
ISBN 978-80-261-0973-0, © University of West Bohemia, 2021 

Reference Signal Processing for Aging State 

Recognition 

Mikhail Olkhovskiy, Eva Müllerová, Petr Martínek  

Department of Electrical Power Engineering and Environmental Engineering, 

Faculty of electrical engeeniring, 

University of West Bohemia, 

Pilsen, Czech Republic 

mikhail@fel.zcu.cz, mullerov@fel.zcu.cz, petrmart@fel.zcu.cz 

Abstract—In this work we presented the results of the 

experiment in which a reference signal was used for determining 

degradation level of cable insulation. A set of  reference signals 

was constructed using programing language. Onwards, each 

variant of the constructed signal was subsequently sent to the 

coaxial cable by aim of a following: digital–analog converter, 

radio frequency power amplifier with high linearity, and high 

frequency current injection air core transformer. The signals, 

passed through the cable, were received with a current 

transformer and processed using algorithm written in Python 

language. Processed signals were utilized for constructing data 

set for modern one-dimensional convolutional neural network. 

Neural network was defined in Keras, then optimal 

configuration of the network structure and its parameters were 

found. Also, visualization by gradient–based localization 

method was used to interpret the results of classification for 

constructed classes. Based on the classification accuracy, the 

most appropriate parameters of reference signal were 

determined.  
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I. INTRODUCTION 

In a modern Smart Grids, due to presence of a large 
amount of data, it is necessary to use algorithms for 
automatically determining the network status without the 
participation of the operator. It can be achieved by involving 
artificial neural networks (ANNs) in the process. In the resent 
years very promising cable aging state recognition methods 
were outlined [1], [2], [3], [4]. The paper [1] proposed, that 
distortion of a power line communication signals provided an 
information about physical properties of grid components and 
can be used to detect cable aging. Accordingly, variations in a 
channel frequency response (CFR) are used. The authors of 
[1] made a numerical model of a three core XLPE insulated 
medium voltage cable, considering the frequency range from 
100 kHz to 35 MHz. To distinguish water-treed cable model 
from intact cable model, a binary classification by aim of 
machine learning algorithm in a form of support vector 
machine (SVM) was utilized. The authors points out to the 
problem of meaningful feature selection which will be used in 
classifier. To overcome influence of different load conditions 
on classification results they used skewness and kurtosis of 
magnitude and phase of the normalized CFR. Work [2] 
likewise uses features, extracted from CFR, estimated inside a 
power line communication modem (PLM). Authors modelled 
thermal aging of a paper insulated cables using their previous 
measurements. In [3] was also presented supervised machine 
learning algorithm to extract information about grid anomalies 
from CFR, line impedance and reflection coefficient. In our 
present work, we decided to found an optimal signal for 
purpose of degradation levels determining. We adopted a 

windowed swept–sine type of a signal, that was described in 
[5]. For classification purposes we used a modern one–
dimensional convolutional neural network [6]. Feature 
extracting process is a part of a neural network operation for 
this type of network. Therefore, it is a guarantee that the most 
meaningful features are used for classification. Five 
degradation levels of cable insulation were classified 
simultaneously.  

II. EXPERIMENTAL SETUP 

The experimental setup consists of a personal computer 
(PC), FPGA development board (DB), a set of high frequency 
current transformers (HFCT), a signal amplifier (AMP), and a 
unit under test (UUT). Transmitting HFCT have an air core, 
both receiving HFCTs have ferromagnetic cores. Reference 
signal with required parameters is generated by Python 
program, running on the PC. Communication with the DB is 
carried out using the SCPI protocol. The DB has two DA 
converters and two AD converters, with a resolution 14 bits 
and sampling frequency 125 MHz. One of the DA converters 
is connected to the transmitting HFCT via a 15 W signal 
amplifier with high linearity. Both AD converters are involved 
in receiving signals from receiving HFCTs. HFCT–1 (Fig. 1) 
is used to record the reference signal before passing through 
the UUT, HFCT-2 is used to record the reference signal passed 
through the UUT. Impedances Z1 and Z2 are close to zero for 
this particular experiment. Therefore, there occurs full 
reflection of both, electric and magnetic component of an 
incident wave from the cable ends. Time window during 
signal acquisition was 131072 ns. Every digitized raw signal 
record contains 16384 sampled values. Captured time 
sequences were stored on the PC for subsequent processing.  
As an UUT we used a coaxial cable RG59, with a dielectric 
made of low-density polyethylene (LDPE). The melting point 
of this LDPE were determined as 105,35 °C by the aim of 
differential scanning calorimetry analysis. To simulate 
different aging levels of the cable insulation we applied 
accelerated aging process and used physical model based on 
the following form of an Arrhenius equation: 
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where: 

�� – equivalent insulation age (hours) 

�� – accelerated aging time (hours) 

�� – activation energy of a LDPE (eV) 

�� – Boltzmann constant  (8,6171·10-5 eV/K) 

�� – operational temperature (ºC) 

�� – accelerated aging temperature (ºC) 
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Fig. 1. Schematic representation of the experimental setup. 

