) 0.02 (jx 0.8) 0.03 (jx 1.6)
2 0.04 (jx 1.0) 0.06 (jx 0.3) 0.07 (jx 0.4) 0.08 (jx 0.2) 0.27 (jx 1.1)
3 0.17 (jx 0.4) 0.30 (jxv 0.0) 0.30 (jx 0.0) 0.38 (jx 0.0) 0.97 (jx 0.2)
4 0.51 (jx 0.1) 0.88 (jxv 0.0) 1.09 (jx 0.0) 1.33 (jxv 0.0) 371 (jx 0.1)
5 1.33 (jx 0.0) 2.58 (jxv 0.0) 3.50 (jx 0.0) 3.92 (jxv 0.0) 11.56 (jx 0.1)
2048 1 0.02 (jx 1.1) 0.02 (jx 0.9) 0.02 (oe 0.9) 0.03 (jx 0.7) 0.05 (jx 1.7)
2 0.06 (jx 0.9) 0.10 (jx 0.3) 0.11 (jx 0.3) 0.14 (jx 0.2) 0.50 (jx 1.0)
3 0.33 (jx 0.4) 0.51 (jxv 0.0) 0.56 (jx 0.0) 0.72 (jx 0.0) 1.92 (jx 0.2)
4 1.01 (jx 0.1) 1.71 (jxv 0.0) 2.12 (jx 0.0) 2.46 (jxv 0.0) 7.28 (jx 0.1)
4096 1 0.02 (jx 1.2) 0.03 (jx 0.9) 0.03 (jx 0.8) 0.03 (jx 0.5) 0.09 (jx 1.8)
2 0.11 (jx 0.8) 0.18 (jx 0.3) 0.21 (jx 0.3) 0.25 (jx 0.2) 0.99 (jx 1.0)
3 0.66 (jx 0.4) 1.00 (jxv 0.0) 1.12 (jx 0.0) 1.37 (jxv 0.0) 3.80 (jx 0.2)
4 1.95 (jx 0.1) 3.30 (jxv 0.0) 4.15 (jx 0.0) 7.09 (oedat 0.0) 44.14 (oedat 0.3)
8192 1 0.03 (jx 1.1) 0.05 (jx 0.9) 0.05 (oe 0.9) 0.06 (jx 0.5) 0.15 (jx 1.9)
2 0.20 (jx 0.8) 0.34 (jx 0.3) 0.39 (jx 0.3) 0.48 (jx 0.2) 1.93 (jx 1.0)
3 1.22 (jx 0.4) 1.84 (jxv 0.0) 2.10 (jx 0.0) 2.60 (jxv 0.0) 7.45 (jx 0.2)
16,384 1 0.04 (jx 1.1) 0.08 (jx 0.8) 0.10 (oe 0.9) 0.11 (jx 0.5) 0.30 (jx 1.9)
2 0.40 (jx 0.8) 0.67 (jx 0.3) 0.75 (jx 0.3) 0.93 (jx 0.2) 3.85 (jx 1.0)
3 2.05 (dat 0.3) 3.60 (jxv 0.0) 4.17 (jx 0.0) 9.03 (oedat 0.0) 32.33 (oedat 0.4)
32,768 1 0.06 (jx 1.0) 0.13 (jx 0.7) 0.17 (jx 0.8) 0.19 (jx 0.5) 0.56 (jx 1.9)
2 0.51 (dat 0.5) 1.34 (jx 0.3) 1.58 (jx 0.3) 1.78 (jx 0.1) 5.93 (oedat 0.8)
65,536 1 0.11 (jx 1.1) 0.26 (jx 0.7) 0.33 (jx 0.8) 0.36 (jx 0.4) 1.11 (jx 1.9)
2 0.86 (oedat 0.4) 2.60 (jxv 0.2) 3.11 (jx 0.3) 3.55 (jx 0.1) 10.01 (oedat 0.6)
131,072 1 0.20 (jx 1.1) 0.49 (jx 0.7) 0.63 (jx 0.8) 0.66 (jx 0.4) 2.16 (jx 1.9)
262,144 1 0.40 (jx 1.1) 0.98 (jxv 0.7) 1.21 (oedat 0.8) 1.32 (jx 0.4) 3.93 (oedat 1.7)
524,288 1 0.54 (dat 0.7) 1.84 (jxv 0.7) 2.17 (oedat 0.7) 2.60 (jx 0.4) 6.53 (oedat 1.4)
1,048,576 1 0.89 (dat 0.6) 3.65 (jxv 0.7) 4.07 (oedat 0.6) 17.78 (oedas 1.4) 24.93 (oedat 2.7)
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Fig. A.16. The highest throughput of each backend (number of megabytes evaluated per second) for the weak Laplacian einsum expression with allowed threads.

Left: residual mode evaluations |r|/T"", right: matrix mode evaluations |[M|/T"". The backends are indicated by markers, the einsum contraction paths by color. The
cell counts (x axis) are grouped by the approximation orders.
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Fig. A.19. The highest throughput of each backend (number of megabytes evaluated per second) for the weighted vector dot product einsum expression with
allowed threads. Left: residual mode evaluations |r|/T" ", right: matrix mode evaluations |M|/T"" . The backends are indicated by markers, the einsum contraction
paths by color. The cell counts (x axis) are grouped by the approximation orders.
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Fig. A.20. The highest throughput of each backend (number of megabytes evaluated per second) for the weak linear elasticity term einsum expression with allowed

threads. Left: residual mode evaluations |r|/T""

color. The cell counts (x axis) are grouped by the approximation orders.

The performance of most backends was similar to the single-threaded
case with the exception of the JAX-based backends jx and jxv. Those
backends had a significantly increased performance for large problems,
both in terms of the mesh size (the number of cells) and the FE
approximation order, most visible in the matrix mode evaluations. The
new backends dat and oedat also performed very well for the largest
problems considered, often replacing jx in Table A.12 (Laplacian, NS
convective and linear elasticity weak forms) and Table A.13 (Laplacian,
weighted vector dot and linear elasticity weak forms). Their perfor-
mance, when applied to the same contraction paths, was very similar.

By comparing with data in Section 6.5, we can conclude that
enabling threads resulted in about halved times for the largest problems
considered.
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