
ISBN 978-80-261-0973-0, © University of West Bohemia, 2021

Low-cost concept of tool breakage detection system

1st Martin Kratochvil

Department of Machine Design

University of West Bohemia

Pilsen, Czech Republic

kratochv@kks.zcu.cz

2nd Roman Cermak

Department of Machine Design

University of West Bohemia

Pilsen, Czech Republic
rcermak@kks.zcu.cz

Abstract-When machining anisotropic material with a thin

milling cutter, there is a high probability of tool breakage. Tool

breakage leads to time waste, because a conventional small CNC

machine is unable to detect tool breakage. One way to solve this

problem could be system based on OpenCV library, which uses

a cheap digital camera.

Keywords -OpenCV processing, CNC mill, breakage detection

I. INTRODUCTION

Thin plywood or fiberglass sheets are used to some extent in

the production of prototypes of robots or experimental

models. Parts from these sheets can be produced relatively

efficiently on small CNC milling machines. Especially in the

case of very small details, it is necessary to use cutters with a

diameter of 3 mm or smaller. When using such small ones in

combination with the material used, the probability of

breaking off the cutting part of the tool increases rapidly.

Fig. 1. Comparison of new and broken tool, 1.5 mm diameter

II. PROBLEM DESCRIPTION

A. Milling cutter

Milling cutters of small diameters (up to 4 mm) are made of

carbon steel “Fig. 1” or alloy steel. Tool material should be

as hard as possible. However, as the hardness of the material

increases, the brittleness increases as well. The cutting part is

usually formed by two or more helices with a smooth or

grooved profile. The blades can be hardened to increase

durability. However, in the case of hardened cutters, the core

is also hardened due to the thickness of the material, which

leads to an increase in the probability of fracture. Small

diameter cutters work efficiently at high speeds (> 10000

rpm), the average tool life, especially when processing

fiberglass, reaches a maximum of several tens of minutes.

B. Properties of the machined material

Both plywood and fiberglass are not suitable materials for

machining, however, their mechanical properties

predetermine their use as construction materials. Plywood

sheet consists of several layers of veneer joined by a glue.

There are natural cracks in the veneer which are filled with

glue during production. When machining plywood, the glue

dissolves. The dissolved glue clogs the tool edges, which

leads to a reduction in chip removal, the consequent increase

in lateral forces breaks the tool.

Fiberglass is made of glass fabric filled with epoxyresol resin.

When machining fiberglass, the cutting forces fluctuate

considerably due to the internal fiberglass structure. This,

together with the hardness of fiberglass fabric, results in

relatively strong vibrations that can break the tool. In some

cases, fiberglass resin is also affected by heat, which is

manifested mainly by an increase of friction during

machining and tool clogging.

C. Analysis of possible solution

The following variants have been considered to solve the

problem of tool breakage:

• Adjustment of cutting conditions and preventive

tool change

Advantage: There is no need to do anything else.

Disadvantage: The probability of tool breakage is

only reduced, productivity is reduced and (variable)

tool costs increase. The resin problem is not solved.

• Checking by passing the tool through a light beam

(laser)

Advantage: Possibility to asses tool wear

Disadvantage: Requires integration into the machine

and control system, practically unfeasible for cheap

machines for economic reasons.

• Detection of a change in the vibration spectrum of

the workpiece / spindle / machine [1]

Advantage: Relatively simple sensor installation.

Disadvantage: The accelerometer must be mounted

on a frame or workpiece. However, the spectrum of

vibration is affected by many factors could result to

difficult evaluation of the fracture.

• Checking the shape / size of the tool using machine

vision [2]

Advantage: cheap method, tool can be checked by

an operator on PC screen too.

Disadvantage: Requires a sufficiently small camera

placed close to the tool, possibly supplemented by a

system of mirrors and lighting.

• Measurement of the amount / existence of chips in

the exhaust

Advantage: Photoelectric sensor could be small and

durable.

Disadvantage: Small tools produce a minimum of

chips, the amount of chips varies depending on the

type of operation, the ingress of dirt from the outside

environment.

D. Required properties of the solution

Due to the required application, the decisive factors are:

20
21

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 A

pp
lie

d
El

ec
tr

on
ic

s (
AE

) |
 9

78
-8

0-
26

1-
09

73
-0

/2
1/

$3
1.

00
 ©

20
21

10
.2

39
19

/A
E5

15
40

.2
02

1.
95

42
91

7

• Low cost - use of open-source tools

• Independence of machine construction and control

system

• Optional: repairs and modifications by yourself

Due to the above-mentioned requirements, the use of the

Python programming language and the OpenCV computer

vision library seems to be optimal. Both Python and the

OpenCV library are cross-platform, thanks to which they can

be run on various platforms (x86, x86-64, ARM, …) and

operating systems (Windows, Linux).