Accelerated aging temperature was constant during the 

experiment and was set to 100 °C. For equivalent age 

calculations the operating temperature of tested cable was 

assumed 65 °C. For the activation energy of LDPE was 

accepted the value 190 kJ/mol (or 1,969 eV) [7]. 

III. REFERENCE SIGNAL CONSTRUCTION 

While constructing the reference signal, one must take into 
account many parameters to meet the conditions. General 
form of the reference signal can be described by the following 
equation: 

� !" = # !" ∙ $ !"                           (2) 

where: 

� !" – reference signal to be send; 

# !" – window; 

$ !" – swept–sine signal. 

As a window # !" Tuckey window was applied. While 
choosing the minimal and maximal frequency of the swept–
sine signal, the characteristics of the propagation channel 
properties of the UUT should be considered. Moreover, an 
appropriate duration of the reference signal must be chosen to 

avoid overlapping of the transmitted and reflected signal. 
Since the tested cable has a length 100 m and the velocity of a 
wave propagation is 5,2 ns/m, it was decided to set the 
duration of the reference signal to 1040 ns, or 130 sampled 
data points. To determine an optimal reference signal shape 
for aging state recognition, the following steps were made. As 
a base reference signal, sweep frequency sinusoid was chosen. 
Two main groups of reference signal were constructed. The 
first group contains sweep frequency with a start at 1 MHz and 
stop at 10 MHz, the second group contains signals with a start 
frequency 10 MHz and stop frequency 1 MHz. Within each 
group, 9 variants were constructed using 1 MHz step. Tukey 
window with the following parameters is used for signal 
windowing: signal length was set to 130 data points, shape 
parameter alpha was set to 0,3. This parameter represents the 
faction of the window inside the cosine tapered region. 

IV. DATA PROCESSING 

The simplified scheme of a data flow for this experiment 
is represented in Fig. 2. To extract the useful part from the 
signal, recorded by HFCT sensor, there is no need, in our case, 
to apply any peak detection algorithm, since the sending time 
of the reference signal is known in advance. We only need to  

 

Fig. 2. Schematic representation of the data flow in the experiment. 



apply correction factors depending on the tested cable length 
and the propagation time of the signal through the electronic 
circuits of the transmitting–receiving equipment and the tested 
cable before extracting data from the raw signal. Since it is 
assumed that only subtle changes in the received reference 
signal will be observed, we would not like to subject the data 
to additional unnecessarily signal processing, thereby risking 
the loss of useful details. Only signal normalizations were 
applied. Amplitude normalization was made in the range from 
0 to 1, and time–domain normalization to max–peak position 
was used in the same way as described in Fig. 3. Since the 
network can learn to distinguish between classes based only 
on the whole signal shift, it is necessary to exclude this 
possibility. For these purposes max–peak position 
normalization is used. 

 

Fig. 3. To explaining time–domain max–peak position normalization. 

V. CLASSES DEFINITION 

In total, 6 classes were defined from data obtained from 
the accelerated aging experiments. Five classes were 
constructed for measuring on the Cable B, while Cable A was 
used as a reference. The names of the relative classes, 
described in the Tab. 1, reflects the cable name (A, B), applied 
temperature (t20 – 20 °C, t100 – 100 °C) and duration of 
accelerated ageing process (0, 12, 36, 72 and 144 hours).  

TABLE I.  CABLE PARAMETERS FOR DIFFERENT ACCELERATED 

AGING DURATION AND CORRESPONDING CLASS NAMES 

Name 
Class 

name 

Cumulative 
acceleration 

aging 

duration 

(hours) 

Equivalent 
age by 

Arrhenius 

equation 

(years) 

C 

(pF/m) 

RDC 

(Ω/m) 

A-t20-0 - 0 0 70,07 60,6·10-3 

B-t20-0 t0 0 0 70,07 60,6·10-3 

B-t100-12 t1 12 0,8 68,50 60,0·10-3 

B-t100-36 t2 36 2,3 68,21 63,3·10-3 

B-t100-72 t3 72 4,7 68,69 59,8·10-3 

B-t100-144 t4 144 9,3 69,07 59,4·10-3 

 

