
Assessment of Python tensor contraction packages
in the context of finite element evaluations

R. Cimrmana,b

aNew Technologies Research Centre, University of West Bohemia, Univerzitnı́ 8, 306 14 Plzeň, Czech Republic
bFaculty of Applied Sciences, University of West Bohemia, Univerzitnı́ 8, 306 14 Plzeň, Czech Republic

Fast evaluation of the weak formulation integral forms in finite element calculations is of crucial
importance, especially when using a higher order approximation of the unknown and test fields.
The integral forms are usually evaluated using nested loops over elements, and over quadrature
points. Many such forms (e.g. all linear or multi-linear) can be written using a single tensor
contraction expression using the Einstein summation convention. This convention, abbreviated
as einsum in the following text according to the eponymous function of NumPy [7], allows a
concise ways of writing tensor expressions.

Unlike large tensor networks in machine learning or quantum physics calculations, see
e.g. [5, 11], the einsum expressions in the FE context consist usually of only several tensors
and the contractions have low numerical intensity. This complicates use of modern computer
architectures and is subject to an ongoing research [13]. Nevertheless, einsums are successfully
used, for example, in the pure finite element package scikit-fem [6].

In the contribution we will comment on our recent results published in [2], where we assess
several Python scientific computing packages implementing optimized tensor contractions. The
tested packages are

• NumPy [7], with the basic implementation and some optimizations from opt einsum;

• opt einsum [12], with state-of-the-art contraction optimization strategies;

• Dask [4], which allows parallel out-of-core calculations with very large data.

• JAX [1], with JIT compilation1 and possible parallel execution or automatic GPU transfer.
In [2] we proposed a simple “weak form to einsum” transpiler2 from generalized einsum-like

expressions (see Table 1). The transpiler allows simple definitions of multi-linear finite element
weak forms as evidenced in Table 2. It supports several einsum evaluation backends imple-
mented using the packages listed above, arbitrary memory layout of operands, easy automatic
differentiation due to (multi-)linearity of the considered weak forms and various evaluation
modes.

The transpiler based weak forms are available in SfePy from version 2021.1, allowing a
rapid prototyping of multi-physical finite element models and subsequent calculations in diverse
fields such as biomechanics of liver [10] or solid state physics [9]. All data used in [2] are
available online [3].

1JIT compilation = Just in time compilation.
2A transpiler translates input in a language to another language that works at approximately the same level of

abstraction, unlike a traditional compiler that translates from a higher level programming language to a lower level
programming language.

37

Table 1. The generalized einsum-like notation

symbol meaning example

0 scalar p
i i-th vector component ui

i.j gradient: derivative of i-th vector component w.r.t.
j-th coordinate component

∂ui

∂xj

i:j symmetric gradient 1
2
(∂ui

∂xj
+

∂uj

∂xi
)

s(i:j)->I vector storage of symmetric second order tensor,
I is the vector component

Cauchy strain tensor eij(u)

Table 2. Examples of multi-linear weak form definitions

description definition weak form expression

vector dot product (’i,i’, v, u)
∫
T viui

weighted vector dot product (’ij,i,j’, M, v, u)
∫
T viMijuj

weak Laplacian (’0.i,0.i’, v, u)
∫
T

∂v
∂xi

· ∂u
∂xi

Navier-Stokes convection (’i,i.j,j’, v, u, u)
∫
T vi

∂ui
∂xj

uj

Stokes coupling (’i.i,0’, v, p)
∫
T

∂vi
∂xi

p

transposed Stokes coupling (’i.i,0’, u, q)
∫
T q ∂ui

∂xi

divergence operator (’i.i’, v)
∫
T

∂vi
∂xi

linear elasticity (’IK,s(i:j)->I,s(k:l)->K’, D, v, u)
∫
T Dijkl eij(v)ekl(u)

Cauchy stress (’IK,s(k:l)->K’, D, u) Dijkl ekl(u)

The calculation speed and memory requirements of the transpiled weak forms, in compari-
son with the original C implementation of those forms as available in SfePy, will be presented.
To provide a broader context, the serial performance of the reference SfePy implementation will
be also compared to the finite element framework FEniCS [8].

Acknowledgement
The work was supported from European Regional Development Fund — Project “Application
of Modern Technologies in Medicine and Industry” (No. CZ.02.1.01/0.0/0.0/17 048/0007280).

References
[1] Bradbury, J., Frostig, R., et al., JAX: Composable transformations of Python+NumPy programs,

https://github.com/google/jax, 2021. Ver. 0.2.9
[2] Cimrman, R., Fast evaluation of finite element weak forms using python tensor contraction pack-

ages, Advances in Engineering Software 159 (2021) No. 103033.
[3] Cimrman, R., Performance measurements of Python tensor contraction packages in the finite ele-

ment context, Data set, Zenodo, 2021, doi: 10.5281/zenodo.4750560.
[4] Dask Development Team, Dask: Library for dynamic task scheduling, 2016.
[5] Gray, J., Kourtis, S., Hyper-optimized tensor network contraction, Quantum 5 (2021) No. 410.
[6] Gustafsson, T., McBain, G., Scikit-fem: A Python package for finite element assembly, Journal of

Open Source Software 5 (52) (2020) No. 2369.

38

[7] Harris, C. R., Millman, K. J., et al., Array programming with NumPy, Nature 585 (7825) (2020)
357-362.

[8] Logg, A., Mardal, K. A., Wells, G. (editors), Automated solution of differential equations by the
finite element method: The FEniCS book, Lecture Notes in Computational Science and Engineer-
ing, Berlin Heidelberg, Springer-Verlag, 2012.

[9] Novák, M., Vackář, J., Cimrman, R., Evaluating Hellmann–Feynman forces within non-local
pseudopotentials, Computer Physics Communications 250 (2020) No. 107034.

[10] Rohan, E., Turjanicová, J., Lukeš, V., Multiscale modelling and simulations of tissue perfusion
using the Biot-Darcy-Brinkman model, Computers & Structures 251 (2021) No. 106404.

[11] Schindler, F., Jermyn, A. S., Algorithms for tensor network contraction ordering, Machine Learn-
ing: Science and Technology 1 (3) (2020) No. 035001.

[12] Smith, D. G. A., Gray, J., opt einsum – a python package for optimizing contraction order for
einsum-like expressions, Journal of Open Source Software 3 (26) (2018) No. 753.

[13] Świrydowicz, K., Chalmers, N., et al., Acceleration of tensor-product operations for high-order
finite element methods, The International Journal of High Performance Computing Applications
33 (4) (2019) 735-757.

39

	Cimrman R.: Assessment of Python tensor contraction packages in the context of finite element evaluations