III. DESCRIPTION OF PROPOSED DETECTION SYSTEM

Fig. 2. Scheme of the proposed system

A. HW data processing

The data is being processed using an ARM based computer

(Raspberry 3B / 4B) or x86-64 system if higher performance

is required. The operating system is Raspbian (open-source

preference). A signal is sent via this interface to the PLC

module of the machine control system. “Fig. 2”

B. SW data processing

The data processing system is implemented in the Python3

programming language using the OpenCV library, or other

suitable libraries (Numpy, SciPy)[3,5]. Independently of the

user, the tool will be photographed by the camera, processed

and stored in the memory as a reference value. During

machining, shooting and evaluation takes place at each pass,

the command is issued by closing the switch on the spindle

frame. If there is a certain deviation from the reference value,

a command is issued to interrupt the machining program

(pause).

C. Tool scanning

The command to scan the tool should be issued while

crossing the board and the tool is not covered. A reference

switch should be used for this, which closes the circuit when

the spindle frame is being positioned for the next step. As a

result, it is not necessary to take machining status data from

the machine control system.

D. Sensor

Required sensor is a CCD / CMOS camera with a resolution

of at least 640x480, theoretically a monochrome is sufficient,

color picture would however simplify the recognition of the

tool from the background. The camera must be connectable

to a computer via USB or an RJ-45 connector. An important

criterion is the existence of a Linux driver, the ideal state is

the ability to control the camera in Python3 or CLI. Due to

mounting on the spindle frame, the camera must be vibration

resistant. “Fig. 3”

Fig. 3. Proposed position of the sensor, FOV yellowed

E. Increasing the sensitivity of detection

When using a monochrome camera, objects behind the tool

should be highlighted. When using a color camera, the

instrument and background can be illuminated by LEDs with

a different color spectrum. Although the cutter is made of

steel and is likely to be gray in the image, the backlight can

affect the color of the material, which can increase the

difference in pixel values.

F. User/operator interaction

Program interruption should be announced by switching a

warning light on, via cellular network or an e-mail.

IV. DESCRIPTION OF IMAGE PROCESSING

A. Solution prerequsites

When developing a program, it is advisable to use the

following features:

• The tool has a cylindrical shape and is slim –

detection of a rectangular object is needed.

• The tool breaks in the neck - the ratio of L/D under

the neck is usually greater than 6. At least the

presence of the object must be detected. This fact is

important, detecting the presence of an object is

significantly easier than detecting edge wear in large

tools.

• Camera – due to the price, a cheap webcam with

USB interface is used. The camera has low

resolution (photo 1280x720, video 720p and

640x480). As a rule, these cameras have a small chip,

the image is degraded by noise, and there is a

decrease in frame rate due to automatic increase in

exposure time in low light conditions.

• There is not enough light under the machine spindle

– the workspace must be illuminated by LEDs

positioned in such a way that the light facilitates tool

detection.

The algorithm consists of several consecutive steps, the goal

is to modify the captured image to a form that allows the

extraction of edges. Proposed solution procedure:

1. loading image

2. preparation for processing

3. edge detection

4. filtering lines

5. deciding whether break-off has been detected

B. Image input

The suitability of using OpenCV can already be demonstrated

by the way the camera and Python run environment are

connected. The cv::VideoCapture class (in Python

cv2.VideoCapture) is used to connect the webcam.
VideoCapture includes an API that captures images from the

camera. If the camera identifies the operating system, the

image can be loaded using the .read() method without

additional action. [3]

Fig. 4. Picture of the tool captured by the camera

C. Preparing an image for processing

The next step is to prepare the image “Fig. 4” for processing.

The goal of this step is to reduce the amount of image data

over which lines will be inserted. Due to the nature of the

environment (gray to black tool, color background,

increasing contrast between tool and material suitable

lighting), edges will be extracted from the image. Edge

processing is simplest on a black-and-white image (or 2D

array). The advantage of a color camera is primarily the

possibility of clearing the background, which can be done by

creating a mask corresponding to the background color and a

logical bitwise_and. From a computer vision point of view,

the edge is located where there is a minimum difference in

the brightness value between adjacent pixels. To eliminate

errors, edge evaluation is performed on a black-and-white

image (grayscale). The image “Fig. 5” is converted to the

black-and-white spectrum by the converter

COLOR_BGR2GRAY.

Fig. 5. Black and white image

D. Reduction of unevenness on the cutter image

Certain types of cutters have very rough edges. If the cutter

stands or rotates at a very low speed, unevenness and

irregular reflections are noticeable in the picture. Then the

extracted edges are uneven and cannot be striped through

lines. Edge unevenness is eliminated by Gauss blur. First, two

images are created, each of them is focused by the

cv2.GaussianBlur only in one direction, x or y. Subsequently,

the two images are interposed by cv2.add. Although the result

“Fig. 6” is a relatively blurred image too, when the edges are

detected, the effect of blur can be sufficiently eliminated by

setting a threshold.