Deep convolutional neural network is able to find 
meaningful features in the training data set without manual 
feature engineering. This can be achieved with a sufficient 
number of training examples, which can be obtained by data 
augmentation. In our experiment we use physical data 
augmentation as opposed to mathematical. The reason is that 
mathematical augmentation cannot produce new information 
but only remixes existing. Physical data augmentation in this 
experiment occurs at the stage of data acquisition via changing 
the parameters of the physical interaction between the sensors 
and the object under test. The principle of the physical data 
augmentation is described in Tab. 2. Augmentation was 
achieved by changing a position of transmitting and receiving 
HFCTs for every data set according to the scheme introduced 
in the Tab 2. It can be seen that every data set was augmented 
by factor 25, since HFCT–0 has 5 different positions, and 
HFCT–2 also. For determining the aging state of a UUT was 
used already defined construction of the one-dimensional 
convolutional ANN, presented in our earlier work [6], with a 
few parameters tuned. The network consists of two one 
dimensional convolutional layers, which are used for feature 
extraction, and two dense layers for classification task. The 
first layer of network have 20 filters with a kernel size 51; the 
second layer have 60 filters with a kernel size 3. Used 
activation function is ReLU, optimizer – Adam. 

TABLE II.  THE PRINCIPLE OF THE PHYSICAL DATA AUGMENTATION 

Variant 

number 

HFCTs placement variants 

HFCT–1 HFCT–2 

1 

position 0 0 cm 

position 0 0 cm 

2 position 1 5 cm 

3 position 2 10 cm 

4 position 3 15 cm 

5 position 4 20 cm 

6 

position 1 5 cm 

position 0 0 cm 

7 position 1 5 cm 

8 position 2 10 cm 

9 position 3 15 cm 

10 position 4 20 cm 

The same permutations for positions 2, 3, 4 position 0 
position 1 

position 2 

position 3 
position 4 

0 cm 
5 cm 

10 cm  

15 cm 
20 cm 

… position 2 
position 3 

position 4 

10 cm 
15 cm  

20 cm 
24 

25 

VI. CLASSIFICATION AND RESULTS 

Network learning was conducted on GPU. For applying a 
classification algorithm, the received and processed HFCT–2 
signals were divided in the following way: 175 records within 
every class were used as a training data set, 50 records were 
used as a validation data set and 25 records as a testing data 
set. Classification results, for  the  case  when  only amplitude 

 

Fig. 4. Classification accuracy of an aging state of the cable, depending on reference signal frequencies. 



 

                                                           1–2 MHz                                             1–10 MHz                                            10–9 MHz 

Fig. 5. Example of an application of Grad-CAM [8] visualization method for selected reference signal frequencies. 

normalization of the signal was applied are represented in Fig. 
3(a). For this case is observable  very high rate of correct 
results for reference signals with sweep frequency variants 
from 10–1 MHz to 10–9 MHz. Classification accuracy was 
96–100 %, except for the reference signal with the frequency 
sweep 10–4 MHz, where the classification accuracy for class 
B–t100–72 was only 88 %. For low reference signal 
frequencies (from 1–2 MHz to 1–10 MHz) there is observable 
low classification accuracy for the classes B–t100–12, B–
t100–36 and B–t100–72, while for the classes B–t20–0 and B–
t100–144 the classification accuracy was 100 % for all used 
frequencies. Furthermore, all 250 records from class A–t20–0 
were used as a testing data set, while only records from cable 
B were used for network learning process. As a result, for all 
18 reference signal variants were obtained 100 % accuracy. In 
Fig. 3(b) are represented the results of aging state 
classification for the case when time–domain max–peak 
normalization was applied during data processing. This time, 
influence of the whole signal shifting on the learning process 
of the ANN was excluded. Parity remains almost the same 
with minor changes and with a tendency of the classification 
accuracy to be higher for higher frequencies. Radical changes 
have occurred in classification accuracy when the data from 
variant A–t20–0 were used as the testing data set. Now only 
the reference signal frequencies 1–3 MHz, 1–10 MHz, 10–5 
MHz, 10–8 MHz and 10–9 MHz are high enough to make the 
final decision on which class the data belongs to. Low 
classification accuracy for low reference signal frequencies 
explains Fig. 4. Red areas on the signal represents ANN 
“attention”, in other words, using this areas, the neural 
network distinguishes one class from another. And for the 
signals with higher frequencies, there are more possibilities 
for ANN to find useful features in the signal changes. 

VII. CONCLUSIONS 

From the experiment it can be conclude, that it is possible 
to use as a reference signal swept–sine signal with the length 
1040 ns and consisting 130 data points, to determine thermal 
degradation level of insulation of coaxial cable by aim of one–

dimensional convolutional neural network. For data 
augmentation was used method, when a position of receiving 
sensor is changed during acquisition. According to 
classification results, its method is very promising for data 
augmentation. To normalize a signal in a time domain, method 
of maximum signal peak amplitude was applied. To visualize 
learned by the network features, Grad-CAM visualization 
method was successfully applied.  
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