Fig. 6. Black-and-white image cleaned of tool unevenness

E. Edge extraction

Edge extraction is performed by two algorithms – Canny

edge (Canny’s edge detector) and additional Gaussian

pyramid.

1) Canny Edge

Canny edge is edge detection working on the principle of

local maximum gradient size. In OpenCV, the entire

algorithm is implemented by cv2.Canny. The input of the

function is a grayscale image. The output is a black-and-white

(BW) image where the edges are marked with white pixels

“Fig. 7”. The output of the function can be modified by

operands (OpenCV Docs).

Fig. 7. Edge detection using Canny Edge

2) Gaussian pyramid

During testing, edges were not detected under certain lighting

conditions. For this reason, the program was supplemented

by edge detection using the Gaussian pyramid[4]. Gaussian

pyramid was created by the difference (cv2.subtract) between

the values of the grayscale image and the image modified by

Laplacian pyramid ”Fig. 8”. Compared to the Canny edge

(relatively continuous edges), using the Gaussian pyramid

algorithm is less accurate in this way, the image contains

more noise. For this reason, the position of the calculated

lines may differ slightly from the actual lines.

Fig. 8. Edge detection using Gauss’s pyramid

F. Edge aproximation by lines

Not all detected edges correspond to the edges of the object

being monitored. The tool will have the shape of a rectangle

in the image, with a greater camera slope a four-wall

symmetrical according to the tool's line. Edge aproximation

can be realized by using the Hough transformation. In

OpenCV, the line detector is implemented by functions

cv2.HoughLines and cv2.HoughLinesP. The program has

used the function cv2.HoughLinesP, output of which are the

coordinates of the x and y endpoints “Fig. 10”. This feature

allows to make line detection conditional on their minimum

length or maximum edge break value (gap).

G. Selection of lines matching the tool shape

Despite the limitations given, for example, by the minimum

required line length, many additional lines are created in

practice that do not match the edges of the tool. Lines are

selected “Fig. 9” based on the following criteria:

• The line has a minimum length

• The line should be vertical (with tolerance)

• The line should be in the area of interest (where the

toothed part of the tool is located in the image)

Fig. 9. The principle of selecting lines. Purple area of interest, green line on

tool, blue false detection, red lines outside the area of interest.

Fig. 10. Plot lines in the tool area

H. Determination of the break-off point

Detection based on Computer vision probably does not have

a 100% success rate. In order to evaluate the break-off point,

it is necessary to determine, based on the test phase, how

many percent of cases both the failed detection of the

unbroken tool and the false detection of the already broken

tool caused by the background will not occur. Depending on

the evaluation of the test phase, the expected solution to this

problem is either to exceed the threshold number of

consecutive cases where the tool has not been detected, or to

score results and interrupt when the specified limit is reached.

The scoring system is likely to be more appropriate, as a

single false detection would reset the counter of consecutive

tool breakages.

V. CONCLUSION

The aim of this contribution was to explore the possibilities

of tool breakage detection using the OpenCV system

implemented in Python. The work described the motivation

to solve the problem, analysis of detection possibilities and

system design. The main part is the description of the

algorithm, which can detect whether the working part of the

tool has been broken off. The result of the work is a simple

prototype program by which it is possible to detect the

presence of the active part of the tool in the image captured

by the camera. The final program will be able to be

introduced after performing the planned tests, during which

it will be necessary to determine the parameter settings of

some functions and probably adjust the algorithm so that the

success rate of detection of the tool has been increased.

ACKNOWLEDGMENT

This research is supported by project SGS-2019-001.

REFERENCES

[1] S. Sun, X. Hu, and W. Zhang, “Detection of tool breakage during
milling process through acoustic emission,” Int J Adv Manuf Technol,
vol. 109, no. 5–6, pp. 1409–1418, Jul. 2020, doi: 10.1007/s00170-020-
05751-7.

[2] J. Yu, X. Cheng, L. Lu, and B. Wu, “A machine vision method for
measurement of machining tool wear,” Measurement, vol. 182, p.
109683, Sep. 2021, doi: 10.1016/j.measurement.2021.109683.

[3] OpenCV team. Online Documentation. Accessed: Feb.20.2020.
[Online]. Available: docs.opencv.org/3.4/

[4] Read the Docs, Inc & contributors. OpenCV-Python Tutorials.
Accessed: Feb.20.2020. [Online]. Available: opencv-python-
tutroals.readthedocs.io/en/latest/

[5] Numpy project. Documentation. Accessed: Feb.20.2020. [Online].
Available: numpy.org/doc/1.18/reference/index.html

[6] Python Software Foundation. Docs. Accessed: Feb.20.2020. [Online].
Available: docs.python.org/3/.

		2021-09-26T13:30:38-0400
	Certified PDF 2 Signature

